

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA INGENIERÍA CIVIL – HIDRÁULICA

GENERACIÓN DE MAPAS DE RIESGO CONSIDERANDO LA TOPOGRAFIA URBANA, APLICADO A LA CIUDAD DE OAXACA DE JUAREZ, OAXACA.

TESIS

QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA:

OSCAR JESUS LLAGUNO GUILBERTO

TUTOR

M. I. VÍCTOR JAVIER BOURGUETT ORTIZ FACULTAD DE INGENIERÍA

MÉXICO, D. F. ABRIL 2014

JURADO ASIGNADO:

Presidente: DR. FELIPE IGNACIO ARREGUÍN CORTÉS

Secretario: DR. MARIO GUSTAVO ORDAZ SCHROEDER

Vocal: M. I. VÍCTOR JAVIER BOURGUETT ORTIZ

1 er. Suplente: DR. VÍCTOR HUGO ALCOCER YAMANAKA

2 do. Suplente: M. I. JOSÉ MANUEL RODRIGUEZ VARELA

Lugar o lugares donde se realizó la tesis: CUERNAVACA, MORELOS. UNAM, CAMPUS MORELOS

TUTOR DE TESIS:

M. I. VICTOR JAVIER BOURGUETT ORTIZ

FIRMA

Dedicatoria

A mi familia, mi Mamá que me ha encaminado hasta esta etapa, enseñándome valores, sus experiencias, valiosos recuerdos y solo me queda agradecerle por todos sus esfuerzos realizados para mi educación integral.

Nelly mi hermana que ha sido la que ha encaminado etapa de educación de posgrados mostrando su gran responsabilidad en todos los sentidos.

Chepe que fue el primero en salir de la casa a estudiar y con gran valentía me hizo saber que las fronteras te las pones tú y mi papa por esos momentos en fin de semana en los que pasábamos buenos ratos divirtiéndonos.

A Mirce por ser parte fundamental en esta etapa de posgrado, con su amor, cariño, apoyo incondicional y motivación me impulso a conseguir el objetivo de culminar esta etapa.

A mis amigos entrañables: Armando, Diego, Isaí, Amadeo, Anel, Allison, Katy, El Chino, Iván, Oso y los demás que me faltaron mencionar, por esos momentos en los cuales pude estar en casa y pasar buenos momentos con ustedes.

Agradecimientos.

Al Consejo Nacional de Ciencia y Tecnología de México por haberme brindado la beca de estudio de la maestría y haberme depositado la confianza de poder realizar una estancia en la Universidad Politécnica de Valencia, siendo parte esencial en poder haber culminado esta tesis.

A la Universidad Autónoma Nacional de México, mi alma mater por haber tenido la oportunidad de haber estudiado en el Campus Morelos, a su vez mis profesores de materia: Dr. Víctor Arroyo, Dr. Ariosto Aguilar, Dr. Felipe Arreguín, M. I. Carlos Gutiérrez, Dr. Javier Aparicio, Dr. Heber Saucedo y M. I. Edmundo Pedroza por los conocimientos transmitidos durante sus clases, que me han servido para poder conocer más fondo la hidráulica.

Al M. I. Víctor Bourguett, Dr. Víctor Alcocer, M. I. Manuel Rodríguez y M. I. Pedro Albornoz por haber apoyado el tema de la tesis, ya que es un granito de arena para impulsar el gran estado que es Oaxaca, haber depositado su confianza y sobre todo su tiempo extra para resolver mis dudas, siendo parte fundamental para el término de esta y haberme facilitado las herramientas durante todo este proceso.

Al Dr. Enrique Cabrera Marcet, por haberme otorgado todas las facilidades para conformar su grupo de trabajo en la Universidad Politécnica de Valencia, su experiencia y recomendaciones hacia mi persona, me han sido de gran utilidad.

A mis sinodales Dr. Felipe I. Arreguín Cortez y el Dr. Mario G. Ordaz Schroeder por su tiempo dedicado a este trabajo y sus valiosas aportaciones.

A el Dr. Polioptro Martínez, Lic. Olga, Lic. Omar y M.I. Aracely por la ayuda en toda la estancia educativa que tuve dentro del plantel. Y mis compañeros Roció, José Luis, Erickdel, Wendoly, Ángel, Ernesto y Leonel por los momentos para recordar dentro y fuera del aula.

A Oaxaca tierra del Sol

Resumen.

La generación de mapas de riesgo por inundación considerando los asentamientos urbanos, es el enfoque elemental del presente trabajo, construidos bajo una metodología que articula los mapas de vulnerabilidad y peligro. La aplicación de esta metodología cuenta además, con una mejora en la selección de datos esenciales (levantamiento de alta precisión, catastro del drenaje pluvial, lluvias registradas, parámetros geomorfológicos, generación de subcuencas y microcuencas), complementándose con un modelo de simulación bidimensional, una evaluación determinística del costo asociado al daño y además un ejemplo de cómo construir una evaluación probabilística del riesgo, que puede presentar la población vulnerable, con sus respectivas viviendas.

Esta metodología contempla múltiples beneficios en la vida diaria de la población, establece las zonas potenciales de inundación, y por manzanas señala el nivel de riesgo de acuerdo a la magnitud del evento, con el objetivo de sustentar una cultura de prevención con lineamientos bien definidos, que contribuya a localizar rutas de evacuación y zonas temporales de albergue.

Los mapas de vulnerabilidad, son parte fundamental del estudio, ya que detallan las características poblacionales y de infraestructura que se encuentran en la zona, presentándonos la parte endeble a través de la vulnerabilidad. Para su construcción se recurrió al análisis de datos del Área Geoestadística Base (AGEB) del Instituto Nacional de Estadística Geográfica e Informática (INEGI), generándose un proceso que se basa en dos elementos, la población vulnerable (menor de 5 años y mayor de 60 años) combinándose con la infraestructura (viviendas sin electricidad y con piso de tierra).

Los mapas de peligro guardan vital importancia en esta investigación, estos detallan las particularidades de la inundación, basándose en el manejo de las variables de velocidad, tirante y sus combinaciones posibles, que permiten reconocer las zonas

de peligro (bajo, medio y alto). El análisis se conformó en base a tres ejes principales: la hidrología, información física de estudio y características geomorfológicas de la cuenca, procesados por un modelo de simulación bidimensional. Los resultados (velocidad y tirante), se establecieron con tres parámetros: el deslizamiento—que considera la velocidad de arrastre del agua—, volcamiento y el tirante del agua.

Esta metodología integral (riesgo) fue creada tomando como caso de estudio la ciudad de Oaxaca de Juárez, debido a sus recurrentes pérdidas económicas, materiales y de vidas humanas a causa de inundaciones. Evidenciando la modificación morfológica de la cuenca, por factores como el incremento poblacional urbano y el cambio de uso de suelo. Transformando las zonas permeables en impermeables, factor que incrementa los escurrimientos superficiales, ante esto, se requiere la construcción de microdrenajes (drenaje pluvial) en zonas urbanas que desalojen el agua que escurre por calles, las cuales son alternativas funcionales a mediano plazo, sin embargo existe una gran realidad, la construcción de la infraestructura hidráulica pertenece al siglo pasado, por tal motivo requiere de una evaluación para conocer su funcionalidad actual.

Índice General

1	INTRODUCCIÓN	1
2	ESTUDIO DE LAS CUENCAS URBANAS	24
	HIDROLOGÍA URBANA, SOLUCIONES ESTRUCTURALES Y TRUCTURALES	
4	CONSTRUCCIÓN DE MAPAS DE RIESGO DE INUNDACIÓN	45
5	CARACTERÍSTICAS DEL SITIO DE APLICACIÓN	58
6	MODELACIÓN DEL FENÓMENO HIDROMETEOROLÓGICO	109
7	RESULTADOS	127
8	CONCLUSIONES	167
9	BIBLIOGRAFÍA	171
10	ANEXO A	179
11	ANEXO B	214

Índice

1	INT	RO	DUCCIÓ	N			 1
	1.2	Obj	etivos				 4
2	EST	TUD	OIO DE LA	AS CUENCA	S URBANAS		 24
	2.1	Imp	actos hic	drológicos			 26
	2.1.	.1	Uso de s	suelo y cober	tura vegetal		 26
	2.1.	.2	Escurrin	niento			 28
	2.1.	.3	Població	ón			 30
	2.2	Imp	actos hic	dráulicos			 31
	2.2.	.1	Inundac	iones			 31
	2.2.	.2	Clasifica	ción de las ir	nundaciones		 32
	2.2.	.3	Impacto	en la socieda	ad a causa de las	inundaciones urbanas	 34
3 E						ESTRUCTURALES	
	3.1	Las	medidas	s estructurale	S		 37
4	CO	NST	TRUCCIÓ	N DE MAPA	S DE RIESGO DE	E INUNDACIÓN	 45
	4.1	Ma _l	pas de Po	eligro			 48
	4.1.	.1	Criterios	de Peligro p	or inundación		 50
	4.2	Ma _l	pas de vu	ulnerabilidad			 57
5	CAF	RAC	CTERÍST	ICAS DEL SI	TIO DE APLICAC	IÓN	 58
						peligro	
	5.2.			•			
	5.3.	. 1	General	JULI UE IVIUUE	io digital de eleva	ciones	 0/

5.4 Mc	delo Digital de elevaciones	88
5.4.1	Modelo Digital de Elevaciones Considerando la planimetría	89
5.4.2	Generación de las líneas principales de corriente	90
5.4.3	Trazo de los ríos principales.	91
5.4.4	Generación de subcuencas de aportación a los ríos principales	92
5.4.5	Alcantarillado Pluvial	93
5.4.6	Generación de microcuencas.	94
5.5 Ca 5.5.1	racterísticas geomorfológicas de la cuencaUsos de suelo	
5.5.2	Pendiente media de las subcuencas.	99
5.5.3	Área de las subcuencas	99
5.5.4	Coeficiente de escurrimiento para cuencas y subcuencas	99
5.5.5	Tiempo de concentración de las subcuencas y microcuencas	100
6 MODE	LACIÓN DEL FENÓMENO HIDROMETEOROLÓGICO	109
Pخ 6.2	odelos hidrológicosor qué elegir un modelo bidimensional comparado con un esional?	modelo 111
6.3 Mc	delación determinística en dos dimensiones Caso Oaxaca	117
6.4 Mo 6.4.1	delación probabilística del riesgo por inundación Evaluación de la amenaza	
6.4.2 de las	Definición del inventario de los elementos expuestos y vulner construcciones	
6.4.3	Ecuación básica	124
6.4.4	Estimador puntual del riesgo.	125
6.4.5	Cálculos simplificados del riesgo.	125
7 RESU	LTADOS	127
7.1 Ma	pas de peligro	129

7	7.2	Mapas de vulnerabilidad	137
7	7.3	Mapas de riesgo	145
	7.3	.1 Mapas de riesgo para diferentes periodos de retorno	145
7	7.4	Costos generados con la modelación determinística	152
7	7.5	Costos generados con en análisis probabilístico del riesgo	156
7	7.6	Mapas de peligro para la malla de 3 x 3	162
7	7.7	Revisión de zonas de inundación	165
8	CO	NCLUSIONES	167
8	3.1	Trabajos futuros	169
9	BIE	BLIOGRAFÍA	171
10	AN	EXO A	179
11	AN	EXO B	214

Índice de ilustraciones

Ilustración 1.1 Macrolocalización y microlocalización de la zona de estudio 3
Ilustración 1.2 Datos de los ríos Atoyac y Salado4
Ilustración 1.3 Periódico el Imparcial, primera plana5
llustración 1.4 Elementos militares auxilian a los afectados por estas severas
lluvias6
llustración 1.5 Vista del rio Atoyac6
llustración 1.6 Árbol tirado a causa de las severas lluvias7
Ilustración 1.7 Recorrido del gobernador por las zonas afectadas9
llustración 1.8 Hoja del periódico donde se expone los desbordamientos causados
por el Rio Jalatlaco9
Ilustración 1.9 Militares ayudan en la limpieza a causa de las lluvias 10
Ilustración 1.10 Damnificados por las Iluvias12
Ilustración 1.11 Desolador panorama dejó la tormenta de la periferia 13
Ilustración 1.12 Inundaciones causadas en la colonia Fernando Gómez Sandova
Ilustración 1.13 Lodo e inundación en las zonas bajas de la ciudad14
Ilustración 1.14 Mantienen alerta por onda tropical15
Ilustración 1.15 Daños provocados por chubascos en la periferia de la ciudad de
Oaxaca16
Ilustración 1.16 Cae árbol por las intensas Iluvias16
Ilustración 1.17 Inundaciones generadas en las principales vías de acceso a la
ciudad17
Ilustración 1.18 Resultados de las intensas lluvias18
Ilustración 1.19 Diluvio en la zona conurbada de la ciudad de Oaxaca
Ilustración 1.20 Derrumbes en carretera producto de las Iluvias 19
Ilustración 1.21 Inundaciones en Huajuapam de Leon, Oaxaca20
Ilustración 1.22 A su capacidad maxima el rio Atoyac21
Ilustración 1.23 Inundaciones causadas por el huracán "Frank"21

Ilustración 1.24 Inundaciones históricas mencionadas en la justificación a través
de las notas de periódico23
Ilustración 2.1 Ciclo hidrológico urbano, fuente: (Campos-Aranda, Introduccion a la
Hidrología Urbana, 2010)25
Ilustración 2.2 Cambio en el uso de suelo en el estado de Oaxaca, fuente: CMM,
2011
Ilustración 2.3 Efectos de la urbanización, fuente: propia
Ilustración 2.4 Respuesta hidrológica de una cuenca urbanizada, fuente:
(CENAPRED, 2007)29
Ilustración 2.5 Evolución de la población de México, en millones de habitantes,
fuente: CONAGUA, 201230
Ilustración 3.1 Manejo integral del agua pluvial, Fuente: Propia
Ilustración 3.2 Canal-laguna de retención, fuente: SIAPA, 201139
Ilustración 3.3 Plaza impermeable en la ciudad, fuente:
http://www.centroaguasurbanas.cl/
Ilustración 3.4 Ejemplos de áreas verdes en viviendas, Fuente: CNT, 2010 40
Ilustración 3.5 Ejemplos de pavimento permeable, Fuente: SIAPA, 2011 41
Ilustración 3.6 Recolección de Agua, Fuente: CNT, 2010
Ilustración 3.7 Jardín de Iluvia, Fuente: CNT, 2010
Ilustración 4.1 Elementos que intervienen en la generación de mapas de riesgos
por inundaciones, (Ribera, 2004)46
Ilustración 4.2 Métodos de enfoque de los mapas de inundación, (Ribera, 2004) 49
Ilustración 4.3 Niveles de peligro que relacionan el tirante del agua (m) y la
velocidad (m/s) adaptada de (FEMA, 2009)52
Ilustración 4.4 Nivel de peligro para inundaciones adaptada de (Loat &
Petrascheck, 1997)
Ilustración 4.5 Resultado del análisis de Nanía (1999) 56
Ilustración 5.1 Sistema de la cuenca urbana, Fuente: (Bertoni, 2013) 58
Ilustración 5.2 Metodología para la construcción de Mapas de Peligro, fuente:
propia60
Ilustración 5.3 Estaciones climatológicas en la zona de estudio

Ilustración 5.4 Estaciones con insuficiencia de datos y polígonos de Thiessen en la
zona de estudio64
Ilustración 5.5 Pantalla principal del programa AFA V.1.1, copyright IMTA, 2010. 68
Ilustración 5.6 Localización de las Estaciones Climatológicas Automatizadas 70
Ilustración 5.7 (a) Curvas adimensionales, duración de 0 - 60 min, (b) curvas
adimensionales de 60 - 120 min y (c) curvas adimensionales mayores a 120 min
7′
Ilustración 5.8 Hietogramas adimensionales de precipitación para diferentes
duraciones, (a) de 0 a 60 min, (b) de 60 a 120 min y mayor a 120 min de duración
estación Villa de Etla72
Ilustración 5.9 Curva masa de la precipitación en la estación ESIME77
Ilustración 5.10 Proporción de la Iluvia adimensional
Ilustración 5.11 Curvas de nivel tomadas a cada metro
Ilustración 5.12 Discretización de las curvas de nivel
Ilustración 5.13 Modelo digital de elevaciones considerando el terreno natural 88
Ilustración 5.14 Modelo de digital de elevaciones considerando la planimetría 90
Ilustración 5.15 Líneas principales de corriente considerando la planimetría 9
Ilustración 5.16 Trazo de los ríos en Hec-Ras92
Ilustración 5.17 Ventana de inicio del SIATL, INEGI92
Ilustración 5.18 Subcuencas trazadas con el SIATL, INEGI
Ilustración 5.19 Sistema de drenaje pluvial de la zona metropolitana de Oaxaca de
Juárez94
Ilustración 5.20 Vista bidimensional de las microcuencas
Ilustración 5.21 Uso de suelo de las subcuencas
Ilustración 5.22 Vista tridimensional de las microcuencas
Ilustración 5.23 Uso de suelo de las subcuencas97
Ilustración 5.24 Vista tridimensional de las microcuencas mostrando las líneas de
corriente principales97
Ilustración 5.25 Áreas urbanas y de infiltración en la ciudad de Oaxaca de Juárez
98
Ilustración 5.26 Uso de suelo de las subcuencas

Ilustración 5.27 Uso de suelo de las subcuencas	. 102
Ilustración 5.28 Pendiente media en %	. 103
Ilustración 5.29 Pendiente de las microcuencas en %	. 104
Ilustración 5.30 Áreas de las subcuencas en hectáreas	. 105
Ilustración 5.31 Área de las microcuencas (Ha)	. 106
Ilustración 5.32 Coeficientes de escurrimiento para subcuencas y microcue	encas
	. 107
Ilustración 5.33 Tiempo de concentración para subcuencas y microcuencas	. 108
llustración 6.2 a) Sistema dual drainage y b) Comportamiento ante una inunda	ación
del sistemadel	. 117
llustración 6.1Flujo del sistema de calles en una tubería parcialmente	llena,
retomado de Mark et al. (2004)	. 115
Ilustración 6.3 Polígonos de thiessen con las EMAS	. 118
Ilustración 6.4 Hietogramas unidimensionales de las estaciones analizadas	. 119
Ilustración 6.5 Interfaz del programa PCSWMM	. 120
llustración 6.6 Área de estudio con malla de 20 x 20 y 3 x 3	. 121
llustración 6.7 Proceso de cálculo para la obtención de los resultados	. 122
llustración 6.8 Relación Velocidad - tirante de inundación – daño	. 124
llustración 7.1 a) Vista de aguas arriba hacia aguas abajo del rio Atoyac	y b)
Bordo construido para protección de las personas	. 128
Ilustración 7.2 Puntos de desbordamiento del Rio Atoyac	. 128
Ilustración 7.3 Capacidades máximas de los colectores	. 129
Ilustración 7.4 Mapa de peligro para un periodo de retorno de 2 años	. 131
Ilustración 7.5 Mapa de peligro para un periodo de retorno de 5 años	. 132
Ilustración 7.6 Mapa de peligro para un periodo de retorno de 10 años	. 133
Ilustración 7.7 Mapa de peligro para un periodo de retorno de 25 años	. 134
Ilustración 7.8 Mapa de peligro para un periodo de retorno de 25 años	. 135
Ilustración 7.9 Mapa de peligro para un periodo de retorno de 100 años	. 136
Ilustración 7.10 Mapa de vulnerabilidad considerando la población de Oaxad	ca de
Juárez, Oax	. 139

Ilustración 7.11 Mapa de vulnerabilidad por manzana considerando I	а
infraestructura de Oaxaca de Juárez, Oax13	9
Ilustración 7.12 Mapa de vulnerabilidad por manzana considerando I	а
infraestructura de Oaxaca de Juárez, Oax14	0
Ilustración 7.13 Mapa de vulnerabilidad por manzanas en la ciudad de Oaxaca d	е
Juárez14	1
Ilustración 7.14 Mapa de vulnerabilidad comparado con la población sin servicio	S
de salud14	2
Ilustración 7.15 Mapa de vulnerabilidad comparado con la población n	o
económicamente activa14	3
Ilustración 7.16 Mapa de vulnerabilidad comparado con la población con segur	O
popular14	4
Ilustración 7.17 Mapa de riesgo por inundación, periodo de retorno de 2 años 14	6
Ilustración 7.18 Mapa de riesgo por inundación, para un Tr de 5 años 14	7
Ilustración 7.19 Mapa de riesgo para un tr de 10 años 14	8
Ilustración 7.20 Mapa de riesgo para un Tr= 25 años 14	9
Ilustración 7.21 Mapa de riesgo para un Tr= 50 años 15	0
Ilustración 7.22 Mapa para un Tr= 100 años15	1
Ilustración 7.23 Costos por daños producidos para diferentes periodos de retorn	O
15	3
Ilustración 7.24 Costos por daños producidos vs núm. de personas afectadas 15	3
Ilustración 7.25 Población mayor a 60 años afectada para diferentes periodos d	е
retorno	4
Ilustración 7.26 Población de 3 a 5 años afectada15	4
Ilustración 7.27 Numero de manzanas afectadas para diferentes periodos d	е
retorno	5
Ilustración 7.28 Periodo de retorno vs número de viviendas afectadas 15	5
Ilustración 7.29 Periodo de retorno - Precipitación - Costo de daños producidos 15	6
Ilustración 7.30 Daño por manzanas para un periodo de retonro de 2 años 15	7
Ilustración 7.31 Daño por manzanas para un periodo de retorno de 5 años 15	7
Ilustración 7.32 Daño por manzanas para un periodo de retorno de 10 años 15	8

Ilustración 7.33 Daño por manzanas para un periodo de retorno de 25 años 1	158
Ilustración 7.34 Daños por manzana para un periodo de retorno de 50 años 1	159
Ilustración 7.35 Daño por manzana para un periodo de retorno de 100 años 1	159
Ilustración 7.36 Comparación zonas de inundación CONAGUA-Históricas-Mod	lelc
Tr 1001	166
llustración 7.37 Mapa de peligro, malla de 3 x 3 para un Tr 100 años 1	162
llustración 7.38 Mapa de peligro, malla de 3 x 3 para un Tr 100 años 1	163
Ilustración 7.39 Sección de estudio analizada1	163
Ilustración 7.40 Sección de estudio de la calles para un Tr de 2 v 100 años 1	164

Índice de tablas.

Tabla 2.1 Cambio en la cobertura y uso de suelo en el estado de Oaxaca, fuente:
CMM, 201127
Tabla 4.1 Uso de los mapas de riesgo
Tabla 4.2 Criterios de la OFFE
Tabla 4.3 Criterios de LAWA55
Tabla 4.4. Niveles de peligro de inundación empleados por Flo-2D (O'Brien &
Jorgensen, 2007)
Tabla 5.1 Localización de las 16 estaciones climatológicas en la región 63
Tabla 5.2 Estaciones a analizar sus datos
Tabla 5.3 Lluvias máximas anuales en 24 horas
Tabla 5.4 Ajustes para las estaciones climatológicas
Tabla 5.5 Registros de las estaciones climatológicas automatizadas a usar 70
Tabla 5.6 Precipitaciones aumentando el factor de corrección por intervalo fijo 75
Tabla 5.7 Porcentaje de Iluvia
Tabla 5.8 Lluvia para una duración de 60 minutos con periodo de retorno de 2
años
Tabla 5.9. Curvas de Precipitación (hp mm) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica "San Bartolo Coyotepec" 20022.
79
Tabla 5.10. Curvas de Precipitación (hp mm) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 2002379
Tabla 5.11. Curvas de Precipitación (hp mm) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 20034 80
Tabla 5.12. Curvas de Precipitación (hp mm) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 20040 80
Tabla 5.13. Curvas de Precipitación (hp mm) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 20044 80
Tabla 5.14. Curvas de Precipitación (hp mm) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 20079

Tabla 5.15. Curvas de Precipitación (hp mm) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 20080 81
Tabla 5.16. Curvas de Precipitación (hp mm) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 20150 81
Tabla 5.17. Curvas de Precipitación (hp mm) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 2015182
Tabla 5.18. Curvas de Precipitación (hp mm) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 2016582
Tabla 5.19. Curvas de Intensidad (I mm/hora) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 20022
Tabla 5.20. Curvas de Intensidad (I mm/hora) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 20023
Tabla 5.21. Curvas de Intensidad (I mm/hora) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 2003483
Tabla 5.22. Curvas de Intensidad (I mm/hora) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 2004084
Tabla 5.23. Curvas de Intensidad (I mm/hora) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 2004484
Tabla 5.24. Curvas de Intensidad (I mm/hora) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 2007982
Tabla 5.25. Curvas de Intensidad (I mm/hora) - Duración (d min) - Periodo de
retorno (Tr años) para la estación climatológica 20080 85
retorno (Tr años) para la estación climatológica 20080
Tabla 5.26. Curvas de Intensidad (I mm/hora) - Duración (d min) - Periodo de
Tabla 5.26. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20150
Tabla 5.26. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20150
Tabla 5.26. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20150
Tabla 5.26. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20150

Tabla 7.1 Precipitación y gasto admisible para diferentes periodos de retorn	o para
el Rio Salado	127
Tabla 7.2 Precipitación y gasto admisible para diferentes periodos de retorn	o para
el Rio Atoyac	128
Tabla 7.3 Metodología para los mapas de peligro	130
Tabla 7.4 Vulnerabilidad de la Población y Viviendas ante inundaciones	138
Tabla 7.5 Parametrización del peligro	145
Tabla 7.6 Parametrización de la vulnerabilidad	145
Tabla 7.7 Tabla para calcular el riesgo de acuerdo al peligro y la vulnerabilid	ad 145
Tabla 7.8 Simbología del riesgo	145
Tabla 7.9 Afectaciones para los diferentes escenarios de simulación	152
Tabla 7.10 Costo de la vivienda en base a la su infraestructura	160
Tabla 10.1 Riesgo por manzana para un Tr de 2 años	179
Tabla 10.2 Riesgo por manzana para un Tr de 5 años	182
Tabla 10.3 Riesgo por manzana para un Tr de 10 años	186
Tabla 10.4 Riesgo por manzana para un Tr de 25 años	191
Tabla 10.5 Riesgo por manzana para un Tr de 50 años	196
Tabla 10.6 Riesgo por manzana para un Tr de 100 años	202
Tabla 11.1 Gastos calculados con PCSWMM v con la formula de Mc Math	214

1 INTRODUCCIÓN

Oaxaca de Juárez, la capital del estado de Oaxaca, forma parte de uno de los 2240 municipios que integran el país de México, ubicada sobre una gran extensión de fértil valle con clima templado y lluvias en verano, situado en el centro de la Sierra Madre del Sur y en la margen izquierda del río Atoyac de Oaxaca.

La ciudad de Oaxaca, debido a su topografía y al crecimiento de los asentamientos urbanos, ha sido afectada periódicamente por encharcamientos e inundaciones causados por eventos pluviales ordinarios y extraordinarios—considerándose a un encharcamiento como una depresión cerrada, con una lámina delgada de agua sin movimiento y una inundación a la cobertura temporal de la superficie del suelo por agua que fluye por diferentes orígenes—. Así, la urbanización ha traído un cambio en el drenaje natural de la cuenca, ocasionado un riesgo para la integridad de las personas, bienes y patrimonios materiales.

Cada año, entre junio y noviembre ocurren tormentas tropicales y ciclones que, generan inundaciones, crecidas de ríos e inestabilidad de las partes altas de las montañas, por estas razones, se han registrado importantes inundaciones en la ciudad capital, así como en sus municipios conurbados.

Ante estas afectaciones, que se presentan debido a los escurrimientos producidos por las lluvias, es importante el estudio de las cuencas urbanas, ya que verlas desde este punto de vista nos ayuda a conocer los impactos ante las alteraciones de la morfología de las cuencas, dejando entrever la necesidad de un estudio que permita estudiar la cuenca natural combinando el microdrenaje y la infraestructura urbana.

Ante lo anterior existe una rama de la Hidrología, que se encarga del estudio de las cuencas urbanas: la Hidrología urbana, la cual nos brinda las soluciones para

el manejo del agua pluvial, apegado a la necesidad actual de las megaciudades. Estableciéndose dos medidas que permitirán solventar el problema, la primera son las medidas estructurales, que contribuyen a reducir o retardar los escurrimientos superficiales; y la segunda, las medidas no estructurales, basadas en la planeación, organización, coordinación y ejecución de acciones que buscan disminuir los daños causados por las inundaciones. Además existen medidas estructurales, que contribuyen a la sustentabilidad ambiental.

Los mapas de riesgo de inundación son una medida no estructural que proporciona las bases para una planeación, organización y coordinación del órgano para salvaguardar a la población, utilizado para minimizar los daños que pueden presentarse. Para su integración se trabajará inicialmente en generar mapas de peligro y vulnerabilidad, que nos ayuden a establecer las zonas afectadas.

1.1 Zona de estudio.

El estado de Oaxaca se divide en ocho regiones; la zona de estudio se encuentra dentro de la región valles centrales. La capital es uno de los 570 municipios (ver llustración 1.1).

El municipio de Oaxaca de Juárez se localiza en las coordenadas 17°04' de latitud norte y 96°43' de longitud oeste a 1,550 msnm en la parte central del estado. Limita al norte con los municipios de San Pablo Etla; al sur con San Antonio de la Cal y Santa Cruz Xoxocotlán; al este con San Andrés Huayapam, San Agustín Yatarení y Santa Lucía del Camino; al oeste con Santa María Atzompa y San Jacinto Amilpas.

La superficie total del municipio es de 85.48 km² y la superficie del municipio en relación al estado es del 0.1 por ciento. De acuerdo al censo del año 2010 (INEGI, 2013) cuenta con una población total de 263,357 habitantes, con un total de

viviendas de 82,139 viviendas de las cuales el 91.8% cuenta con drenaje y el 84.4% con agua entubada.

Por los límites de este municipio, cursan dos de los ríos más importantes del estado de Oaxaca, los cuales son el río Atoyac y el río Salado. El río Salado tiene sus orígenes de acuerdo con el Simulador de Flujos de aguas de Cuencas (INEGI, 2012) en parte norte del municipio de San Pablo Villa de Mitla, cuenta con una longitud de 68.41 km, pendiente media 1.68%, y una área drenada total de 1200.44 km² pasando por diferentes municipios a su paso y atravesando parte de la ciudad de Oaxaca, hasta desembocar en el rio Atoyac.

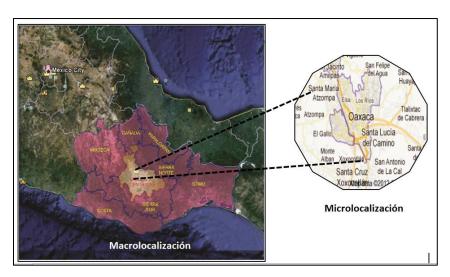


Ilustración 1.1 Macrolocalización y microlocalización de la zona de estudio

El rio Atoyac tiene sus orígenes en la parte de la sierra del municipio de Santiago Tenango, tiene una longitud de 53.86 km, pendiente media del 0.93% y una área drenada 1042.15 km², al continuar su paso al sur del estado cambia el nombre a Rio Verde (ver Ilustración 1.2). El rio Salado cruza por una parte del Municipio de Oaxaca de Juárez.

Ilustración 1.2 Datos de los ríos Atoyac y Salado

1.2 Objetivos

- Generar mapas de riesgo de inundaciones considerando la topografía urbana, con una metodología integral especifica que permita establecer las zonas vulnerables por la afectación de lluvias de diseño.
- Realizar un diagnóstico del funcionamiento hidráulico del sistema de colectores pluviales de la ciudad de Oaxaca con ayuda de un modelo de simulación matemático, con la finalidad de identificar problemas ocasionados por las precipitaciones pluviales y encontrar una solución a las inundaciones.

1.3 Justificación

En la ciudad de Oaxaca de Juárez se tiene registros de notas periodísticas desde 1960, donde se narran los estragos causados por las lluvias. Es en esta fecha cuando el periodo "El imparcial" comenzó a publicar sus primeras ediciones.

Asimismo partir de 1976 con la apertura del periódico "Noticias" se amplió la cobertura de sucesos hidrometerológicos en el estado.

Debido a las Iluvias *intensas*, en el municipio de Oaxaca de Juárez y zonas aledañas se han registrado inundaciones y encharcamientos importantes. Por tal motivo se hizo una revisión y recopilación detallada de las notas de donde se mencionan afectaciones causadas por las inundaciones. El acervo donde se llevó a cabo esta tarea fue la Hemeroteca "Periodista Néstor Sánchez Hernández".

13/Agosto/1969

Periódico "El imparcial, el mejor diario de Oaxaca", editado por la compañía periodística oaxaqueña S.A., No. 6330. Sección policiaca página 5.

El Río Atoyac siembra el pánico. "Bomberos, policías y tránsito prestaron auxilio a todas las familias afectadas. También se teme que de seguir la creciente desaparezca uno o varios pozos que surten a la ciudad de agua potable, parte del terraplén de la vía del ferrocarril y otros tramos de terreno" (ver Ilustración 1.3).

Ilustración 1.3 Periódico el Imparcial, primera plana

"Ayer como a las 17:30 un grupo como de 80 personas de la colonia Libertad se entrevistaron con el Lic. Fernando Gómez Sandoval, con el fin de solicitarle su ayuda, quién de inmediato ordenó al Arq. Enrique de Ensarte, jefe del departamento de obras públicas que prestará toda la ayuda posible".

"Hasta el momento de cerrar nuestra edición, corrió peligro de desaparecer la barda del balneario El serranito", 2 casas, 1 poste de energía que sostiene cables de alta tensión, parte del terraplén de la vía del ferrocarril, varios pozos de agua potable; parte de la calle rivera del Atoyac y un frondoso pino que amenaza caer h sobre la línea de la energía eléctrica" (ver Ilustración 1.4).

Ilustración 1.4 Elementos militares auxilian a los afectados por estas severas Iluvias

15/Agosto/1970.

Periódico "El imparcial, el mejor diario de Oaxaca", editado por la compañía periodística oaxaqueña S.A., No. 6331. **Medidas de emergencia por el desbordamiento del Atoyac.**

Ilustración 1.5 Vista del rio Atoyac

"El gobernador del estado Ing. Víctor Bravo Ahuja y el subsecretario de Recursos Hidráulicos Ing. Salvador Aguilar Chávez personalmente estuvieron ayer por la mañana supervisando los trabajos que se vienen desarrollando para atender la emergencia producida para atender el desbordamiento del rio Atoyac en tanto que los gobiernos federal y estatal determinan la forma de encauzar el río en cuestión y evitar inundaciones" (ver Ilustración 1.5 e Ilustración 1.6).

Ilustración 1.6 Árbol tirado a causa de las severas Iluvias

• 20/Jun/1970.

Periódico "El imparcial, el mejor diario de Oaxaca", editado por la compañía periodística oaxaqueña S.A., No. 6533. Primera plana.

Las Iluvias han provocado unos desbordamientos del río Atoyac. "Los torrenciales aguaceros hacen crecer el río Atoyac, que se ha salido en varios puntos de su curso. El vado, extremo izquierdo del puente Porfirio Díaz fue arrastrado por las aguas, pero vuelto a reponer. Lo que es menester que cuanto antes se den por terminadas las obras del citado puente Porfirio Díaz, esperando que quede sólidamente".

• 21/Jun/1970.

Periódico, "El imparcial, el mejor diario de Oaxaca", editado por la compañía periodística oaxaqueña S.A., No. 6534, primera plana.

El aguacero del viernes causante de inundaciones. "Motivo: pichanchas están tapadas por desechos de meses anteriores. "Serios daños han sufrido, vecinos de División Oriente", calle división oriente pegado a las laderas del cerro, debido a los escurrimientos provocados por las lluvias, han inundado sus habitaciones".

"La falta de puentes en una carretera a Puerto Angel". Tramo Ocotlan-Ejutla, debido a torrenciales aguaceros que han azotado esta región, tienen que esperar algunas horas para continuar su ruta.

22/Jun/1970.

Periódico "El imparcial, el mejor diario de Oaxaca", editado por la compañía periodística oaxaqueña S.A., No. 6535, primera plana.

El puente Porfirio Díaz es indispensable en este tiempo procede que a toda costa se terminen las obras del puente.

• 13/Jun/1972.

Periódico, "El imparcial, el mejor diario de Oaxaca", editado por la compañía periodística oaxaqueña S.A., No 7441, primera plana.

Prevé el gobierno posibles contingencias por las lluvias. "Para personalmente darse cuenta de los problemas que se han suscitado con motivo de las lluvias que han azotado en estos últimos días, el gobernador Lic. Fernando Gómez Sandoval hizo un amplio recorrido por la ciudad, dando las siguientes indicaciones, colonia Reforma, es indispensable drenar las aguas de las calles Almendros, en Jalatlaco, por lo que le toca al barrio de Jalatlaco se gestionará ante Recursos Hidráulicos la construcciones de drenes de todo el barrio, anillos periféricos. El Licenciado dio indicaciones para drenar el agua de Trinidad de las Huertas para el río salado" (ver llustración 1.7).

Ilustración 1.7 Recorrido del gobernador por las zonas afectadas

15/Jun/1972.

Periódico, "El imparcial, el mejor diario de Oaxaca", editado por la compañía periodística oaxaqueña S.A., No. 7443, primera plana.

Se desbordó el río Jalatlaco anoche, causando graves daños, "Doscientas personas resultaron afectadas, dos casas se desplomaron en Jalatlaco, ordenó auxilio inmediato el Gobernador, obras de la Secretaría de Recursos Hidráulicos evitaron mayores daños" (ver Ilustración 1.8).

Ilustración 1.8 Hoja del periódico donde se expone los desbordamientos causados por el Rio Jalatlaco

Conjuntan esfuerzos varias dependencias y dan auxilio, elementos del ejército mexicano han estado colaborando en forma muy positiva para desalojar el lodo de las casas inundadas (ver Ilustración 1.9).

Ilustración 1.9 Militares ayudan en la limpieza a causa de las lluvias

✓ 16/Jun/1972.

Periódico, "El imparcial, el mejor diario de Oaxaca", editado por la compañía periodística oaxaqueña S.A., No. 7444, primera plana.

Indispensable una presa para el control de las aguas del Jalatlaco. "Las obras complementarias urgen, porque se solicitaran a Recursos Hidráulicos hoy mismo. Solo así se evitaran inundaciones".

✓ 14/Sep./1975.-

Periódico, "El imparcial, el mejor diario de Oaxaca", No.9498, primera plana.

La región mazateca, afectada. El camino Teotitlán – Huautla de Jiménez, dañada ante las Iluvias. "Torrenciales aguaceros han estado azotando desde el pasado 9 del actual, con pequeñas suspensiones a toda esta región".

"Por otra parte en varias poblaciones casas de construcción endelebles y a base de adobe, han llegado a crearse pérdidas económicas a sus moradores, pero afortunadamente ninguna víctima personal hasta el momento".

✓ 15/Sep./1975.

Periódico, "El imparcial, el mejor diario de Oaxaca", No.9498, primera plana.

Grave desbordamiento provoca inundación, Los servicios de emergencia participaron inmediatamente y auxilian damnificados. "Aproximadamente 160 personas resultaron afectadas ayer por el desbordamiento del Río Salado, en Santa Lucía del Camino y fueron auxiliados por efectivos del ejército, policía del estado y otros servicios de emergencia".

"Las maniobras fueron dirigidas personalmente por el Lic. Enrique Pacheco Álvarez, Secretario general del despacho. La movilización de la fuerzas de seguridad y servicios de emergencia ocurrió después de las 14 horas. Cuando la creciente del Río Salado había superado su nivel y al salirse de su caudal, inundó las viviendas de aproximadamente 160 personas".

"Al recrudecerse la situación por el avance incontenible de la corriente los afectados pidieron auxilio, destacándose de inmediato en su ayuda brigadas del ejército, patrulleros policiacos y los bomberos que empezaron a trasladarlos en radio patrullas y vehículos oficiales a los cuarteles de la 28ª zona militar y 18 batallón donde recibieron atención médica y otros servicios de tipo social".

"La situación de los damnificados vino a recrudecerse ya que el desbordamiento del río salado, inundó extensas áreas de sembradíos, principalmente de maíz y se teme que la cosecha se eche a perder. Hasta esta madrugada, el nivel del agua no había bajado y las habitaciones, caminos y calles continuaban anegados"

✓ 25/Junio/1993

Periódico "El imparcial, el mejor diario de Oaxaca", editado por la compañía periodística oaxaqueña S.A., No. 15842. Primera plana. **260 damnificados por lluvias.**

Ilustración 1.10 Damnificados por las Iluvias

"Oaxaca y Tuxtepec, las más afectadas por el temporal. 260 damnificados en total dejaron como saldo en las últimas lluvias en Oaxaca cuya precipitación alcanzo 80.5 milímetros de precipitación. El Director de Protección Civil en Oaxaca, Germán Martínez informó que en Tuxtepec al desbordarse aguas del Río Papaloapan provocaron inundaciones en viviendas de la colonia Moderna donde el número de damnificados ascendió a 2000, a quienes se ayuda" (ver Ilustración 1.10).

Derrumbes en carreteras en gran parte del estado. "Pueblo Viejo, Agencia Municipal de San Francisco del Mar es la única comunidad del estado que se encuentra incomunicada por carretera como consecuencia del temporal de lluvias. En ese lugar las agua de la laguna superior rebasaron su límite cubrieron el camino que lleva a la población dijo el director de camino y aeropuertos".

√ 25/06/1993.

Periódico "El imparcial, el mejor diario de Oaxaca", editado por la compañía periodística oaxaqueña S.A., No. 15842. Pág. 3.

Ilustración 1.11 Desolador panorama dejó la tormenta de la periferia

"Unos 300 seres humanos entre niños y ancianos y jóvenes de la colonia El Bajío (ver Ilustración 1.11).en su mayoría y la Gómez Sandoval (ver Ilustración 1.12), se encuentran en desgracia ante los torrenciales aguaceros que han azotado en estos días a la ciudad, ayer poco después del medio día las colonias del bajío era necesario evacuarlos en la zona del desastre, sin embargo ninguna autoridad se hizo presente"

Ilustración 1.12 Inundaciones causadas en la colonia Fernando Gómez Sandoval

"Los bienes materiales de 60 familias se perdieron, desde la ropa interior hasta los trastes de la cocina, nos quedamos en la calle, al no tener otra alternativa comunicamos a nuestras dependencias del gobierno estatal pero nada más nos traen de un lado a otro" (ver Ilustración 1.13).

Ilustración 1.13 Lodo e inundación en las zonas bajas de la ciudad

"Toda la parte del bajío antes fue una laguna, es obvio que cuando las lluvias se agudizan acarrea diversos estragos a los asentamientos humanos que ahí viven, ante este estado de cosas sería muy saludable que las autoridades correspondientes desalojaran a toda esa gente para cambiarlos a otro sitio para remediar el problema que frecuentemente se registra y además se rescata una zona verde bastante favorable".

"La continuidad del periférico desde los límites con 5 Señores hasta el municipio de Santa Cruz Amilpas y Santa Lucia del Camino es una obra que perjudica a los asentamientos humanos que están a su paso, en virtud que los trazos son totalmente deficientes, mal hechos, como no tiene cuneta el agua se queda estancada cuando llueve, expresiones de los propios vecinos; las aguas del Río Salado llegaron a su máxima capacidad de manera que a la altura de la colonia

Gómez Sandoval de esta ciudad, se desbordó causando inundaciones en diversos domicilios".

✓ 10/Jun/2006

Periódico, "El imparcial, el mejor diario de Oaxaca. No. 21909, primera plana.

Pega tormenta en Valles Centrales. "Inundaciones en la zona hay daños materiales en diversos inmuebles, cables de electricidad y de teléfonos, además de árboles caídos en distintos puntos de la ciudad y distintos puntos conurbados, es el saldo de la tormenta que azotó ayer en Valles Centrales".

Mantienen alerta por onda tropical. "Provoca fuertes lluvias y tormentas en la entidad. Onda tropical No. 3 pone en alerta al Instituto Estatal de Protección Civil por fuertes lluvias" (ver llustración 1.14).

Ilustración 1.14 Mantienen alerta por onda tropical

Pág. 5 B. Deja Iluvia daños y crisis nerviosa

"Diversos sectores de la ciudad quedaron afectados por el chubasco registrado éste miércoles, Algunas casas resultaron dañadas en San Antonio de la Cal, luego de la caída de algunos árboles; fuerte tormenta que cayó en la capital, dejó un saldo de por lo menos 4 personas que sufrieron histeria, daños materiales a diversos inmuebles, cables de energía eléctrica y de telefonía dañados, además

de varios árboles caídos en distintos puntos de la ciudad y los municipios conurbados" (ver llustración 1.15).

Ilustración 1.15 Daños provocados por chubascos en la periferia de la ciudad de Oaxaca

✓ 18/Jun/2006

Periódico, "El imparcial, el mejor diario de Oaxaca", No.21917, pag. 3 G.

Cae árbol por lluvia

Ilustración 1.16 Cae árbol por las intensas Iluvias

"Vientos que han azotado la ciudad causan daños materiales. Las intensas lluvias acompañados de fuertes vientos que azotaron la ciudad, vecinos de Ixcotel reportaron la caída de un árbol" (ver llustración 1.16).

✓ 23/Jun/2006.

Periódico, "El imparcial, el mejor diario de Oaxaca", No. 21922, Pag. 1 B.

Aumentan daños por temporada de Iluvias. Casi 100 llamadas de auxilio se han atendido en un mes. Se esperan incremento de las precipitaciones en julio y agosto.

"Alrededor de 40 viviendas, árboles caídos, dos personas con lesiones leves, daños materiales en un negocio del centro y en uno de los municipios conurbados, es el saldo de la temporada de lluvias, que lo hace estado de alerta".

Manuel Maza Sánchez, Director de bomberos dijo "que ante la presencia del primer huracán, el personal de la corporación en coordinación con el Instituto Estatal de Protección Civil se mantienen alertas las 24 horas del día, con el fin de prestar el auxilio en cualquier parte de la ciudad, municipios conurbados o en las comunidades al interior del estado" (ver Ilustración 1.17).

Ilustración 1.17 Inundaciones generadas en las principales vías de acceso a la ciudad

El Atoyac ha muerto. Habitantes de la col. Ricardo Pérez Hernández, consideran vaga la posibilidad de que el río Atoyac llegue a desbordarse como sucedió en el año de 1969, en el que el agua llegó a la colonia Miguel Alemán, afectando varios domicilios, el afluente materialmente está muerto.

Abandonan Río Salado. "El Río Salado que atraviesa diversos asentamientos en el poniente de la capital, se encuentra abandonado por las autoridades, por lo que en su interior se hallan montones de basura, carrizo y todo tipo de desechos".

"En un recorrido por la col. Llano Verde, así como la Cieneguita, se pudo constatar que el lecho del afluente está lleno de arbustos, que impiden el libre tránsito del agua, además de la arena y tierra que baja, ha cerrado el cauce".

"El mayor problema se registra sobre Río Salado en jurisdicción de Santa Cruz Amilpas, precisamente a la altura del puente que se localiza en las inmediaciones de la col. Llano Verde y la calle del canal en el margen derecho, entre algunos lugares del referido afluente que entroncan con el Río Atoyac" (ver Ilustración 1.18).

Ilustración 1.18 Resultados de las intensas Iluvias

√ 07/Jul/2010.

Periódico, "Noticias, voz e imagen de Oaxaca", año 31, No. 12068, página 6 D.

Diluvio. Prácticamente un diluvio cayó anoche sobre la cd. De Oaxaca, lo que obligó a suspender el quinto juego de la serie de play offs por el campeonato de la zona Miguel Hidalgo, entre los Guerreros de Oaxaca y Pericos de Puebla (ver llustración 1.19)

Ilustración 1.19 Diluvio en la zona conurbada de la ciudad de Oaxaca.

Página 5 A. CAO Negligente. Carreteras de la región Mixe devastadas por las lluvias.

Ilustración 1.20 Derrumbes en carretera producto de las Iluvias

Zona mixe.-"habitantes de la comunidad de la región mixe y del sector de Villa Alta tienen que quedar incomunicados ante derrumbes ocasionados por las constantes lluvias que han caído en la región" (ver llustración 1.20).

Aplica el ejército del DN-III, en algunos hogares hay pérdida total. Huajuapan de León, Oax.- La intensa lluvia que cayó por la tarde ayer, que se extendió por más de 50 minutos dejó un saldo de 20 casas afectadas, deslave de una barranca, alcantarillas dañadas, decenas de casas inundadas del fraccionamiento del Valle, ubicado en la agencia del Carmen de Jardines del Sur, Los Álamos, Aviación, el barrio San José, la col. San Antonio y el fraccionamiento Guelaguetza (ver Ilustración 1.21).

Ilustración 1.21 Inundaciones en Huajuapam de Leon, Oaxaca

√ 25/Agosto/2010.

Periódico, "Noticias, voz e imagen de Oaxaca", año 31, No. 12086, primera página **Atoyac cimbra puente**, Vecinos de San Juanito temen inundaciones ante las constantes Iluvias

Página 12 A

Vecinos de San Juanito, temen inundaciones ante constante crecimiento del rio.Un posible desbordamiento del río Atoyac mantienen atemorizados a los habitantes del sector de San Juanito y la tensión aumento ayer por la mañana al arribo de cuerpos de auxilio.

Incluidos del ejército Mexicano, ante diversos llamados de que el puente "Bicentenario de la Independencia" se estaba cayendo.

Ilustración 1.22 A su capacidad maxima el rio Atoyac

✓ 26/Agosto/2010.- periódico, "Noticias, voz e imagen de Oaxaca", año 31, No. 12087, primera página. Causa "Frank" 4 muertos, un desaparecido, 60 mil damnificados y 50 comunidades incomunicadas.- Mariana Seynés.

Ilustración 1.23 Inundaciones causadas por el huracán "Frank".

El paso de "Frank" y los remanentes de la onda tropical 24, han dejado a Oaxaca 60 mil doscientos damnificados 4 muertos y 80 comunidades incomunicadas confirman el Instituto Estatal de Protección Civil. Sin embargo la Procuraduría de Justicia reportó otro descenso más en la cañada, por lo que suman las víctimas por las Iluvias (ver Ilustración 1.23).

Página 20 A. Se duplican victimas de Iluvias. Llueve sobre mojado las cuencas y sus afectaciones en las regiones:

- ✓ Rio Atoyac ✓ Rio Colotepec y otros
- ✓ Rio Tlapaneco
 ✓ Rio Laguna superior e inferior
- ✓ Región Costa chica-Rio ✓ Rio Tehuantepec Verde
- ✓ Rio la Arena y otros
 ✓ Región Costa de Chiapas
- ✓ Rio Ometepec grande
 ✓ Región Papaloapan
- ✓ Región Costa de Oaxaca
 ✓ Rio Papaloapan
 (Puerto Angel)
- ✓ Rio Astata
 ✓ Región Coatzacoalcos
- ✓ Rio Copalita y otros
 ✓ Rio Coatzacoalcos
- ✓ Región Tehuantepec
 ✓ Región Grijalva
 - √ Rio Colotepec y otros

Muere 5ª Víctima por Iluvia. "Se desborda Atoyac y afecta a 464 personas en Santa Inés Yatzeche, Zimatlan. En Yautepec, vías destrozadas, municipio de Santo Tomás Quieri, Cierra la supercarretera en el istmo, desvían ruta Juchitán-Ixtepec. El embalse al 100%. Aumenta desfogue de la presa Benito Juárez, cóctel meteorológico Iluvias y frente frío. En Lachiguiri una escuela dañada".

Con los datos periodísticos recopilados se generó un mapa de inundaciones, tomando como referencia las calles y zonas que citan (ver Ilustración 1.24).

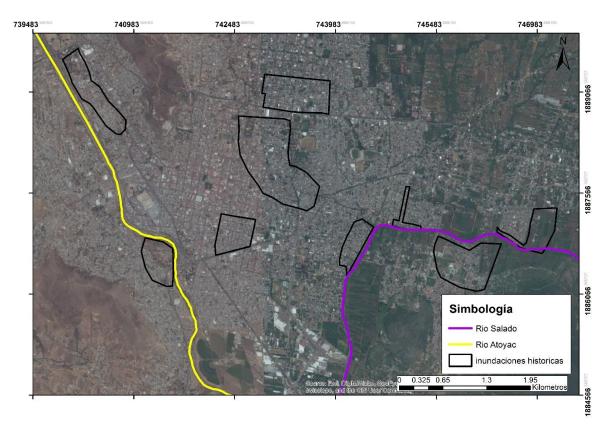


Ilustración 1.24 Inundaciones históricas mencionadas en la justificación a través de las notas de periódico.

Ante estos fenómenos hidrometerológicos que han impactado a la ciudad capital y municipios conurbados, es necesario conocer los factores que producen estas inundaciones y encharcamientos cotidianos, el impacto del escurrimiento superficial y la modificación de una cuenca natural a urbana.

2 ESTUDIO DE LAS CUENCAS URBANAS

Una cuenca natural está definida como una zona de la superficie terrestre en donde (si fuera impermeable) las gotas de lluvia que caen sobre ella tienden a ser drenadas por el sistema de corrientes hacia un mismo punto de salida (Aparicio, 2010)

El ciclo hidrológico habitual es un término descriptivo aplicable a la circulación del agua en la tierra, este ciclo se encuentra estrechamente relacionado con la cuenca natural, ya que mediante sus fases: condensación, precipitación, intercepción, evaporación, transpiración, escurrimiento superficial y subterráneo; se puede interpretar la relación lluvia-escurrimiento en la cuenca. Con factores que intervienen en el ciclo como las plantas, árboles y la capacidad de infiltración del suelo, que dan la pauta a que el escurrimiento superficial tenga una mayor o menor proporción, según sea el caso.

Pero con el efecto de la urbanización en las ciudades, se ha modificado el entorno de la cuenca transformándola en urbana. Las características más importantes de una cuenca urbana comparada con una natural, reside en el elevado porcentaje de superficie impermeable y la existencia de una red de drenaje artificial (red de drenaje pluvial) con puntos localizados de entrada de agua (Nanía & Gomez, 2006).

La red de drenaje artificial presenta la particularidad, de que la pendiente de la red de drenaje puede tener la misma pendiente y/o la dirección del drenaje natural del terreno.

Esta modificación se ha visto reflejada en el ciclo hidrológico habitual, interviniendo nuevas variables como: el manejo del agua de las tormentas, tratamiento del agua y las descargas residuales de los habitantes de la zona.

En el ciclo hidrológico urbano existen dos principales fuentes de abastecimiento de agua: cruda y de precipitación; es el agua cruda la que generalmente por procesos de potabilización es llevada al lugar de consumo y distribuida presentándose perdidas en el camino que alimentan las aguas subterráneas. La precipitación sigue un camino más largo, donde las pérdidas hidrológicas están sujetas a la intercepción, almacenamiento y evapotranspiración (Campos-Aranda, 2010).

Además se debe tomar en cuenta en el tratamiento de aguas pluviales, transportadas por un sistema de drenaje urbano, ya que con su construcción, se verá reflejado en un mejor manejo del agua de las lluvias, y con esto darle un menor tratamiento al agua para que se encuentre con la calidad adecuada de ser reencauzada a un rio, utilizada con fines como el regado de cultivos que consume la población (ver llustración 2.1).

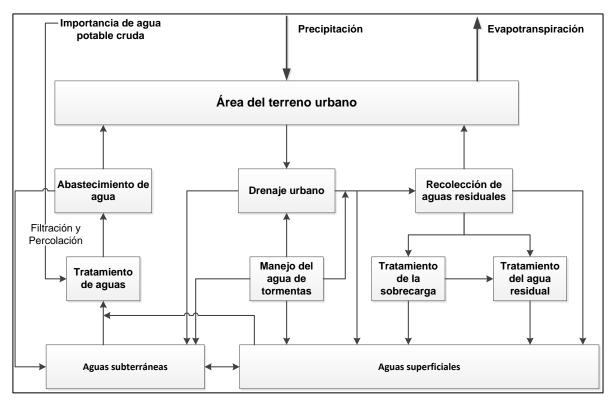


Ilustración 2.1 Ciclo hidrológico urbano, fuente: (Campos-Aranda, Introduccion a la Hidrología Urbana, 2010)

Para el manejo del escurrimiento pluvial, el estudio de las cuencas urbanas, es una herramienta que nos permite entender el comportamiento del sistema. El impacto que pueden generar los escurrimientos provocados por la lluvia, se puede clasificar en: Hidrológico, Hidráulico y Poblacional.

2.1 Impactos hidrológicos

Los impactos hidrológicos, se pueden conocer a través del estudio del: uso de suelo, cobertura vegetal, y afectaciones en el hidrograma de escurrimiento (tiempo pico, tiempo de retraso, gasto base y aumento en el gasto base).

2.1.1 Uso de suelo y cobertura vegetal.

El cambio de uso de suelo en el país ha sido afectado proporcionalmente por el incremento de la población, este aumento ha tenido como consecuencias la demanda de alimentos y la ampliación de la infraestructura.

La Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT, 2012), define que la República Mexicana en un periodo de diez años (1993-2002), 2.8 millones de hectáreas pasaron de ser bosques, selvas, matorrales para convertirse en otros usos. Parte de estos cambios se deben a la deforestación, incendios forestales, crecimiento de la frontera agrícola y ganadería (Mas et al., 2009).

Para el estado de Oaxaca se han realizado estudios de los cuales concentra una gran variedad de la biodiversidad del país, Duran et. al (2007) realizó un estudio en el cual mediante la clasificación de dos tipos vegetación nativa (bosques y selvas) vieron que del periodo de 1980 a 2000 el territorio de Oaxaca perdió un 5 por ciento de su cobertura arbórea.

Además el Centro Mario Molina (CMM, 2011) desarrolló un estudio para conocer el cambio del uso del suelo en el estado de Oaxaca, donde investigaron el

variación de cobertura del periodo de 1978 a 2008, el que se define que las selvas y los bosques son los tipos de vegetación con mayores tazas de deforestación (Tabla 2.1).

Tabla 2.1 Cambio en la cobertura y uso de suelo en el estado de Oaxaca, fuente: CMM, 2011

Tipo de cobertura	1976	2008	Cambio	Porcentaje de cambio	Tasa de cambio anualizada
Unidades	(ha)	(ha)	(ha)	(%)	(ha)
Agricultura	1258939	1506912	247974	16	7749
Bosque	3524374	3380732	-143642	-4	-4489
Cuerpos de agua	145301	164806	19505	12	610
Matorral	56694	39406	-17288	-44	-540
Otros tipos de vegetación	92177	71432	-20745	-29	-648
Pastizal	1090098	1487698	397600	27	12455
Selva	3181130	2648062	-533068	-20	-16658
Selva sin					
vegetación	14530	27792	13262	48	414
aparente					
Zona urbana	5562	41965	36403	87	1138

Además en la Ilustración 2.2, se presenta el esquema grafico del cambio del uso de suelo del periodo analizado (1976-2008).

La deforestación ha sido un punto muy relevante en este "cambio" drástico que se ha presentado en la ciudad de Oaxaca, al encontrarse en estado crítico lugares que se han deforestado causando una menor retención y provocando un mayor escurriendo superficial afectando el caudal de los ríos al cual desembocan (Wisner et al., 2003).

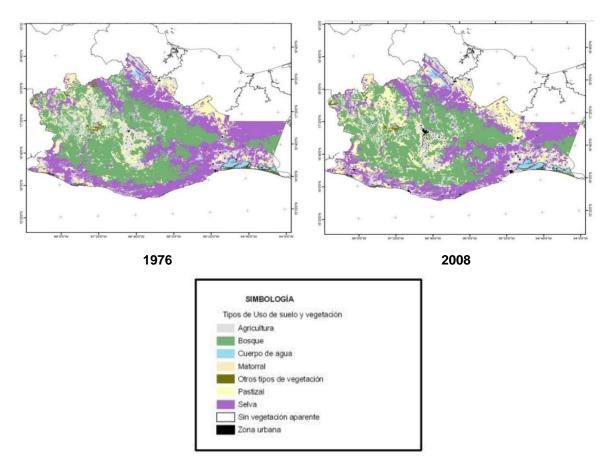


Ilustración 2.2 Cambio en el uso de suelo en el estado de Oaxaca, fuente: CMM, 2011

2.1.2 Escurrimiento.

Los impactos en el cambio del uso de suelo, han conllevado a un incremento en la impermeabilización, que afecta proporcionalmente al escurrimiento, lo que contribuye a un incremento en la velocidad del flujo y una reducción importante en los tiempos pico de la avenida (Ilustración 2.3).

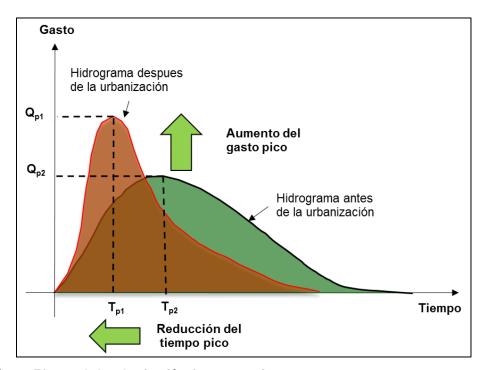


Ilustración 2.3 Efectos de la urbanización, fuente: propia

Este impacto se ve generalizado en el escurrimiento que se condiciona por el uso de suelo, cobertura vegetal, y el escurrimiento que producen en lugares cercanos a los ríos tengan repercusiones como las inundaciones (Ilustración 2.4).

Ilustración 2.4 Respuesta hidrológica de una cuenca urbanizada, fuente: (CENAPRED, 2007)

2.1.3 Población

Existen diferentes factores que han contribuido al aumento poblacional que se ha presentado en la capital de Oaxaca, por ejemplo: las personas de las zonas rurales del estado, han emigrado a la capital, tratando de mejorar sus condiciones de vida, decidiendo establecerse en la ciudad de Oaxaca de Juárez y municipios conurbados.

Lo anterior se refleja en la Ilustración 2.5, la cual ejemplifica el cambio dinámico, de 1950 a la fecha (CONAGUA, 2012).

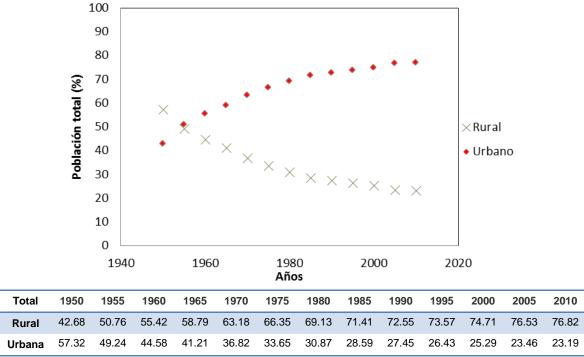


Ilustración 2.5 Evolución de la población de México, en millones de habitantes, fuente: CONAGUA, 2012

Este efecto (aumento poblacional) ha incrementado infraestructura básica (viviendas, escuelas, hospitales, caminos, etc.), que ha transformado la condición de uso de suelo, haciéndola más impermeable, siendo uno de los motivos del incremento de los escurrimientos superficiales.

Otro factor que en ocasiones suele modificar el escurrimiento, es la producción de basura que es dejada en las calles, siendo relevantes cuando se presentan precipitaciones y la basura es conducida a los lugares donde se desaloja el agua pluvial (por ejemplo a las bocas de tormenta, que son dispositivos donde se conduce el agua en exceso, descargándola a los colectores pluviales) provocando en ocasiones un taponamiento, siendo un factor que contribuye a encharcamientos e inundaciones. El periódico el Quadratin (2012) de versión online, Abel Rodríguez, director de servicios donde se encuentra el tiradero de basura municipal (de Oaxaca de Juárez), estima que se producen alrededor de 800 toneladas basura diarias de las cuales el 83 % es proveniente de los hogares y el resto del sector industrial y comercial.

2.2 Impactos hidráulicos

Los impactos hidráulicos causados por las precipitaciones *intensas*, en las zonas urbanas, pueden ser: encharcamientos o inundaciones, resultando prioritario mitigar estas afectaciones, para no interrumpir la actividad económica diaria y mantener el bienestar de la comunidad.

2.2.1 Inundaciones.

De acuerdo con UNESCO (1979) la inundación se puede definir como "el desbordamiento del agua fuera de los confines normales de un rio, o inundación por agua procedente de drenajes, en zonas que normalmente no se encuentran anegadas".

La directiva de la *European Parliament Directive*, EPD (2007) define la inundación como el cubrimiento temporal por agua de una tierra que normalmente no se encuentra cubierta. Por lo tanto, se incluyen las inundaciones producidas por ríos, torrentes, corrientes de aguas efímeras y marítimas.

Para Fuentes y Franco (1997) las inundaciones suelen abarcar amplias extensiones de terreno provocando graves trastornos a las comunidades, entre los que se citan a las personas (lesiones, enfermedades, e incluso perdidas de vida) y a los bienes materiales (perdida de cultivo y animales, así como daños a casas habitación, vías de comunicación, instalaciones eléctricas, caminos, soporte de puente, etc.).

Entre los beneficios y daños que podemos tener de acuerdo con Maza y Franco (1993) son:

Beneficios:

- ✓ Al desbordarse las laderas de los ríos, se humedecen y se fertilizan los terrenos
- ✓ Recarga de acuíferos (dependiendo del tipo de estrato que se encuentre debajo de la zona de inundación)
- ✓ Contribuye a la extensión de la fauna, ya que se crean lagunas de retención donde se utiliza como consumo de plantas y animales

Daños producidos:

- ✓ Pérdidas de vidas humanas
- ✓ Pérdida, en general de ganado y animales
- ✓ Destrucción de bienes materiales
- ✓ Interrupción y destrucción de las vías de comunicación
- ✓ Propagación de enfermedades

2.2.2 Clasificación de las inundaciones.

De acuerdo al Centro Nacional de Prevención de Desastres (CENAPRED), se pueden clasificar por su origen (CENAPRED, 2007):

Inundaciones pluviales. Se presenta cuando la precipitación ha saturado por completo al suelo y el agua excedente se acumula por horas o días. Su principal característica es que el agua inundada proviene de la misma zona.

Inundaciones fluviales. Estas se generan cuando el agua que contiene el rio se desborda a terrenos adyacentes a él, tomándose en cuenta que el desbordamiento puede ser producido por lluvias que afectan alguna parte de la cuenca del rio aguas arriba del punto donde se originó el desbordamiento.

Inundaciones costeras. Ocurren cuando el nivel medio del mar es rebasado y permite que el agua entre a las zonas costeras, generando grandes zonas cubiertas por agua.

De acuerdo al tiempo de respuesta de la cuenca, la diferencia que existe entre estos tipos de inundaciones es el tiempo en el cual producen los efectos (CENAPRED, 2007).

Inundaciones lentas. Se manifiestan cuando el agua drenada de las áreas de aportación al rio aumentan, generalmente las zonas afectadas son predios en zonas bajas dentro del rio y a la salida de la cuenca.

Inundaciones súbitas. Se presentan cuando surgen lluvias intensas en áreas específicas, usualmente son productos de zonas impermeables como edificios y calles donde el agua que se infiltra es mínima y además escurre generando violentos torrentes capaz de causar grandes daños.

2.2.3 Impacto en la sociedad a causa de las inundaciones urbanas.

Cuando el agua llega a las zonas habitadas por personas, comienza a provocar daños diversos, de acuerdo con Köing et al. (2002) esos peligros se pueden dividir en:

Peligros directos. Es considerado cuando el peligro material provocado es a causa del agua o flujo de esta.

Peligro indirecto. Cuando existen interrupciones de tráfico, administrativas o costos laborables, bajas producciones entre otras.

Consecuencias sociales. Esto generalmente se presenta a largo plazo y consiste en efectos que son de carácter psicológico, en el cual a causa de las frecuentes inundaciones en el lugar, el valor de la propiedad empieza a decrecer provocando un retraso en la economía del lugar.

El estudio de las cuencas urbanas ha sido encomendado a la rama de la hidrología urbana, donde se tienen contempladas las alternativas estructurales y no estructurales para mitigar las afectaciones causadas por los fenómenos hidrometerológicos.

Evaluación del daño ante las de inundaciones

Existen diferentes daños que se pueden medir y estimar a causa de las inundaciones, mediante investigaciones se ha podido establecer los tipos de daño que se pueden presentar, en general se pueden mencionar que los costos pueden estar representados en dos grandes vertientes los costos tangibles y los intangibles (NSW, 2005).

Los costos tangibles son daños económicos, que se pueden medir en términos monetarios, son daños directos que se presentan a causa del fenómeno y trabajos que se realizan después de una inundación (limpieza).

Los costos intangibles son aquellos que se presentan cuando se incrementan los niveles emocionales de estrés y enfermedades causadas a raíz de la inundación.

3 HIDROLOGÍA URBANA, SOLUCIONES ESTRUCTURALES Y NO ESTRUCTURALES.

En la literatura podemos encontrar diferentes definiciones acerca del término de Hidrología Urbana, como las siguientes:

- Es la disciplina científica del medio ambiente que tiene por efecto el estudio del agua y de sus relaciones con las diferentes actividades de la zona urbana. (Torres, 2004).
- Es la rama de la hidrología que estudia la hidrología de las zonas urbanas y metropolitanas, en las que predominan las superficies casi impermeables y el relieve artificial de terreno, analizando en particular, el efecto del desarrollo urbano (UNESCO-WMO, 2012).

Donde se puede establecer que la hidrología urbana toma en cuenta el efecto del desarrollo urbano que existe en las cuencas, cuando se presentan las lluvias. De acuerdo con la duración, intensidad de la lluvia y características del uso de suelo; el estrato al paso de la lluvia se satura, generándose escurrimientos que en ocasiones generan inundaciones. Salas (1999) plantea que estos efectos se pueden mitigar de la siguiente manera:

- Manteniendo el agua dentro del cauce
- Evitando que el agua, que ha salido de los cauces, alcance a las poblaciones

Para reducir los daños producidos por las inundaciones y encharcamientos, se ha visto que se debe de manejar integralmente el agua pluvial (Alcocer-Yamanaka et al, 2013), mediante acciones estructurales y no estructurales, como se muestra en

la llustración 3.1 adaptándose medidas prevengan, mitiguen y actúen ante las inundaciones.

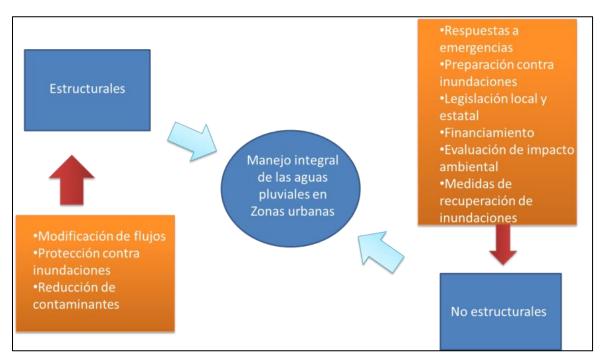


Ilustración 3.1 Manejo integral del agua pluvial

Estas medidas se explican a detalle a continuación:

3.1 Las medidas estructurales.

Consisten en la realización de obras de infraestructura que actúan sobre mecanismos de formación y propagación de avenidas. Las obras que comúnmente se construyen, son acciones que interfieren directamente con el agua de lluvia o con la que escurre por los ríos, para impedir su paso, confinarla, encauzarla almacenarla o modificar su desplazamiento y caudales (CONAGUA, 2011):

Presas para retener azolves. Son pequeños diques interpuestos a la corriente que se colocan en arroyos y ríos. Generalmente tiene una altura de 2 y 10 m, son construidos de concreto o mampostería, gaviones o elementos prefabricados en cuya corona se forma como una obra de excedencias.

Construcción de diques. Esta medida consisten en el empleo de diques un lado o dos (dependiendo la situación del problema) con el fin de evitar el desbordamiento del agua.

Reforestación y conservación del suelo. En este proceso se busca que los bosques retengan más agua, aumentando la infiltración y disminuyendo la escorrentía superficial, con el fin de evitar la erosión.

Presa rompe picos. Tienen la función de demorar la llegada del gasto máximo ('pico') de la avenida y distribuir la descarga aguas abajo uniformemente en el tiempo.

Aumento de la capacidad del cauce. Este proceso se lleva mediante el ensanchamiento lateral del cauce y/o dragado del fondo, estas alteraciones dinámicas tienen que ser equilibradas, ya que pueden causar problemas en los ecosistemas fluviales.

Desvío de cauces. Medida frecuentemente utilizada en tramos donde el rio pasa por las ciudades, y consiste en realizar canales de desvío del rio agua arriba.

Lagunas de retención. Es un sistema alternativo que consiste en una laguna que recibe el escurrimiento producida por una tormenta, para luego ser vaciada gradualmente. La factibilidad de una laguna de retención está determinada por el área de aporte, las condiciones morfológicas de la cuenca y tener el espacio disponible, cuenta con la ventaja ser en temporada de estiaje un lugar recreativo y es recomendable su realización en zonas en desarrollos urbanos (ver Ilustración 3.2).

Ilustración 3.2 Canal-laguna de retención, fuente: SIAPA, 2011

Estanque de retención. Su utilidad reside a evitar que los sistemas de drenaje pluvial colapsen, debido a que concentran escurrimiento superficial producto de la lluvia, lo almacena y lo liberan gradualmente. Algunos ejemplos son un parque inundable o una plaza impermeable ubicada bajo la cota de la calle (ver llustración 3.3).

Ilustración 3.3 Plaza impermeable en la ciudad, fuente: http://www.centroaguasurbanas.cl/

Además de las obras mencionadas anteriormente, se han creado medidas estructurales sustentables, que ayudan a mejorar el entorno de la cuenca e intercepten la lluvia con el fin de decrecer los escurrimientos pluviales, como la denominada: **infraestructura verde o** *Green infraestructure* (Rockefeller, 2011), definida como un sistema interconectado de espacios abiertos y áreas naturales,

humedales, parques, preservando el medio ambiente y las plantas nativas del lugar, captura la contaminación y provee una mejor calidad del agua.

Además de entrelazar lo natural con las infraestructuras hechas por el hombre generando resultados positivos a la sociedad. Algunos ejemplos se presentan a continuación (CNT, 2010):

Áreas verdes (*Green Roofs***).** Son áreas superficiales sobre las cuales ha sido colocada vegetación (ver Ilustración 3.4).

Ilustración 3.4 Ejemplos de áreas verdes en viviendas, Fuente: CNT, 2010

La presencia de plantas y de las áreas verdes puede reducir considerablemente la radiación solar por cubierta de las superficies verdes de las construcciones, reduciendo la temperatura durante los meses más calurosos. Como consecuencia, la evaporación disminuye debido a la temperatura ambiente.

Es una ayuda para la biodiversidad y proporcionando un mayor hábitat de la flora y fauna del lugar, aperturando oportunidades de agricultura urbana.

Pavimentos permeables (*Permeable pavements*). Son superficies de pavimento que permiten el paso del agua por ellos. Los cuatro tipos son: asfalto poroso, concreto permeable, pavimento mallado y pavimento de césped.

Ilustración 3.5 Ejemplos de pavimento permeable, Fuente: SIAPA, 2011

Reduce los volúmenes de escurrimiento superficial e incrementa la media de infiltración del suelo, contribuyendo a un incremento de la recarga del agua subterránea.

Su uso tiene un potencial para reducir la energía por las bajas temperaturas del aire, que se pueden registrar que viene a reducir la demanda los sistemas de aire acondicionado en los hogares.

Recolección de agua (*Water Harvesting***)** Está definida como las reutilización productiva del uso del agua de lluvia capturada a través de contenedores, pudiéndose utilizar en zonas de irrigación o para el uso de baños (ver llustración 3.6).

Ilustración 3.6 Recolección de Agua, Fuente: CNT, 2010

Minimiza los impactos de los escurrimientos pluviales ya que captura la lluvia en lugares donde se puede reusar.

Al reusar el agua pluvial para irrigación puede ayudar a recargar el agua subterránea.

Jardín de Iluvia (*Rain gardens*). También son conocidos como jardines de recarga, son pequeñas detenciones de agua y áreas de infiltración que usan vegetaciones nativas para reducir el escurrimiento superficial (ver Ilustración 3.7).

Ilustración 3.7 Jardín de Iluvia, Fuente: CNT, 2010

Bioswales. Son zonas bajas del terreno ocupadas por vegetaciones que captan la lluvia, reteniendo cantidades considerables e infiltrándola en el suelo. Son usadas en estacionamientos o a lo largo de las carreteras.

Construcción de humedales (Constructed wetlands). Son creadas en beneficio del sistema natural de la lluvia. Estos pueden reducir efectivamente los flujos máximos de las avenidas, reduciendo el peligro de inundación.

3.2 Las medidas no estructurales.

Tiene el propósito de ordenar, regular y proteger el desarrollo de la cuenca, a fin de reducir los daños debido a la inundación. Tienden a reducir sobre todo la vulnerabilidad, se presentan a continuación las más representativas.

- Planes de protección civil. El estudio detallado de las avenidas permite establecer sistemas de alerta para la protección de la población y sus bienes inmuebles, adoptando medidas de seguridad, como la restricción de paso en los puntos conflictivos y el control del agua que sale del embalse.
- Modelos de simulación de avenidas. Se generan con la ayuda de un Sistema de Información Geográfica (SIG), consta de los siguientes elementos: datos del terreno, meteorológicos, geomorfológicos, litológicos, usos y aprovechamientos del suelo, cobertura vegetal, y fotografías tomadas por satélite con el objetivo de delimitar las áreas afectadas por una inundación.
- Ordenación de zonas inundables. Tiene por objeto controlar el futuro desarrollo de los lugares a habitar, mediante las zonificación de la llanura de inundación y la limitación del uso de suelo.
- Seguros contra inundaciones en las zonas vulnerables. Los seguros constituyen un instrumento idóneo de protección cuando el costo de la defensa supera el valor del área protegida, debiendo ser la base de la protección en zonas no urbanas, como la agricultura y ganadería.
- Fomentar un entorno basado en estándares. A través de índices para los equipos de retención del agua pluvial, que faciliten la revisión del proceso y crear estándares de limpieza. Frecuentemente las comunidades requieren la creación de zanjas de retención o infiltración para retener o infiltrar un porcentaje del volumen de escurrimiento pluvial.

Reducir las zonas impermeables. Usar estándares para limitar áreas impermeables que permitan dejar huella y proveer al mercado de incentivos por tener áreas compactadas o rellenadas. Asimismo, reducir o eliminar los impuestos para la generación de zonas verdes.

Crear programas de desconexión de tubos de bajada para aguas pluviales. Incentivar la desconexión de los tubos de bajada a través de los municipios, millones de metros cúbicos de agua pluvial pueden ser eliminados de un sistema combinado de alcantarillado.

Crear proyectos que aumenten los recursos del agua. Establecer una planicie de inundación mínima y humedales se requieren para proteger áreas susceptibles de inundación. Por ejemplo, prohibir la creación de infraestructura donde se tiene el ancho de inundación para una planicie de inundación de 100 años.

Necesidad del diseño de la infraestructura verde en proyectos municipales.

Las legislaciones locales deben de establecer los lineamientos necesarios que incorporen las prácticas de la infraestructura verde.

Para aplicar una medida, ya sea estructural o no estructural, se deben de considerar: el factor de riesgo que se pretende reducir, funcionalidad, capacidades, limitaciones, ventajas y desventajas, efectos posibles aguas arriba y abajo, gasto de operación y la posibilidad de combinación con otras medidas (CONAGUA; 2011).

4 CONSTRUCCIÓN DE MAPAS DE RIESGO DE INUNDACIÓN.

El riesgo está implícito en nuestras vidas y es parte inseparable de nuestras acciones, la Real Academia de la Lengua Española (RAE, 2010) define el riesgo como la contingencia o proximidad a un daño, entendiéndose la posibilidad de tener pérdidas significativas o resultados adversos.

Existen diversas definiciones para el riesgo, por ejemplo en Europa, La *European Parliament Directive* (EPD, 2007) menciona que es la probabilidad de que se presente un determinado evento (llamado peligro), y las potenciales consecuencias adversas que tendría para la salud humana, medio ambiente o las actividades económicas (vulnerabilidad).

Los mapas de riesgo por inundación generalmente son representados por medio de una base cartográfica, en los cuales se plasma la probabilidad de incidencia de un evento, sus características e intensidades, así como la manera en que impactan los sistemas afectables, principalmente caracterizados por la actividad humana CENAPRED (2004).

Ordaz (2011) menciona se puede realizar un análisis probabilista del riesgo, que tiene como objetivo evaluar las perdidas en un grupo de activos expuestos durante cada uno de los escenarios que describen la amenaza y las frecuencias de ocurrencia de cada uno de estos eventos.

Además la EPD (2007) y Wisner (2003) mencionan que el análisis-del riesgoconsiste en determinar la naturaleza y extensión del daño, mediante el análisis de las amenazas potenciales y evaluación de las condiciones de vulnerabilidad que pueden derivarse de la amenaza potencial, causando daños personales, a la propiedad y al medio ambiente. En México se han desarrollado metodologías para la creación de Mapas de riesgo como la presentada por el CENAPRED (2004). Esta metodología se desarrolló para realizar mapas de riesgos, considerando los diferentes fenómenos naturales (hidrometerológicos, sísmicos, volcánicos y de origen químico) y antrópicos (atribuibles a la acción humana, por ejemplo la contaminación) de la zona de estudio, partiendo de la estimación del peligro asociado al fenómeno identificado, posteriormente se identifican de los sistemas expuestos, su vulnerabilidad y evalúan los diferentes niveles de riesgo asociados al fenómeno.

Ribera (2004) menciona que para la construcción de mapas de riesgo, en primera instancia se realizan los mapas peligro, continuando el proceso se elaboran los mapas de vulnerabilidad, que al combinarse y tomando en cuenta el valor de los bienes, se generan los mapas de riesgo (ver Ilustración 4.1).

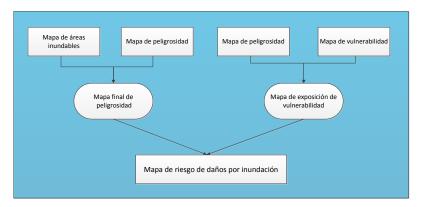


Ilustración 4.1 Elementos que intervienen en la generación de mapas de riesgos por inundaciones, (Ribera, 2004)

Además formula la Ecuación 1, con la cual se calcula el riesgo en una zona de estudio.

 $Riesgo = (Area \ de \ afectación * peligrosidad \ del \ suceso) \ x \ (elementos \ en \ juego \ * vulnerabilidad \ de \ los \ elementos \ en \ juego)$

Ordaz (2011), plantea un procedimiento general para la determinación probabilista del riesgo, a partir de lo siguiente:

- Determinación del peligro asociado a las inundaciones.
- Identificación de los sistemas expuestos
- Vulnerabilidad de los sistemas expuestos
- Evaluación del riesgo asociado a las inundaciones;

La estimación del riesgo, se realiza por medio de una curva llamada de excedencia de pérdidas, que específica las frecuencias con que ocurrirán eventos que excedan un valor especificado de pérdidas. Esta frecuencia también se le conoce como tasa de excedencia.

El caso de análisis que presenta en el estudio, considera la falla de una presa, determinándose las zonas de inundación que se abarcaran, asimismo se estiman tres valores de casas que se encuentran en la zona de estudio. Asignándose una curva de vulnerabilidad en base al tirante de inundación. Al final se calcula la pérdida anual esperada.

Salas (2011) realiza una sistematización para la generación de mapas de riesgo, a través de dos vertientes principales: los mapas de peligro y vulnerabilidad. Para los mapas de peligro los realiza bajo cuatro etapas, la primera es realizar un tratamiento de datos del terreno para generar el modelo digital, la segunda elaborar los caudales de diseño, para la tercera integrar los componentes de la simulación del fenómeno y al final se generan escenarios de peligro (velocidad y tirante de inundación).

Para continuar el análisis se generan los mapas de vulnerabilidad, en base al Área Geoestadística Base (AGEB) del Instituto Nacional de Estadística Geográfica e Informática (INEGI). Se toma en consideración dos factores para determinar la vulnerabilidad: el techo y las paredes. Finalmente para generar los mapas de riesgo se basa en la Ecuación 2 que está en función del peligro y la vulnerabilidad, añadiendo el valor de los bienes expuestos.

R = CVP Ecuación 2

Dónde:

C.- Valor de los bienes expuestos.

V.- Vulnerabilidad o porcentaje de daños en una vivienda debido a una inundación.

P.- Peligro o probabilidad de que ocurra un determinado evento

4.1 Mapas de Peligro

Ribera (2004) y Kikuchi (2003) definen los mapas de peligro como aquellos que contemplan las inundaciones considerando las variables del tirante y velocidad de la inundación por medio de diferentes parámetros, con esto se puede contemplar la evacuación en caso de emergencia, como: rutas de evacuación, zonas de refugio y puntos críticos.

De acuerdo a Federal Emergency Management Agency (FEMA, 2009) la visión de un mapa de peligro: "es proporcionar datos de calidad que incrementen la confianza del público y les permita tomar acciones que reduzcan los daños en vidas y propiedades. Los mapas de peligro se generan a partir de la modelización de inundaciones con ayuda de algún software".

Ribera (2004) expone la posibilidad de realizar tres diferentes tipos de mapas de áreas inundables, los primeros basados en acontecimientos históricos en la región de estudio, el segundo realizado a partir de las condiciones geomorfológicas del lugar donde se estudian las formas del terreno por donde pasa el agua y el ultimo se basa en un enfoque hidrológico-hidráulico, el cual se basa en registros de precipitación antecedentes y las condiciones del terreno (ver Ilustración 4.2).

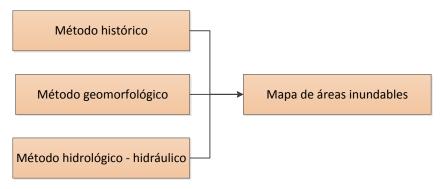


Ilustración 4.2 Métodos de enfoque de los mapas de inundación, (Ribera, 2004)

La Tabla 4.1 presenta los propósitos y ventajas de realizar mapas de riesgo por inundación tomando en cuenta a las personas que viven en zonas de vulnerables y a los responsables de los ayuntamientos del lugar, dándose a conocer el uso apropiado que deben de tener (Kikuchi, 2003).

Tabla 4.1 Uso de los mapas de riesgo

Categoría	Vecinos	Ayuntamientos locales		
Día a día.	✓ Considerando patrones propios de uso de suelo y construcciones adecuadas, resistentes al agua tomando en cuenta la vulnerabilidad del área	✓ Revisar la planeación en el uso de suelo y utilizar patrones que son resistentes a la inundación.		
	 ✓ Preparar kits de emergencia, comida de emergencia, etc. ✓ Preparar botas y otras apropiadas cosas para una evacuación. 	 ✓ Actualizar los sistemas de prevención de desastres y planes de inundación de la zona. ✓ Revisar los refugios y rutas de evacuación. ✓ Actualizar los planes específicos de asistencia en caso de evacuación o rescate 		
Día a día.	 ✓ Identificar canales de comunicación y sistemas de información en caso de evacuación ✓ Organizar unidades voluntarias en caso de desastres 	 ✓ Capacitar unidades voluntarias en casos de desastres. ✓ Actualizar los refugios y rutas de evacuación. 		
Día a día	 ✓ Aprender acerca de inundaciones históricas y los riesgos de inundaciones pasadas en las áreas locales. ✓ Organizar sesiones educativas sobre el potencial peligro de las 	✓ Promover la educación sobre la prevención del desastre y prácticas de simulacros.		

Categoría	Vecinos	Ayuntamientos locales			
	inundaciones, preparación y evacuación.				
Situaciones de emergencia	 ✓ Confirmar refugios propios, rutas de evacuación y kits de emergencia, etc. ✓ Evacuar zonas de riesgo, de acuerdo con los pronósticos del tiempo, información referente a 	 ✓ Identificar áreas de inundación, profundidades de inundación, localización de refugios y zonas de evacuación. ✓ Proveer informacion sobre el pronóstico de tiempo y probabilidad de inundación. 			
	inundaciones, etc. ✓ Asistencia en la evacuación de las zonas vulnerables de inundación.	✓ Apoyar y rescatar a las zonas vulnerables de inundación.			

4.1.1 Criterios de Peligro por inundación.

Para Protección Civil (CENAPRED, 2004) la idea de evaluar el peligro significa cuantificar en términos de probabilidad, la ocurrencia de un fenómeno, en un lapso estimado, potencialmente dañino para los bienes expuestos. Al momento de definir el peligro, conviene medir su potencial con una variable denominada "intensidad", ya que la caracterización de un fenómeno sólo está completa si se especifica su intensidad.

Se han realizado diferentes estudios para conocer el peligro por inundación en diferentes zonas de México, la Universidad Autónoma Nacional de México (UNAM), Campus Morelos ha trabajado en la generación de mapas de Peligro considerando el desbordamiento de los ríos Coatán, Huixtla y Huehuetan en Chiapas (Cervantes, 2012) y considerando el desbordamiento del rio Sabinal y colectores de la ciudad de Tuxtla Gutierrez, Chiapas (Lopez, 2013). Además en el año 2011 se comenzó en el Instituto Mexicano de Tecnología del Agua (IMTA), la modelación de sistemas de ríos, ubicados en región del Soconusco, Chiapas (Alcocer-Yamanaka, V., 2011) y el manejo del agua pluvial, a partir de los mapas de peligro (Alcocer – Yamanaka et al., 2012). Siendo una gran avance en la investigación del peligro a causa de las inundaciones.

En el mundo se han realizado diversos criterios para poder cuantificar y parametrizar las variables que intervienen en el peligro por inundación, a continuación se mencionaran los criterios de la *Federal Emergency Management Agency* (FEMA), la *Office Fédéral de l'Economie Des Eaux* (OFEE), *Länder-Arbeitsgemeinschaft Wasser* (LAWA por sus siglas en Alemán), del Software Flo-2d, Nanía y Témez.

Criterio de la Federal Emergency Management Agency (FEMA)

La Agencia Federal para el Manejo de Emergencias (FEMA por sus siglas en inglés) de los Estados Unidos, desarrolló un criterio para la generación de mapas de peligro (FEMA, 2009), en el que relaciona la profundidad máxima o tirante máximo h (m) con la velocidad máxima del agua (ver Ilustración 4.3), con base en estas relaciones establece tres rangos de peligro: zona de nivel bajo, de amenaza moderada y de alto nivel de amenaza.

La zona de nivel bajo no representa un afectación a la población, pero las edificaciones pueden sufrir daños ligeros.

La zona de amenaza moderada, se tienen daños a la integridad de las personas y afectaciones en las edificaciones.

Zona de alto nivel de amenaza, la vida de las personas puede estar en peligro y se tienen afectaciones estructurales de las edificaciones.

Ilustración 4.3 Niveles de peligro que relacionan el tirante del agua (m) y la velocidad (m/s) adaptada de (FEMA, 2009).

Criterio de la Office Fédéral de l'Economie Des Eaux (OFEE).

La Oficina Federal de la Economía de las Aguas, Office Fédéral de l'Economie des Eaux (OFEE por sus siglas en francés), es una dependencia del Gobierno de Suiza dependiente del Departamento del Medio Ambiente, Transportes, Energía y Comunicaciones. La OFEE, creó un criterio para evaluar los peligros generados por las inundaciones, basados en tres niveles (Loat & Petrascheck, 1997).

- **Peligro Alto**: La población está en riesgo dentro y fuera de las viviendas, y las edificaciones están en peligro de colapsar.
- **Peligro Medio**: La población está en riesgo fuera de las viviendas y las edificaciones pueden sufrir daños y colapsar dependiendo de sus características estructurales.
- **Peligro bajo**: El daño que pudiera sufrir la población es bajo, aunque las edificaciones pueden sufrir daños leves; la inundación o el arrastre de sedimentos pueden llegar a afectar el interior de las edificaciones.

Estos criterios la OFEE los aplica para tres casos (ver Tabla 4.2), el primero de ellos es el de inundación, el segundo es para erosión de taludes en ríos, y el tercero para deslaves provocados por lluvias torrenciales.

Tabla 4.2 Criterios de la OFFE

	Inundación		Erosión de taludes en ríos		Deslaves	
Criterios de peligro	Tirante h (m)	Relación de velocidad x Tirante (v x h) (m²/s)	Tirante (m)	Relación de velocidad por el Tirante (v x h) (m²/s)	Tirante (m)	Velocidad v (m/s)
Nivel Bajo	Menor a 0.5	Menor a 0.5	Menor a 0.5	-	-	-
Nivel medio	Entre 0.5 y	Entre 0.5 y 2	Entre 0.5 y 2	-	Menor a 1	Menor a 1
Nivel alto	Mayor de	Mayor a 2	Mayor de 2	-	Mayor a 1	Mayor a 1

	lnu	ndación	Erosión de t	aludes en ríos	Des	laves
Criterios de peligro	Tirante h (m)	Relación de velocidad x Tirante (v x h) (m²/s)	Tirante (m)	Relación de velocidad por el Tirante (v x h) (m²/s)	Tirante (m)	Velocidad v (m/s)
	2					

Derivada de la Tabla 4.2, se generó la llustración 4.4, en el que se muestran tres gráficas para calcular el nivel de peligro de una inundación en una zona urbana en función del tirante del agua y la velocidad.

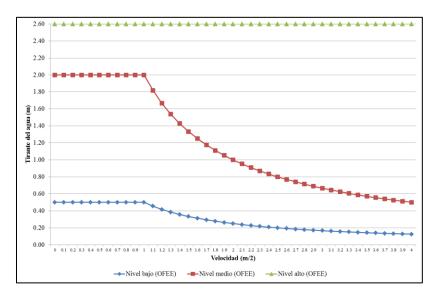


Ilustración 4.4 Nivel de peligro para inundaciones adaptada de (Loat & Petrascheck, 1997)

Criterio de Länder-Arbeitsgemeinschaft Wasser (LAWA)

La Confederación del Grupo de Trabajo Estatal del Agua, Länder-Arbeitsgemeinschaft Wasser (LAWA por sus siglas en Alemán), es el grupo encargado de poner las bases para la construcción de mapas de peligro, donde se toma en cuenta la probabilidad de inundación y la intensidad de la inundación (LAWA, 2006).

Para la probabilidad de inundación se tiene lo siguiente:

Probabilidad alta: Son las inundaciones con un periodo de retornos de 20 años.

Probabilidad media: Son las inundaciones con un periodo de retorno de 20 a 100 años.

Probabilidad baja: Son las inundaciones con un periodo de retorno igual a 100 años.

Riesgo residual: Son las inundaciones con un periodo de retorno de 200 años.

Y tienen una clasificación para la intensidad de las inundaciones, en donde se toman en cuenta la velocidad del agua y altura de inundación. En donde se tienen los siguientes parámetros:

- **Alta intensidad**: Se refiere (por ejemplo) a la configuración donde los humanos y animales están en la zona de riesgo, y/o donde las construcciones sufrirán daños o llegaran a ser destruidas.
- **Media intensidad**: Se refiere (por ejemplo) a la configuración donde los humanos y animales están cerca de la zona de riesgo y/o las construcciones pueden llegar a sufrir daños.
- **Baja intensidad**: Se refiere (por ejemplo) a la configuración donde los humanos y animales están localizados ambos dentro y fuera y pueden incurrir a un riesgo residual, y/o algunas partes de las construcciones como las sótanos, pueden llegar a sufrir daños.

La anterior clasificación puede ser algo subjetiva, en la Tabla 4.3 se presenta una clasificación con parámetros físicos.

Tabla 4.3 Criterios de LAWA

	Áreas planas	Áreas empinadas
Intensidad	Tirante h (m)	Velocidad (m²/s)
Nivel Bajo	Menor a 0.5	Menor a 0.5
Nivel medio	Entre 0.5 y 2	Entre 0.5 y 2
Nivel alto	Mayor de 2	Mayor a 2

Criterio propuesto en el Software Flo-2D

El software Flo- 2D (O'Brien & Jorgensen, 2007) en la rutina de generación de mapas de peligro toman como referencia la propuesta por la OFEE, pero realizan algunas modificaciones, ya sea considerando el tirante del agua (m) o la relación entre el tirante del agua por la velocidad (m²/s), de acuerdo a los criterios mostrados en la Tabla 4.4, éstos se pueden tomar de acuerdo a la profundidad máxima h (m) alcanzada en la zona de inundación o al producto de la profundidad máxima h (m) por la velocidad máxima v (m/s), lo que da una relación de m²/s.

Tabla 4.4. Niveles de peligro de inundación empleados por Flo-2D (O'Brien & Jorgensen, 2007)

Nivel de inundación	Profundidad máxima h	Producto de la profundidad h (m) por
Niver de mundación	(m)	la velocidad máxima v (m/s)
Alto	h > 1.5	vh > 1.5 m ² /s
Moderado	0.5 < h < 1.5	$0.5 \text{ m}^2/\text{s} < \text{vh} < 1.5 \text{ m}^2/\text{s}$
Bajo	h < 0.5	$vh < 0.5 \text{ m}^2/\text{s}$

En los anteriores criterios solo se le toma relevancia al fenómeno producido por la altura de las inundaciones y el volcamiento que pueda producir, pero además existen estudios de inundaciones urbanas realizadas en Europa, que han demostrado que el deslizamiento es otro factor importante y se tiene que considerar en las zonas urbanas.

Criterio de Nanía y Témez

Nanía (1999) realizó un modelo teórico experimental, para la ciudad de Mendoza, Argentina donde el estudio abarcó 30 manzanas, conformado por 50 tramos de calles y 21 cruces, se analizó el riesgo asociado al escurrimiento pluvial en calles. Esto se llevó a cabo para tomar en cuenta la estabilidad al deslizamiento de las personas ante la fuerza de arrastre que ejerce el flujo sobre ella, cuando es necesario cruzar calle, donde obtuvo como resultado el valor de 1.23 m³/s² como límite para que una persona cruce sin problemas(ver Ilustración 4.5).

El límite de 0.30 cm de tirante de inundaciones, está adaptado para que el escurrimiento superficial no pueda entrar a los edificios, además Témez (1992) menciona en su estudio que la velocidad máxima permisible es de 1m/s.

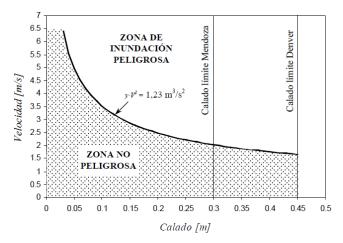


Ilustración 4.5 Resultado del análisis de Nanía (1999)

Estas clasificaciones del peligro por inundación, se realizan con base en una evaluación hidráulica inicial, sin embargo es necesario considerar otros factores, como:

- Preparación del personal de protección civil ante a las inundaciones.
- Duración de las inundaciones.
- Problemas de evacuación, etc.

4.2 Mapas de vulnerabilidad

Existen diversas definiciones de los mapas de vulnerabilidad, Ribera (2004) menciona que describen la situación poblacional, económica y de actividades que se realiza en la región a través de un Sistema de Información Geográfica (SIG). El CENAPRED (2001) aclara que la vulnerabilidad es la predisposición que tiene el objeto en cuestión a ser afectado por un agente perturbador.

En México, Salas (2011) desarrollo una metodología para la elaboración de los mapas de riesgo, la cual identifica la vulnerabilidad por manzana tomando en cuenta las variables recopiladas del AGEB. El proceso se basa en tener una tipología de la vivienda obteniéndose diferentes combinaciones del material del techo y muros de la vivienda, para esto define la vulnerabilidad en 5 clases: 1) Muy baja, 2) Baja, 3) Media, 4) Alta y 5) Muy Alta.

Clark et al. (1998) desarrolló otra propuesta y describió los elementos claves para poder establecer la vulnerabilidad en la zona, entre los que se destacan: la edad y la discapacidad de la población, la estructura familiar (entre mayor sea el número de personas en una familia, se debe de tener un mayor cuidado en un siniestro y las viviendas y su entorno (donde la calidad del material de construcción puede establecer la vulnerabilidad).

Las líneas de vida son otro factor a tomar en cuenta donde se incluyen los transportes, comunicación, hospitales; la ocupación de las persona puede ser también signo de vulnerabilidad.

Bajo estas claves para obtener la vulnerabilidad de un lugar, se recopila la información (por ejemplo mediante censos), se procesa y se obtienen los mapas de vulnerabilidad.

5 CARACTERÍSTICAS DEL SITIO DE APLICACIÓN.

5.1 Metodología para la creación de mapas de peligro

En México se han desarrollado metodologías para la creación de mapas de riesgo como la presentada por el CENAPRED (2004), Salas (2011) y Ordaz (2011) donde se exponen los diferentes criterios particulares para su realización.

Esta metodología tiene un enfoque hidrológico-hidráulico donde se delimitan las áreas potencias de inundaciones, a partir de los registros pluviométricos de la zona, la conformación del terreno en base a su morfología y la infraestructura realizada por la población para la evacuación del escurrimiento en las calles.

Retomando los estudios de Bertoni (2013), para la metodología se considera el macrodrenaje y microdrenaje de la zona de estudio. El macrodrenaje, son los cursos naturales que tiene el agua (cauces), los cuales están asociados a lluvias extraordinarias donde el periodo de frecuencias recurrente es de 10 a 50 años (Ilustración 5.1).

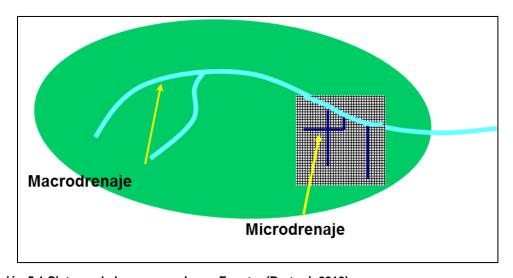


Ilustración 5.1 Sistema de la cuenca urbana, Fuente: (Bertoni, 2013)

Microdrenaje (drenaje pluvial) considera las obras de drenaje pluvial, donde se crean las vías artificiales de la cuenca, para su diseño de acuerdo a la Gerencia de Aguas Superficiales e Ingeniería de Ríos (GASIR, 1996), depende del número de habitantes de la zona de estudio.

El drenaje pluvial cobra relevancia en las zonas urbanas, ya que es preferencial que se evacue el agua tan rápido como sea posible, para reestablecer la comodidad de los habitantes en el menor periodo de tiempo.

Esta trabajo fue desarrollado con los datos existentes en la zona de estudio, implementando una metodología para los mapas de peligro, generada por las personas interesadas en la materia: el Ing. Oscar J. Llaguno Guilberto, M. I. Manuel Rodríguez Varela¹, Dr. Víctor H. Alcocer Yamanaka², M. I. Víctor J. Bourguett Ortiz³ y M. I. Pedro M. Albornoz Gongora⁴, que se enfoca en la sistematización de los mapas de peligro considerando la traza urbana y la infraestructura pluvial. La Ilustración 5.2 y en secciones subsecuentes se describirá con más detalle el procedimiento utilizado.

Especialista de Hidráulica, Instituto Mexicano de Tecnología del Agua
 Coordinador de Hidráulica, Instituto Mexicano de Tecnología del Agua

³ Director del Instituto Mexicano de Tecnología del Agua

⁴ Especialista de Hidráulica, Instituto Mexicano de Tecnología del Agua

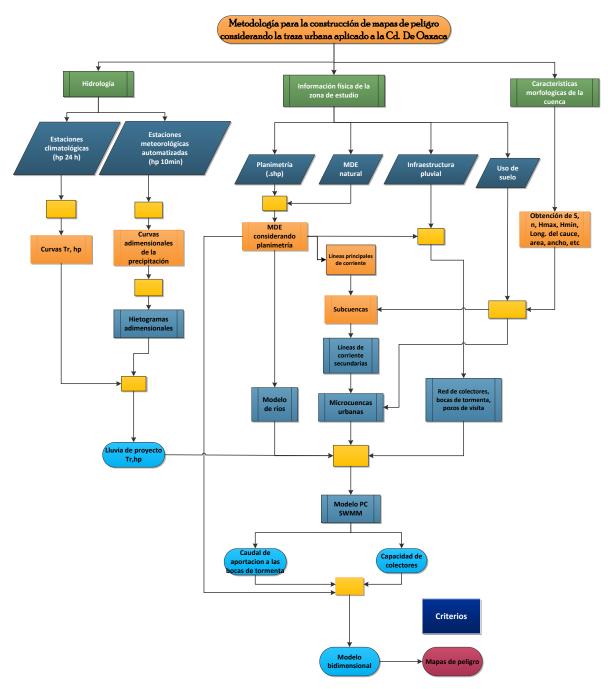


Ilustración 5.2 Metodología para la construcción de Mapas de Peligro, fuente: propia

A continuación se describe a detalle la metodología que se utilizó para la creación del mapa de peligro, comenzando por la hidrología, información básica de la zona de estudio y los parámetros geomorfológicos de la cuenca.

5.2 Hidrología

La zona metropolitana de la ciudad de Oaxaca de Juárez, debido a su ubicación topográfica y su relieve, ha presentado en los últimos años problemas de encharcamiento y desbordamiento de los ríos Salado, Atoyac y secundarios que vierten su descarga a estos ríos que atraviesan la ciudad capital.

5.2.1 **Análisis preliminar**

Se inició el estudio identificando las dependencias estatales o federales, que pudieran proporcionar alguna información sobre datos diarios de lluvia, registro de caudal y además registro de la lluvia a cada 10 min. Para esto se obtuvo información de la lluvia diaria a través de la Comisión Nacional del Agua (CONAGUA) apoyados por el programa Clima Computarizado (CLICOM), asimismo se comparó la información de la lluvia en 24 horas con la proporcionada por el Instituto Mexicano de la Tecnología del Agua (IMTA) con su programa Extractor de información climatológica ERIC⁵ III (2006).

Para la Iluvia a cada 10 min se recopilaron los datos a través de la dependencia federal: CONAGUA y estatal: Protección Civil del Estado de Oaxaca y CONAGUA frontera sur. Para las estaciones hidrométricas se obtuvo la información de la CONAGUA frontera sur y del programa Banco Nacional De Datos de Aguas Superficiales (BANDAS) del IMTA.

Al recopilar la información de cada dependencia, se pudieron corroborar los datos (precipitación) y conocer cuales contaban con información actualizada y verificar que los datos históricos compaginarán.

-

⁵ Derechos reservados, Instituto Mexicano de Tecnología del Agua.

Análisis de datos pluviométricos

Con el análisis de los datos proporcionados por los diferentes organismos se prosiguió a conocer las estaciones pluviométricas que se encuentran cerca de nuestra zona de estudio.

En el estado de Oaxaca se encuentran registradas 402 estaciones climatológicas de acuerdo con el software ERIC III que registran la lluvia cada 24 horas, distribuidas en diferentes puntos del estado, en la zona de estudio se consideró analizar 16 estaciones (Ilustración 5.3) ya que se vio que tenían influencia en la zona.

Se analizaron los datos de las estaciones climatológicas del estado de Oaxaca, además se delimito la región de estudio en base al área tributaria del rio Salado y Atoyac, con esto se procedió a escoger las estaciones que contaban con registro (ver Ilustración 5.2).

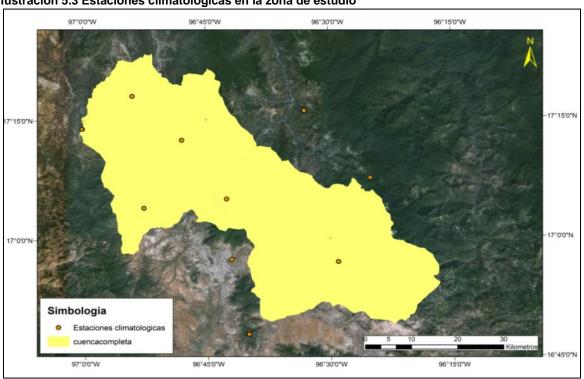


Ilustración 5.3 Estaciones climatológicas en la zona de estudio

Tabla 5.1 Localización de las 16 estaciones climatológicas en la región.

Núm.	Nombre	Coorde	Coordenadas Geográficas	Coordena	Coordenadas UTM	Altitud	Fechas	Fechas de registros
		LAT	LONG	Coord_X	Coord_Y	(msn)	Primer registro	Ultimo registro
20151	San Francisco Telixtlahuaca	17.3	-96.9	768025.1	1875740.7	1720	ene-70	oct-08
20150	Tejocotes Santiago Tenango	17.232	-97.002	-97.002 748687.13 1858894.4	1858894.4	2320	ene-70	jun-08
20079	Oaxaca de Juárez	17.083	-96.71	744871.41 1876194.9	1876194.9	1588	0Z-əuə	oct-09
20044	Jalapa del Valle	17.066	-96.878	-96.878 723213.53 1913959.8	1913959.8	1740	0Z-əuə	dic-08
20040	Sta. Catarina Ixtepejí	17.267	-96.55	712422.04	712422.04 1906342.3	1942.9	02-eue	dic-08
20034	Guadalupe Etla	17.207	-96.8	725801.08 1888065.2	1888065.2	1660	02-əuə	dic-08
20022	San Bartolo Coyotepec	16.957	-96.701	760480.15 1910709.2	1910709.2	1525.2	02-əuə	nov-11
20023	Cuajimoloyas S. Miguel	17.125	-96.417	733964	1903808.5	2879.3	60-50	ago-09
20080	Ocotlán de Morelos	16.8	-96.667	-96.667 743730.66 1890205.4	1890205.4	1514.2	ene-70	feb-04
20165	Tlacolula de Matamoros	16.95	-96.483	-96.483 774872.93 1895208.8	1895208.8	1620	02-aua	abr-88
20083	Parian S. Jeronimo Sosola	17.417	-97.017	-97.017 710639.34	1926778	1491	abr-55	jun-80
20046	S. J. Bautista Jayacatlan	17.417	-96.833	-96.833 730191.66	1926990	1150	ago-61	dic-80
20230	Presa Lic. Matias Romero	17.3	-96.933	-96.933 719704.62	1913921.9	-	ago-74	dic-81
20180	Vivero Forestal B. Juárez	17.117	-96.667	748234.57 1893986.3	1893986.3	-	ene-70	dic-83
20078	Oaxaca Oax.	17.028	-96.71	743772.93 1884079.7	1884079.7	1519	ni niS	Sin información
20226	Campo Agr. Exp del Valle	16.283	-95.583	16.283 -95.583 223953.77 1801985.1	1801985.1	1	ene-74	jul-75

En el registro se agregaron otros valores como: la geoposición de la estación, la altitud a la cual está instalada y las fechas de inicio-fin en las cuales se tienen datos, con el fin de almacenarse en una base de datos.

Se continuó con la selección de estaciones que tuvieran mayor número de años registrados, poniendo como restricción, que fueran de años anteriores próximos y que tuvieran mínimo 25 años de información. Al final se determinó trabajar con 10 estaciones climatológicas, de las cuales se incluirá una estación con 18 años de registro (estación 20165) dado que en esa zona es la única estación que contiene datos de referencia (ver Ilustración 5.4).

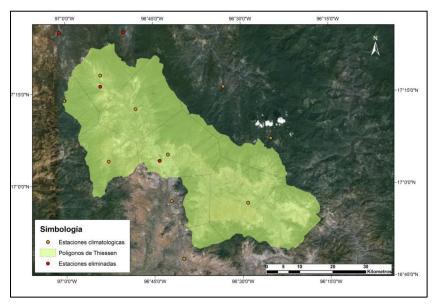


Ilustración 5.4 Estaciones con insuficiencia de datos y polígonos de Thiessen en la zona de estudio

El resultado de las estaciones, se resumen en la Tabla 5.2 se presentan las estaciones climatológicas con las que se trabajara.

Tabla 5.2 Estaciones a analizar sus datos.

			enadas ráficas	Coordena	adas UTM	Altitud	Años de
Núm.	Nombre	LAT	LONG	Coord_X	Coord_Y	(msn)	registro
20151	San Francisco Telixtlahuaca	17.300	-96.900	768025.1	1875740.7	1720.0	38
20150	Tejocotes Santiago Tenango	17.232	-97.002	748687.13	1858894.4	2320.0	38
20079	Oaxaca de Juárez	17.083	-96.710	744871.41	1876194.9	1588.0	39
20044	Jalapa del Valle	17.066	-96.878	723213.53	1913959.8	1740.0	38
20040	Sta. Catarina Ixtepejí	17.267	-96.550	712422.04	1906342.3	1942.9	38
20034	Guadalupe Etla	17.207	-96.800	725801.08	1888065.2	1660.0	38
20022	San Bartolo Coyotepec	16.957	-96.701	760480.15	1910709.2	1525.2	41
20023	Cuajimoloyas S. Miguel	17.125	-96.417	733964	1903808.5	2879.3	39

			enadas ráficas	Coordena	adas UTM	Altitud	Años de
Núm.	Nombre	LAT	LONG	Coord_X	Coord_Y	(msn)	registro
20080	Ocotlan de Morelos	16.800	-96.667	743730.66	1890205.4	1514.2	34
20165	Tlacolula de Matamoros	16.950	-96.483	774872.93	1895208.8	1620.0	18

Estas estaciones contienen registro de lluvias acumuladas en 24 horas por cada día del periodo de registro, estas anotaciones de lluvia se hace por medio de los lineamientos establecidos por la CONAGUA.

Corrección y estimación de datos faltantes.

Dado que generalmente existe inconsistencia en los datos proporcionados de las estaciones climatológicas, se han hecho esfuerzos para poder realizar una representación del evento que falta, estas estimación se realizan con el método del inverso de la distancia al cuadrado (Aparicio, 2010).

$$P_{x}=\sum_{i=1}^{n}\left(p_{i}\;w_{i}\right)W_{i}$$
 Ecuación 3 $w_{i}=1/d_{i}^{2}$ Ecuación 4 $W=\sum w_{i}$ Ecuación 5

Dónde:

- Pi: Es la precipitación en la estación i
- W_i = es la suma de los pesos ponderados de las estaciones
- d_i= Es la distancia de la estación i a la de cálculo
- w_i= es inverso de la distancia al cuadrado de cada estación.

Lluvias máximas anuales

Al término de rellenar los datos faltantes, podemos continuar y establecer el máximo valor de la precipitación presentada en 24 horas para cada año de registro, en la Tabla 5.3 se muestran los valores máximos anuales:

Tabla 5.3 Lluvias máximas anuales en 24 horas.

Año	20151	20150	20044	20034	20079	20165	20040	20080	20023	20022
1970	67.0	49.0	44.0	46.0	47.0	40.0	36.0	48.6	42.5	67.0
1971	48.3	68.0	58.0	33.7	59.0	41.0	35.0	24.9	40.0	40.5
1972	40.0	46.0	48.0	34.0	72.9	57.0	48.5	85.0	49.5	42.0
1973	35.0	65.0	37.0	63.5	73.1	47.0	72.0	44.0	73.0	27.5
1974	54.0	51.0	44.0	49.5	78.0	44.0	60.2	142.9	108.0	69.6
1975	68.0	54.0	42.0	48.2	69.5	62.0	47.0	71.6	42.5	60.0
1976	40.0	28.0	48.0	48.0	66.8	37.5	30.3	39.6	39.0	23.0
1977	40.5	43.7	45.0	61.0	35.8	34.5	34.8	51.3	36.0	33.0
1978	60.0	39.4	58.0	57.5	50.1	26.3	54.8	68.3	51.5	30.0
1979	43.0	60.0	44.0	40.0	58.5	96.3	44.0	415.0	38.5	62.0
1980	33.9	49.8	50.0	40.5	62.1	39.4	49.0	196.0	47.5	38.7
1981	60.4	55.9	42.1	60.0	91.3	68.0	60.9	64.6	81.8	58.0
1982	45.0	56.0	50.0	30.5	47.4	54.0	38.1	67.8	50.5	37.0
1983	40.0	68.7	40.0	60.0	39.0	35.0	44.0	97.8	46.8	63.0
1984	43.7	46.9	26.0	65.5	51.0	38.0	38.0	282.0	62.2	60.0
1985	62.0	36.9	30.0	40.0	54.4	42.0	26.0	87.0	28.8	32.0
1986	51.0	43.4	60.0	52.0	100.8	38.0	50.1	18.4	35.7	61.0
1987	64.0	36.1	55.0	55.0	51.8	48.0	46.8	62.3	17.3	53.0
1988	63.0	45.5	66.0	62.5	36.2		40.5	63.7	43.6	67.0
1989	110.0	82.1	39.1	60.0	53.2		41.8	4.2	42.9	83.0
1990	54.0	39.9	19.4	34.2	32.5		33.3	32.0	32.7	80.0
1991	66.0	19.2	49.0	42.5	58.7		40.0	54.0	31.4	60.0
1992	31.0	38.0	48.0	40.0	27.3		31.0	90.0	20.9	40.0
1993	60.0	20.6	57.0	29.0	80.5		52.7	70.3	59.0	70.0

Año	20151	20150	20044	20034	20079	20165	20040	20080	20023	20022
1994	60.0	47.8	63.0	60.3	38.0		46.5	226.6	36.9	50.0
1995	65.0	21.9	60.0	46.0	69.0		43.2	58.7	44.0	62.0
1996	65.0	50.1	82.0	54.0	65.7		36.6	51.0	36.9	110.0
1997	56.0	42.5	41.0	28.5	39.6		27.6	75.0	56.0	62.0
1998	73.6	53.7	108.0	72.0	58.5		62.9	53.0	54.3	57.7
1999	46.0	34.9	43.0	52.0	44.5		29.6	42.0	27.5	35.0
2000	51.0	45.0	54.0	45.0	39.0		34.5	40.0	41.0	25.0
2001	54.0	32.1	61.0	40.0	78.8		45.0	35.3	38.0	38.0
2002	37.0	33.7	42.0	29.4	42.9		32.0	36.7	72.0	37.3
2003	59.0	17.8	54.0	50.0	46.5		30.7	10.4	56.0	11.0
2004	45.0	19.2	40.0	50.0	64.5		27.0		25.0	15.9
2005	57.0	19.2	73.0	38.0	117.0		127.0		100.1	31.1
2006	42.0	19.2	34.0	42.0	66.2		43.0		32.0	57.4
2007	41.0	48.1	96.0	32.5	87.5		38.0		51.0	5.0
2008	47.0	52.7	64.9	30.0	62.8		42.0		48.0	0.0

Una vez conformadas las muestras de lluvias máximas anuales ocurridas en 24 horas se procede al análisis de frecuencias, con el objeto de ajustar dichas muestras a funciones de distribución de probabilidades. Todas las muestras fueron evaluadas con las siguientes funciones de distribución de probabilidad:

- Normal.
- Log-Normal
- Gumbel
- Exponencial de un parámetro
- Gamma de dos parámetros
- Gumbel doble
- Log-Pearson

Estas funciones fueron procesadas y evaluadas en el programa desarrollado por el IMTA, el AFA V.1.1 en año 2011. Este programa nos facilita el procesamiento de los datos a fin de poder obtener las lluvias para diferentes periodos de retorno considerando las diferentes funciones de distribución (ver Ilustración 5.5).

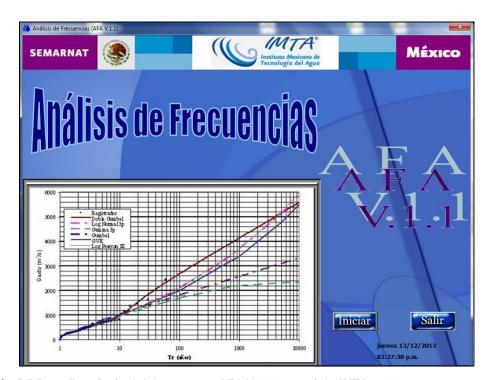


Ilustración 5.5 Pantalla principal del programa AFA V.1.1, copyright IMTA, 2010

Del total de estaciones analizadas, la función que tuvo mejor ajuste a los diferentes datos fue la Gumbel doble, debido a que el estado de Oaxaca es afectado continuamente por huracanes y esta, es una característica de la distribución mencionada anteriormente. El ajuste para conocer la función que caracteriza de mejor forma a la muestra, se obtuvo por medio del error estándar de ajuste (ver Tabla 5.4).

Tabla 5.4 Aiustes para las estaciones climatológicas

rabia	5.4 Ajustes para	ias estacion	es ci	matolo	gicas							
Núm.	Nombre	Función de	Err				Pe	riodo de	retorno			
Nuill.	Nombre	ajuste	or STD	2	5	10	25	50	100	200	500	1000
20151	San Francisco Telixtlahuaca	Gumbel	4.4	50.9	63.7	72.1	82.8	90.7	98.5	106.3	116.7	124.5
20150	Tejocotes Santiago Tenango	Gumbel doble	2.7	42.7	54.1	62.9	75.7	85.4	95.0	104.6	117.2	126.7
20079	Oaxaca de Juarez	Gumbel	2.2	56.5	73.6	84.9	99.2	109.8	120.4	130.8	144.7	155.2
20044	Jalapa del Valle	Gumbel	3.8	48.9	64.1	74.1	86.8	96.3	105.6	115.0	127.3	136.6
20040	Sta. Catarina Ixtepeji	Gumbel doble	6.6	40.4	51.8	61.8	79.1	94.2	109.5	124.7	144.7	159.7
20034	Guadalupe Etla	Gamma de 2 par	1.9	45.8	56.3	62.3	69.3	74.0	78.5	82.7	88.0	91.9
20022	San Bartolo Coyotepec	Gumbel doble	3.6	46.9	63.1	74.3	92.3	105.7	118.9	132.1	149.5	162.7
20023	Cuajimoloyas S. Miguel	Gumbel doble	3.5	42.6	58.5	70.9	89.5	105.3	122.1	139.2	162.2	179.6
20080	Ocotlan de Morelos	Gumbel doble	17.	58.4	110.6	223.8	311.4	365.3	416.2	465.7	530.3	578.8
20165	Tlacolula de Matamoros	Exponencial de 2 parametros	4.6	42.2	56.9	68.1	82.8	94.0	105.1	116.3	131.0	142.2

Tormentas

En la zona de estudio se cuentan con dos Estaciones Meteorológicas Automatizadas (EMAS) donde se pueden obtener datos de la precipitación a cada 10 minutos, además se tiene una Estación Sinóptica Meteorológica (ESIME) es la que cuenta con el mayor número de datos que comprenden del 7 de Octubre del 2009 al 21 de junio del 2012. (ver Ilustración 5.6)

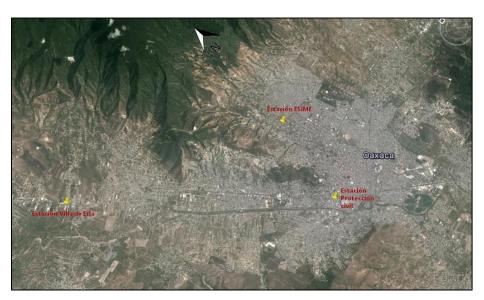


Ilustración 5.6 Localización de las Estaciones Climatológicas Automatizadas

La estación protección civil y Villa de Etla son más recientes ya que estas fueron instaladas en diciembre del 2011 y se tiene datos a junio del 2012.

Obtención de hietogramas de precipitación de las estaciones meteorológicas automatizadas

Con estas tres estaciones se prosiguió a realizar el análisis de las tormentas, con el siguiente tratamiento: se toma la tormenta registrada en algún lapso de tiempo contabilizándose la precipitación cada 10 min, se suma el total de la precipitación acontecida, y se divide cada intervalo hasta obtener una curva adimensional de la precipitación.

Se hizo una separación de las tormentas, tomadas con un rango de duración de 0 a 60 min, de 60 a 120 min y mayor a 120. En la Tabla 5.5 resumen los datos analizados.

Tabla 5.5 Registros de las estaciones climatológicas automatizadas a usar

Nombre de la	Fecha de registr	o (día-mes-años)		Número de i	registros
estación	Inicio	Termino	0 a 60	60 a 120	Mayor a 120
Villa de Etla	01/09/2011	01/07/2012	24	20	6
Protección civil	01/09/2011	01/07/2012	53	13	10

Nombre de la	Fecha de registro	o (día-mes-años)		Número de i	registros	
estación	Inicio	Termino	0 a 60	60 a 120	Mayor a 120	
ESIME	07/10/2009	21/06/2012	5	37	105	

A continuación en la Ilustración 5.7 se presentan los resultados de la estación Villa de Etla, ESIME y protección civil; además en color negro se establece la curva media resultante del análisis para los tres intervalos propuestos.

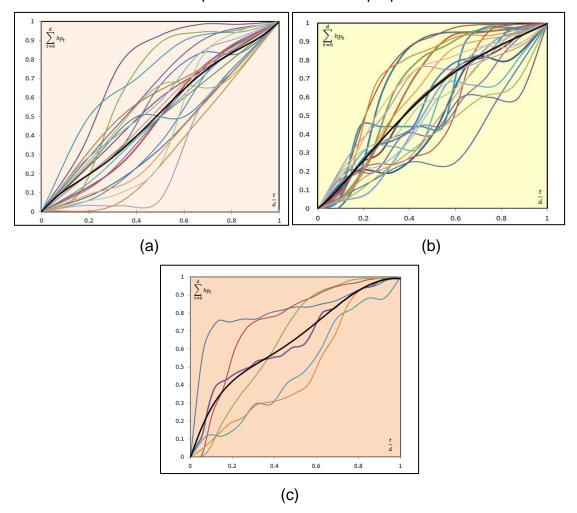


Ilustración 5.7 (a) Curvas adimensionales, duración de 0 - 60 min, (b) curvas adimensionales de 60 - 120 min y (c) curvas adimensionales mayores a 120 min

Al procesar la información de los registros históricos de las estaciones podemos establecer que las tormentas que se presentan en mayor proporción en la ciudad de Oaxaca tiene una duración mayor a 120 min, con esto en las simulaciones se le asignara una duración de lluvia de 2 horas para asemejarlo a los datos recabados.

Hietogramas adimensionales de precipitación

Con los datos que nos produjeron las gráficas de las curvas adimensionales, procedemos, ahora a realizar los hietogramas de precipitación, que son la representación de la forma de la lluvia media en un grafica de barras para los tres periodos de tiempo analizados, al final la suma de las barras nos debe de dar la unidad y los intervalos de duración de 5 min (ver llustración 5.8).

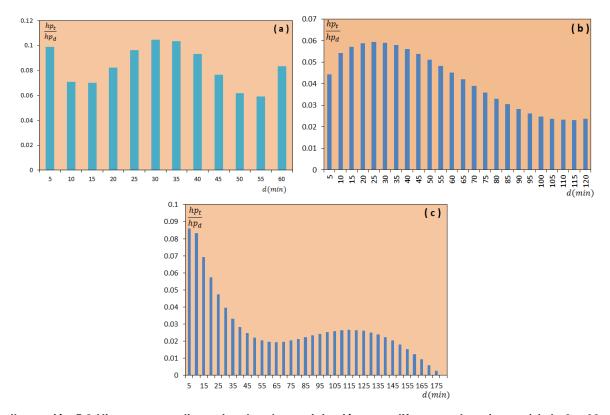


Ilustración 5.8 Hietogramas adimensionales de precipitación para diferentes duraciones, (a) de 0 a 60 min, (b) de 60 a 120 min y mayor a 120 min de duración, estación Villa de Etla

Curvas hp-d-Tr e i-d-Tr para las estaciones

Para la obtención de la relación lluvia-duración existen dos propuestas que se utilizan en la hidrología comúnmente: El método de Chen y Bell.

Chen Cheng-Lung (1983) desarrollo un proceso para calcular las curvas intensidad-duración-periodo de retorno, bajo la utilización de tres alturas de lluvia:

10 años 1 hr (R_1^{10}) , 10 años 24h (R_{24}^{10}) y 100 años 1h (R_{24}^{100}) para describir la variación geográfica de la lluvia, en términos de la relación altura-duración (R_1^T/R_{24}^T) para cualquier periodo de retorno T, y la relación altura-periodo de retorno para cualquier duración.

$$I_d^T = \frac{a_1 I_1^{10} log \left\{ 10^{2-X} \left[ln \left(\frac{T_a}{T_a - 1} \right) \right]^{-(X-1)} \right\}}{(d + b_1)^{c_1}}$$
 Ecuación 6

Lo establece al formular la Ecuación 6 en la que se obtienen las relaciones IDT utilizando series máximas anules, válida para T>1 año y para 5 min ≤d≤24h.

Donde
$$X = \frac{R_1^{100}}{R_1^{10}}$$
 , T_a es el periodo de retorno analizado, y los parámetros a_1 ,

 b_1 y c_1 varían dependiendo las condiciones meteorológicas.

En 1969, se propuso la fórmula de **Bell**, que permite estimar la altura de precipitación para cualquier periodo de retorno y para cualquier duración. Esta relación lluvia – duración - periodo de retorno es directamente proporcional a la lluvia horaria con un periodo de retorno igual a dos años (Bell, 1969).

$$hp_T^d = \left[0.35 \cdot Ln(Tr) + 0.76\right] \cdot \left[0.54 \cdot d^{0.25} - 0.50\right] \cdot hp_{Tr=2}^{d=60}$$
 Ecuación 7

Dónde:

D = Duración en minutos.

Tr = Periodo de retorno en años.

Altura de precipitación para cualquier duración y para cualquier periodo de retorno.

De las formulas mencionadas anteriormente se decidió utilizar la fórmula de Bell, ya que evita el uso de tablas que nos relacionen datos para el análisis, además los resultados satisfactorios en los proyectos del IMTA y los datos existentes son los

requeridos para su correcto funcionamiento. Para utilizarla se requiere la precipitación para un periodo de retorno de dos años con una intensidad de sesenta minutos, se trabajó con cada una de las estaciones meteorológicas automatizadas y se obtuvieron diferentes valores del porcentaje de lluvia que precipita en 60 min, que nos ayudaran a conocer la lluvia para el periodo de retorno de dos años.

Factor de corrección por intervalo fijo de observación

Diferentes estudios^{6,7}, afirman que los resultados de un análisis probabilístico llevado a cabo con lluvias máximas anuales tomados en único y fijo intervalo de observación, para cualquier duración comprendida entre 1 hora y 24 horas, al ser incrementados en un 13% conducen a magnitudes más apropiadas a las obtenidas en el análisis basado en lluvias máximas verdaderas (Campos, 1998, citando a Weiss, 1969).

De acuerdo a lo anterior, el valor representativo de la lluvia con diferentes periodos de retorno, adoptado para cada una de las estaciones es multiplicado por 1.13 para ajustarlo por intervalo fijo y único de observación, ya que los registros de lluvias máximas diarias, se toman a las 08:00 horas del día siguiente. Con tal corrección la lluvia representativa se convierte en la lluvia máxima 24 horas de determinado periodo de retorno (Campos, 1998).

Según Campos (1998), los llamados registros de lluvia máxima en 24 horas existentes en el país tienen una designación errónea, pues en realidad son registros de lluvia máxima diaria ya que tales tormentas no tienen una duración real de 24 horas, sino que fueron observados (los registros) con intervalos de 24 horas.(ver Tabla 5.6)

⁶ World Meteorological Organization (1973). *Manual for estimation of Probable Maximum Precipitation*. Operational Hydrology Report No 1. WMO No 332. Secretariat of the WMO. Geneva, Switzerland. 1973.

⁷ Weiss, L. and Wilson W. (1958). Precipitation Gage Shields. No 43 of the International Association of Scientific Hydrology, General Assembly of Toronto. 3-4 September 1957. Gentbrugge, Belgium, 1958.

Tabla 5.6 Precipitaciones aumentando el factor de corrección por intervalo fijo

Núm.	Nombre	Años		•	Periodo	de retorn	0	
		de	2	5	10	25	50	100
		registro						
20151	San Francisco Telixtlahuaca	38	57.5	71.9	81.5	93.5	102.5	111.3
20150	Tejocotes Santiago Tenango	38	48.2	61.1	71.0	85.5	96.5	107.3
20079	Oaxaca de Juárez	39	63.8	83.1	95.9	112.1	124.1	136.0
20044	Jalapa del Valle	38	55.2	72.4	83.8	98.1	108.8	119.4
20040	Sta. Catarina Ixtepejí	38	45.6	58.6	69.8	89.4	106.4	123.8
20034	Guadalupe Etla	38	51.7	63.6	70.4	78.3	83.7	88.7
20022	San Bartolo Coyotepec	41	53.0	71.3	83.9	104.3	119.4	134.4
20023	Cuajimoloyas S. Miguel	39	48.2	66.1	80.1	101.1	119.0	137.9
20080	Ocotlán de Morelos	34	66.0	124.9	252.9	351.9	412.8	470.3
20165	Tlacolula de Matamoros	18	47.7	64.3	76.9	93.6	106.2	118.8

Factor de ajuste por área.

Considerando que los valores puntuales obtenidos con las estaciones pluviométricas son representativos en 25 Km² y, al tender a abarcar un área de cuenca mayor, estos deben ser reducidos con el factor de ajuste por área.

Para el trabajo se utilizó la fórmula de Temez (1991), para conocer el factor de corrección por área.

$$K_A = 1 - \frac{Log A}{15}$$
 Ecuación 8

Con esta fórmula se obtuvo un valor mínimo de 0.857 y máximo de 1, teniendo un promedio de factor por área de 0.942, este resultado se comparó con los valores sin afectación concluyendo que este factor no se utilizará en los siguientes cálculos por su influencia mínima en los datos.

Factor de concentración por intervalo fijo de observación.

Se realizó un programa en Matlab donde se analizaron las dos EMAS y la ESIME ubicadas en la región de estudio:

- Estación ESIME
- Estación Protección Civil
- Estación Valle de Etla.

Se analizaron los datos en 24 horas para cada estación, el proceso realizado es el siguiente: se generó la curva masa de la precipitación (mm) dividiéndose cada valor entre el total de lluvia, con esto se obtuvo la proporción de la lluvia (lluvia registrada/ total de la lluvia).Posteriormente se obtiene el porcentaje de lluvia que precipita en 60 min. Resumiendo se realizó de la siguiente manera:

- 1. Se toma la precipitación acumulada (mm)/ Tiempo total de la Iluvia (24 horas)
- 2. Paso 1 * 60 (min)
- 3. Paso 2/ Precipitación acumulada (mm)
- 4. Obtención del porcentaje de lluvia en 60 min
- 5. Promedio de los valores registrados.
- 6. Porcentaje de lluvia en 60 min por estación

Los resultados presentan en la Ilustración 5.9, donde se grafica la curva masa de diferentes lluvias y la Ilustración 5.10 que es el valor del porcentaje de lluvia que se presenta en 60 min por cada 24 horas.

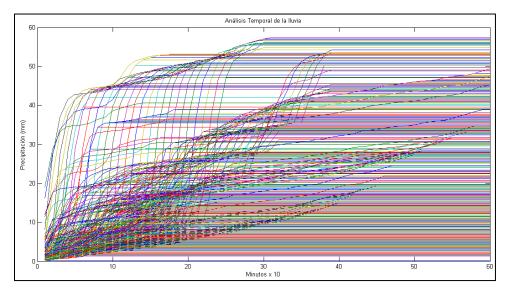


Ilustración 5.9 Curva masa de la precipitación en la estación ESIME.

De la anterior ilustración, se puede indicar que las precipitaciones que ocurren en la estación de análisis, tiene una duración menor a 300 min (5 horas) y después de esto se el programa toma el valor máximo constante por tal motivo se ven rayas continuas.

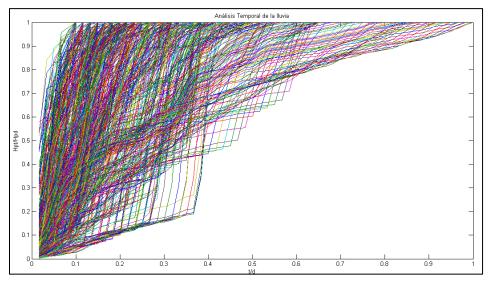


Ilustración 5.10 Proporción de la Iluvia adimensional

La ilustración 5.9 hace referencias al análisis adimensional de la lluvia, es decir el comportamiento que presenta durante su duración, podemos ver en las curvas que se encuentran con un tiempo menor a 0.4 que se desarrolla la lluvia de

manera progresiva, hasta que se 0.3 a 0.6 se precipita el total de la lluvia hasta volverse constante.

El análisis de las gráficas anteriores, se resume en la Tabla 5.7, donde se tienen los resultados del porcentaje de lluvia, numero de curvas analizadas y los periodos de análisis.

Tabla 5.7 Porcentaje de Iluvia

Estación	Porcentaje de Iluvia	Numero de curvas	Periodo de	análisis
20.00.0	en 60 min	Trainere de carras	Inicio	Termino
ESIME	34	23316	07-10-09	21-06-12
Villa de Etla	49.03	6267	01-09-11	01-07-12
Protección civil	56.3	7624	01-08-11	01-07-12

Se utilizó el porcentaje más desfavorable (56.3) que precipita en 60 min, con el fin de obtener los valores de la precipitación para un periodo de retorno de dos años. Como resultado se tiene la precipitación en 60 min para un periodo de retorno de 2 años (ver Tabla 5.8).

Tabla 5.8 Lluvia para una duración de 60 minutos con periodo de retorno de 2 años

Estación	hp (mm)
20022	29.8
20079	35.9
20023	27.1
20080	37.1
20150	27.1
20034	29.1
20040	25.7
20151	32.4
20165	26.8
20044	31.1

Con el anterior resultado de la lluvia precipitada en una hora para diferentes periodos de retorno, se coloca en la fórmula de Bell (Ecuación 7) y se obtiene las diferentes curvas para diferentes duraciones y diferentes periodos de retorno.

Curvas Precipitación (hp mm) – Duración (d min) – Periodo de retorno (Tr años) para los diferentes para las estaciones climatológicas

De la Tabla 5.9 a la Tabla 5.18 se presentan las curvas Precipitación (hp mm) -Duración (d min) - Periodo de retorno (Tr años) y curvas Intensidad (I mm/hr) -Duración (d min) – Periodo de retorno (Tr años) para las diferentes estaciones climatológicas, estimadas a partir de la fórmula de Bell.

Tabla 5.9. Curvas de Precipitación (hp mm) - Duración (d min) - Periodo de retorno (Tr años) para la

estación climatológica "San Bartolo Coyotepec" 20022.

TR						•		Duració	n (minut	os)					
en años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	9.2	13.8	19.2	22.8	25.7	28.0	30.0	31.8	33.4	34.8	36.1	37.4	38.5	44.2	84.6
5	12.1	18.2	25.3	30.2	33.9	37.0	39.6	41.9	44.0	45.9	47.7	49.3	50.8	58.4	111.6
10	14.4	21.5	30.0	35.7	40.1	43.7	46.9	49.6	52.1	54.4	56.4	58.3	60.1	69.1	132.1
25	17.3	25.9	36.1	43.0	48.3	52.7	56.5	59.8	62.8	65.5	68.0	70.3	72.5	83.2	159.1
50	19.5	29.2	40.8	48.5	54.5	59.5	63.7	67.5	70.8	73.9	76.7	79.3	81.8	93.9	179.6
100	21.8	32.6	45.4	54.1	60.7	66.2	71.0	75.2	78.9	82.3	85.5	88.4	91.1	104.6	200.0
500	26.9	40.3	56.2	66.9	75.1	82.0	87.8	93.0	97.6	101.9	105.8	109.4	112.7	129.4	247.5
1000	29.2	43.6	60.9	72.4	81.4	88.7	95.1	100.7	105.7	110.3	114.5	118.4	122.1	140.1	268.0

Tabla 5.10. Curvas de Precipitación (hp mm) - Duración (d min) - Periodo de retorno (Tr años) para la estación climatológica 20023.

TR								Duració	n (minu	ıtos)					
en años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	8.4	12.5	17.5	20.8	23.3	25.5	27.3	28.9	30.3	31.6	32.8	34.0	35.0	40.2	76.9
5	11.0	16.5	23.0	27.4	30.8	33.6	36.0	38.1	40.0	41.8	43.3	44.8	46.2	53.0	101.5
10	13.1	19.5	27.3	32.4	36.4	39.8	42.6	45.1	47.4	49.4	51.3	53.0	54.7	62.8	120.1
25	15.7	23.6	32.9	39.1	43.9	47.9	51.3	54.3	57.1	59.5	61.8	63.9	65.9	75.6	144.6
50	17.8	26.6	37.1	44.1	49.6	54.1	57.9	61.3	64.4	67.2	69.7	72.1	74.3	85.4	163.2
100	19.8	29.6	41.3	49.1	55.2	60.2	64.5	68.3	71.7	74.8	77.7	80.3	82.8	95.1	181.8
500	24.5	36.6	51.1	60.8	68.3	74.5	79.8	84.5	88.8	92.6	96.1	99.4	102.5	117.7	225.0
1000	26.5	39.7	55.3	65.8	74.0	80.7	86.4	91.5	96.1	100.3	104.1	107.6	111.0	127.4	243.6

Tabla 5.11. Curvas de Precipitación (hp mm) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20034.

TR en								Duraci	ón (minut	tos)					
años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	9.0	13.4	18.7	22.3	25.0	27.3	29.3	31.0	32.5	33.9	35.2	36.4	37.6	43.1	82.5
5	11.8	17.7	24.7	29.4	33.1	36.1	38.6	40.9	42.9	44.8	46.5	48.1	49.6	56.9	108.9
10	14.0	21.0	29.3	34.8	39.1	42.7	45.7	48.4	50.8	53.0	55.0	56.9	58.7	67.4	128.8
25	16.9	25.3	35.3	41.9	47.1	51.4	55.1	58.3	61.2	63.9	66.3	68.6	70.7	81.2	155.2
50	19.1	28.5	39.8	47.3	53.2	58.0	62.2	65.8	69.1	72.1	74.8	77.4	79.8	91.6	175.2
100	21.2	31.8	44.3	52.7	59.2	64.6	69.2	73.3	77.0	80.3	83.4	86.2	88.9	102.0	195.1
500	26.3	39.3	54.8	65.3	73.3	80.0	85.7	90.7	95.3	99.4	103.2	106.7	110.0	126.3	241.5
1000	28.4	42.6	59.4	70.6	79.4	86.6	92.8	98.2	103.1	107.6	111.7	115.5	119.1	136.7	261.4

Tabla 5.12. Curvas de Precipitación (hp mm) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20040.

TR								Duraciór	(minute	os)					
en años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	7.9	11.9	16.5	19.7	22.1	24.1	25.8	27.3	28.7	30.0	31.1	32.2	33.2	38.1	72.8
5	10.5	15.6	21.8	26.0	29.2	31.8	34.1	36.1	37.9	39.5	41.0	42.4	43.8	50.2	96.1
10	12.4	18.5	25.8	30.7	34.5	37.6	40.3	42.7	44.8	46.8	48.6	50.2	51.8	59.4	113.7
25	14.9	22.3	31.1	37.0	41.6	45.4	48.6	51.5	54.0	56.4	58.5	60.5	62.4	71.6	137.0
50	16.8	25.2	35.1	41.8	46.9	51.2	54.9	58.1	61.0	63.6	66.0	68.3	70.4	80.8	154.6
100	18.7	28.0	39.1	46.5	52.3	57.0	61.1	64.7	67.9	70.9	73.6	76.1	78.4	90.0	172.2
500	23.2	34.7	48.4	57.6	64.7	70.6	75.6	80.1	84.1	87.7	91.0	94.1	97.0	111.4	213.1
1000	25.1	37.6	52.4	62.3	70.0	76.4	81.9	86.7	91.0	94.9	98.6	101.9	105.1	120.6	230.7

Tabla 5.13. Curvas de Precipitación (hp mm) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20044.

TR en								Duració	n (minut	os)					
años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	9.6	14.3	20.0	23.8	26.7	29.2	31.3	33.1	34.7	36.2	37.6	38.9	40.1	46.1	88.1
5	12.6	18.9	26.4	31.4	35.3	38.5	41.2	43.7	45.9	47.8	49.7	51.4	52.9	60.8	116.2
10	15.0	22.4	31.2	37.2	41.8	45.6	48.8	51.7	54.3	56.6	58.8	60.8	62.6	71.9	137.6
25	18.0	27.0	37.6	44.8	50.3	54.9	58.8	62.3	65.4	68.2	70.8	73.2	75.5	86.7	165.7
50	20.3	30.5	42.5	50.5	56.8	61.9	66.4	70.3	73.8	77.0	79.9	82.6	85.2	97.8	187.0
100	22.7	33.9	47.3	56.3	63.2	69.0	73.9	78.3	82.2	85.7	89.0	92.1	94.9	108.9	208.4
500	28.0	42.0	58.6	69.7	78.3	85.4	91.5	96.9	101.7	106.1	110.2	113.9	117.4	134.8	257.8
1000	30.4	45.5	63.4	75.4	84.7	92.4	99.0	104.9	110.1	114.9	119.3	123.3	127.1	146.0	279.2

Tabla 5.14. Curvas de Precipitación (hp mm) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20079.

TR en							Durac	ción (mir	utos)						
años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	11.1	16.6	23.1	27.5	30.9	33.7	36.1	38.2	40.2	41.9	43.5	45.0	46.4	53.2	101.8
5	14.6	21.9	30.5	36.3	40.8	44.5	47.7	50.5	53.0	55.3	57.4	59.4	61.2	70.3	134.4
10	17.3	25.9	36.1	43.0	48.3	52.7	56.4	59.7	62.7	65.4	67.9	70.3	72.4	83.1	159.0
25	20.8	31.2	43.5	51.8	58.2	63.4	68.0	72.0	75.6	78.8	81.8	84.6	87.2	100.2	191.6
50	23.5	35.2	49.1	58.4	65.6	71.6	76.7	81.2	85.3	89.0	92.4	95.5	98.5	113.0	216.2
100	26.2	39.2	54.7	65.1	73.1	79.7	85.5	90.5	95.0	99.1	102.9	106.4	109.7	125.9	240.8
500	32.4	48.5	67.7	80.5	90.5	98.7	105.7	112.0	117.6	122.7	127.3	131.7	135.7	155.8	298.0
1000	35.1	52.5	73.3	87.2	98.0	106.8	114.5	121.2	127.3	132.8	137.9	142.6	147.0	168.7	322.7

Tabla 5.15. Curvas de Precipitación (hp mm) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20080.

TR en							Durac	ción (mir	utos)						
años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	11.4	17.1	23.9	28.4	31.9	34.8	37.3	39.5	41.5	43.3	45.0	46.5	47.9	55.0	105.2
5	15.1	22.6	31.5	37.5	42.2	46.0	49.3	52.2	54.8	57.2	59.3	61.4	63.3	72.6	138.9
10	17.9	26.8	37.3	44.4	49.9	54.4	58.3	61.8	64.8	67.6	70.2	72.6	74.9	85.9	164.4
25	21.5	32.2	45.0	53.5	60.1	65.6	70.3	74.4	78.1	81.5	84.6	87.5	90.2	103.5	198.0
50	24.3	36.4	50.8	60.4	67.8	74.0	79.3	84.0	88.2	92.0	95.5	98.7	101.8	116.9	223.5
100	27.1	40.5	56.5	67.3	75.6	82.4	88.3	93.5	98.2	102.5	106.4	110.0	113.4	130.2	249.0
500	33.5	50.2	70.0	83.3	93.5	102.0	109.3	115.8	121.5	126.8	131.6	136.1	140.3	161.1	308.1
1000	36.3	54.3	75.8	90.1	101.3	110.4	118.3	125.3	131.6	137.3	142.5	147.4	151.9	174.4	333.5

Tabla 5.16. Curvas de Precipitación (hp mm) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20150.

TR en							Durac	ción (mir	utos)						
años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	8.4	12.5	17.5	20.8	23.3	25.5	27.3	28.9	30.3	31.7	32.9	34.0	35.0	40.2	76.9
5	11.0	16.5	23.1	27.4	30.8	33.6	36.0	38.1	40.0	41.8	43.4	44.8	46.2	53.1	101.5
10	13.1	19.6	27.3	32.5	36.5	39.8	42.6	45.1	47.4	49.4	51.3	53.1	54.7	62.8	120.1
25	15.7	23.6	32.9	39.1	43.9	47.9	51.3	54.4	57.1	59.6	61.8	63.9	65.9	75.7	144.7
50	17.8	26.6	37.1	44.1	49.6	54.1	58.0	61.4	64.4	67.2	69.8	72.2	74.4	85.4	163.3
100	19.8	29.6	41.3	49.2	55.2	60.2	64.6	68.4	71.8	74.9	77.7	80.4	82.9	95.1	181.9
500	24.5	36.7	51.1	60.8	68.3	74.6	79.9	84.6	88.8	92.7	96.2	99.5	102.5	117.7	225.1
1000	26.5	39.7	55.4	65.9	74.0	80.7	86.5	91.6	96.2	100.3	104.1	107.7	111.0	127.5	243.7

Tabla 5.17. Curvas de Precipitación (hp mm) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20151.

TR en							Durac	ción (mir	utos)						
años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	10.0	15.0	20.9	24.8	27.9	30.4	32.6	34.5	36.2	37.8	39.2	40.6	41.8	48.0	91.8
5	13.2	19.7	27.5	32.7	36.8	40.1	43.0	45.5	47.8	49.9	51.8	53.5	55.2	63.4	121.2
10	15.6	23.3	32.6	38.7	43.5	47.5	50.9	53.9	56.6	59.0	61.3	63.4	65.3	75.0	143.4
25	18.8	28.1	39.2	46.7	52.4	57.2	61.3	64.9	68.1	71.1	73.8	76.3	78.7	90.3	172.8
50	21.2	31.7	44.3	52.7	59.2	64.6	69.2	73.3	76.9	80.2	83.3	86.1	88.8	101.9	195.0
100	23.6	35.4	49.3	58.7	65.9	71.9	77.1	81.6	85.7	89.4	92.8	96.0	98.9	113.6	217.2
500	29.2	43.8	61.0	72.6	81.6	89.0	95.4	101.0	106.0	110.6	114.8	118.7	122.4	140.5	268.8
1000	31.7	47.4	66.1	78.6	88.3	96.4	103.2	109.3	114.8	119.8	124.3	128.6	132.5	152.1	291.0

Tabla 5.18. Curvas de Precipitación (hp mm) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20165.

TR en							Durac	ción (mir	utos)						
años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	8.3	12.4	17.3	20.5	23.1	25.2	27.0	28.6	30.0	31.3	32.5	33.6	34.6	39.8	76.0
5	10.9	16.3	22.8	27.1	30.5	33.2	35.6	37.7	39.6	41.3	42.9	44.3	45.7	52.5	100.3
10	12.9	19.3	27.0	32.1	36.0	39.3	42.1	44.6	46.8	48.9	50.7	52.5	54.1	62.1	118.7
25	15.6	23.3	32.5	38.7	43.4	47.4	50.8	53.8	56.4	58.9	61.1	63.2	65.2	74.8	143.1
50	17.6	26.3	36.7	43.6	49.0	53.5	57.3	60.7	63.7	66.5	69.0	71.3	73.5	84.4	161.5
100	19.6	29.3	40.9	48.6	54.6	59.6	63.8	67.6	71.0	74.0	76.8	79.5	81.9	94.0	179.9
500	24.2	36.2	50.6	60.1	67.6	73.7	79.0	83.6	87.8	91.6	95.1	98.3	101.4	116.4	222.6
1000	26.2	39.2	54.7	65.1	73.2	79.8	85.5	90.5	95.1	99.2	103.0	106.5	109.7	126.0	241.0

Curvas Intensidad (I mm/hr) – Duración (d min) – Periodo de retorno (Tr años) para las diferentes estaciones climatológicas

De la Tabla 5.19 a la Tabla 5.28 se presentan las curvas de Intensidad (I, mm/hr) – Duración (d, min) – Periodo de retorno (Tr, años) para las diferentes estaciones climatológicas, estimadas a partir de la fórmula de Bell.

Tabla 5.19. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20022.

TR		<u>g </u>				Dur	ación (r	ninutos	s)						
en años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	110.4	82.6	57.6	45.7	38.5	33.6	30.0	27.2	25.0	23.2	21.7	20.4	19.3	14.7	3.5
5	145.7	109.0	76.0	60.3	50.8	44.3	39.6	35.9	33.0	30.6	28.6	26.9	25.4	19.5	4.7
10	172.4	129.0	90.0	71.4	60.1	52.5	46.9	42.5	39.1	36.2	33.9	31.8	30.1	23.0	5.5
25	207.7	155.5	108.4	86.0	72.5	63.2	56.5	51.2	47.1	43.7	40.8	38.3	36.2	27.7	6.6
50	234.4	175.5	122.4	97.1	81.8	71.4	63.7	57.8	53.1	49.3	46.0	43.3	40.9	31.3	7.5
100	261.1	195.4	136.3	108.1	91.1	79.5	71.0	64.4	59.2	54.9	51.3	48.2	45.6	34.9	8.3
500	323.2	241.9	168.7	133.8	112.7	98.4	87.8	79.7	73.2	67.9	63.5	59.7	56.4	43.1	10.3
1000	349.9	261.9	182.6	144.8	122.0	106.5	95.1	86.3	79.3	73.5	68.7	64.6	61.0	46.7	11.2

Tabla 5.20. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20023

TR						Du	ración (minuto	s)						
en años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	100.3	75.1	52.4	41.5	35.0	30.5	27.3	24.8	22.7	21.1	19.7	18.5	17.5	13.4	3.2
5	132.4	99.1	69.1	54.8	46.2	40.3	36.0	32.7	30.0	27.8	26.0	24.4	23.1	17.7	4.2
10	156.7	117.3	81.8	64.9	54.7	47.7	42.6	38.7	35.5	32.9	30.8	28.9	27.3	20.9	5.0
25	188.8	141.3	98.6	78.2	65.9	57.5	51.3	46.6	42.8	39.7	37.1	34.9	32.9	25.2	6.0
50	213.1	159.5	111.2	88.2	74.3	64.9	57.9	52.6	48.3	44.8	41.8	39.3	37.2	28.5	6.8
100	237.4	177.7	123.9	98.3	82.8	72.3	64.5	58.6	53.8	49.9	46.6	43.8	41.4	31.7	7.6
500	293.8	219.9	153.3	121.6	102.5	89.4	79.8	72.5	66.6	61.7	57.7	54.2	51.2	39.2	9.4
1000	318.0	238.0	166.0	131.7	110.9	96.8	86.4	78.5	72.1	66.8	62.5	58.7	55.5	42.5	10.2

Tabla 5.21. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20034

TR						Dura	ación (n	ninutos)						
en años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	107.7	80.6	56.2	44.6	37.6	32.8	29.3	26.6	24.4	22.6	21.1	19.9	18.8	14.4	3.4
5	142.1	106.4	74.2	58.8	49.6	43.3	38.6	35.1	32.2	29.9	27.9	26.2	24.8	19.0	4.5
10	168.2	125.9	87.8	69.6	58.7	51.2	45.7	41.5	38.1	35.3	33.0	31.0	29.3	22.5	5.4
25	202.6	151.7	105.8	83.9	70.7	61.7	55.1	50.0	45.9	42.6	39.8	37.4	35.3	27.1	6.5
50	228.7	171.2	119.4	94.7	79.8	69.6	62.2	56.4	51.8	48.1	44.9	42.2	39.9	30.5	7.3
100	254.7	190.7	133.0	105.5	88.9	77.5	69.2	62.8	57.7	53.5	50.0	47.0	44.4	34.0	8.1
500	315.2	235.9	164.5	130.5	110.0	96.0	85.7	77.8	71.4	66.3	61.9	58.2	55.0	42.1	10.1
1000	341.3	255.4	178.1	141.3	119.0	103.9	92.8	84.2	77.3	71.7	67.0	63.0	59.5	45.6	10.9

Tabla 5.22. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20040

TR						Du	ración	(minuto	s)						
en años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	95.0	71.1	49.6	39.3	33.1	28.9	25.8	23.4	21.5	20.0	18.7	17.5	16.6	12.7	3.0
5	125.4	93.9	65.5	51.9	43.7	38.2	34.1	30.9	28.4	26.4	24.6	23.2	21.9	16.7	4.0
10	148.4	111.1	77.5	61.4	51.8	45.2	40.3	36.6	33.6	31.2	29.1	27.4	25.9	19.8	4.7
25	178.8	133.8	93.3	74.0	62.4	54.4	48.6	44.1	40.5	37.6	35.1	33.0	31.2	23.9	5.7
50	201.8	151.0	105.3	83.5	70.4	61.4	54.9	49.8	45.7	42.4	39.6	37.3	35.2	26.9	6.4
100	224.8	168.2	117.3	93.1	78.4	68.4	61.1	55.5	50.9	47.2	44.1	41.5	39.2	30.0	7.2
500	278.2	208.2	145.2	115.2	97.0	84.7	75.6	68.6	63.0	58.5	54.6	51.4	48.5	37.1	8.9
1000	301.2	225.4	157.2	124.7	105.1	91.7	81.9	74.3	68.3	63.3	59.1	55.6	52.5	40.2	9.6

Tabla 5.23. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20044

TR						Dura	ación (n	ninutos)						
en años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	115.0	86.1	60.0	47.6	40.1	35.0	31.3	28.4	26.1	24.2	22.6	21.2	20.1	15.4	3.7
5	151.8	113.6	79.2	62.8	52.9	46.2	41.2	37.4	34.4	31.9	29.8	28.0	26.5	20.3	4.8
10	179.6	134.4	93.7	74.3	62.6	54.7	48.8	44.3	40.7	37.7	35.3	33.2	31.3	24.0	5.7
25	216.4	161.9	112.9	89.6	75.5	65.9	58.8	53.4	49.0	45.5	42.5	39.9	37.7	28.9	6.9
50	244.2	182.8	127.4	101.1	85.2	74.3	66.4	60.2	55.3	51.3	47.9	45.1	42.6	32.6	7.8
100	272.0	203.6	142.0	112.6	94.9	82.8	73.9	67.1	61.6	57.2	53.4	50.2	47.4	36.3	8.7
500	336.6	251.9	175.7	139.3	117.4	102.5	91.5	83.0	76.3	70.7	66.1	62.1	58.7	44.9	10.7
1000	364.4	272.7	190.2	150.9	127.1	110.9	99.0	89.9	82.6	76.6	71.6	67.3	63.6	48.7	11.6

Tabla 5.24. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20079

TR en							Durac	ión (min	utos)						
años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	132.9	99.5	69.4	55.0	46.4	40.5	36.1	32.8	30.1	27.9	26.1	24.5	23.2	17.7	4.2
5	175.4	131.3	91.6	72.6	61.2	53.4	47.7	43.3	39.8	36.9	34.4	32.4	30.6	23.4	5.6
10	207.6	155.4	108.3	85.9	72.4	63.2	56.4	51.2	47.0	43.6	40.8	38.3	36.2	27.7	6.6
25	250.1	187.2	130.5	103.5	87.2	76.1	68.0	61.7	56.7	52.6	49.1	46.2	43.6	33.4	8.0
50	282.2	211.2	147.3	116.8	98.4	85.9	76.7	69.6	64.0	59.3	55.4	52.1	49.2	37.7	9.0
100	314.4	235.3	164.1	130.2	109.7	95.7	85.5	77.6	71.3	66.1	61.7	58.0	54.8	42.0	10.0
500	389.1	291.2	203.1	161.1	135.7	118.4	105.7	96.0	88.2	81.8	76.4	71.8	67.9	51.9	12.4
1000	421.2	315.3	219.9	174.4	146.9	128.2	114.5	103.9	95.5	88.5	82.7	77.8	73.5	56.2	13.4

Tabla 5.25. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20080

TR en							Durac	ión (min	utos)						
años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	137.4	102.8	71.7	56.9	47.9	41.8	37.3	33.9	31.1	28.9	27.0	25.4	24.0	18.3	4.4
5	181.3	135.7	94.6	75.1	63.2	55.2	49.3	44.7	41.1	38.1	35.6	33.5	31.6	24.2	5.8
10	214.6	160.6	112.0	88.8	74.8	65.3	58.3	52.9	48.6	45.1	42.1	39.6	37.4	28.6	6.8
25	258.5	193.5	134.9	107.0	90.2	78.7	70.3	63.8	58.6	54.3	50.8	47.7	45.1	34.5	8.3
50	291.8	218.4	152.3	120.8	101.8	88.8	79.3	72.0	66.1	61.3	57.3	53.9	50.9	39.0	9.3
100	325.0	243.2	169.6	134.5	113.4	98.9	88.3	80.2	73.7	68.3	63.8	60.0	56.7	43.4	10.4
500	402.2	301.0	209.9	166.5	140.3	122.4	109.3	99.2	91.1	84.5	79.0	74.2	70.2	53.7	12.8
1000	435.4	325.9	227.3	180.3	151.9	132.5	118.3	107.4	98.7	91.5	85.5	80.4	76.0	58.1	13.9

Tabla 5.26. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20150

TR en							Duraci	ión (minı	utos)						
años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	100.4	75.1	52.4	41.6	35.0	30.6	27.3	24.8	22.8	21.1	19.7	18.5	17.5	13.4	3.2
5	132.5	99.2	69.2	54.9	46.2	40.3	36.0	32.7	30.0	27.8	26.0	24.5	23.1	17.7	4.2
10	156.8	117.4	81.8	64.9	54.7	47.7	42.6	38.7	35.5	33.0	30.8	28.9	27.4	20.9	5.0
25	188.9	141.4	98.6	78.2	65.9	57.5	51.3	46.6	42.8	39.7	37.1	34.9	33.0	25.2	6.0
50	213.2	159.6	111.3	88.3	74.4	64.9	58.0	52.6	48.3	44.8	41.9	39.4	37.2	28.5	6.8
100	237.5	177.8	124.0	98.3	82.8	72.3	64.6	58.6	53.8	49.9	46.6	43.8	41.4	31.7	7.6
500	293.9	220.0	153.4	121.7	102.5	89.5	79.9	72.5	66.6	61.8	57.7	54.3	51.3	39.2	9.4
1000	318.2	238.2	166.1	131.7	111.0	96.9	86.5	78.5	72.1	66.9	62.5	58.7	55.5	42.5	10.2

Tabla 5.27. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20151

TR en	OII CIIIII	<u> </u>					Duraci	ión (min	utos)						
años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	119.9	89.7	62.6	49.6	41.8	36.5	32.6	29.6	27.2	25.2	23.5	22.1	20.9	16.0	3.8
5	158.2	118.4	82.6	65.5	55.2	48.1	43.0	39.0	35.8	33.2	31.1	29.2	27.6	21.1	5.0
10	187.2	140.1	97.7	77.5	65.3	57.0	50.9	46.2	42.4	39.3	36.8	34.6	32.7	25.0	6.0
25	225.5	168.8	117.7	93.4	78.7	68.6	61.3	55.6	51.1	47.4	44.3	41.6	39.3	30.1	7.2
50	254.5	190.5	132.8	105.4	88.8	77.5	69.2	62.8	57.7	53.5	50.0	47.0	44.4	34.0	8.1
100	283.5	212.2	148.0	117.4	98.9	86.3	77.1	69.9	64.3	59.6	55.7	52.3	49.5	37.9	9.0
500	350.9	262.6	183.1	145.3	122.4	106.8	95.4	86.6	79.5	73.7	68.9	64.8	61.2	46.8	11.2
1000	379.9	284.3	198.3	157.3	132.5	115.6	103.2	93.7	86.1	79.8	74.6	70.1	66.3	50.7	12.1

Tabla 5.28. Curvas de Intensidad (I mm/hora) – Duración (d min) – Periodo de retorno (Tr años) para la estación climatológica 20165

TD @						D	uración (minutos)							
TR en años	5	10	20	30	40	50	60	70	80	90	100	110	120	180	1440
2	99.3	74.3	51.8	41.1	34.6	30.2	27	24.5	22.5	20.9	19.5	18.3	17.3	13.3	3.2
5	131	98	68.4	54.2	45.7	39.9	35.6	32.3	29.7	27.5	25.7	24.2	22.9	17.5	4.2
10	155	116	80.9	64.2	54.1	47.2	42.1	38.2	35.1	32.6	30.4	28.6	27	20.7	4.9
25	186.8	139.8	97.5	77.3	65.1	56.8	50.8	46.1	42.3	39.3	36.7	34.5	32.6	24.9	6
50	210.8	157.8	110	87.3	73.5	64.2	57.3	52	47.8	44.3	41.4	38.9	36.8	28.1	6.7
100	234.8	175.7	122.6	97.2	81.9	71.5	63.8	57.9	53.2	49.3	46.1	43.3	41	31.3	7.5
500	290.6	217.5	151.7	120.3	101.4	88.4	79	71.7	65.9	61.1	57.1	53.6	50.7	38.8	9.3
1000	314.6	235.4	164.2	130.2	109.7	95.8	85.5	77.6	71.3	66.1	61.8	58.1	54.9	42	10

5.3 Información física de la zona de estudio

5.3.1 Generación de Modelo digital de elevaciones

El IMTA en el año 2006, realizó un trabajo a la Administración de Agua Potable y Alcantarillado de la Ciudad de Oaxaca (ADOSAPACO). De este trabajo se obtuvo un levantamiento fotogramétrico en el cual para la ciudad de Oaxaca y se generaron curvas a cada metro de elevación (Ilustración 5.11).

En este trabajo se utiliza ese levantamiento para poder llevar a cabo el analisis de la topografia del sitio.

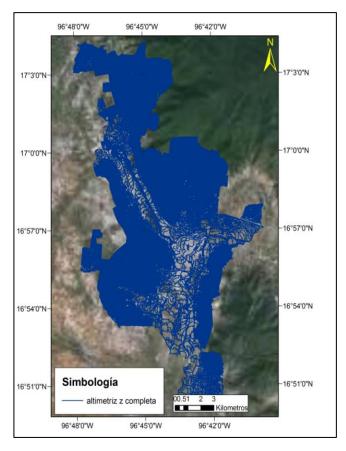


Ilustración 5.11 Curvas de nivel tomadas a cada metro

Con el programa ARCMAP se trabajó en la discretización de las curvas de nivel a 5 metros y se obtuvieron 4 769 657 puntos topográficos y en la Ilustración 5.12 se muestran el resultado. Con estos puntos se procesaron sus coordenadas, para conseguir realizar el Modelo Digital de Elevaciones (MDE).

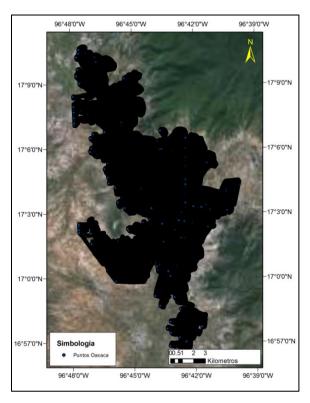


Ilustración 5.12 Discretización de las curvas de nivel

5.4 Modelo Digital de elevaciones.

De acuerdo con el INEGI (2013) "Un modelo digital de elevación (MDE) es una representación visual y matemática de los valores de altura con respecto al nivel medio del mar, que permite caracterizar las formas del relieve y los elementos u objetos presentes en el mismo ". Con los puntos adquiridos, con el ARC MAP se procedió a realizar el MDE, en la Ilustración 5.13 se presenta.

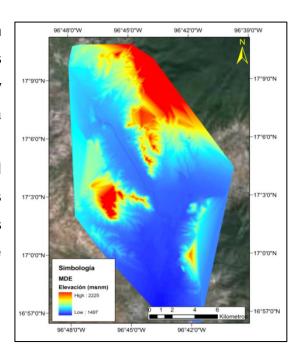


Ilustración 5.13 Modelo digital de elevaciones considerando el terreno natural

Para la creación de las zonas de inundaciones es esencial tomar en cuenta la resolución de los puntos de análisis para crear el MDE, la recomendación para el análisis de acuerdo con Mark et al. (2004), es tener una malla de 1 x 5 x 5 m (z, x, y) para que se tomen en cuenta depresiones, hogares, calles entre zonas importantes para el análisis.

El EXCIMAP (2007) con su traducción al español "Circulo de intercambio Europeo de Mapas de inundaciones" sugieren de igual manera, para tener una precisión en los modelos para inundación que se tengan puntos de 10 x 10 m, (mejorándose con 5 x 5) y teniéndose una resolución vertical de 0.5.

Para el trabajo realizado se tomó las anteriores consideraciones y se determinó trabajar el MDE con un malla de 1 x 5 x 5 m (z, x, y).

5.4.1 Modelo Digital de Elevaciones considerando la planimetría

No solo basta con tener bien marcada la conformación del terreno para la evaluación de la zona de inundación, necesitamos también conocer las zonas ocupadas por construcciones como casas, parques y calles (Mark et al., 2004).

Por lo tanto a partir de Modelo Digital de Elevaciones, ahora se planteó realizar una MDE que considerara los factores anteriormente mencionados, para esto se obtuvo planimetría de la ciudad de Oaxaca de Juárez dando como resultado una mejor resolución de nuestra imagen apegada a las realidad (ver Ilustración 5.14)

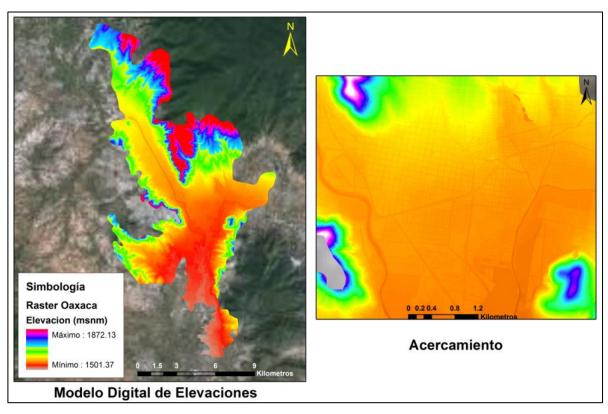


Ilustración 5.14 Modelo de digital de elevaciones considerando la planimetría

5.4.2 Generación de las líneas principales de corriente

Cuando uno considera la traza urbana dentro del modelo digital, se pueden obtener las líneas principales de corriente por donde escurriría el agua y con esto saber dónde se prestaría mayor atención para el diseño de bocas de tormenta (Ilustración 5.15).

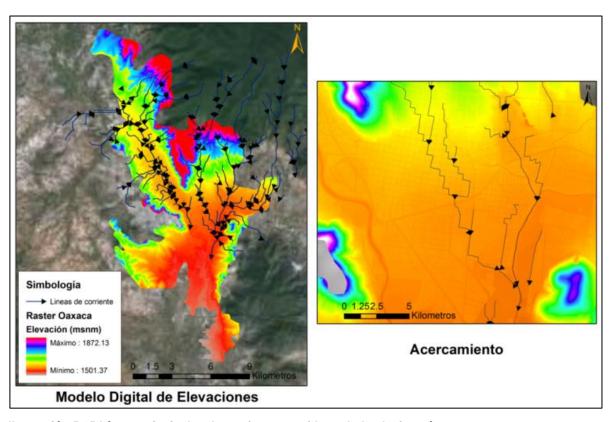


Ilustración 5.15 Líneas principales de corriente considerando la planimetría.

5.4.3 Trazo de los ríos principales.

Al término de la creación del Modelo Digital de Elevaciones se procedió a trazar los ríos principales para poder trabajar en un modelo unidimensional. Con el programa Arc Gis⁸, extensión del Hec GeoRAS⁹ se trazaron los principales ríos y se exportaron al programa Hec Ras¹⁰. Con esto se pudo agregar al modelo Pcswmm¹¹ donde se a completo la simulación unidimensional.

Como resultado de este tratamiento se tiene su línea principal trazada y secciones del rio (ver Ilustración 5.16).

⁸ Derechos reservados *ESRI*

⁹ Derechos reservados *US Army Corps of Engineers* (USACE)

¹⁰ Derechos reservados US Army Corps of Engineers (USACE)

¹¹Derechos reservados Computational Hydraulics International (CHI)

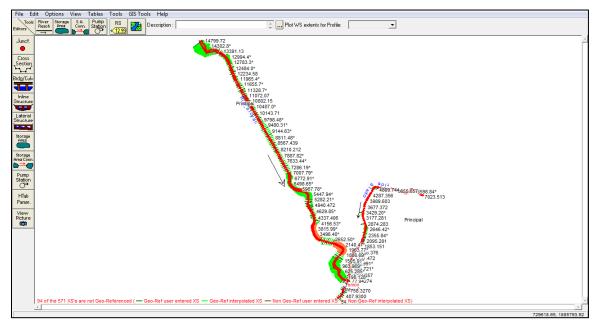


Ilustración 5.16 Trazo de los ríos en Hec-Ras

5.4.4 Generación de subcuencas de aportación a los ríos principales

Para la generación de las subcuencas de aportación de los ríos principales, "el Salado y el Atoyac", que cruzan la ciudad de Oaxaca de Juárez, se utilizó la herramienta de INEGI el Simulador de Flujos de Cuencas Geográficas (SIATL, 2012). Estas subcuencas fueron trazadas en el SIATL tomando en cuenta para su trazo el flujo virtual que escurriría por cada cauce (ver Ilustración 5.17).

Ilustración 5.17 Ventana de inicio del SIATL, INEGI

Además contiene los atributos de longitud del cauce principal, área drenada, elevación máxima y mínima del Cauce. Con estos datos se generó un archivo tipo shape file con la información del SITAL y trazada en *Google Earth* con las coordenadas de cada subcuenca de los ríos secundarios al Atoyac y Salado. Realizado lo anterior se procede a convertir los puntos en líneas y pasarlas al programa Arc Gis para su geoposición y asignación de atributos. Al final resultaron 122 subcuencas las que se trazaron, se presenta en la Ilustración 5.18 el resultado.

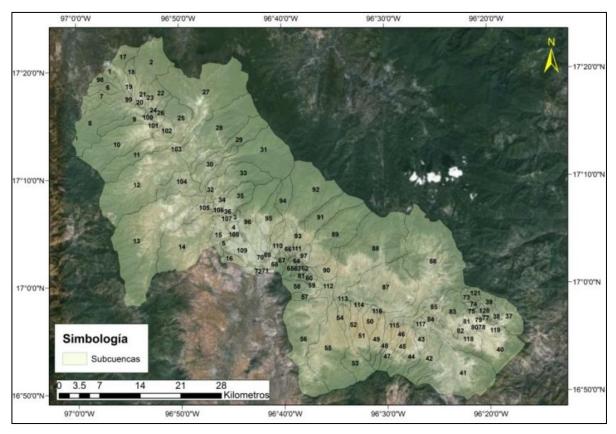


Ilustración 5.18 Subcuencas trazadas con el SIATL, INEGI

5.4.5 **Alcantarillado Pluvial**

Del levantamiento realizado por la ADOSAPACO al sistema de alcantarillado de la ciudad de Oaxaca en noviembre del 2011, se tomaron en cuenta las tuberías con diámetro mayor a 30 cm para su análisis, ya que en el manual de drenaje pluvial

de la CONAGUA (2007) nos indica que debe ser el diámetro mínimo de instalación (ver Ilustración 5.19).

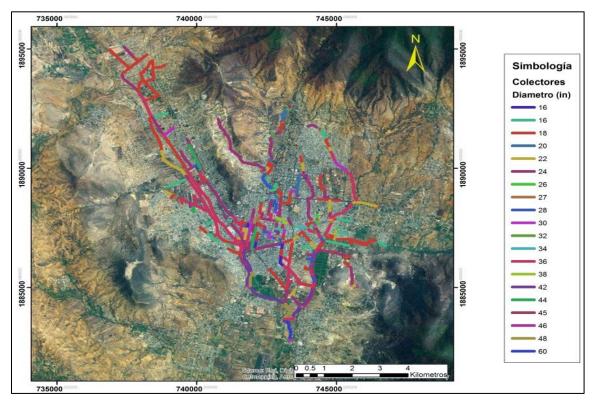


Ilustración 5.19 Sistema de drenaje pluvial de la zona metropolitana de Oaxaca de Juárez

Al final se obtuvieron 3177 pozos de visita con datos ubicación en calles, nivel de terreno, nivel de plantilla, diámetro y longitud de la tubería.

5.4.6 Generación de microcuencas.

El fin de realizar las microcuencas reside en que el área de trabajo es menor, donde se facilita la compresión y el análisis. Para el análisis de las inundaciones urbanas se debe de considerar que las subcuencas de estudio de la zona, se dividirán en microcuencas tomando en cuenta la disposición del drenaje pluvial, aunque las fronteras de estas microcuencas generalmente se determinan por el drenaje local y la topografía (Koslky, 1998).

Para la generación de microcuencas de las subcuencas anteriormente realizadas, se extrajeron 16 subcuencas que cubrían la mayor parte del área urbana, para llevar a cabo este proceso se utilizó el programa Arc Gis con la extensión Hec-GeoHms, como resultado se logró en total tener 250 microcuencas, definidas con la topografía del lugar y considerando la red del sistema pluvial, conformándose 320 microcuencas a analizar (ver Ilustración 5.20).

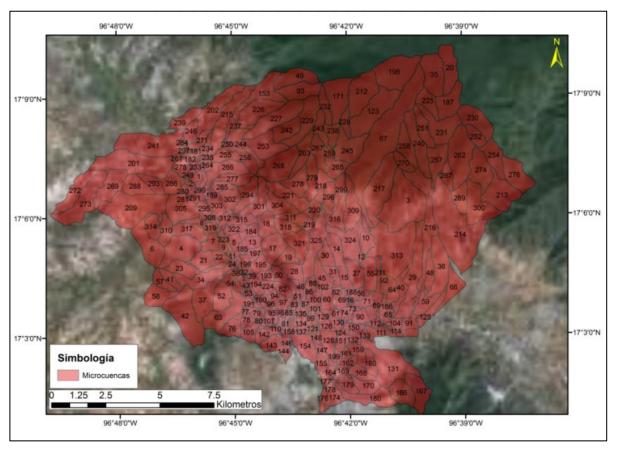


Ilustración 5.20 Vista bidimensional de las microcuencas

Con la extensión del *Arc Scene* se pueden conocer las microcuencas en tercera dimensión, que serán analizadas en nuestro modelo bidimensional (ver Ilustración 5.22 y 5.22), asimismo se presentan las líneas de corriente principales que circulan por la ciudad de Oaxaca de Juárez.

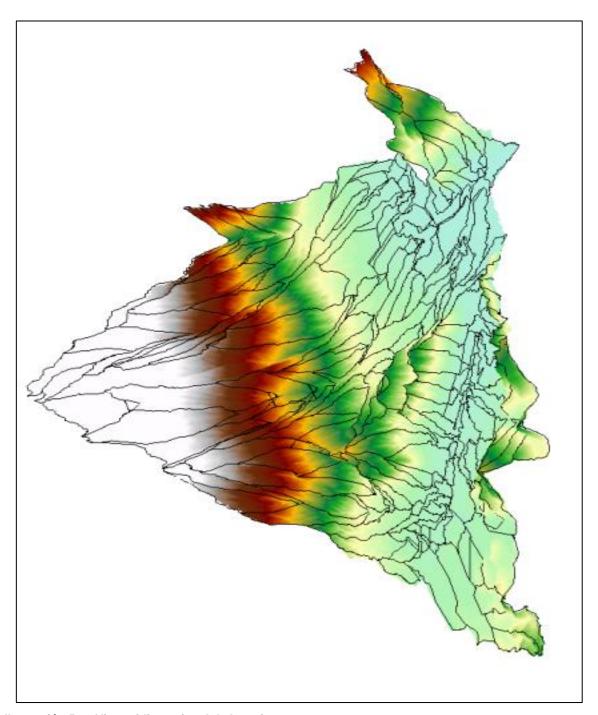


Ilustración 5.22 Vista tridimensional de las microcuencas

llustración 5.21 Uso de suelo de las subcuencas

Ilustración 5.24 Vista tridimensional de las microcuencas mostrando las líneas de corriente principales.

Para las características de las microcuencas se inició en *Google Earth* el trazo de las zonas urbanas y rurales de la ciudad de Oaxaca de Juárez, al final se obtuvo la zona permeable e impermeable de la ciudad, considerando como impermeable zonas como, casas, edificios y calles. Y zonas permeables como cultivos, zonas de recreación al aire libre, y áreas verdes (ver Ilustración 5.25).

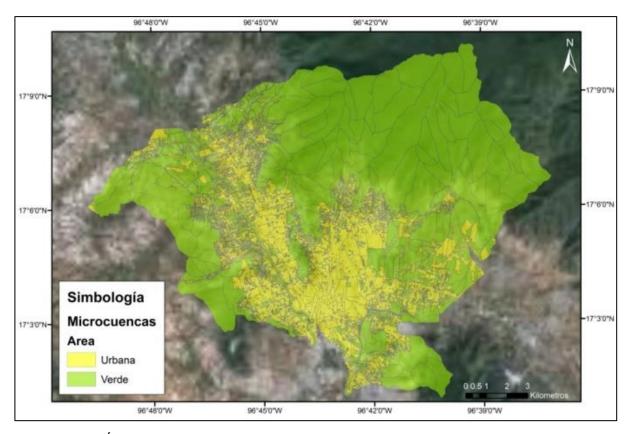


Ilustración 5.25 Áreas urbanas y de infiltración en la ciudad de Oaxaca de Juárez

5.5 Características geomorfológicas de la cuenca.

5.5.1 Usos de suelo.

Se le agregó la cobertura vegetal a estas subcuencas trazadas con ayuda de un mapa de INEGI escala 1:50 000. En la Ilustración 5.26 se muestra el uso de suelo. Con esto se pudo caracterizar el uso de suelo de cada subcuenca de aportación.

Y con ayuda de la carta de INEGI 1:50 000 y observaciones realizadas por medio del *Google Earth* se obtuvo el uso de suelo para cada microcuenca, todos estos datos fueron almacenados en el SIG (ver Ilustración 5.27).

5.5.2 Pendiente media de las subcuencas.

La pendiente media de las subcuencas se guardó en una base de datos del SIG, en la cual se agregó en porcentaje la pendiente media, esta información también fue obtenida por el SIATL (ver Ilustración 5.28).

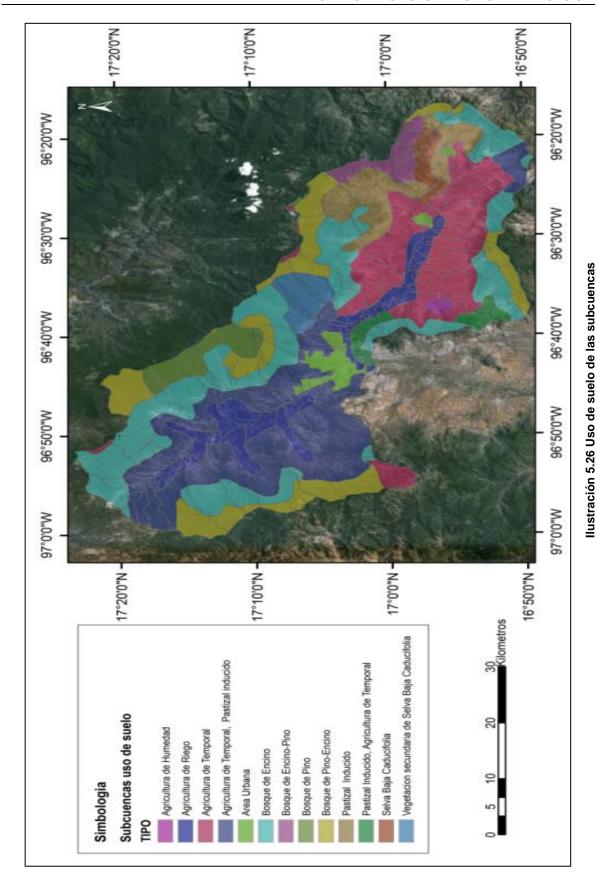
Para las microcuencas la pendiente media se obtuvo, tomando el punto más alto, el punto más bajo se obtiene el desnivel y se divide entre la longitud que existen entre esos puntos (Ilustración 5.29).

5.5.3 Área de las subcuencas

El área de las subcuencas también se obtuvo por medio del SIATL, y se almaceno toda esta información en una base de datos de un SIG (Ilustración 5.30).

También se obtuvieron las áreas de las microcuencas urbanas, generadas con las herramientas del programa *Arc Gis*, con esto se pueden visualizar la estructura de las microcuencas de acuerdo a su área total (ver Ilustración 5.31).

5.5.4 Coeficiente de escurrimiento para cuencas y subcuencas.

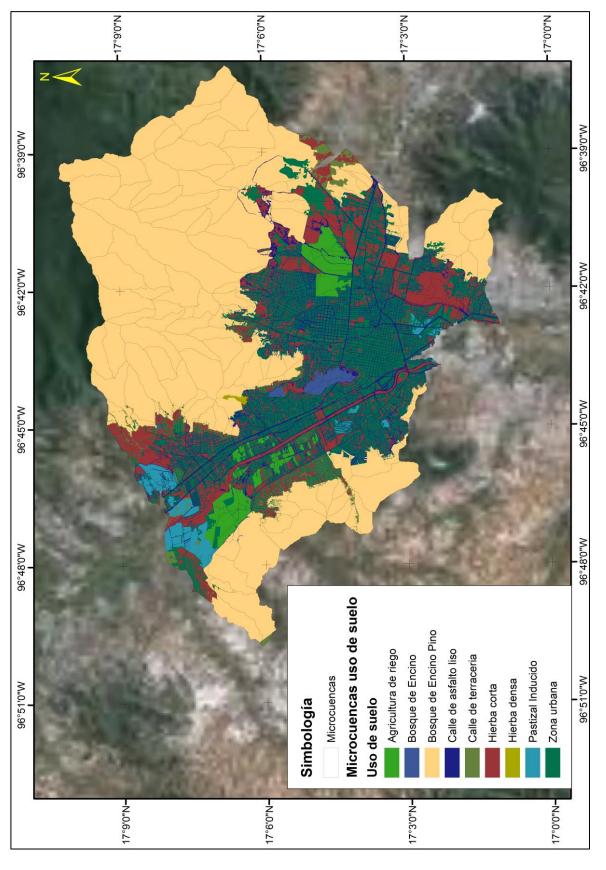
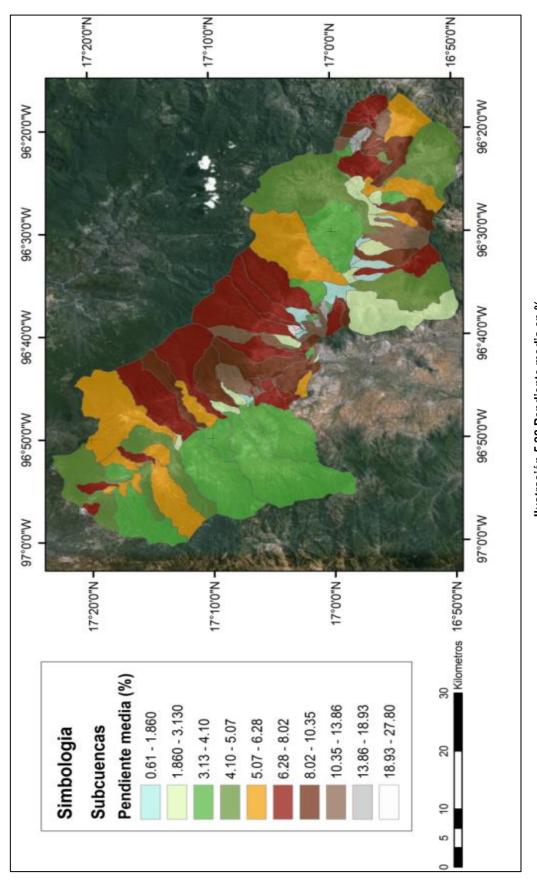
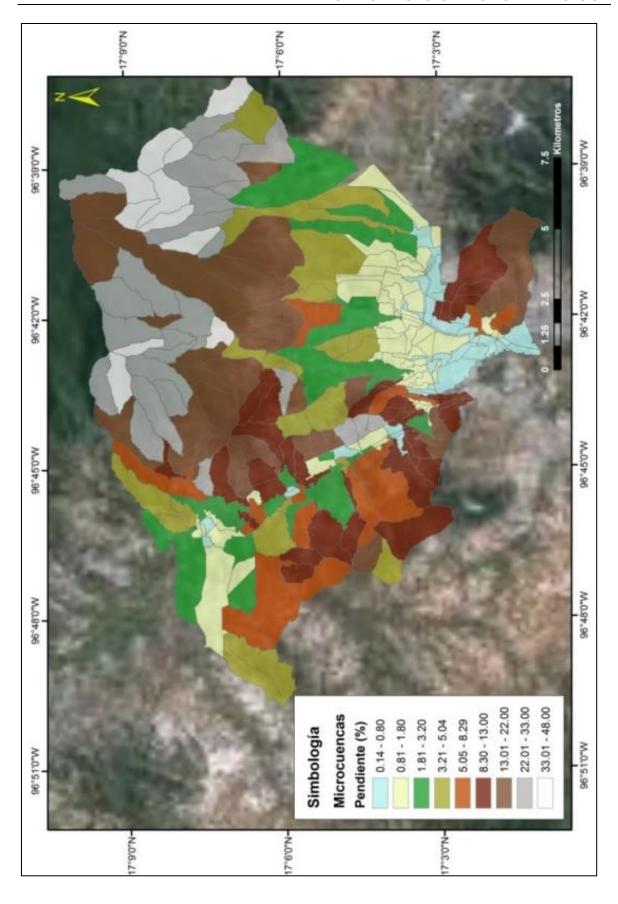

El cálculo de los coeficientes de escurrimiento se realizaron a través de la tabla 8.3 (Aparicio, 2010), para su cálculo se hace un estudio detallado por medio de la condición del uso de suelo. Para las subcuencas se obtuvo el uso de suelo de las cartas de INEGI 1:50000 y las microcuencas con las delimitaciones realizadas con el *Google Earth*.

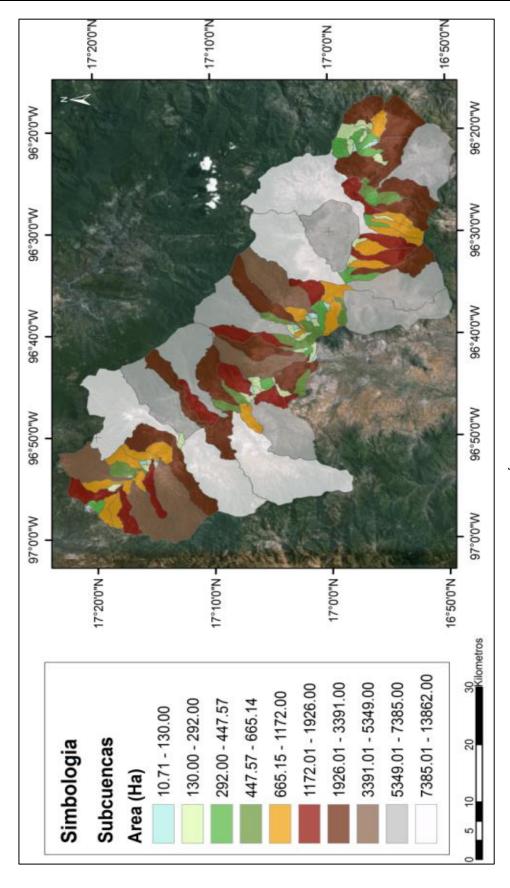
5.5.5 Tiempo de concentración de las subcuencas y microcuencas.

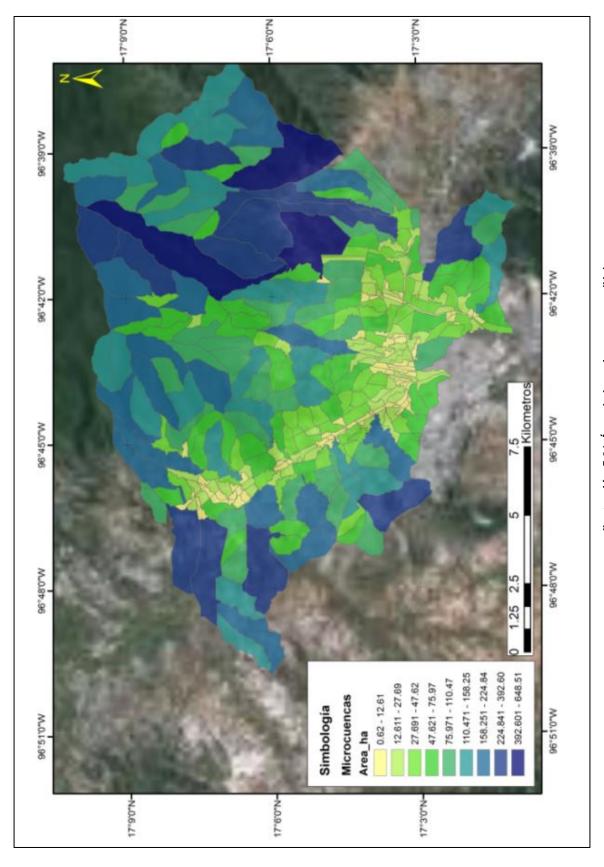
Es el tiempo requerido por una gota de agua para fluir desde el punto más remoto de la cuenca hasta la salida de la misma, siendo función de la pendiente y longitud de del cauce principal. La fórmula (ver Ecuación 9) utilizada para este trabajo es la de Kirpich (Chow et al., 1964).

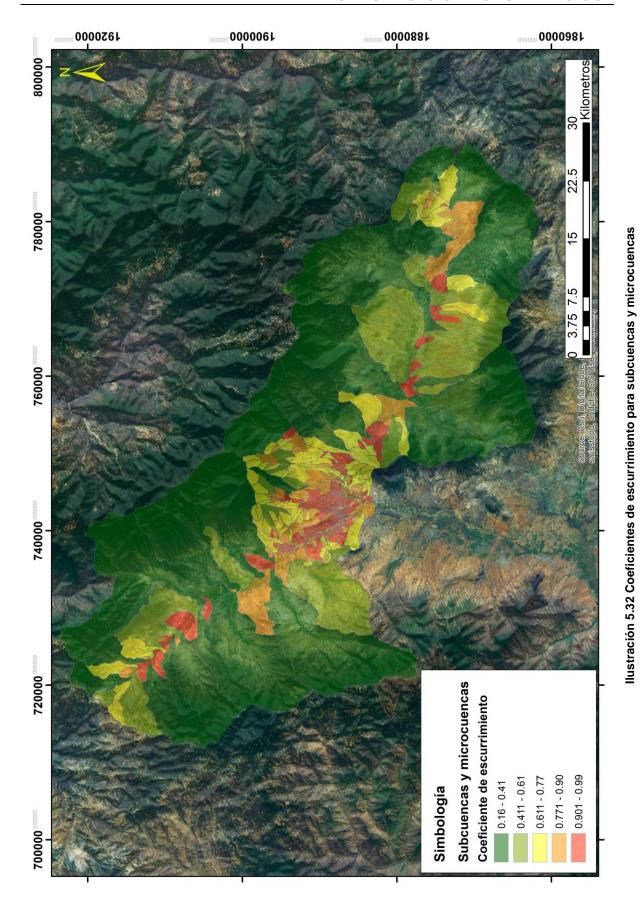
$$T_c = 0.000325 \frac{L^{0.77}}{S^{0.385}}$$
 Ecuación 9

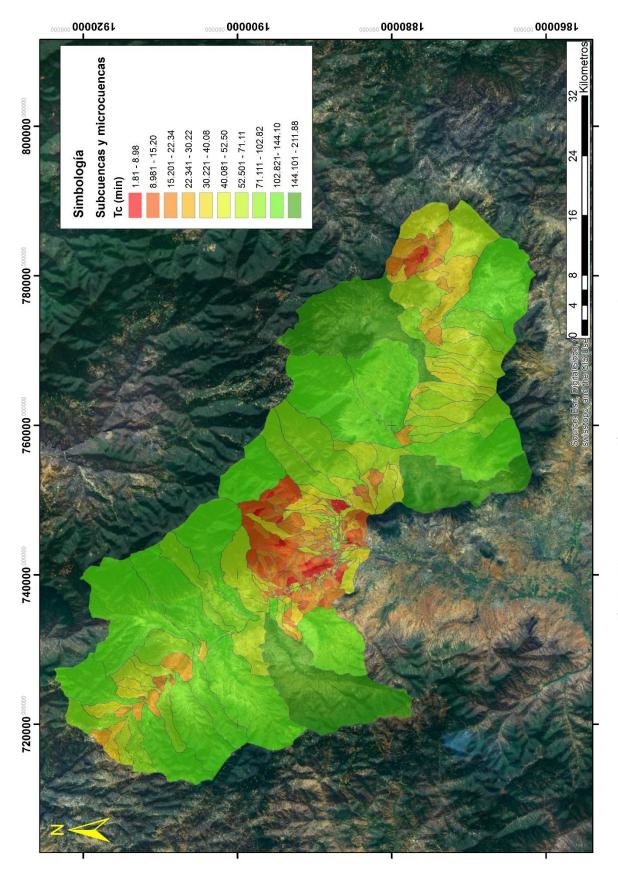
Y en la Ilustración 5.33 se presenta el mapa con la clasificación por el tiempo de concentración para las microcuencas y subcuencas de la zona de estudio.


Ilustración 5.27 Uso de suelo de las subcuencas


llustración 5.28 Pendiente media en %


llustración 5.29 Pendiente de las microcuencas en %


llustración 5.30 Áreas de las subcuencas en hectáreas.

llustración 5.31 Área de las microcuencas (Ha)

107

llustración 5.33 Tiempo de concentración para subcuencas y microcuencas

6 MODELACIÓN DEL HIDROMETEOROLÓGICO.

FENÓMENO

6.1 Modelos hidrológicos.

Para poder entender los modelos hidrológicos, se requiere dar una breve explicación de su origen. Un **modelo** es una representación cualitativa y/o cuantitativa de un sistema en el cual se muestran las relaciones predominantes entre sus elementos; por lo tanto un modelo puede incluir todos los aspectos de un sistema real (debiendo ser detallado para mejorar la representación). Para su estudio se pueden dividir en físicos, analógicos e hidráulicos.

Modelo físicos. En ocasiones cuando el fenómeno que sea desea estudiar es complejo, y los modelos matemáticos son insuficientes, se puede tener la ayuda de los modelos físicos, siendo modelos a escala del prototipo (realidad) con la condición de mantener las reglas de semejanza.

Modelos analógicos. Se basan en el parecido entre dos ecuaciones del mismo sistema

Modelos matemáticos. Son la representación de la realidad a través de un conjunto de expresiones matemáticas, tienen la gran de ventaja que al utilizarse ecuaciones complejas, se pueden apoyar en la computadora para obtener una solución. Apoyándose en variables de entrada, que al ser procesar la información se generan variables de salida teniéndose una interrelación en las expresiones analíticas.

Para a la hidrología, los modelos matemáticos han sido pieza fundamentar para su desarrollo, siendo el soporte para los procesos que se deseen modelar, estos se pueden clasificar de la siguiente manera: En modelos determinísticos y estocásticos, los **modelos determinísticos** son aquello es los que una misma

entrada de datos proporciona siempre la misma la salida, este tipo de modelos son utilizados para dar una aproximación a corto – mediano plazo y además en lugares donde se cuentan con poca información. Su clasificación se puede realizar atendiendo la variabilidad espacial de los parámetros y/o variables, como a continuación se indica:

Modelos agregados. No se considera la variabilidad espacial, es decir modelos de una sola celda. Si suponemos una cuenca hidrográfica, al modelarse se utilizarían valores medios para toda la cuenca (por ejemplo evaporación, infiltración, evapotranspiración, etc). Teniendo el inconveniente de dar solo valores medios.

Modelos distribuidos. Se considera la variabilidad temporal y espacial de los parámetros, a través de una discretización del medio físico a estudiar. Para lo cual se si tiene una precipitación en la cuenca se tendrán resultados de gastos circundantes por cada punto. Para lograr sus objetivos se requiere de una entrada de datos mucho mayor.

Modelos cuasidistribuidos. Intenta aprovechar las ventajas de los anteriores, evitando sus inconvenientes. Por ejemplo un modelo cuasidistribuido abordaría el tema del estudio de la cuenca discretizandola en subcuencas.

Además se puede dar otra clasificación a los modelos distribuidos atendiendo a su estructura del modelo:

Modelo de caja negra. Toma en cuenta las observaciones y/o resultados. Su análisis se encuentra basado en la relación de series de entrada y salida.

Modelo de caja gris. Basado en el proceso físico observado en la cuenca. Se requieren estimar sus valores a través de una calibración.

Modelo de caja blanca. Proporciona una descripción del sistema hidrológico matemáticamente, es decir haciendo uso de las ecuaciones de flujo de masa y momento.

Sin embargo en la hidrología no se pueden conocer con exactitud todas las componentes de un sistema y sus interrelaciones, aunque si una buena parte de estas, se requiere de un **modelo estocástico**, en donde interviene el factor probabilista de forma implícita, para una misma serie de datos arrojan condiciones diferentes resultados.

6.2 ¿Por qué elegir un modelo bidimensional comparado con un modelo unidimensional?

En los modelos unidimensionales se asume que el flujo es en una sola dirección (en sistema cartesiano "x" o "y"), la información topográfica e hidráulica se utiliza mediante secciones transversales, se asume por defecto que el flujo es perpendicular a la sección transversal; la discretización se realiza a nivel de secciones transversales.

Los modelos bidimensionales consideran las variaciones en las dos dimensiones del plano horizontal, existiendo un flujo lateral y por tanto una discretización más fina con el uso de mallas, este método proporciona mucho detalle y precisión.

En la Tabla 6.1 se hace una comparación de un modelo bidimensional con uno unidimensional, mostrándose con una x al concepto en que existe una mejoría con respecto al otro.

Tabla 6.1 comparación de un modelo unidimensional vs bidimensional, fuente: CENAPRED (2013)

Características	Unidimensionales	Bidimensionales
Insumos	X	
Complejidad de construcción	X	
Requerimientos computacionales.	X	

Características	Unidimensionales	Bidimensionales
Aproximación de la realidad.		Х
Complejidad de los resultados		Х
Visualización de los resultados		Х
Tiempo de cálculo	Х	
Costo	Х	

De manera que con la base de datos anteriormente mostrados, si requerimos considerar la topografía urbana tenemos que trabajar con los modelos bidimensionales dada su gran aproximación a la realidad y su mejoría en la visualización de los resultados.

6.2.1 Modelación en 2 dimensiones

En nuestros días y con el auge tecnológico que presentamos, diversos especialistas se han dado a la tarea de desarrollar programas computacionales que nos ayuden a poder modelar el comportamiento de la ocurrencia de las inundaciones, con el fin de poder aminorar los riesgos a los que se expone la población.

En nuestros días se ha hecho hincapié en el diseño de herramientas que permitan la interacción del sistema drenaje/alcantarillado, creándose programas como MOUSE (Linderberg, 1989), y EPA SWMM, XP SWMM y MIKE SWMM (Huber y Dickenson, 1988), útiles para representar el proceso que ocurre entre la lluvia y las inundaciones.

Es importante mencionar que la modelación en 2d requiere de la utilización de la onda dinámica del modelo, ya que puede existir una combinación del agua que existe en la superficie con la que se encuentra dentro de los colectores pluviales donde el proceso de intercambio del flujo se da a través de las alcantarillas. La

ecuación de onda dinámica permite analizar el remanso que se produce en las inundaciones por lo que es esencial su aplicación (Márquez et al., 2004).

Al realizar una modelación en dos dimensiones permite calibrar y validar los datos (hidrométricos), predecir el impacto de eventos de gran magnitud, preparar una buena planeación y constatar los riesgos producidos.

Ecuación en 2 dimensiones.

El mismo principio de las ecuaciones de Saint Venant 1D se utiliza en las ecuaciones en 2d, que son derivadas a partir de las ecuaciones de continuidad y de Navier Stokes. Tomando en cuenta las siguientes hipótesis: se considera que las fuerzas que actúan son la gravedad en el sentido vertical y la fuerza de Coriolis , la curvatura que tienen las líneas de corriente es pequeña, por lo que también se considera una distribución hidrostática y el movimiento principal de las partículas ocurre en los planos horizontales. Resultando de esta manera las ecuaciones utilizadas para modelos 2D:

$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} + \frac{\partial (hv)}{\partial x} = 0$$
 Ecuación 10

$$\frac{\partial (hu)}{\partial t} + \frac{\partial}{\partial x} \left(hu^2 + \frac{1}{2} gh^2 \right) + \frac{\partial (hv)}{\partial x} = Cvh + \frac{\tau_{sx}}{\rho} + gh \left(S_{ox} - S_{fx} \right) + S_{t1} \qquad \text{Ecuación 11}$$

$$\frac{\partial (hv)}{\partial t} + \frac{\partial (huv)}{\partial t} + \frac{\partial}{\partial y} \Big(hv^2 + \frac{1}{2} gh^2 \Big) = Cuh + \frac{\tau_{sy}}{\rho} + gh \big(S_{oy} - S_{fy} \big) + S_{t2} \quad \text{Ecuación 12}$$

Donde h es el tirante, u y v son los componentes del vector velocidad en las direcciones x y y respectivamente, en cada punto del plano horizontal, g es la acelaración de la gravedad, C refleja el efecto de la fuerza de coriolis τ_{sx} y τ_{sy} están asociados con el efecto del viento en la superficie del fluido. Los términos S_{ox} y S_{oy} miden la pendiente del terreno en las direcciones x y y

respectivamente, siendo z una función que describe el fondo o terreno. S_{fx} y S_{fy} Refleja el efecto de fricción del fluido con el terreno y S_{t1} y S_{t2} representan los flujos turbulentos del fluido.

Programas para la modelación bidimiensional

Se describen a continuación algunos programas que se encuentran en el mercado para la solución de problemas enfocados a inundaciones, cabe mencionar que para usarlos es necesario tener una llave con el proveedor.

- Telemac-2d (Aplicado en problemas fluviales para un gran número de ríos), es aplicado para simular flujo a superficie libre en dos dimensiones, para cada punto de la malla el programa calcula la altura del agua y los dos componentes de velocidad. Resolviendo las ecuaciones de Saint Venant con los métodos de elemento finito y volumen finito, realizando una malla triangular (TELEMAC-MASCARET, 2013).
- Xpswmm 2d. Es un programa que utiliza ecuaciones en dos dimensiones para flujo superficial, con esto le da la capacidad de poder analizar y predecir las inundaciones. Cuenta con la interacción de los sistemas de aguas superficiales y subterráneas, con una acoplamiento para la modelación 1d/2d. Este programa también es útil para simular mareas, roturas de presas y en las tuberías de la red de alcantarillado (XP_Solutions, 2011).
- Flo-2d. Es un programa que permite simular el flujo en canales, flujo confinado y el flujo en calles bajo una compleja topografía, permite realizar simulaciones considerando los sedimentos. La resolución espacial y temporal depende del tamaño de celda considerada, además considera un criterio de la FEMA modificado (FLO-2d, 2007)

Estos programas son utilizados para poder entender las complejas interacciones que se presentan con las lluvias y las inundaciones en cuencas urbanas, donde es utilizado el drenaje dual (combinado) para conducir los escurrimientos superficiales por las calles , siendo necesario considerar que el sistema de drenaje pluvial introduce parte de ese escurrimiento en sus conductos (ver Ilustración 6.1).

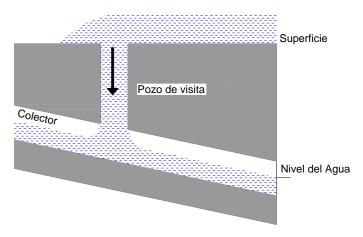


Ilustración 6.1 Flujo del sistema de calles en una tubería parcialmente llena, retomado de Mark et al. (2004)

PCSWMM 2D

El presente trabajo se realizó en PCSWMM 2D, a continuación se presentan sus características (www.chiwater.com):

Integra el concepto dinámico del modelo unidimensional y su enfoque principal es entorno a la superficie de flujos en dos dimensiones, usa las ecuaciones convencionales de Saint Venant para fluidos homogéneos, ecuación de continuidad (Ver Ecuación 13) y ecuación de conservación (Ver Ecuación 14).

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$$
 Ecuación 13
$$\frac{\partial Q}{\partial t} + \frac{\partial \left(Q^2/A\right)}{\partial x} + gA\frac{\partial H}{\partial t} + gAh_L = 0$$
 Ecuación 14

Dónde:

- X= distancia a lo largo de la tubería. (m)
- A= Área de la sección transversal (m2)
- Q= Gastos medio (m³/s)
- H= Carga hidráulica del agua en el conducto (m)
- S_t= Pendiente de fricción (m/m)
- HI=Perdidas de energía locales por unidad de longitud de la tubería (m/m)
- G= Aceleración de la gravedad (m/s²)

Para la solución de las ecuaciones anteriores, el programa trabaja usando ecuaciones de diferencias finitas y métodos sucesivos de aproximación, bajo métodos de relajación.

Es un programa que proporciona un enlace entre el entorno rural y urbano, pudiéndose modelar los ríos que pasan por el lugar con el sistema de drenaje combinado que se tenga en la zona. Asimismo considera la simulación de "sistemas duales" (dual drainage) los cuales consisten en un "sistema menor" (mynor system) siendo el propio sistema de alcantarillado; y un "sistema mayor" (mayor system) siendo las calles (Ilustración 6.2), de esta manera se pretende que la escorrentía fuese liberada por ambos sistemas (Vásquez, 2009).

El programa discretiza el dominio en diferentes representaciones de la malla (cuadrada, hexagonal o variable), y asigna una elevación media del nivel del terreno dentro de cada celda. Trabaja con la solución de la onda dinámica, su uso es conservador ya que aminora o ignora los términos inerciales.

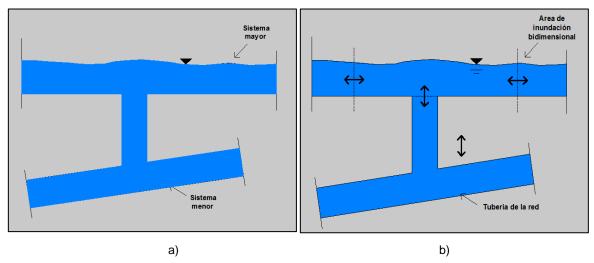


Ilustración 6.2 a) Sistema dual drainage y b) Comportamiento ante una inundación del sistema

Recomendaciones:

El tiempo de modelación depende de la resolución de la malla bidimensional, eligiendo el tamaño-de la retícula- de acuerdo al problema que se quiera resolver, se sugiere un numero de celdas máximo de 100 000 y el tamaño mínimo recomendable es de 3 metros. Se pueden tener múltiples criterios de definición, algunos ya preestablecidos, en su caso de no estarlo, esto pueden ser agregados

6.3 Modelación en dos dimensiones Caso Oaxaca.

Para el análisis se realizaron dos tipos de modelaciones, determinística y no determinística, la modelación determinística es la que a continuación se explica:

Se analizaron en conjunto las subcuencas que se encuentran fuera de la ciudad de Oaxaca, en conjunto con las microcuencas. Resultando en el análisis 426 elementos (subcuencas y microcuencas) que contienen sus parámetros geomorfológicos. Con el resultado del análisis de la hidrología, se obtuvo la precipitación para diferentes periodos de retorno (ver Tabla 5.9 a la Tabla 5.18) de cada estación climatológica.

Además por medio de los polígonos de Thiessen se tomaron áreas de influencia para cada subcuenca y microcuenca (Ilustración 5.4), así como para las EMAS (ver Ilustración 6.3).

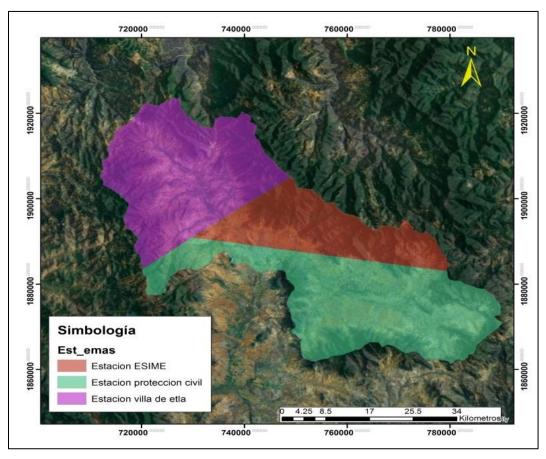


Ilustración 6.3 Polígonos de thiessen con las EMAS

Del análisis de las EMAS se obtuvieron tres hietogramas adimensionales que representan la forma de la lluvia que se ha producido en los lugares donde se encuentran instaladas, en la llustración 6.4 se presentan los utilizados para una duración de 120 minutos.

Estación Protección civil

Ilustración 6.4 Hietogramas unidimensionales de las estaciones analizadas

Como paso final se introduce al programa PCSWMM las características de cada subcuenca y microcuenca, así como la lluvia de proyecto de las 10 estaciones climatológicas analizadas, la cual se distribuye con el análisis de los polígonos de Thiessen realizado a las EMAS (ver Ilustración 6.3).

Debido a la restricción de 100 000 nodos del programa, se trabajó con una malla rectangular de cálculo de 20 x 20 m abarcando gran parte de la ciudad, se acoplo la red de colectores de la ciudad y el MDE. Además se integraron condiciones iniciales como el tiempo de simulación de 14 horas y la condición de salida después de la unión de los ríos Atoyac y Salado (ver Ilustración 6.5).

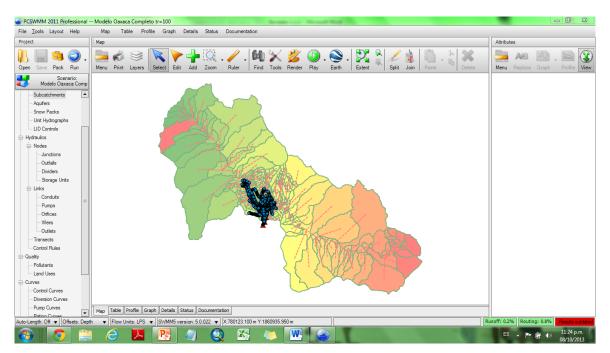


Ilustración 6.5 Interfaz del programa PCSWMM

Como resultado se tienen en cada celda de la malla de cálculo los gastos máximos, velocidades máximas y alturas máximas producidas, con los cuales se generaron los mapas de peligro.

Los gastos picos calculados por el programa, se compararon con la formula empírica Mc Math (Gleason, 2008) la cual es derivada de la formula racional, esta fórmula se encuentra en el libro: *Handbook of Steel Drainage and Highway Construction Products (American Iron and Steel Institute1971)*

$$Q = 0.0028IKS^{0.2}A^{0.8}$$
 Ecuación 15

Donde Q esta dado en m^3/s , I es la intensidad de la lluvia en mm/h para los diferentes periodos de retorno, K se le denomina al coeficiente de escurrimiento, S es la pendiente media de la cuenca y A es la pendiente media de la cuenca en hectáreas.

Conociendo las zonas donde se generan problemas de inundación, se eligió una en particular para conocer su comportamiento, una parte de la zona centro y la colonia Jalatlaco, donde anteriormente existía el rio Jalatlaco y por cuestiones de urbanización se decidió entubarlo.

Para este caso solo se analizó para periodos de retorno de 2 y 100 años, debido al tiempo que tardan en realizarse las simulaciones.

Con los datos anteriores se realizaron las simulaciones unidimensionales para conocer la capacidad de máxima de los colectores y el caudal máximo de aportación de los ríos sin presentarse un desborde.

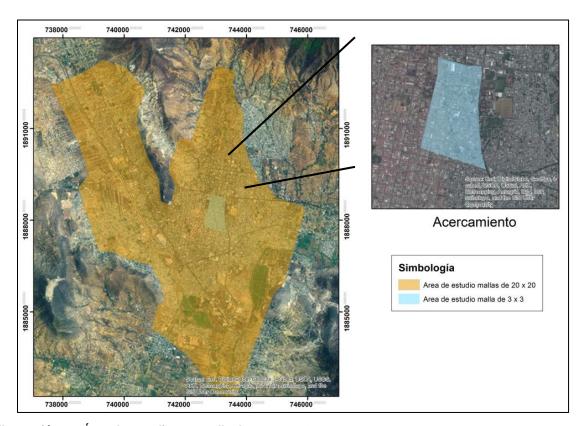


Ilustración 6.6 Área de estudio con malla de 20 x 20 y 3 x 3

Bajo un criterio establecido con la altura de inundación, deslizamiento y el volcamiento (ver Tabla 7.3), se realizaron los mapas de peligro para diferentes periodos de retorno, se conjuntaron los mapas de vulnerabilidad y se construyeron los mapas de riesgo. Para conocer los daños producidos por manzana se establecieron dos tipos de casas y se les asigno un valor.

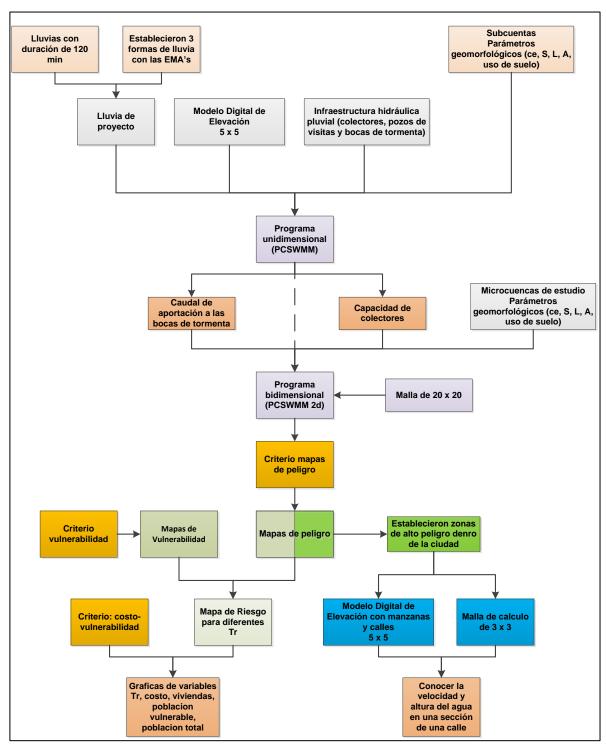


Ilustración 6.7 Proceso de cálculo para la obtención de los resultados

Además con los mapas de peligro, se establecieron las zonas donde se contaba con un peligro alto, se seleccionó una zona céntrica de la capital en la que resaltaba la afectación que producía en la malla de 20 x 20, se simulo nuevamente

pero ahora con una malla de 3 x 3, se crearon mapas de peligro y se conocieron las velocidades y alturas de inundación, con las cuales se realizó una sección de control en una avenida principal (calzada de la república) para conocer los niveles de velocidad y altura de inundación que puede alcanzar (Ilustración 6.7).

6.4 Modelación probabilística del riesgo por inundación.

La modelación no determinística (probabilística) del riesgo por inundación, tiene como objetivo principal determinar las distribuciones de probabilidad de las pérdidas que se pueden sufrir, en lapsos dados, los activos expuestos, como consecuencia de la ocurrencia de amenazas naturales (inundaciones), integrándose de manera racional las incertidumbres del proceso (Ordaz, 2011).

6.4.1 Evaluación de la amenaza.

La amenaza está representada por un conjunto de eventos o *escenarios*, que colectivamente describen todas las formas posibles en que puede ocurrir una inundación en el sitio de análisis, y las frecuencias de ocurrencia de cada uno de estos eventos.

6.4.2 Definición del inventario de los elementos expuestos y vulnerabilidad de las construcciones.

Para el análisis probabilístico del riesgo por inundación, se realizó en base a lo realizado por Ordaz (2011), en cual se considera toda su metodología para el análisis. Con la mejora en el cálculo del daño a viviendas, generado con las ideas y aportaciones de los especialistas del tema de inundaciones del área de hidráulica del IMTA Alcocer-Yamanaka V., Rodríguez J., Albornoz P. y Llaguno O. Quienes establecieron una relación empírica de la velocidad – tirante de inundación – daño a la infraestructura, generada a través de una apreciación general del daño. La gráfica, tiene como objetivo evaluar la vulnerabilidad de las construcciones en la zona de estudio (ver Ilustración 6.8).

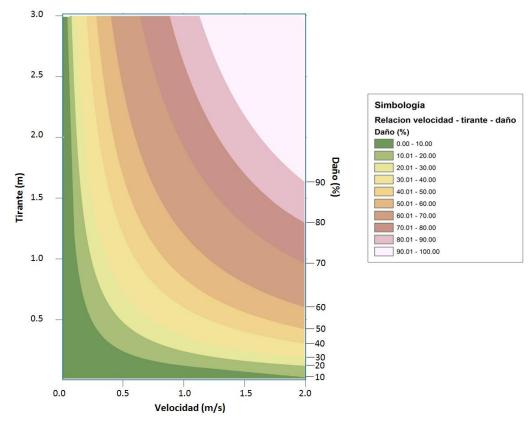


Ilustración 6.8 Nomograma Velocidad - tirante de inundación – daño, generado por Alcocer-Yamanaka et al.

6.4.3 Ecuación básica

El riesgo por inundación para el análisis probabilístico, es comúnmente expresado en términos de la llamada curva de excedencia de pérdidas, que especifica las frecuencias (usualmente anuales), con que ocurrirán eventos en que se exceda un valor especificado de pérdidas (Ordaz, 2011). Esta frecuencia anual de excedencia se conoce también como tasa de excedencia, y puede calcularse mediante la Ecuación 16, que es una de las múltiples formas que adopta el teorema de la probabilidad total.

$$v(p) = \sum_{i=1}^{eventos} Pr(P > p | Evento i) F_A(Evento i)$$
 Ecuación 16

Donde, v(p) es la tasa de excedencia de la pérdida p y $F_A(Evento\ i)$ es la frecuencia anual de ocurrencia del evento i, mientras que $Pr(P>p|Evento\ i)$ es la probabilidad de que la pérdida sea superior a p, dado que ocurrió el i-ésimo evento. La suma en la ecuación anterior se hace para todos los eventos potencialmente dañinos. El inverso de v(p)es el periodo de retorno (T_r) de la pérdida p.

Las incertidumbres están representadas como la pérdida de un grupo de bienes expuestos durante un escenario, es una cantidad incierta que debe ser tratada como variable aleatoria.

6.4.4 Estimador puntual del riesgo.

Pérdida anual esperada (PAE), se trata del valor de la pérdida esperado anualmente (Ordaz, 2011). La PAE puede obtenerse por integración de v(p) o mediante la siguiente expresión:

$$P_{AE} = \sum_{i=1}^{Eventos} E(P|Evento\ i)F_A(Evento\ i)$$

6.4.5 Cálculos simplificados del riesgo.

Para el propósito de la tesis se realizara un cálculo simplificado del riesgo, teniendo las siguientes simplificaciones:

Se ignora la llamada incertidumbre secundaria, es decir, la incertidumbre que se tiene en el tirante y velocidad de inundación para una intensidad dada y la que se tiene en el valor de la pérdida para un tirante y velocidad de inundación dado.

El cálculo del riesgo se realiza en base a la Ilustración 6.8 y para obtener un valor de las casas, en base al estudio de vulnerabilidad se tienen 5 costos de viviendas diferentes. Además se considera que las 5 tipos de casas tienen una misma función de daño.

A partir de las modelación en dos dimensiones realizadas, se tiene para cada retícula de la malla de cálculo velocidad y tirante máximo

7 RESULTADOS

El modelo unidimensional proporciona los gastos con los cuales se prevé que pueda registrarse un desbordamiento. Los resultados se obtuvieron con en base en una simulación de dos horas de precipitación sobre las subcuencas de los ríos Salado y Atoyac, distribuyendo la lluvia temporalmente con las EMAS.

La Tabla 7.1, presenta la información del Rio Salado y la Tabla 7.2 la información del Rio Atoyac, registrándose para las secciones del rio Salado (generadas a partir del municipio de San Santa Lucia del Camino a San Agustín de las Juntas) un flujo de agua de hasta 163.77 m³/s con una precipitación media de 51.21 mm.

Para las secciones del rio Atoyac (consideradas a partir del municipio de San Jacinto Amilpas a Santa Cruz Xoxocotlan), se tiene un gasto máximo admisible de 201.85 m³/s, con una precipitación media de 51.21 mm. El tirante de los ríos se obtuvo considerando el nivel de aguas ordinarias (NAMO) que se presentó en cada simulación, y al tener en la sección un nivel de agua mayor al del terreno, se indicó que se presentan desbordamientos en alguna sección de estudio.

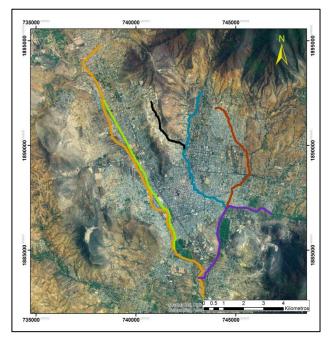
Tabla 7.1 Precipitación y gasto admisible para diferentes periodos de retorno para el Rio Salado

Tr	Precipitación media (mm)	Gasto max. admisible (m3/s)	Capacidad max. (%)	Tirante (m)
2	38.80	77.15	99	2.25
5	51.21	163.77	100	Rebasado
10	60.60	Rebasado	100	Rebasado
25	73.01	Rebasado	100	Rebasado
50	82.40	Rebasado	100	Rebasado
100	91.79	Rebasado	100	Rebasado

En la llustración 7.1 se presentan el lugar donde de acuerdo con la simulación se presenta un desbordamiento en la margen derecha del Rio Salado.

Ilustración 7.1 a) Vista de aguas arriba hacia aguas abajo del rio Atoyac y b) Bordo construido para protección de las personas.

Tabla 7.2 Precipitación y gasto admisible para diferentes periodos de retorno para el Rio Atoyac


Tr	Precipitación media (mm)	Gasto max. admisible (m3/s)	Capacidad max (%)	Tirante (m)
2	38.80	155.921	80	3.12
5	51.21	201.848	100	Rebasado
10	60.60	Rebasado	100	Rebasado
25	73.01	Rebasado	100	Rebasado
50	82.40	Rebasado	100	Rebasado
100	91.79	Rebasado	100	Rebasado

En la Ilustración 7.2 se presentan con puntos rojos los principales puntos de desborde del rio Atoyac, obtenido en la simulación.

Ilustración 7.2 Puntos de desbordamiento del Rio Atoyac

Se identificó la capacidad máxima de los colectores pluviales principales, donde se puede asegurar que puede descargar hasta 1.373 m³/s (ver llustración 7.3)

Simbología			
Color	Gasto (m3/s)		
	1.373		
	0.499		
	0.312		
	1.05		
	1.02		
	0.544		

Ilustración 7.3 Capacidades máximas de los colectores

Con el análisis bidimensional de las microcuencas que descargan a los colectores para el periodo de retorno de 10 años, se tiene que un volumen de escurrimiento de 3644 m³/s.

Con lo anterior se tiene que, en condiciones ideales (sin taponamientos a causa de la basura) se tarda 46 minutos en descargar una lluvia media de 60.6 mm con una duración de 120 min.

7.1 Mapas de peligro.

El resultado de las simulaciones bidimensionales traen consigo la creación de los mapas de peligro, los cuales fueron evaluados bajo el criterio profesional de: Llaguno Oscar (UNAM), Rodríguez José Manuel (IMTA), Alcocer-Yamanaka Víctor (IMTA), Bourguett Víctor (IMTA), Albornoz Pedro (IMTA) a continuación se describen sus particularidades.

Los resultados generados en las simulaciones hicieron notar la importancia de las velocidades de los escurrimientos pluviales para la Ciudad de Oaxaca, siendo importantes en la zona centro-norte, de lo anterior se buscó realizar una metodología que tomara en cuenta estas velocidades, sin descuidar la altura del agua que pudiera alcanzar.

Entonces se tomaron como punto de partida los criterios de la OFEE modificados (2007), donde se considera la altura y el volcamiento, notándose que algunas zonas vistas con velocidades mayores a 0.3 m/s no era representadas en el mapa de peligro.

Por lo tanto se retomaron los estudios de Nanía (1999) y Témez (1992). Donde las metodologías son aplicadas a zonas urbanas, tomando en cuenta la altura mínima de inundación de 30 cm (Nanía, 1999) y la velocidad máxima permisible de 1 m/s (Témez, 1992). Además Nanía (1999), menciona que con un valor mayor de 1.23 m³/s², las personas pierden estabilidad al cruzar una calle. Se vio la manera de adaptar lo anterior, resultando la Tabla 7.3, en la cual se presentan los parámetros finales utilizados para los mapas de peligro.

Tabla 7.3 Metodología para los mapas de peligro

Nivel	Altura (m)	Volcamiento (m²/s)	Deslizamiento (m³/s²)
Bajo	0.3 ≥ h < 0.5	0.3 ≥ vh < 0.5	$0.2 \ge v^2 h < 0.5$
Medio	0.5 ≥ h < 1.5	0.5 ≥ vh< 1.5	$0.5 \ge v^2 h < 1.23$
Alto	h ≥ 1.5	vh ≥ 1.5	$v^2h > 1.23$

A continuación en las ilustraciones Ilustración 7.4 a la Ilustración 7.9 se presentan los mapas de peligro obtenidos:

Periodo de retorno (años)= 2

Precipitación media (mm)= 38.8

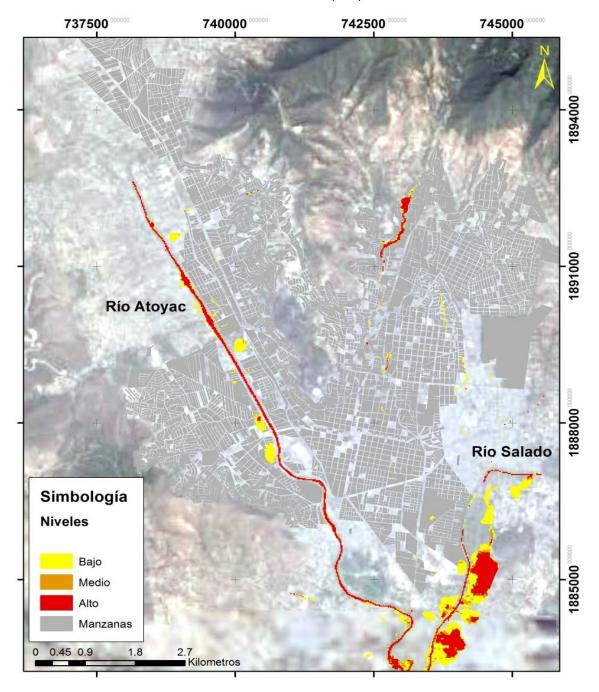


Ilustración 7.4 Mapa de peligro para un periodo de retorno de 2 años

Periodo de retorno (años)= 5

Precipitación media (mm)= 51.21

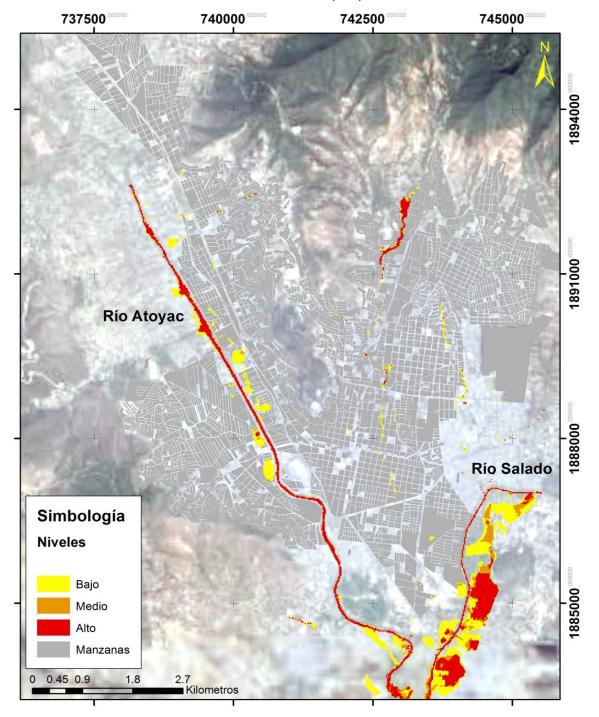


Ilustración 7.5 Mapa de peligro para un periodo de retorno de 5 años

Periodo de retorno (años)= 10

Precipitación media (mm)= 60.6

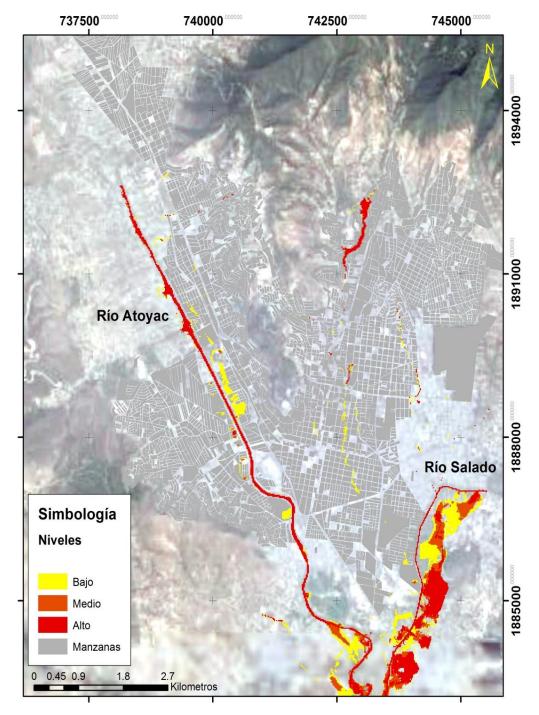


Ilustración 7.6 Mapa de peligro para un periodo de retorno de 10 años

Periodo de retorno (años)= 25

Precipitación media (mm)= 73.01

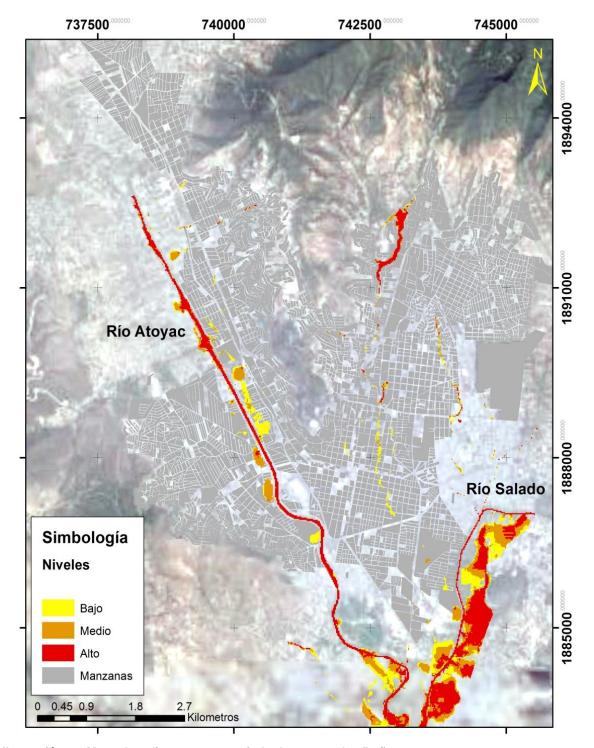


Ilustración 7.7 Mapa de peligro para un periodo de retorno de 25 años

Periodo de retorno (años)= 50

Precipitación media (mm)= 83.40

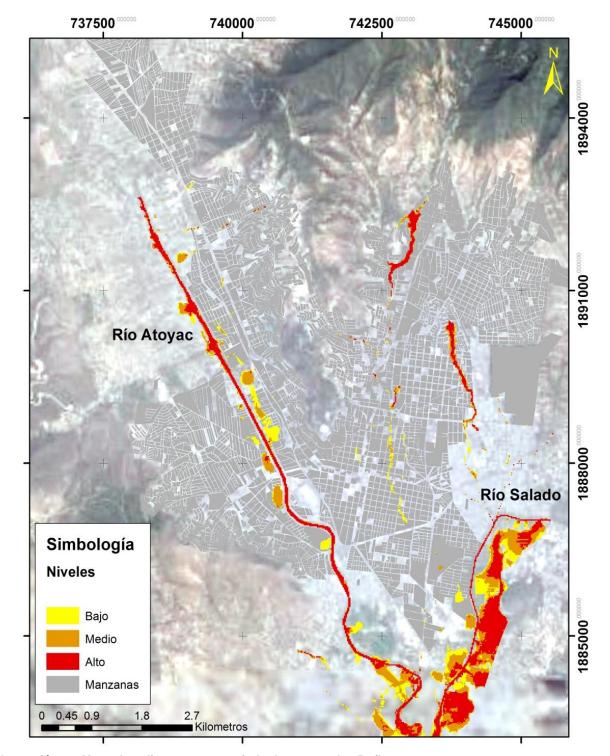


Ilustración 7.8 Mapa de peligro para un periodo de retorno de 25 años

Periodo de retorno (años)= 100

Precipitación media (mm)= 91.79

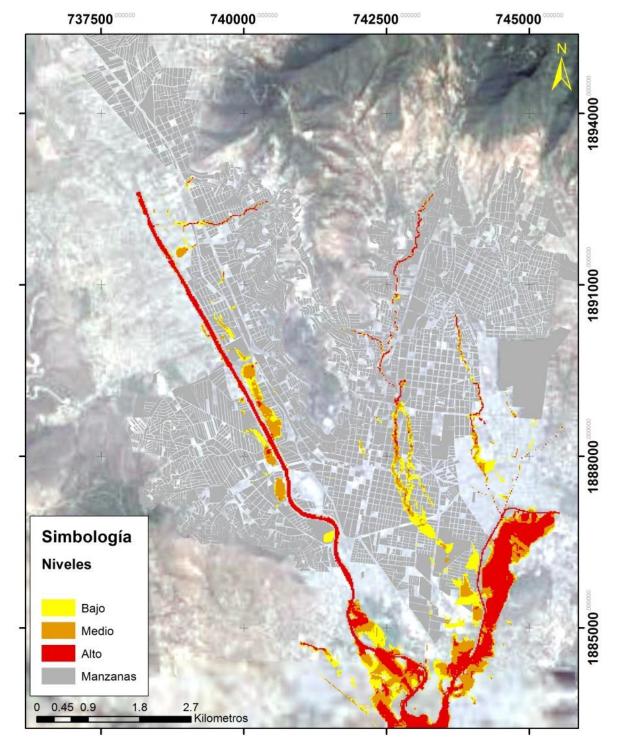


Ilustración 7.9 Mapa de peligro para un periodo de retorno de 100 años

7.2 Mapas de vulnerabilidad

Para obtener los mapas de vulnerabilidad se decidió utilizar la información, de los censos que realiza el INEGI (2013) "los censos de población y viviendas del 2010", en el cual se tienen datos por AGEB que contemplan diferentes variables.

El AGEB cuenta con 190 variables, que fueron revisadas y analizadas, pero se observó, que existe un menor número variables en el censo de la zona de estudio. Para el Municipio de Oaxaca de Juárez, solo se tiene 140 variables.

Otro dato importante, es que en la ciudad de Oaxaca se tienen contabilizadas un total de 5395 manzanas, a cada una de estas manzanas se les tendría que establecer los atributos del AGEB. Pero con la base de datos existente, diversas manzanas no fueron censadas. Por lo tanto al combinaron las variables del AGEB con las de las manzanas, resultaron 3317 manzanas con información, material que es de suma importancia, ya que será el objeto de análisis para conocer la vulnerabilidad.

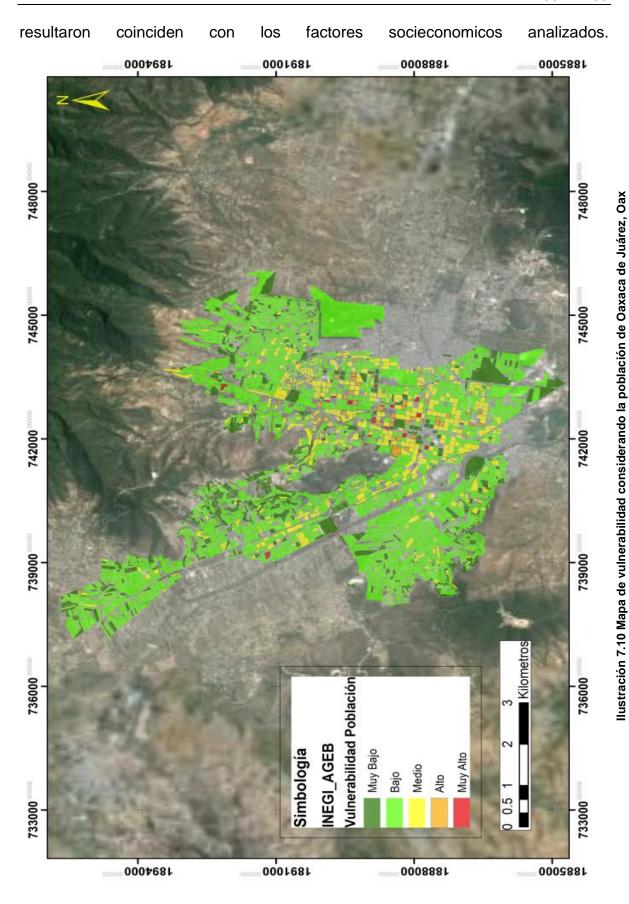
Después de analizar los datos que tiene el AGEB, se decidió trabajar con los las variables que involucrarán a la población más vulnerable y datos de la infraestructura, para el tema de la población se eligieron las variables población mayor a 60 años y población de 3 a 5 años para poder establecer una vulnerabilidad con la Ecuación 14.

$$Ind.\ Población = \frac{Pob.\ mayor\ 60\ a\~nos + Pob.\ de\ 3\ a\ 5\ a\~nos}{Población total}$$
 Ecuación 17

Para tener los parámetros de vulnerabilidad del mapa se optó por continuar con la clasificación del Salas (2011) avalada por el CENAPRED, y se parametrizó de la siguiente forma:

Tabla 7.4 Vulnerabilidad de la Población y Viviendas ante inundaciones

Vulnerabilidad	Índice de Población		
Muy Alta	> 0.41		
Alta	0.31-0.40		
Media	0.21-0.30		
Baja	0.01-0.20		
Muy baja	0.0-0.01		


En la Ilustración 7.10 se presenta lo generado al tener el mapa de vulnerabilidad considerando la población.

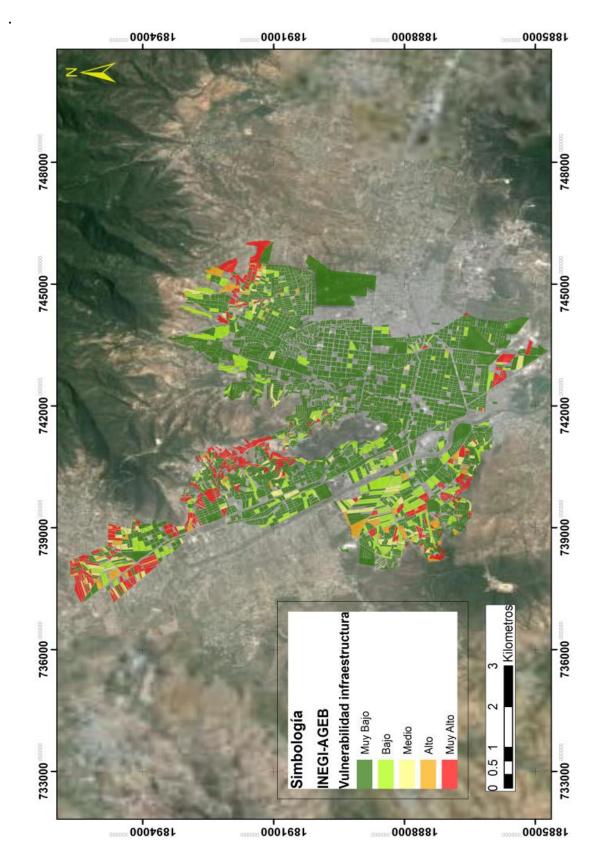
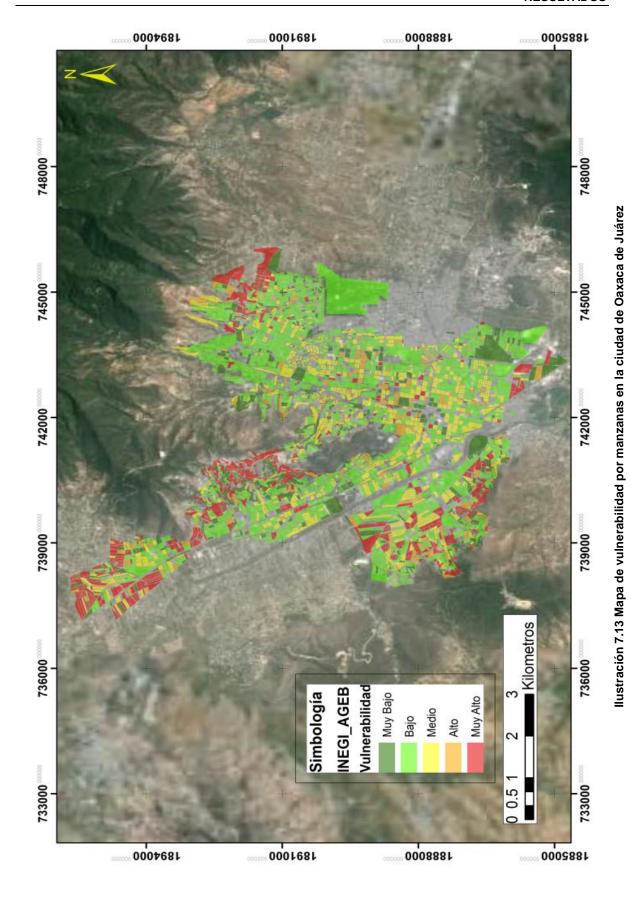
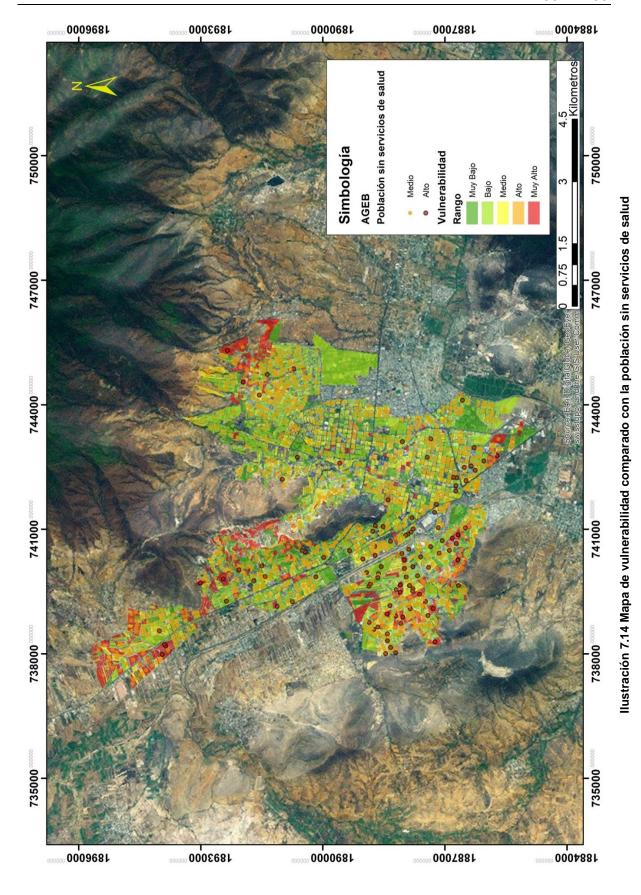
En la parte de la vulnerabilidad de la infraestructura se determinó en base a un estudio de la Secretaria de Desarrollo Social (SEDESOL, 2013) en el cual disponen los lineamientos identificar los hogares de pobreza. Por lo tanto se decidió realizar el índice de vivienda a través de las variables de viviendas con piso de tierra y sin electricidad (Ecuación 14). Con esto se estableció el mismo criterio de la Tabla 7.4 y en la Ilustración 7.12 en el cual se obtiene el mapa de vulnerabilidad considerando la infraestructura.

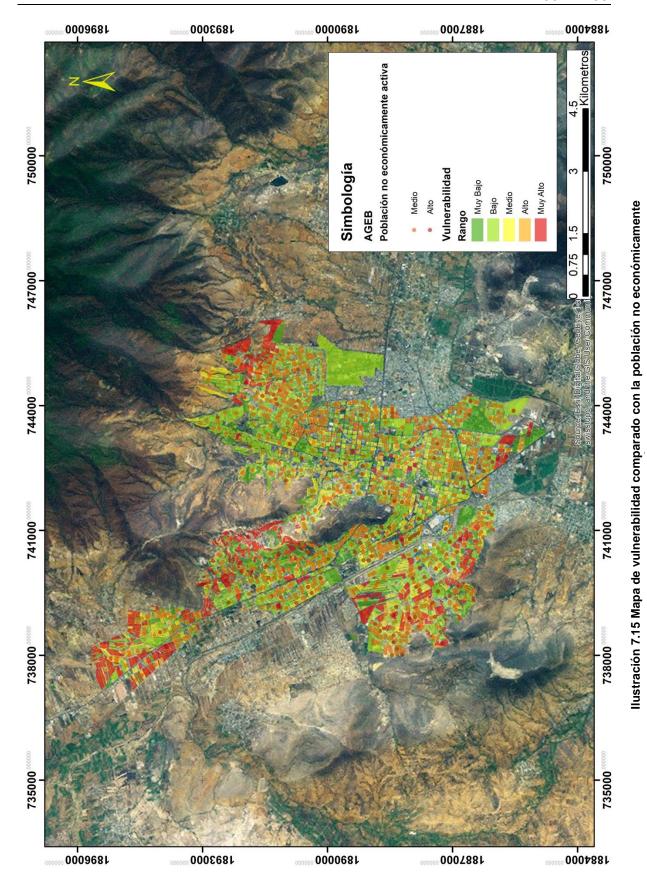
$$Ind.\ vivienda = \frac{Viv.\ sin\ electricidad\ + Viv.\ con\ piso\ de\ tierra}{Viviendas\ Totales}$$
 Ecuación 18

Estos dos mapas se superpusieron y se generó el mapa de vulnerabilidad de la ciudad de Oaxaca que combina los índices de vivienda y población (ver Ilustración 7.13).

Al final la vulnerabilidad resultante se comparó con la ubicación de la población sin servicios de salud (Ilustración 7.14), no económicamente activa (Ilustración 7.15), y con seguro popular (Ilustración 7.16); los anteriores mapas generados se compararon con el mapa de vulnerabilidad que considera la población e infraestructura vulnerable, dándose el caso que tienen coincidencia con las zonas de vulnerabilidad media, alta y muy alta, concluyendo que las zonas que

139


Ilustración 7.12 Mapa de vulnerabilidad por manzana considerando la infraestructura de Oaxaca de Juárez, Oax

141

142

143

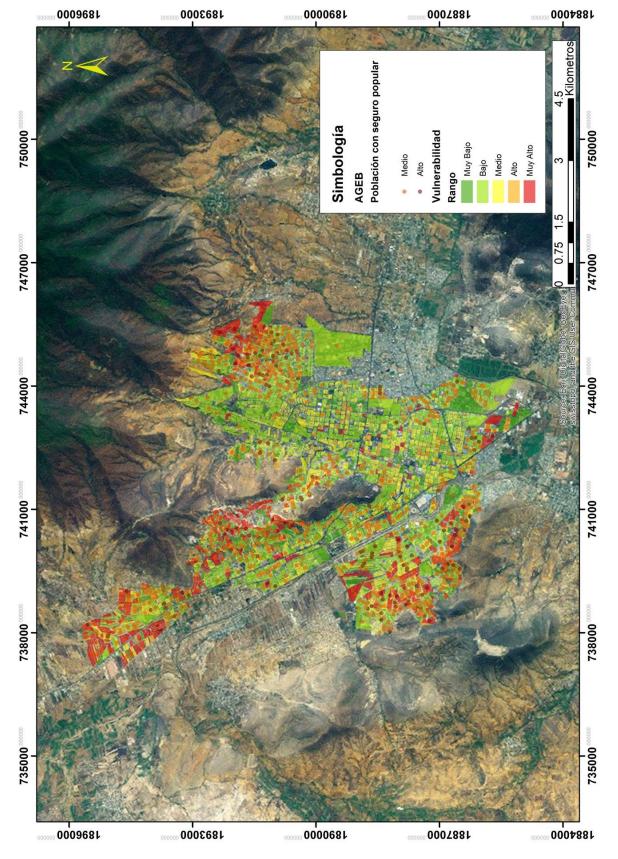


Ilustración 7.16 Mapa de vulnerabilidad comparado con la población con seguro popular

7.3 Mapas de riesgo

7.3.1 Mapas de riesgo para diferentes periodos de retorno

Para generar las zonas de afectación, se consideró la parametrización del peligro de la siguiente manera:

Tabla 7.5 Parametrización del peligro

Nivel	Valor		
Muy bajo	0		
Bajo	1		
Medio	2		
Alto	3		

Para la vulnerabilidad:

Tabla 7.6 Parametrización de la vulnerabilidad

Nivel	Valor	
Muy baja	0	
Baja	1	
Media	2	
Alta	3	
Muy Alta	4	

Y se buscó la alternativa ideal de poder combinar el peligro con la vulnerabilidad para que resultara en generar el riesgo. Al final el resultado se generó con base en la siguiente tabla:

Tabla 7.7 Tabla para calcular el riesgo de acuerdo al peligro y la vulnerabilidad

Riesgo(P ₀ ,Vi)	Riesgo(P ₁ ,Vi)	Riesgo(P ₂ ,Vi)	Riesgo(P ₃ ,Vi)
0	0	0	0
0	1	2	3
0	2	4	6
0	3	6	9
0	4	8	12

Tabla 7.8 Simbología del riesgo

Nivel	Valor
Bajo	
Medio	

Nivel	Valor
Alto	
Muy alto	

A partir de lo anterior, se tuvieron los siguientes resultados:

Mapa de Riesgo por inundación, Cd. de Oaxaca de Juárez
Período de retorno (años) = 2
Precipitación media (mm) = 38.8
Duración de la Iluvia (min) = 120

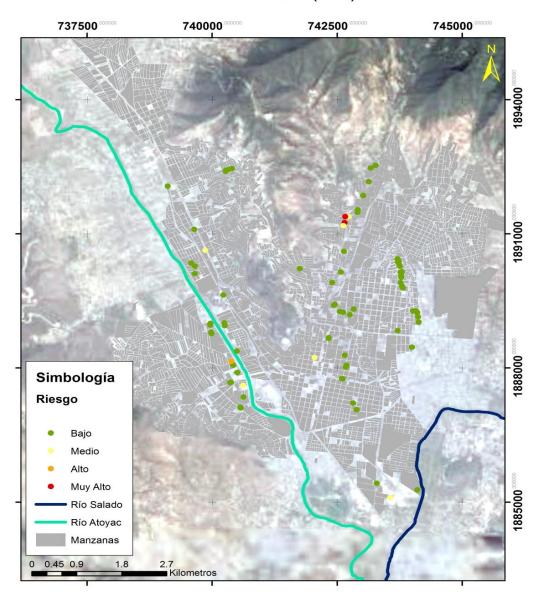


Ilustración 7.17 Mapa de riesgo por inundación, periodo de retorno de 2 años

Mapa de Riesgo por inundación, Cd. de Oaxaca de Juárez
Período de retorno (años) = 5
Precipitación media (mm) = 51.21
Duración de la Iluvia (min) = 120

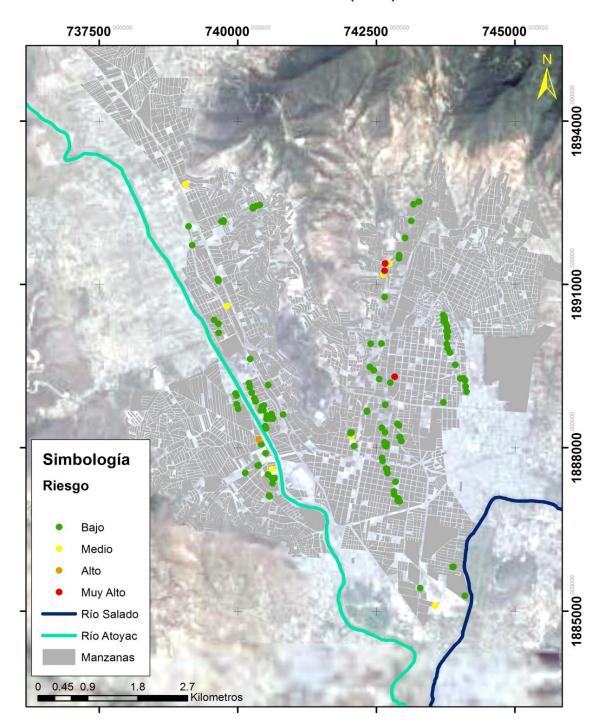


Ilustración 7.18 Mapa de riesgo por inundación, para un Tr de 5 años

Mapa de Riesgo por inundación, Cd. de Oaxaca de Juárez
Período de retorno (años) = 10
Precipitación media (mm) = 60.6
Duración de la Iluvia (min) = 120

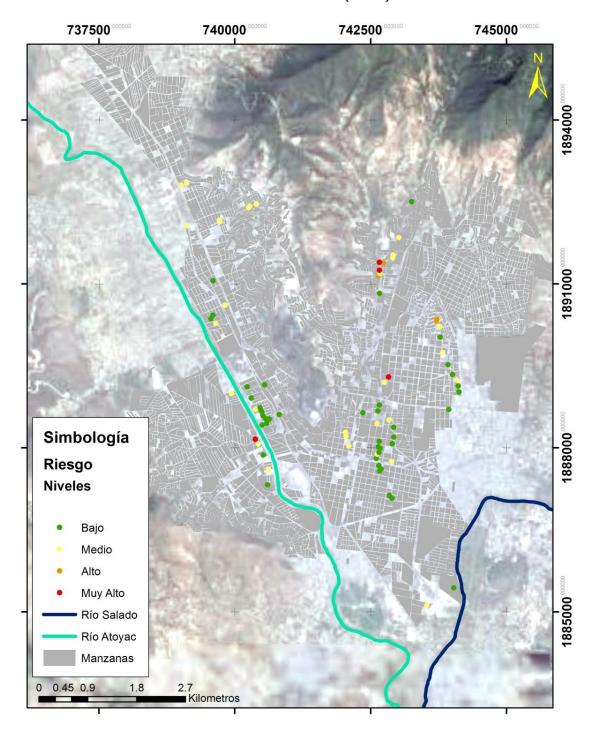


Ilustración 7.19 Mapa de riesgo para un tr de 10 años

Mapa de Riesgo por inundación, Cd. de Oaxaca de Juárez
Período de retorno (años) = 25
Precipitación media (mm) = 73.21
Duración de la Iluvia (min) = 120

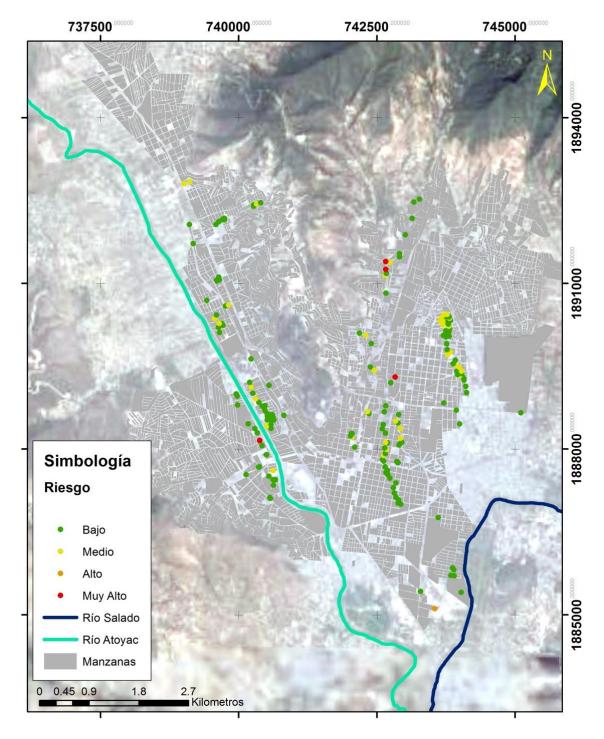


Ilustración 7.20 Mapa de riesgo para un Tr= 25 años

Mapa de Riesgo por inundación, Cd. de Oaxaca de Juárez
Período de retorno (años) = 50
Precipitación media (mm) = 82.40
Duración de la Iluvia (min) = 120

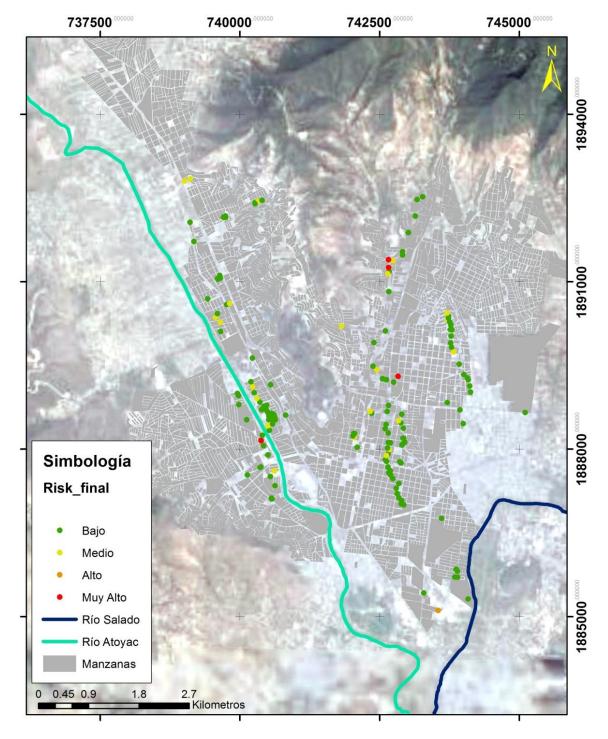


Ilustración 7.21 Mapa de riesgo para un Tr= 50 años

Mapa de Riesgo por inundación, Cd. de Oaxaca de Juárez
Período de retorno (años) = 100
Precipitación media (mm) = 91.79
Duración de la Iluvia (min) = 120

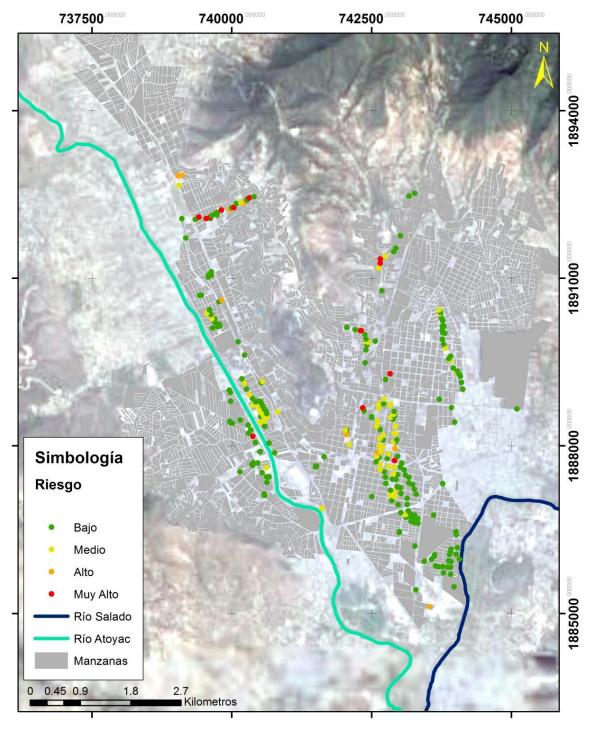


Ilustración 7.22 Mapa para un Tr= 100 años

En el anexo, se encuentran tablas, donde se identifica el nivel de riesgo de cada manzana para los diferentes periodos de estudio.

7.4 Costos generados con la modelación determinística.

Para la ejemplificación de la afectación del costo tangibles (objetos que se encuentran dentro de las viviendas) se asignó un valor promedio al menaje de las casas, para las viviendas con piso diferente de tierra un valor de \$ 400 000.00 pesos 00/100 m.n. y a las viviendas con piso de tierra de 100 000 pesos 00/100 m.n. Se realizó la evaluación en base a una escala de afectación del riesgo, multiplicada por el valor de las viviendas y el porcentaje de inundación que se encuentran dentro de las manzanas. A continuación se hace un resumen de los resultados para cada mapa de riesgo.

Tabla 7.9 Afectaciones para los diferentes escenarios de simulación

Tr (años)	Lluvia (mm)	Personas afectadas	Pob. Mayor a 60	Pob. 3 a 5	Viviendas afectadas	No. De Mza.	Costo (millones de pesos)
100	91.79	24299	2850	907	8349	323	314.38
50	82.40	16301	1987	605	5640	208	173.62
25	73.01	14214	1699	531	4960	178	108.73
10	60.60	12420	1419	477	4284	161	83.57
5	51.21	11809	1367	460	4079	147	77.18
2	38.80	8377	971	318	2967	98	39.65

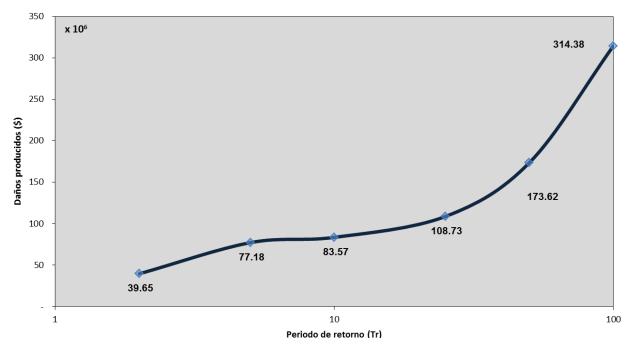


Ilustración 7.23 Costos por daños producidos para diferentes periodos de retorno

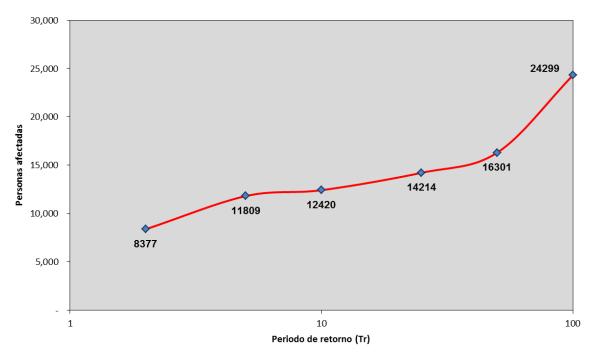


Ilustración 7.24 Costos por daños producidos vs núm. de personas afectadas

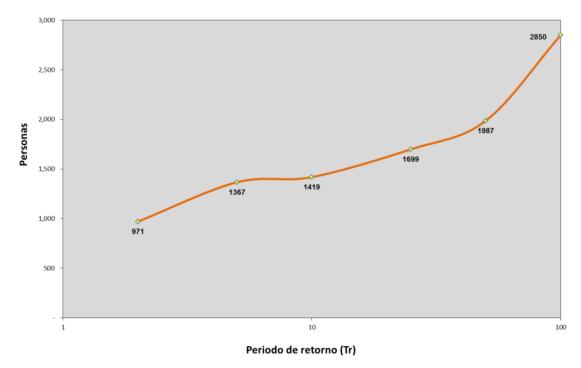


Ilustración 7.25 Población mayor a 60 años afectada para diferentes periodos de retorno

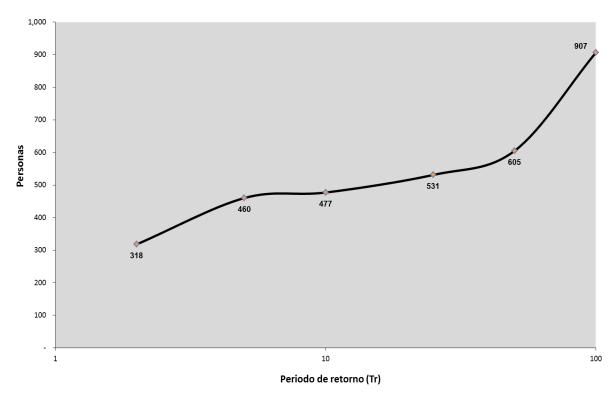


Ilustración 7.26 Población de 3 a 5 años afectada

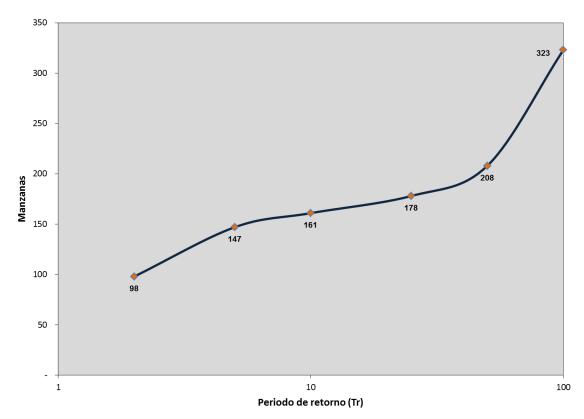


Ilustración 7.27 Numero de manzanas afectadas para diferentes periodos de retorno

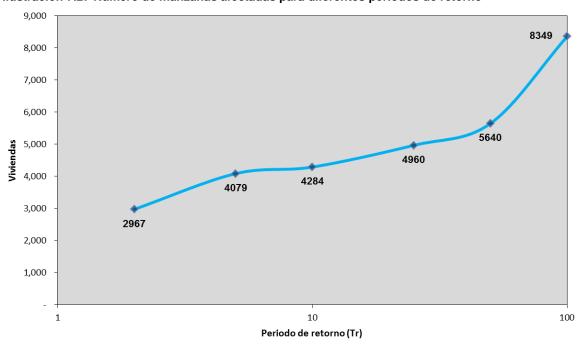


Ilustración 7.28 Periodo de retorno vs número de viviendas afectadas

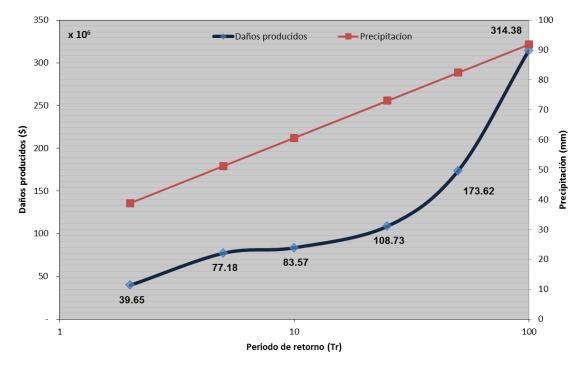


Ilustración 7.29 Periodo de retorno - Precipitación - Costo de daños producidos

7.5 Costos generados con en análisis probabilístico del riesgo.

En base a los resultados para cada escenario analizado en el modelo en dos dimensiones (periodo de retorno de 2, 5, 10, 25, 50 y 100 años), se tienen resultados de velocidad y tirante en la malla de 20 x 20 m. Con base en los resultados anteriores se asignó un daño con la Ilustración 6.8 para cada cuadro de la retícula con el programa matlab.

Se realizó una clasificación del costo tangible, referente al daño estructural de la infraestructura por vivienda, basado en la vulnerabilidad calculada (Ilustración 7.13), el resultado se presenta en la Tabla 7.10.

En las Ilustración 7.30 a la Ilustración 7.35, se presenta el porcentaje de daño por manzana para cada escenario.

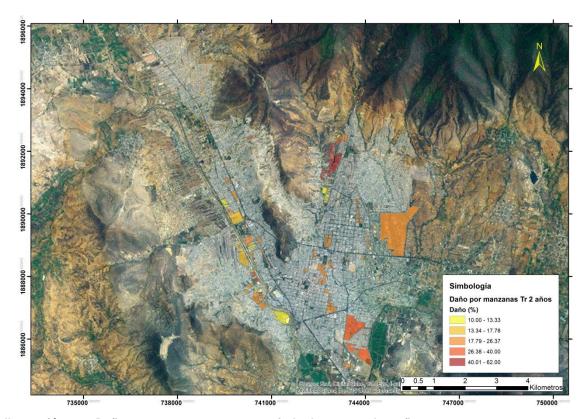


Ilustración 7.30 Daño por manzanas para un periodo de retorno de 2 años

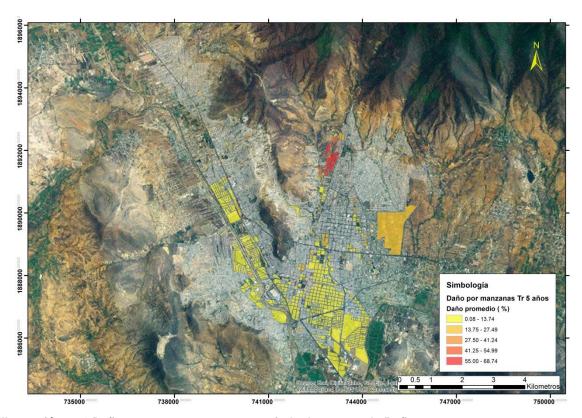


Ilustración 7.31 Daño por manzanas para un periodo de retorno de 5 años

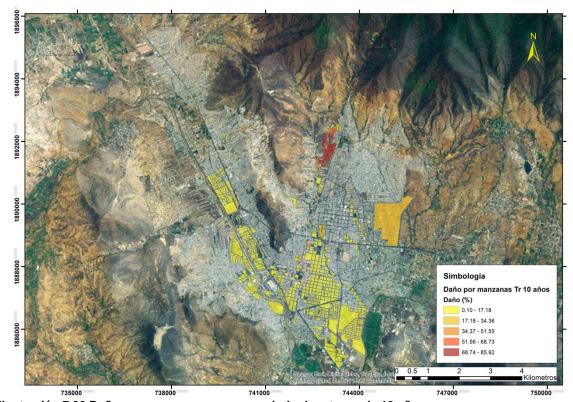


Ilustración 7.32 Daño por manzanas para un periodo de retorno de 10 años

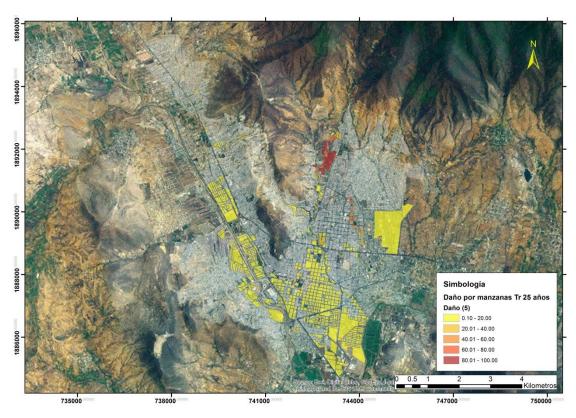


Ilustración 7.33 Daño por manzanas para un periodo de retorno de 25 años

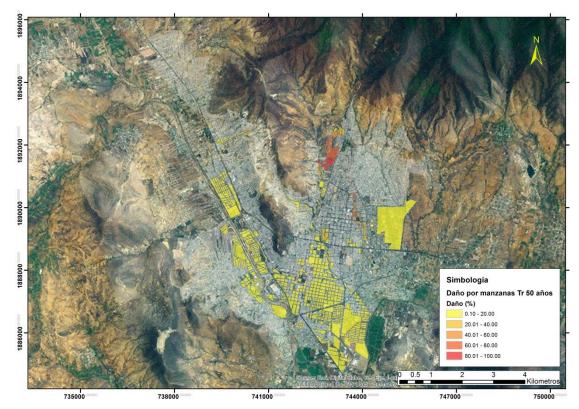


Ilustración 7.34 Daños por manzana para un periodo de retorno de 50 años

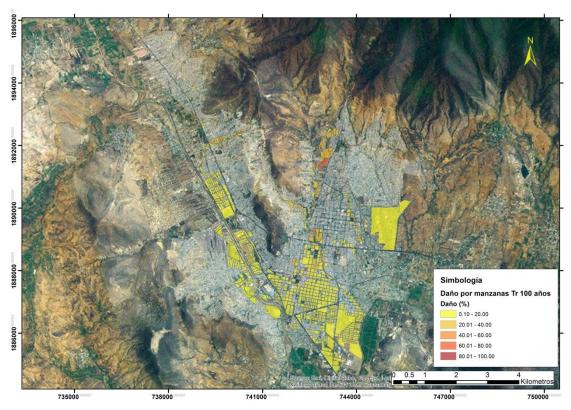


Ilustración 7.35 Daño por manzana para un periodo de retorno de 100 años

Vulnerabilidad	Costo (pesos)	
Muy baja	100,000.00	
Baja	300,000.00	
Media	600,000.00	
Alta	1,000,000.00	
Muy Alta	1,200,000.00	

Se utilizó el recurso del AGEB para conocer por manzana el número de casas que se encuentran, además de una proporción de la zona de inundación que se encuentra en la zona entre la zona total. Resultando la Ecuación 19.

$$Costo\ por\ manzana = \frac{A.\ inundaci\'on}{A.\ total\ man.}*\ da\~no*num\ de\ viviendas*\ costo\ de\ la\ casa \qquad \text{Ecuaci\'on 19}$$

Donde el daño es un valor adimensional.

Se realizaron las consideraciones pertinentes para el cálculo del costo para cada escenario, en la Tabla 7.11 se presentan por columnas los siguientes valores: (1) escenario, (2) intensidad media de la lluvia, (3) lluvia para e intervalo analizado, (4) frecuencia anual de ocurrencia, (5) frecuencia anual de ocurrencia, (6) pérdida monetario estimada y (7) la pérdida anual esperada.

Tabla 7.11 Resumen de los cálculos simplificados del riesgo

_1	2	3	4	5	6	7
i	Escenario (Tr)	Int. media (mm/h)	Frec. anual de excedencia	Frec. anual de ocurrencia (FAi)	Pérdida (pesos)	ΔΡΑΕ
1	2	19.40	0.5	0.3	110,136,536.72	33,040,961.02
2	5	25.61	0.2	0.1	288,765,996.50	28,876,599.65
3	10	30.30	0.1	0.06	360,957,495.62	21,657,449.74
4	25	36.51	0.04	0.02	579,413,251.22	11,588,265.02
5	50	41.20	0.02	0.01	590,350,330.12	5,903,503.30
6	100	45.89	0.01	0.005	882,894,236.29	4,414,471.18

Σ= 105,481,249.91

La suma de la columna 7 (la suma de la pérdida anual esperada), que equivale a \$ 105,481,249,91.91, siendo una cantidad importante que indica, si el proceso de eventos fuera dañino y estacionario de aquí a la eternidad, su costo equivaldría a pagar anualmente la suma de la columna 7.

Para el cálculo de la tasa de excedencia de la pérdida, ecuación básica del riesgo los cálculos se desarrollan en la Tabla 7.12, en la cual se dan tres valores de pérdida \$ 0.00, \$ 150y \$600 (los valores se encuentran en millones de pesos); para el cálculo de la probabilidad se toma en cuenta la siguiente consideración, la probabilidad p es igual a cero si durante el evento la pérdida no excede de este valor y en caso contrario es igual a 1.

Tabla 7.12 Cálculos para generar la curva de pérdidas.

i	Frec. anual de recurrencia (FAi)	Pérdida (pesos)	Pr (P>0)	Pr (P>0)*FAi	Pr (P>150)	Pr (P>150)*FAi	Pr (P>600)	Pr (P>600)*FAi
1	0.3	110,136,536.72	1	0.3	0	0	0	0
2	0.1	288,765,996.50	1	0.1	1	0.1	0	0
3	0.06	360,957,495.62	1	0.06	1	0.06	0	0
4	0.02	579,413,251.22	1	0.02	1	0.02	0	0
5	0.01	590,350,330.12	1	0.01	1	0.01	1	0.01
6	0.01	882,894,236.29	1	0.01	1	0.01	1	0.01
			Σ=	0.5	∑=	0.2	∑=	0.02

De la cual se presenta la siguiente curva (ver Ilustración 7.36).

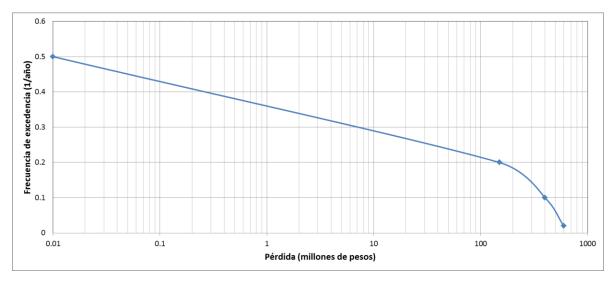


Ilustración 7.36 Curva de riesgo.

7.6 Mapas de peligro para la malla de 3 x 3.

De la zona de estudio se presentan los resultados de las simulaciones con la lluvia con periodo de retorno de 2 y 100 años.

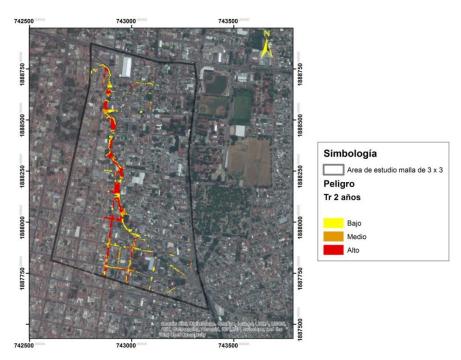


Ilustración 7.37 Mapa de peligro, malla de 3 x 3 para un Tr 100 años

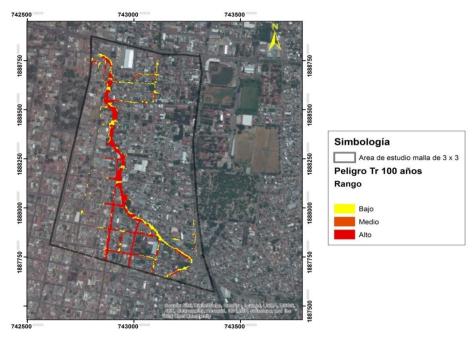


Ilustración 7.38 Mapa de peligro, malla de 3 x 3 para un Tr 100 años

Además se realizó una sección de estudio, con el fin de conocer en algunos puntos de la avenida calzada de la republica cual es el tirante y el gasto.

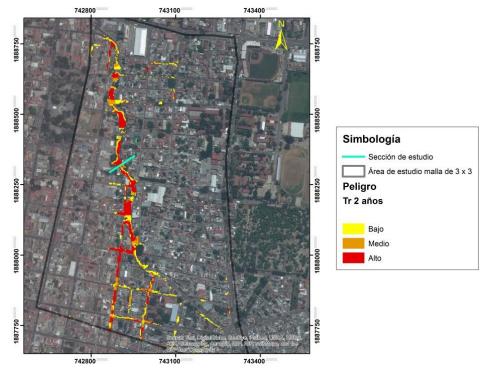
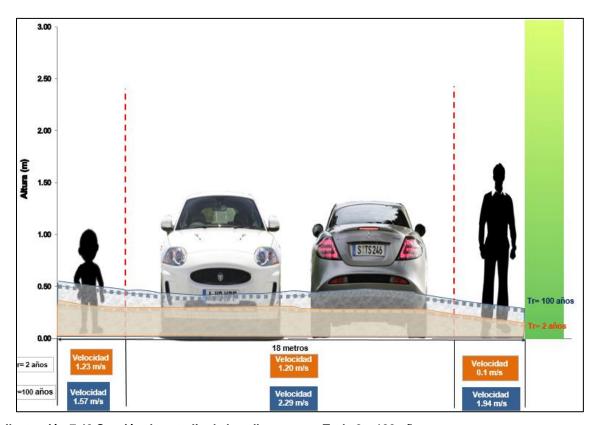
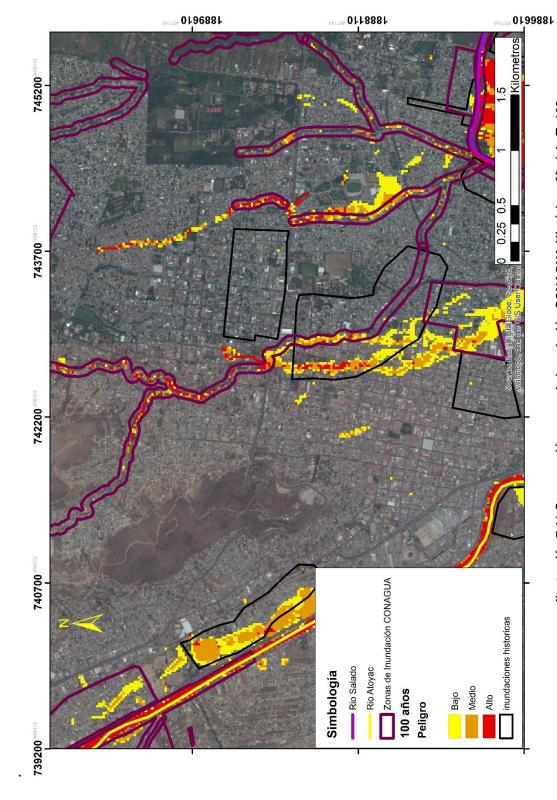


Ilustración 7.39 Sección de estudio analizada

De la malla de cálculo se obtuvieron los datos de altura de inundación y velocidad, además se compara con la altura de un niño, de una persona y de vehículos que circulan cotidianamente por esta avenida que conecta el norte de la ciudad con el sur.

La Ilustración 7.40 presenta una sección de la avenida calzada de la república para dos frecuencias de eventos que pueden presentarse, para un periodo de 2 años se tiene una velocidad en el centro del camino de 1.20 m/s y una nivel del agua de 25 cm, que complica el paso peatonal pero no presentan mayores problemas a las personas al cruzar, de la parte izquierda (donde generalmente se encuentra la banqueta para peatones) se representa la figura de un niño con una altura de 1.10m, el nivel de inundación en ese lugar es de 29 cm y presenta una velocidad de 1.23 m/s.




Ilustración 7.40 Sección de estudio de la calles para un Tr de 2 y 100 años

Para la banqueta derecha se presenta la figura de una persona adulta con altura promedio de 1.75 m, el nivel del agua que se puede presentar es de 10 cm con una velocidad de 0.1 m/s. Por lo tanto de acuerdo a los criterios de zonas urbanas de Temez (1992) y Nanía (1999) no presentan problemas mayores si alguna persona requiere cruzar de una sección a otra.

Para el periodo de retorno de 100 años en la parte central de la sección se tiene un nivel del agua de 41 cm, en esta zona pueden haber problemas con vehículos con chasis bajo, además se presenta una velocidad de hasta 2.29 m/s. En la parte izquierda el nivel de inundación llega a los 50 cm y la velocidad a 1.57 m/s que hacen para un niño una zona inestable. La zona derecha presenta un nivel de inundación de 28 cm y una velocidad de 1.94 m/s que hace que para una persona tener inestabilidad al caminar. Por lo tanto por los criterios mencionados anteriormente una persona no podrá cruzar la calle de manera segura.

7.7 Revisión de zonas de inundación

La CONAGUA realizó un catastro de las zonas donde se han producido inundaciones, generándose polígonos, los cuales se compararon con el resultado de la inundación para el periodo de retorno de 100 años y se complementó con los polígonos de inundaciones trazados con las notas de periódico. El resultado se presenta en la Ilustración 7.41.

llustración 7.41 Comparación zonas de inundación CONAGUA-Históricas-Modelo Tr 100

8 CONCLUSIONES

- En el presente trabajo, se desarrolló una metodología para la construcción de mapas de riesgo por inundación, integrados por la combinación de los mapas de peligro y vulnerabilidad. La aportación de estos mapas, radica fundamentalmente, en la consideración de una base de cálculo de carácter bidimensional, con parámetros específicos para las zonas urbanas y considerando los aspectos socioeconómicos e infraestructura de las viviendas.
- Los mapas de riesgo traen beneficios múltiples, tanto para la ciudadanía como a los órdenes de gobierno, al primero le permite conocer el grado de exposición derivado de las precipitaciones de la región y al segundo, le proporciona las herramientas para un ordenamiento territorial.
- Al realizar los mapas de peligro considerando los tres parámetros: altura de las inundaciones (h en metros), volcamiento (v*h en m²/s) y deslizamiento (v²*h en m³/s²) que considera la velocidad de arrastre del agua, se generan con detalle puntual las zonas de peligro sobre todo con pendientes pronunciadas dentro de la ciudad de Oaxaca, principalmente en la zona centro norte de la mancha urbana.
- Los mapas de vulnerabilidad fueron obtenidos a través de información contenida en los AGEB elaborados por el INEGI, que representan las características de la población (población de 3 a 5 años y mayor a 60 años) e infraestructura (viviendas sin electricidad y con piso de tierra); además éstos mapas se corroboraron con la información que toma en cuenta el nivel socioeconómico de la población por manzanas (población no económicamente activa, sin servicios de salud y con seguro popular).
- El cálculo determinístico del daño generado en la ciudad de Oaxaca se realizó para el menaje de las viviendas, donde la relación intensidad – daño se supone determinista, la razón principal de realizar esta suposición es la falta de datos (hidrológicos, hidráulicos, económicos, etc.) que se

presentan, sin embargo dan una aproximación del costo que se puede llegar a generar. El cálculo probabilístico generado fue enfocado al daño estructural de las viviendas, es la manera adecuada de evaluar el riesgo, con los resultados, se pueden tomar las medidas para casos de emergencia, reconstrucción de viviendas, planes de respuesta, etc, teniendo el inconveniente de un mayor número de datos para su ejecución.

- Bajo el análisis de los daños asociados producto del análisis y costos de daños asociados a los efectos hidrológicos, hidráulicos y ambientales, se puntualizan las siguientes conclusiones:
 - a) La ciudad de Oaxaca se encuentra expuesta a fenómenos hidrometerológicos con riesgos ligados a un periodo de retorno de cinco años, exponiendo la integridad física de los habitantes y sus bienes muebles e inmuebles.
 - b) Para un periodo de retorno de dos años, el área de afectación por inundación a las manzanas es del orden de 0.195 km² (0.77 % del área total de las manzanas) hasta 0.933 km² (3.72 % del área total de las manzanas) para un periodo de retorno de 100 años.
 - c) Al conocer las zonas vulnerables del estudio, las autoridades y personas interesadas pueden contar con valores (como el tiempo de concentración de las microcuencas, que se estima de 2 a 50 minutos), para alertar a la población en caso de presentarse lluvias atípicas.
 - d) Con el análisis realizado para los 32 meses de información (2009-2012) de la Estación Sinóptica Meteorológica (ESIME), se establece que se puede presentar hasta el 56.3 % de la lluvia total en la primera hora.
 - e) Con base en la modelación unidimensional hidráulica, establecida en condiciones ideales, se obtuvo que la red de colectores logra descargar hasta 1.373 m³/s, significando que algunas lluvias de la temporada que causan encharcamientos en la ciudad, se pueden

- atribuir a la pérdida de capacidad en la conducción influenciada por la basura y lodo que se concentran en estas calles.
- f) El diseño para colectores propuesto por la CONAGUA (GASIR, 1996) con un periodo de retorno de 5 a 10 años es insuficiente, ya que en la gráfica costo-daño realizada, se hace notar que el punto de inflexión de la curva se presenta en el periodo de retorno de 25 años, siendo este valor el que da equilibrio entre el costo por las afectaciones y el daño que se puede presentar, contribuyendo a un mejor cuidado de los bienes muebles e inmuebles de las personas. Ante esto se recomienda aplicar un periodo de Tr= 25 años en diseños posteriores.
- Las metodologías aplicadas (riesgo, peligro y vulnerabilidad) cuentan con la virtud de ser adaptables para otras zonas de estudio con problemas de inundaciones en zonas urbanas.

8.1 Trabajos futuros

- Para ampliar la información sobre los mapas de riesgo se propone realizar lo siguiente:
 - a) Continuar con las modelaciones agregando medidas estructurales y estableciendo cuál de éstas mitiga mejor las inundaciones.
 - b) Realizar un levantamiento fotogramétrico actual que incluya los municipios conurbados de la Ciudad de Oaxaca.
 - c) Realizar el levantamiento catastral de la infraestructura pluvial dentro de la ciudad de Oaxaca y de los arroyos embovedados con lo cual será posible ajustar las simulaciones realizadas en el presente trabajo.
 - d) Regionalizar la lluvia de las cuencas de los Ríos Salado y Atoyac.
 - e) Realizar estas modelaciones con otros modelos matemáticos para comparar los resultados.

- Incluir en los proyectos de desarrollo estatal, la rehabilitación y restauración de los sistemas de redes pluviales a través de la Gestión Patrimonial de Infraestructuras que permita una sustentabilidad económica.
- Crear mapas de evacuación en caso de inundación para la ciudad de Oaxaca de Juárez, generando las rutas óptimas para protección de la ciudadanía.
- Fijar criterios en México ante peligro de inundaciones en zonas urbanas, mediante modelos experimentales para calcular las velocidades máximas permisibles, alturas de inundación y deslizamiento.
- Crear un centro de alto rendimiento computacional que contengan software y hardware especializado que permitan al investigador y estudiante realizar consultas, simulaciones, mejoramiento en el procesamiento de datos, tiempo de simulación de los modelos unidimensionales y bidimensionales de la rama de la hidráulica.

9 BIBLIOGRAFÍA

- Alcocer-Yamanaka V. (2011). Construcción de mapas de riesgo e inundaciones en la región del Soconusco. Tercer Seminario de Potamología-José Antonio Álvarez, Tuxtla Gutiérrez, Chiapas, 23 al 25 de Agosto.
- Alcocer-Yamanaka, V. Rodríguez, J., Albornoz, P., Maldonado, S., Lopez, J., Alonso, J. (2012). *Manejo de las Aguas Pluviales de la Ciudad de Chetumal, Quintana Roo*. Agua en Quintana Roo, Núm. 4, Julio-Septiembre 2012 pp. 9-14
- Aparicio, J. (2010). Fundamentos de Hidrología de superficie. *Fundamentos de Hidrología de superficie*. Editorial Limusa, Mexico D.F: pp 280-300
- Bell, F. (1969). *Generalized rainfall-duration-frecuency relationships*. Journal of Hydraulic Division, ASCE, Vol. 95, Num 1, pp. 311-327.
- Bertoni, J. (2013). Mapa de Riesgo de inundación, Criterios para la elaboración de cartografía de riesgos de origen hídrico, adaptados a LAC. *III Reunión del Grupo de Aguas urbanas para America Latina y el Caribe.* Buenos Aires, Argentina: UNESCO.
- Campos-Aranda-Aranda, F. (2010). *Introducción a la Hidrología Urbana*. UASLP-Facultad de Ingeniería ,San Luis Potosí, pp 5-30.
- Campos-Aranda, F. (1998). Procesos del ciclo hidrologico. UASLP-Facultad de Ingeniería, San Luis Potosí.
- CENAPRED. (2004). Guía Básica para la elaboración de Atlas estatales y Municipales de Peligros y Riesgos. Centro Nacional de Prevencion de Desastres, México D.F. pp 380-390.
- CENAPRED. (2007). Inundaciones. *Series de Fascículos*, Centro Nacional de Prevención de Desastres, México D.F. pp. 3-32

- CENAPRED. (2011). Diagnóstico de Peligros e Identificación de Prevención de Desastres. Centro Nacional de Prevención de Desastres. México D.F.
- CENAPRED. (2013). Elaboración de mapas de peligro, vulnerabilidad y riesgo por inundaciones, empleando como herramienta un modelo bidimensional, caso de aplicación: Poza Rica de Hidalgo, Veracruz. Recuperado el 20 de Agosto de 2013, de Instituto de Ingeniería de la UNAM: http://www.iingen.unam.mx/esmx/BancoDeInformacion/MemoriasdeEventos/RiesgoporInundaciones/01_Lunes/MAPASDEPELIGRO.pdf
- Cervantes, C. (2012). Generación de mapas de riesgo inundación mediante modelaciones 2D. Tesis de Maestría, Facultad de Ingenieria, Universidad Nacional Autónoma de México, Campus Morelos, Jiutepec, Morelos.
- CHI. (2013). *About CHI*. Recuperado el Julio de 2 de 2013, de Computational Hydraulics International : http://www.chiwater.com/Company/AboutCHI.asp
- Chow V., Maidment D. y Marrys L. (1964) *Handbook of Applied Hidrology*. Mc Graw-Hill, New York, 1964
- Clark, G., S., M., Ratick, S., K., D., Meyer, W., Emani, S., y otros. (1998). Assesing the vulnerability of coastal communities to extreme storms: The casa or revere. Mitigation and Adaptation Strategies for Global Change, MA, USA. pp. 59-82
- CMM. (2011). Hacia el programa de Acción ante el Cambio Climático de Oaxaca:

 Aportes técnicos y recomendaciones de Acciones tempranas. Centro

 Mario Molina, No. De proyecto 1602OL88, Oaxaca 2011
- CNT. (2010). The value of green infrastructure, a guide to recognizing its economic, environmental and social benefits. Recuperado el 10 de Marzo de 2013, de Alliance for water efficiency: http://www.allianceforwaterefficiency.org/uploadedFiles/Resource_Center/Li

- brary/Green_building/CNT-AmR-The-Value-of-Green-Infrastructure-2010.pdf
- CONAGUA (2007) Manual de Agua Potable, Alcantarillado, Saneamiento, Alcantarillado Pluvial, Secretaría de Medio Ambiente y Recursos Naturales, Mexico D.F. Pp 200-205
- CONAGUA (2011). *Manual para el control de inundaciones*. Secretaria de Medio Ambiente y Recursos Naturales , México D.F. pp
- CONAGUA. (2012). Atlas digital del agua México 2012. Recuperado el 25 de 06 de 2013, de http://www.conagua.gob.mx/atlas/index.html
- Duran, E., Gopar, F., Velazquez, A., Lopez, F., Larrazabal, A., & Medina, C. (Noviembre de 2007). Centro de Investigaciones en Geografica Ambiental. Recuperado el 15 de 05 de 2013, de http://www.ciga.unam.mx/investigadores/zacatuche/PDF/617Abstracs%20 en%20memorias%20de%20congresos%20(resumenes)/6171Nacionales/6 171-8.pdf
- EPD (2007). *On the assessment and managment of flood risks*. Official Journal of the European Union, European Parliament and of the Council. pp. 27-34
- EXCIMAP. (2007). European Commission . Recuperado el 20 de Febrero de 2013, de Handbook on good practices for flood mapping in Europe: http://ec.europa.eu/environment/water/flood_risk/flood_atlas/pdf/handbook _goodpractice.pdf
- FEMA. (2009). Federal Emergency Management Agency. Recuperado el 2010 de Abril de 01, de Federal Emergency Management Agency: http://www.fema.gov/library/viewRecord.do?id=3587
- FLO-2d. (2007). FLO-2d Software. Recuperado el 12 de 7 de 2013, de http://www.flo-2d.com/

- GASIR. (1996). Norma Hidrológica que recomienda periodos de retorno para diversas obras hidráulicas. Comision Nacional del Agua, México D.F.
- Gleason J. (2008) *Urban Drainage System of Metropolitan Zone of Guadalajara: Problems and Proposals*, 11th international conference on urban drainage,

 Edinburgh, Scotland, August- September, 2008.
- Huber, W., & R., D. (1998). Storm Water Management model SWMM. Georgia: US Eviromental Protection Agency
- INEGI. (2012). Simulador de cuencas hidrográficas, Insituto Nacional de Geografica Informatica .
- INEGI. (2013). Censos y conteos de población y vivienda. Recuperado el 20 de Enero de 2013, de www.censo2010.org.mx/
- Kikuchi, R. (2003). Flood Hazard Map manual for technology transfer. International Training Program on Total Disaster Risk Management, Kobe, Japan. 10-13 Junio. pp. 159-165.
- König, A., Sægrov, S., & Schilling, S. (2002). Damage Assessment for Urban Flooding. Global Solutions for Urban Drainage, American Society of Civil Engineers, pp. 1-11.
- LAWA. (2006). Flood hazard map guidelines of the german working group of the federal states on water issues. Recuperado el 10 de Agosto del 2013, de: http://www.lawa.de/documents/Flood-Hazard-Map-Guidelines_ea8.pdf
- Loat, R., & Petrascheck, A. (1997). Prise en compte des dangers dus aux crues dans la cadre des activités de l'aménagement du territoire, Dangers Naturels. Bienne: Ofiice Fédéral de l'Economie des Eaux (OFEE). En O. F. Ofiice Féderal de l'Economie des Eaux.

- Lopez, J. (2013). *Manejo integral del agua pluvial en Tuxtla Gutierrez, Chiapas*.

 Tesis de Maestría, Universidad Nacional Autónoma de México, Facultad de Ingeniería, Campus Morelos, Jiutepec, Morelos.
- Mark, O., Weesakul, S., Chusit, A., Surajate, B., & Slobodan, D. (2004). *Potential and limitations of 1D modelling of urban flooding*. Journal of hidrology, Vol. 299, No. 3-4, pp 284-299.
- Mas, J., Velázquez, A., & Courturier, S. (2009). Evaluación de los cambios de la cobertura/ uso del suelo en la Republica Mexicana. Investigacion Ambiental, México D.F. pp. 23-39.
- Maza, J., & Franco, V. (1993). Obras de protección para control de inundaciones.

 Comisión Nacional del Agua, Manual de Ingeniería de Ríos, cap. 15, México

 D.F.
- Nanía, L. (1999). *Metodología Numérico Experimental para el análisis del riesgo* asociado a la escorrentia pluvial en una red de calles. Universidad Polytecnica de Catalunya, Tesis Doctoral, Barcelona.
- Nanía, L., & Gomez, M. (2006). Análisis de la peligrosidad de la escorrentía pluvial en la zona utilizando un enfoque numérico-experimental. Ingeniería Hidráulica en México, Vol. 21, Num. 2. México D.F. pp.5-17
- NSW (2005) Floodplain development manual, the management of flood liable land, News South Wales Government, Department of infrastructure, Planning and Natural Resources, Australia.
- O'Brien, J., & Jorgensen. (2007). Flo-2d Users Manuals, Version 2007.06. Az: USA.
- Ordaz, M. (2011). Estimación del Riesgo en Presas. México D.F.
- Quadratin. (2012). 800 toneladas por día, promedio de basura producida en la ciudad de Oaxaca. Recuperado el 2013 de Junio de 10

- RAE. (2010). *Diccionario de la lengua española*. Recuperado el 15 de Febrero de 2013, de http://lema.rae.es/drae/?val=costo
- Ribera, L. (2004). Los mapas de riesgo de inundaciones, representacion de la vulnerabilidad y aportación de las innovaciones tecnológicas. Documents d' Analisi Geografica Num. 43. Girona pp.153-171.
- Rockefeller, F. (2011). Water works rebuilding infrastructure creating jobs greening the environment. *Green For All*, pp. 5-29
- Salas, M. (1999). Obras de protección contra inundaciones. Cuadernos de investigación, Centro Nacional de Prevención de Desastres, Num. 49. Agosto, 1999.Instituto de Ingeniería de la UNAM pp. 7-67.
- Salas, M. (2011). *Metodología para la creación de mapas de riesgo por inundaciones urbanas.* Series: Atlas Nacional de Riesgos, Centro Nacional de Prevención de Desastres, México D.F.
- Salas, M., & Jimenes, M. (2004). *Inundaciones*, Series de Fascículos. Centro Nacional de Prevención de Desastres, México D.F.
- SEDESOL (2013). Lineamientos para la identificación de personas u hogares en situación de pobreza. Secretaria De Desarrollo Social, Abril, 2013.
- SEMARNAT. (2012). Secretaría de Medio Ambiente y Recursos Naturales.

 Recuperado el 12 de Julio de 2013, de http://app1.semarnat.gob.mx/dgeia/informe_resumen/pdf/2_info_resumen.p
- SIAPA (2009). Programa de manejo integral de aguas pluviales de la zona metropolitana de Guadalajara. Sistema Intermunicipal para los servicios de agua potable y Alcantarillado, Mayo 2011.
- TELEMAC-MASCARET, O. (2013). *Presentation.* Recuperado el 12 de 05 de 2013, de http://www.opentelemac.org/index.php/presentation?id=17

- Temez, J. (1991). Extended and improved rational method. Version of the highway administration of Spain. XXIV Congreso Internacional de International Association of Hyfrological Resources. Madrid
- Témez, P. (1992). Control del desarrollo urbano en zonas inundables. Inundaciones y redes de drenaje urbano, Monografías del Colegios de Ingenieros de Caminos, Canales, Puertos, Madrid. pp 105-115.
- Torres, A. (2004). *Apuntes de clase sobre Hidrología Urbana*. Pontificia Universidad Javeriana, Bogota.
- UNESCO. (1979). *Glosario de Terminología de Hidrología*. Recuperado el 2013 de Mayo de 5, de United Nations Educational, Scientific and Cultural Organization: http://webworld.unesco.org/
- UNESCO-WMO. (2012). Glosario Hidrológico Internacional. World Meterological Organization, Genova.
- Vásquez, R. (2009). Visión retrospectiva sobre el cambio climático: el alcantarillado de Barcelona. *Revista de Obras Publicas*, Barceolona. pp. 7-22
- Weiss, B., Blainke, P., Cannon, T., & Davis, I. (1958). Precipitation gage shields.
 No. 43 of International Association of Scientific Hidrology, General Assembly of Toronto. Gentbrugge, Belgium.
- Wise, S. (Septiembre de 2008). *Mayors innovation project*. Recuperado el 2 de Mayo de 2013, de http://mayorsinnovation.org/pdf/briefing_book_0110/3GreenInfrastructureRis ing.pdf
- Wisner, B., Blainke, P., Cannon, T., & Davis, I. (2003). At risk: natural hazards, people's vulnerability and disasters, de prevention web, recuperado el 2 de Julio del 2013 de http://www.preventionweb.net/files/670_72351.pdf.

XP_Solutions. (2011). xp2d. Recuperado el 26 de 8 de 2013, de http://www.xpsolutions.com/software/xp2d/

10 ANEXO A

En las tablas que a continuación se presentan, se desglosa resultado del nivel de riesgo por manzana.

Tabla 10.1 Riesgo por manzana para un Tr de 2 años

Periodo de retorno de 2 años								
Núm.	Nombre	AGEB	Mza.	Riesgo				
1	man724	012A	004	Bajo				
2	man4758	012A	034	Bajo				
3	man767	012A	053	Bajo				
4	man751	012A	054	Bajo				
5	man4677	0204	009	Bajo				
6	man4674	0204	010	Bajo				
7	man4709	0204	038	Bajo				
8	man991	0505	041	Medio				
9	man979	0505	042	Muy Alto				
10	man1018	0505	044	Bajo				
11	man1002	0505	059	Bajo				
12	man933	0524	019	Bajo				
13	man895	0524	021	Bajo				
14	man842	0543	004	Bajo				
15	man4844	0543	007	Bajo				
16	man1183	0562	005	Bajo				
17	man1176	0562	019	Bajo				
18	man1171	0562	020	Bajo				
19	man1179	0562	044	Bajo				
20	man1128	0577	030	Bajo				
21	man1116	0577	033	Bajo				
22	man1105	0577	034	Bajo				
23	man1135	0581	014	Bajo				
24	man1160	0581	027	Bajo				
25	man1172	0581	036	Bajo				
26	man1940	0632	026	Bajo				
27	man1942	0632	030	Bajo				

Periodo de retorno de 2 años						
Núm.	Nombre	AGEB	Mza.	Riesgo		
28	man1907	0632	050	Bajo		
29	man2011	0789	029	Bajo		
30	man1964	0793	012	Bajo		
31	man1970	0793	013	Bajo		
32	man1987	0793	015	Medio		
33	man1957	0793	018	Bajo		
34	man1958	0793	019	Bajo		
35	man1956	0793	020	Bajo		
36	man1952	0793	054	Bajo		
37	man559	0825	005	Bajo		
38	man562	0825	006	Bajo		
39	man614	0825	009	Bajo		
40	man560	0825	017	Bajo		
41	man604	0844	010	Bajo		
42	man617	0844	020	Bajo		
43	man603	0859	018	Bajo		
44	man776	0859	027	Bajo		
45	man772	0859	028	Bajo		
46	man781	0859	029	Bajo		
47	man4807	0882	013	Bajo		
48	man2981	0882	026	Bajo		
49	man2954	0882	033	Bajo		
50	man4781	0897	006	Bajo		
51	man4744	0897	010	Bajo		
52	man4723	0897	019	Bajo		
53	man4555	0933	020	Medio		
54	man4053	0971	015	Bajo		
55	man4069	0971	017	Bajo		
56	man2600	1005	007	Bajo		
57	man2049	1043	072	Bajo		
58	man995	1062	030	Muy Alto		
59	man975	1062	031	Medio		
60	man3720	1170	045	Medio		
61	man3727	1170	064	Bajo		
62	man3085	1274	056	Bajo		

Periodo de retorno de 2 años							
Núm.	Nombre	AGEB	Mza.	Riesgo			
63	man3093	1274	079	Bajo			
64	man1015	1448	028	Bajo			
65	man2194	1452	024	Bajo			
66	man2281	1452	062	Bajo			
67	man2645	1486	028	Medio			
68	man2628	1486	031	Bajo			
69	man2641	1486	032	Bajo			
70	man2636	1486	034	Bajo			
71	man3437	1490	006	Bajo			
72	man22	1490	017	Bajo			
73	man55	1490	020	Bajo			
74	man77	1490	024	Alto			
75	man41	1490	025	Bajo			
76	man3438	1490	031	Bajo			
77	man1061	1560	011	Bajo			
78	man1083	1560	013	Bajo			
79	man1064	1560	020	Bajo			
80	man385	158A	026	Bajo			
81	man378	158A	027	Bajo			
82	man375	158A	028	Bajo			
83	man372	158A	029	Bajo			
84	man371	158A	030	Bajo			
85	man369	1594	026	Bajo			
86	man1082	1772	006	Bajo			
87		1772	007	Bajo			
88		1791	004	Bajo			
89		1791	014	Bajo			
90		1791	015	Bajo			
91		1791	033	Bajo			
92		2253	036	Bajo			

Tabla 10.2 Riesgo por manzana para un Tr de 5 años

sgo por	Riesgo para un periodo de retorno de 5 años					
Núm.	Nombre	NOM_MUN	AGEB	MZA	Riesgo	
1	man3720	Oaxaca de Juárez	1170	045	Medio	
2	man2194	Oaxaca de Juárez	1452	024	Bajo	
3	man3727	Oaxaca de Juárez	1170	064	Bajo	
4	man2198	Oaxaca de Juárez	1452	013	Bajo	
5	man2193	Oaxaca de Juárez	1452	014	Bajo	
6	man2281	Oaxaca de Juárez	1452	062	Bajo	
7	man2600	Oaxaca de Juárez	1005	007	Bajo	
8	man4041	Oaxaca de Juárez	0971	025	Bajo	
9	man4043	Oaxaca de Juárez	0971	030	Bajo	
10	man4053	Oaxaca de Juárez	0971	015	Bajo	
11	man2628	Oaxaca de Juárez	1486	031	Bajo	
12	man2636	Oaxaca de Juárez	1486	034	Bajo	
13	man4057	Oaxaca de Juárez	0971	016	Bajo	
14	man4069	Oaxaca de Juárez	0971	017	Bajo	
15	man2641	Oaxaca de Juárez	1486	032	Bajo	
16	man4094	Oaxaca de Juárez	0971	019	Bajo	
17	man2639	Oaxaca de Juárez	1486	026	Bajo	
18	man2640	Oaxaca de Juárez	1486	025	Bajo	
19	man2646	Oaxaca de Juárez	1486	033	Bajo	
20	man4112	Oaxaca de Juárez	0967	026	Bajo	
21	man3412	Oaxaca de Juárez	1490	012	Bajo	
22	man2645	Oaxaca de Juárez	1486	028	Medio	
23	man4126	Oaxaca de Juárez	0204	028	Bajo	
24	man4130	Oaxaca de Juárez	0204	011	Bajo	
25	man3437	Oaxaca de Juárez	1490	006	Bajo	
26	man3438	Oaxaca de Juárez	1490	031	Bajo	
27	man4674	Oaxaca de Juárez	0204	010	Bajo	
28	man4677	Oaxaca de Juárez	0204	009	Bajo	
29	man22	Oaxaca de Juárez	1490	017	Bajo	
30	man41	Oaxaca de Juárez	1490	025	Bajo	
31	man4537	Oaxaca de Juárez	0933	011	Bajo	
32	man4709	Oaxaca de Juárez	0204	038	Bajo	
33	man4539	Oaxaca de Juárez	0933	002	Bajo	
34	man4710	Oaxaca de Juárez	0204	037	Bajo	

	Riesgo	para un periodo de r	etorno d	de 5 año	os
Núm.	Nombre	NOM_MUN	AGEB	MZA	Riesgo
35	man55	Oaxaca de Juárez	1490	020	Bajo
36	man4723	Oaxaca de Juárez	0897	019	Bajo
37	man4725	Oaxaca de Juárez	0897	011	Bajo
38	man4719	Oaxaca de Juárez	1537	017	Bajo
39	man4735	Oaxaca de Juárez	0897	027	Bajo
40	man77	Oaxaca de Juárez	1490	024	Alto
41	man4732	Oaxaca de Juárez	0897	026	Bajo
42	man4734	Oaxaca de Juárez	0897	024	Bajo
43	man4555	Oaxaca de Juárez	0933	020	Medio
44	man4558	Oaxaca de Juárez	0933	019	Bajo
45	man4565	Oaxaca de Juárez	0929	037	Bajo
46	man4566	Oaxaca de Juárez	0929	038	Bajo
47	man4744	Oaxaca de Juárez	0897	010	Bajo
48	man1905	Oaxaca de Juárez	0632	029	Bajo
49	man4745	Oaxaca de Juárez	0897	003	Bajo
50	man1907	Oaxaca de Juárez	0632	050	Bajo
51	man4750	Oaxaca de Juárez	1522	026	Bajo
52	man4748	Oaxaca de Juárez	0897	021	Bajo
53	man4756	Oaxaca de Juárez	0897	022	Bajo
54	man1913	Oaxaca de Juárez	0632	025	Bajo
55	man1914	Oaxaca de Juárez	0632	022	Bajo
56	man1915	Oaxaca de Juárez	0632	017	Bajo
57	man1918	Oaxaca de Juárez	0632	016	Bajo
58	man1920	Oaxaca de Juárez	0632	010	Bajo
59	man1936	Oaxaca de Juárez	0613	015	Bajo
60	man1922	Oaxaca de Juárez	0632	009	Bajo
61	man4781	Oaxaca de Juárez	0897	006	Bajo
62	man4807	Oaxaca de Juárez	0882	013	Bajo
63	man1928	Oaxaca de Juárez	0632	005	Bajo
64	man1925	Oaxaca de Juárez	0632	001	Bajo
65	man205	Oaxaca de Juárez	1791	015	Bajo
66	man1927	Oaxaca de Juárez	0632	006	Bajo
67	man1930	Oaxaca de Juárez	0632	011	Bajo
68	man1931	Oaxaca de Juárez	0632	012	Bajo
69	man4805	Oaxaca de Juárez	0882	003	Bajo

	Riesgo	para un periodo de r	etorno d	le 5 año	os
Núm.	Nombre	NOM_MUN	AGEB	MZA	Riesgo
70	man216	Oaxaca de Juárez	1791	014	Bajo
71	man724	Oaxaca de Juárez	012A	004	Bajo
72	man1935	Oaxaca de Juárez	0632	019	Bajo
73	man1940	Oaxaca de Juárez	0632	026	Bajo
74	man230	Oaxaca de Juárez	1791	004	Bajo
75	man237	Oaxaca de Juárez	1791	033	Bajo
76	man1942	Oaxaca de Juárez	0632	030	Bajo
77	man751	Oaxaca de Juárez	012A	054	Bajo
78	man1944	Oaxaca de Juárez	0632	035	Bajo
79	man767	Oaxaca de Juárez	012A	053	Bajo
80	man4350	Oaxaca de Juárez	0613	029	Bajo
81	man1946	Oaxaca de Juárez	0793	039	Bajo
82	man562	Oaxaca de Juárez	0825	006	Bajo
83	man772	Oaxaca de Juárez	0859	028	Bajo
84	man2954	Oaxaca de Juárez	0882	033	Bajo
85	man781	Oaxaca de Juárez	0859	029	Bajo
86	man776	Oaxaca de Juárez	0859	027	Bajo
87	man559	Oaxaca de Juárez	0825	005	Muy Alto
88	man614	Oaxaca de Juárez	0825	009	Bajo
89	man2981	Oaxaca de Juárez	0882	026	Bajo
90	man4830	Oaxaca de Juárez	0859	005	Bajo
91	man1952	Oaxaca de Juárez	0793	054	Bajo
92	man603	Oaxaca de Juárez	0859	018	Bajo
93	man1956	Oaxaca de Juárez	0793	020	Bajo
94	man604	Oaxaca de Juárez	0844	010	Bajo
95	man617	Oaxaca de Juárez	0844	020	Bajo
96	man842	Oaxaca de Juárez	0543	004	Bajo
97	man4845	Oaxaca de Juárez	0543	800	Bajo
98	man1105	Oaxaca de Juárez	0577	034	Bajo
99	man1116	Oaxaca de Juárez	0577	033	Bajo
100	man1958	Oaxaca de Juárez	0793	019	Bajo
101	man1957	Oaxaca de Juárez	0793	018	Bajo
102	man1135	Oaxaca de Juárez	0581	014	Bajo
103	man1128	Oaxaca de Juárez	0577	030	Bajo
104	man1154	Oaxaca de Juárez	0581	015	Bajo

	Riesgo	para un periodo de r	etorno d	de 5 año	os
Núm.	Nombre	NOM_MUN	AGEB	MZA	Riesgo
105	man3085	Oaxaca de Juárez	1274	056	Bajo
106	man1964	Oaxaca de Juárez	0793	012	Bajo
107	man1160	Oaxaca de Juárez	0581	027	Bajo
108	man895	Oaxaca de Juárez	0524	021	Bajo
109	man1159	Oaxaca de Juárez	0577	022	Bajo
110	man1172	Oaxaca de Juárez	0581	036	Bajo
111	man1970	Oaxaca de Juárez	0793	013	Bajo
112	man1171	Oaxaca de Juárez	0562	020	Bajo
113	man1176	Oaxaca de Juárez	0562	019	Bajo
114	man1179	Oaxaca de Juárez	0562	044	Bajo
115	man1183	Oaxaca de Juárez	0562	005	Bajo
116	man1184	Oaxaca de Juárez	0562	004	Bajo
117	man1987	Oaxaca de Juárez	0793	015	Medio
118	man933	Oaxaca de Juárez	0524	019	Bajo
119	man2007	Oaxaca de Juárez	0789	030	Bajo
120	man2011	Oaxaca de Juárez	0789	029	Bajo
121	man975	Oaxaca de Juárez	1062	031	Medio
122	man979	Oaxaca de Juárez	0505	042	Muy Alto
123	man991	Oaxaca de Juárez	0505	041	Medio
124	man995	Oaxaca de Juárez	1062	030	Muy Alto
125	man1002	Oaxaca de Juárez	0505	059	Bajo
126	man1000	Oaxaca de Juárez	0505	056	Bajo
127	man1015	Oaxaca de Juárez	1448	028	Bajo
128	man1018	Oaxaca de Juárez	0505	044	Bajo
129	man2044	Oaxaca de Juárez	1043	073	Bajo
130	man1064	Oaxaca de Juárez	1560	020	Bajo
131	man2049	Oaxaca de Juárez	1043	072	Bajo
132	man346	Oaxaca de Juárez	2022	030	Bajo
133	man354	Oaxaca de Juárez	0717	017	Bajo
134	man1061	Oaxaca de Juárez	1560	011	Bajo
135	man356	Oaxaca de Juárez	0717	005	Bajo
136		Oaxaca de Juárez	1772	007	Bajo
137	man369	Oaxaca de Juárez	1594	026	Bajo
138	man3605	Oaxaca de Juárez	2253	036	Bajo
139	man371	Oaxaca de Juárez	158A	030	Bajo

	Riesgo para un periodo de retorno de 5 años							
Núm.	Nombre	NOM_MUN	AGEB	MZA	Riesgo			
140	man372	Oaxaca de Juárez	158A	029	Bajo			
141	man375	Oaxaca de Juárez	158A	028	Bajo			
142	man3609	Oaxaca de Juárez	2253	020	Bajo			
143	man385	Oaxaca de Juárez	158A	026	Bajo			
144	man378	Oaxaca de Juárez	158A	027	Bajo			
145	man1082	Oaxaca de Juárez	1772	006	Bajo			
146	man1083	Oaxaca de Juárez	1560	013	Bajo			
147	man472	Oaxaca de Juárez	0702	031	Medio			

Tabla 10.3 Riesgo por manzana para un Tr de 10 años

	Periodo de retorno de 10 años							
Núm.	Nombre	Nom_Loc	AGEB	Mza	Riesgo			
1	man3720	Oaxaca de Juárez	1170	045	Medio			
2	man2194	Oaxaca de Juárez	1452	024	Bajo			
3	man2189	Oaxaca de Juárez	1452	031	Bajo			
4	man2190	Oaxaca de Juárez	1452	032	Bajo			
5	man2198	Oaxaca de Juárez	1452	013	Bajo			
6	man2193	Oaxaca de Juárez	1452	014	Bajo			
7	man2202	Oaxaca de Juárez	1452	039	Bajo			
8	man2281	Oaxaca de Juárez	1452	062	Bajo			
9	man2600	Oaxaca de Juárez	1005	007	Bajo			
10	man2291	Oaxaca de Juárez	0986	028	Bajo			
11	man4041	Oaxaca de Juárez	0971	025	Bajo			
12	man4043	Oaxaca de Juárez	0971	030	Bajo			
13	man4053	Oaxaca de Juárez	0971	015	Bajo			
14	man4057	Oaxaca de Juárez	0971	016	Bajo			
15	man4069	Oaxaca de Juárez	0971	017	Bajo			
16	man4087	Oaxaca de Juárez	0971	028	Bajo			
17	man2641	Oaxaca de Juárez	1486	032	Bajo			
18	man4094	Oaxaca de Juárez	0971	019	Bajo			
19	man4098	Oaxaca de Juárez	0971	029	Bajo			
20	man2646	Oaxaca de Juárez	1486	033	Bajo			
21	man4112	Oaxaca de Juárez	0967	026	Bajo			
22	man3412	Oaxaca de Juárez	1490	012	Bajo			
23	man4115	Oaxaca de Juárez	0204	012	Bajo			

	Periodo de retorno de 10 años					
Núm.	Nombre	Nom_Loc	AGEB	Mza	Riesgo	
24	man2645	Oaxaca de Juárez	1486	028	Medio	
25	man4126	Oaxaca de Juárez	0204	028	Bajo	
26	man3437	Oaxaca de Juárez	1490	006	Bajo	
27	man4130	Oaxaca de Juárez	0204	011	Bajo	
28	man3438	Oaxaca de Juárez	1490	031	Bajo	
29	man4671	Oaxaca de Juárez	0967	014	Bajo	
30	man4672	Oaxaca de Juárez	0204	027	Bajo	
31	man4674	Oaxaca de Juárez	0204	010	Bajo	
32	man4677	Oaxaca de Juárez	0204	009	Bajo	
33	man22	Oaxaca de Juárez	1490	017	Bajo	
34	man4696	Oaxaca de Juárez	0204	024	Medio	
35	man4692	Oaxaca de Juárez	0204	025	Bajo	
36	man4709	Oaxaca de Juárez	0204	038	Bajo	
37	man41	Oaxaca de Juárez	1490	025	Bajo	
38	man4710	Oaxaca de Juárez	0204	037	Bajo	
39	man4537	Oaxaca de Juárez	0933	011	Bajo	
40	man4539	Oaxaca de Juárez	0933	002	Bajo	
41	man55	Oaxaca de Juárez	1490	020	Bajo	
42	man4722	Oaxaca de Juárez	0204	039	Bajo	
43	man4715	Oaxaca de Juárez	0897	028	Bajo	
44	man4723	Oaxaca de Juárez	0897	019	Bajo	
45	man4725	Oaxaca de Juárez	0897	011	Bajo	
46	man4719	Oaxaca de Juárez	1537	017	Bajo	
47	man4735	Oaxaca de Juárez	0897	027	Bajo	
48	man77	Oaxaca de Juárez	1490	024	Alto	
49	man4732	Oaxaca de Juárez	0897	026	Bajo	
50	man4555	Oaxaca de Juárez	0933	020	Medio	
51	man4558	Oaxaca de Juárez	0933	019	Bajo	
52	man107	Oaxaca de Juárez	1791	026	Bajo	
53	man4565	Oaxaca de Juárez	0929	037	Bajo	
54	man4566	Oaxaca de Juárez	0929	038	Bajo	
55	man4744	Oaxaca de Juárez	0897	010	Bajo	
56	man1905	Oaxaca de Juárez	0632	029	Bajo	
57	man4750	Oaxaca de Juárez	1522	026	Bajo	
58	man4748	Oaxaca de Juárez	0897	021	Bajo	

	Periodo de retorno de 10 años					
Núm.	Nombre	Nom_Loc	AGEB	Mza	Riesgo	
59	man1907	Oaxaca de Juárez	0632	050	Bajo	
60	man4755	Oaxaca de Juárez	0897	002	Bajo	
61	man1909	Oaxaca de Juárez	0632	023	Bajo	
62	man4758	Oaxaca de Juárez	012A	034	Bajo	
63	man4756	Oaxaca de Juárez	0897	022	Bajo	
64	man205	Oaxaca de Juárez	1791	015	Bajo	
65	man4761	Oaxaca de Juárez	0897	016	Medio	
66	man1913	Oaxaca de Juárez	0632	025	Bajo	
67	man1914	Oaxaca de Juárez	0632	022	Bajo	
68	man1915	Oaxaca de Juárez	0632	017	Bajo	
69	man1918	Oaxaca de Juárez	0632	016	Bajo	
70	man1920	Oaxaca de Juárez	0632	010	Bajo	
71	man1936	Oaxaca de Juárez	0613	015	Bajo	
72	man1922	Oaxaca de Juárez	0632	009	Bajo	
73	man4776	Oaxaca de Juárez	1522	004	Bajo	
74	man4774	Oaxaca de Juárez	0897	020	Bajo	
75	man1924	Oaxaca de Juárez	0632	003	Bajo	
76	man4781	Oaxaca de Juárez	0897	006	Bajo	
77	man1622	Oaxaca de Juárez	1503	006	Bajo	
78	man1923	Oaxaca de Juárez	0632	004	Bajo	
79	man4790	Oaxaca de Juárez	0882	010	Bajo	
80	man1925	Oaxaca de Juárez	0632	001	Bajo	
81	man4789	Oaxaca de Juárez	012A	016	Bajo	
82	man1928	Oaxaca de Juárez	0632	005	Bajo	
83	man1927	Oaxaca de Juárez	0632	006	Bajo	
84	man1930	Oaxaca de Juárez	0632	011	Bajo	
85	man4805	Oaxaca de Juárez	0882	003	Bajo	
86	man1931	Oaxaca de Juárez	0632	012	Bajo	
87	man216	Oaxaca de Juárez	1791	014	Bajo	
88	man724	Oaxaca de Juárez	012A	004	Bajo	
89	man1935	Oaxaca de Juárez	0632	019	Bajo	
90	man1940	Oaxaca de Juárez	0632	026	Bajo	
91	man230	Oaxaca de Juárez	1791	004	Bajo	
92	man237	Oaxaca de Juárez	1791	033	Bajo	
93	man1942	Oaxaca de Juárez	0632	030	Bajo	

	Periodo de retorno de 10 años						
Núm.	Nombre	Nom_Loc	AGEB	Mza	Riesgo		
94	man751	Oaxaca de Juárez	012A	054	Bajo		
95	man1944	Oaxaca de Juárez	0632	035	Bajo		
96	man767	Oaxaca de Juárez	012A	053	Bajo		
97	man4350	Oaxaca de Juárez	0613	029	Bajo		
98	man562	Oaxaca de Juárez	0825	006	Bajo		
99	man1946	Oaxaca de Juárez	0793	039	Bajo		
100	man772	Oaxaca de Juárez	0859	028	Bajo		
101	man2954	Oaxaca de Juárez	0882	033	Bajo		
102	man559	Oaxaca de Juárez	0825	005	Muy Alto		
103	man781	Oaxaca de Juárez	0859	029	Bajo		
104	man4830	Oaxaca de Juárez	0859	005	Bajo		
105	man1952	Oaxaca de Juárez	0793	054	Bajo		
106	man603	Oaxaca de Juárez	0859	018	Medio		
107	man1956	Oaxaca de Juárez	0793	020	Bajo		
108	man604	Oaxaca de Juárez	0844	010	Bajo		
109	man617	Oaxaca de Juárez	0844	020	Bajo		
110	man842	Oaxaca de Juárez	0543	004	Bajo		
111	man1105	Oaxaca de Juárez	0577	034	Bajo		
112	man1116	Oaxaca de Juárez	0577	033	Bajo		
113	man1958	Oaxaca de Juárez	0793	019	Bajo		
114	man1957	Oaxaca de Juárez	0793	018	Bajo		
115	man1135	Oaxaca de Juárez	0581	014	Bajo		
116	man1961	Oaxaca de Juárez	0793	011	Bajo		
117	man3085	Oaxaca de Juárez	1274	056	Bajo		
118	man1154	Oaxaca de Juárez	0581	015	Bajo		
119	man1964	Oaxaca de Juárez	0793	012	Medio		
120	man1965	Oaxaca de Juárez	0793	044	Bajo		
121	man1160	Oaxaca de Juárez	0581	027	Bajo		
122	man1159	Oaxaca de Juárez	0577	022	Medio		
123	man895	Oaxaca de Juárez	0524	021	Bajo		
124	man1172	Oaxaca de Juárez	0581	036	Bajo		
125	man1171	Oaxaca de Juárez	0562	020	Medio		
126	man1970	Oaxaca de Juárez	0793	013	Bajo		
127	man1972	Oaxaca de Juárez	0793	007	Bajo		
128	man1184	Oaxaca de Juárez	0562	004	Bajo		

Periodo de retorno de 10 años					
Núm.	Nombre	Nom_Loc	AGEB	Mza	Riesgo
129	man1975	Oaxaca de Juárez	0793	048	Bajo
130	man1987	Oaxaca de Juárez	0793 015		Medio
131	man1990	Oaxaca de Juárez	0789	005	Bajo
132	man933	Oaxaca de Juárez	0524	019	Bajo
133	man2010	Oaxaca de Juárez	0789	021	Bajo
134	man2011	Oaxaca de Juárez	0789	029	Bajo
135	man975	Oaxaca de Juárez	1062	031	Medio
136	man969	Oaxaca de Juárez	051A	020	Bajo
137	man979	Oaxaca de Juárez	0505	042	Muy Alto
138	man991	Oaxaca de Juárez	0505	041	Medio
139	man995	Oaxaca de Juárez	1062	030	Muy Alto
140	man1002	Oaxaca de Juárez	0505	059	Bajo
141	man1000	Oaxaca de Juárez	0505	056	Bajo
142	man1015	Oaxaca de Juárez	1448	028	Bajo
143	man1018	Oaxaca de Juárez	0505	044	Bajo
144	man2044	Oaxaca de Juárez	Oaxaca de Juárez 1043 073		Bajo
145	man1064	Oaxaca de Juárez	1560	020	Bajo
146	man2049	Oaxaca de Juárez	1043	072	Bajo
147	man346	Oaxaca de Juárez	de Juárez 2022 030		Bajo
148	man354	Oaxaca de Juárez	0717	017	Bajo
149	man1061	Oaxaca de Juárez	1560	011	Bajo
150		Oaxaca de Juárez	1772	007	Bajo
151		Oaxaca de Juárez	1594	026	Bajo
152		Oaxaca de Juárez	2253	036	Bajo
153		Oaxaca de Juárez	158A	030	Bajo
154		Oaxaca de Juárez	158A	029	Bajo
155		Oaxaca de Juárez	2253	020	Bajo
156		Oaxaca de Juárez	158A	026	Bajo
157		Oaxaca de Juárez	158A	027	Bajo
158		Oaxaca de Juárez	1772	1772 006 Bajo	
159		Oaxaca de Juárez	1560	013	Bajo
160		Oaxaca de Juárez	0702	031	Medio
161		Oaxaca de Juárez	0702	045	Medio

Tabla 10.4 Riesgo por manzana para un Tr de 25 años

	3- 	para un Tr de 25 a Periodo de ret		25 años	
Núm.	Nombre	AGEB	Mza	Nom_Loc	Riesgo
1	man22	1490	17	Oaxaca de Juárez	Bajo
2	man41	1490	25	Oaxaca de Juárez	Bajo
3	man55	1490	20	Oaxaca de Juárez	Bajo
4	man77	1490	24	Oaxaca de Juárez	Alto
5	man107	1791	26	Oaxaca de Juárez	Bajo
6	man205	1791	15	Oaxaca de Juárez	Bajo
7	man216	1791	14	Oaxaca de Juárez	Bajo
8	man230	1791	4	Oaxaca de Juárez	Bajo
9	man237	1791	33	Oaxaca de Juárez	Bajo
10	man346	2022	30	Oaxaca de Juárez	Bajo
11	man354	717	17	Oaxaca de Juárez	Bajo
12	man356	717	5	Oaxaca de Juárez	Bajo
13	man369	1594	26	Oaxaca de Juárez	Bajo
14	man371	158A	30	Oaxaca de Juárez	Bajo
15	man372	158A	29	Oaxaca de Juárez	Bajo
16	man375	158A	28	Oaxaca de Juárez	Medio
17	man378	158A	27	Oaxaca de Juárez	Bajo
18	man385	158A	26	Oaxaca de Juárez	Bajo
19	man469	702	45	Oaxaca de Juárez	Medio
20	man472	702	31	Oaxaca de Juárez	Medio
21	man559	825	5	Oaxaca de Juárez	Medio
22	man560	825	17	Oaxaca de Juárez	Bajo
23	man562	825	6	Oaxaca de Juárez	Bajo
24	man603	859	18	Oaxaca de Juárez	Medio
25	man604	844	10	Oaxaca de Juárez	Bajo
26	man614	825	9	Oaxaca de Juárez	Medio
27	man617	844	20	Oaxaca de Juárez	Bajo
28	man724	012A	4	Oaxaca de Juárez	Bajo
29	man751	012A	54	Oaxaca de Juárez	Bajo
30	man767	012A	53	Oaxaca de Juárez	Bajo
31	man772	859	28	Oaxaca de Juárez	Bajo
32	man776	859	27	Oaxaca de Juárez	Bajo
33	man781	859	29	Oaxaca de Juárez	Bajo
34	man842	543	4	Oaxaca de Juárez	Bajo

	Periodo de retorno de 25 años						
Núm.	Nombre	AGEB	Mza	Nom_Loc	Riesgo		
35	man895	524	21	Oaxaca de Juárez	Bajo		
36	man933	524	19	Oaxaca de Juárez	Bajo		
37	man969	051A	20	Oaxaca de Juárez	Bajo		
38	man975	1062	31	Oaxaca de Juárez	Medio		
39	man979	505	42	Oaxaca de Juárez	Muy Alto		
40	man991	505	41	Oaxaca de Juárez	Medio		
41	man995	1062	30	Oaxaca de Juárez	Muy Alto		
42	man1000	505	56	Oaxaca de Juárez	Bajo		
43	man1002	505	59	Oaxaca de Juárez	Bajo		
44	man1015	1448	28	Oaxaca de Juárez	Bajo		
45	man1018	505	44	Oaxaca de Juárez	Bajo		
46	man1061	1560	11	Oaxaca de Juárez	Bajo		
47	man1064	1560	20	Oaxaca de Juárez	Bajo		
48	man1082	1772	6	Oaxaca de Juárez	Bajo		
49	man1083	1560	13	Oaxaca de Juárez	Bajo		
50	man1105	577	34	Oaxaca de Juárez	Bajo		
51	man1128	577	30	Oaxaca de Juárez	Bajo		
52	man1135	581	14	Oaxaca de Juárez	Bajo		
53	man1154	581	15	Oaxaca de Juárez	Bajo		
54	man1159	577	22	Oaxaca de Juárez	Medio		
55	man1160	581	27	Oaxaca de Juárez	Bajo		
56	man1171	562	20	Oaxaca de Juárez	Medio		
57	man1172	581	36	Oaxaca de Juárez	Bajo		
58	man1176	562	19	Oaxaca de Juárez	Bajo		
59	man1179	562	44	Oaxaca de Juárez	Bajo		
60	man1183	562	5	Oaxaca de Juárez	Medio		
61	man1184	562	4	Oaxaca de Juárez	Bajo		
62	man1622	1503	6	Oaxaca de Juárez	Bajo		
63	man1905	632	29	Oaxaca de Juárez	Bajo		
64	man1907	632	50	Oaxaca de Juárez	Medio		
65	man1909	632	23	Oaxaca de Juárez	Bajo		
66	man1913	632	25	Oaxaca de Juárez	Bajo		
67	man1914	632	22	Oaxaca de Juárez	Bajo		
68	man1915	632	17	Oaxaca de Juárez	Bajo		
69	man1918	632	16	Oaxaca de Juárez	Bajo		

	Periodo de retorno de 25 años						
Núm.	Nombre	AGEB	Mza	Nom_Loc	Riesgo		
70	man1920	632	10	Oaxaca de Juárez	Bajo		
71	man1922	632	9	Oaxaca de Juárez	Bajo		
72	man1923	632	4	Oaxaca de Juárez	Bajo		
73	man1924	632	3	Oaxaca de Juárez	Bajo		
74	man1925	632	1	Oaxaca de Juárez	Bajo		
75	man1927	632	6	Oaxaca de Juárez	Bajo		
76	man1928	632	5	Oaxaca de Juárez	Bajo		
77	man1930	632	11	Oaxaca de Juárez	Bajo		
78	man1931	632	12	Oaxaca de Juárez	Bajo		
79	man1935	632	19	Oaxaca de Juárez	Bajo		
80	man1936	613	15	Oaxaca de Juárez	Bajo		
81	man1940	632	26	Oaxaca de Juárez	Medio		
82	man1942	632	30	Oaxaca de Juárez	Bajo		
83	man1944	632	35	Oaxaca de Juárez	Medio		
84	man1946	793	39	Oaxaca de Juárez	Bajo		
85	man1952	793	54	Oaxaca de Juárez	Bajo		
86	man1956	793	20	Oaxaca de Juárez	Bajo		
87	man1957	793	18	Oaxaca de Juárez	Bajo		
88	man1958	793	19	Oaxaca de Juárez	Bajo		
89	man1964	793	12	Oaxaca de Juárez	Medio		
90	man1970	793	13	Oaxaca de Juárez	Medio		
91	man1972	793	7	Oaxaca de Juárez	Bajo		
92	man1975	793	48	Oaxaca de Juárez	Bajo		
93	man1987	793	15	Oaxaca de Juárez	Medio		
94	man1990	789	5	Oaxaca de Juárez	Bajo		
95	man2005	215A	17	Oaxaca de Juárez	Bajo		
96	man2007	789	30	Oaxaca de Juárez	Bajo		
97	man2010	789	21	Oaxaca de Juárez	Bajo		
98	man2011	789	29	Oaxaca de Juárez	Bajo		
99	man2044	1043	73	Oaxaca de Juárez	Bajo		
100	man2049	1043	72	Oaxaca de Juárez	Bajo		
101	man2189	1452	31	Oaxaca de Juárez	Bajo		
102	man2190	1452	32	Oaxaca de Juárez	Bajo		
103	man2193	1452	14	Oaxaca de Juárez	Bajo		
104	man2194	1452	24	Oaxaca de Juárez	Bajo		

	Periodo de retorno de 25 años						
Núm.	Nombre	AGEB	Mza	Nom_Loc	Riesgo		
105	man2198	1452	13	Oaxaca de Juárez	Bajo		
106	man2202	1452	39	Oaxaca de Juárez	Bajo		
107	man2281	1452	62	Oaxaca de Juárez	Bajo		
108	man2291	986	28	Oaxaca de Juárez	Bajo		
109	man2600	1005	7	Oaxaca de Juárez	Bajo		
110	man2628	1486	31	Oaxaca de Juárez	Bajo		
111	man2636	1486	34	Oaxaca de Juárez	Bajo		
112	man2641	1486	32	Oaxaca de Juárez	Bajo		
113	man2645	1486	28	Oaxaca de Juárez	Medio		
114	man2646	1486	33	Oaxaca de Juárez	Bajo		
115	man2954	882	33	Oaxaca de Juárez	Bajo		
116	man2981	882	26	Oaxaca de Juárez	Bajo		
117	man3085	1274	56	Oaxaca de Juárez	Bajo		
118	man3093	1274	79	Oaxaca de Juárez	Medio		
119	man3412	1490	12	Oaxaca de Juárez	Bajo		
120	man3437	1490	6	Oaxaca de Juárez	Bajo		
121	man3438	1490	31	Oaxaca de Juárez	Bajo		
122	man3605	2253	36	Oaxaca de Juárez	Bajo		
123	man3609	2253	20	Oaxaca de Juárez	Bajo		
124	man3720	1170	45	Oaxaca de Juárez	Alto		
125	man3727	1170	64	Oaxaca de Juárez	Bajo		
126	man4041	971	25	Oaxaca de Juárez	Bajo		
127	man4043	971	30	Oaxaca de Juárez	Bajo		
128	man4053	971	15	Oaxaca de Juárez	Bajo		
129	man4057	971	16	Oaxaca de Juárez	Bajo		
130	man4069	971	17	Oaxaca de Juárez	Bajo		
131	man4087	971	28	Oaxaca de Juárez	Bajo		
132	man4094	971	19	Oaxaca de Juárez	Bajo		
133	man4098	971	29	Oaxaca de Juárez	Bajo		
134	man4112	967	26	Oaxaca de Juárez	Bajo		
135	man4115	204	12	Oaxaca de Juárez	Bajo		
136	man4126	204	28	Oaxaca de Juárez	Bajo		
137	man4130	204	11	Oaxaca de Juárez	Bajo		
138	man4350	613	29	Oaxaca de Juárez	Bajo		
139	man4537	933	11	Oaxaca de Juárez	Bajo		

	Periodo de retorno de 25 años						
Núm.	Nombre	AGEB	Mza	Nom_Loc	Riesgo		
140	man4539	933	2	Oaxaca de Juárez	Bajo		
141	man4555	933	20	Oaxaca de Juárez	Medio		
142	man4558	933	19	Oaxaca de Juárez	Bajo		
143	man4565	929	37	Oaxaca de Juárez	Bajo		
144	man4566	929	38	Oaxaca de Juárez	Bajo		
145	man4671	967	14	Oaxaca de Juárez	Bajo		
146	man4672	204	27	Oaxaca de Juárez	Bajo		
147	man4674	204	10	Oaxaca de Juárez	Bajo		
148	man4677	204	9	Oaxaca de Juárez	Bajo		
149	man4692	204	25	Oaxaca de Juárez	Bajo		
150	man4696	204	24	Oaxaca de Juárez	Medio		
151	man4709	204	38	Oaxaca de Juárez	Medio		
152	man4710	204	37	Oaxaca de Juárez	Bajo		
153	man4715	897	28	Oaxaca de Juárez	Bajo		
154	man4719	1537	17	Oaxaca de Juárez	Bajo		
155	man4722	204	39	Oaxaca de Juárez	Bajo		
156	man4723	897	19	Oaxaca de Juárez	Bajo		
157	man4725	897	11	Oaxaca de Juárez	Bajo		
158	man4732	897	26	Oaxaca de Juárez	Bajo		
159	man4734	897	24	Oaxaca de Juárez	Bajo		
160	man4735	897	27	Oaxaca de Juárez	Bajo		
161	man4744	897	10	Oaxaca de Juárez	Bajo		
162	man4745	897	3	Oaxaca de Juárez	Bajo		
163	man4748	897	21	Oaxaca de Juárez	Bajo		
164	man4750	1522	26	Oaxaca de Juárez	Bajo		
165	man4755	897	2	Oaxaca de Juárez	Bajo		
166	man4756	897	22	Oaxaca de Juárez	Bajo		
167	man4758	012A	34	Oaxaca de Juárez	Bajo		
168	man4761	897	16	Oaxaca de Juárez	Medio		
169	man4774	897	20	Oaxaca de Juárez	Bajo		
170	man4776	1522	4	Oaxaca de Juárez	Bajo		
171	man4781	897	6	Oaxaca de Juárez	Bajo		
172	man4789	012A	16	Oaxaca de Juárez	Bajo		
173	man4790	882	10	Oaxaca de Juárez	Bajo		
174	man4805	882	3	Oaxaca de Juárez	Bajo		

Periodo de retorno de 25 años						
Núm.	Nombre	AGEB	Mza	Nom_Loc	Riesgo	
175	man4807	882	13	Oaxaca de Juárez	Medio	
176	man4830	859	5	Oaxaca de Juárez	Bajo	
177	man4844	543	7	Oaxaca de Juárez	Bajo	
178	man4672	1772	7	Oaxaca de Juárez	Bajo	

Tabla 10.5 Riesgo por manzana para un Tr de 50 años

.5 Klesgo	Periodo de retorno de 50 años							
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo			
1	man3720	1170	045	Oaxaca de Juárez	Alto			
2	man3722	1170	063	Oaxaca de Juárez	Bajo			
3	man3726	1170	069	Oaxaca de Juárez	Bajo			
4	man2194	1452	024	Oaxaca de Juárez	Bajo			
5	man3727	1170	064	Oaxaca de Juárez	Bajo			
6	man2189	1452	031	Oaxaca de Juárez	Bajo			
7	man2190	1452	032	Oaxaca de Juárez	Bajo			
8	man2192	1452	025	Oaxaca de Juárez	Bajo			
9	man2198	1452	013	Oaxaca de Juárez	Bajo			
10	man2193	1452	014	Oaxaca de Juárez	Bajo			
11	man2202	1452	039	Oaxaca de Juárez	Bajo			
12	man2281	1452	062	Oaxaca de Juárez	Bajo			
13	man2600	1005	007	Oaxaca de Juárez	Bajo			
14	man2291	0986	028	Oaxaca de Juárez	Bajo			
15	man4041	0971	025	Oaxaca de Juárez	Bajo			
16	man4043	0971	030	Oaxaca de Juárez	Bajo			
17	man4053	0971	015	Oaxaca de Juárez	Bajo			
18	man2628	1486	031	Oaxaca de Juárez	Bajo			
19	man2636	1486	034	Oaxaca de Juárez	Bajo			
20	man4057	0971	016	Oaxaca de Juárez	Bajo			
21	man4069	0971	017	Oaxaca de Juárez	Bajo			
22	man4087	0971	028	Oaxaca de Juárez	Bajo			
23	man2641	1486	032	Oaxaca de Juárez	Bajo			
24	man4094	0971	019	Oaxaca de Juárez	Bajo			
25	man2639	1486	026	Oaxaca de Juárez	Bajo			
26	man2640	1486	025	Oaxaca de Juárez	Bajo			
27	man4098	0971	029	Oaxaca de Juárez	Bajo			

	Periodo de retorno de 50 años					
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo	
28	man2646	1486	033	Oaxaca de Juárez	Bajo	
29	man4112	0967	026	Oaxaca de Juárez	Bajo	
30	man3412	1490	012	Oaxaca de Juárez	Bajo	
31	man4115	0204	012	Oaxaca de Juárez	Bajo	
32	man2645	1486	028	Oaxaca de Juárez	Medio	
33	man4126	0204	028	Oaxaca de Juárez	Bajo	
34	man3437	1490	006	Oaxaca de Juárez	Bajo	
35	man4130	0204	011	Oaxaca de Juárez	Bajo	
36	man3438	1490	031	Oaxaca de Juárez	Bajo	
37	man4671	0967	014	Oaxaca de Juárez	Bajo	
38	man4672	0204	027	Oaxaca de Juárez	Bajo	
39	man4674	0204	010	Oaxaca de Juárez	Bajo	
40	man4677	0204	009	Oaxaca de Juárez	Bajo	
41	man4696	0204	024	Oaxaca de Juárez	Medio	
42	man22	1490	017	Oaxaca de Juárez	Bajo	
43	man4692	0204	025	Oaxaca de Juárez	Bajo	
44	man41	1490	025	Oaxaca de Juárez	Bajo	
45	man4709	0204	038	Oaxaca de Juárez	Medio	
46	man4710	0204	037	Oaxaca de Juárez	Bajo	
47	man4537	0933	011	Oaxaca de Juárez	Bajo	
48	man4539	0933	002	Oaxaca de Juárez	Bajo	
49	man55	1490	020	Oaxaca de Juárez	Bajo	
50	man4722	0204	039	Oaxaca de Juárez	Bajo	
51	man4715	0897	028	Oaxaca de Juárez	Bajo	
52	man4723	0897	019	Oaxaca de Juárez	Bajo	
53	man4725	0897	011	Oaxaca de Juárez	Medio	
54	man4719	1537	017	Oaxaca de Juárez	Bajo	
55	man4735	0897	027	Oaxaca de Juárez	Bajo	
56	man77	1490	024	Oaxaca de Juárez	Muy Alto	
57	man4732	0897	026	Oaxaca de Juárez	Medio	
58	man4555	0933	020	Oaxaca de Juárez	Medio	
59	man4558	0933	019	Oaxaca de Juárez	Bajo	
60	man4565	0929	037	Oaxaca de Juárez	Bajo	
61	man4566	0929	038	Oaxaca de Juárez	Bajo	
62	man4744	0897	010	Oaxaca de Juárez	Bajo	

	Periodo de retorno de 50 años					
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo	
63	man107	1791	026	Oaxaca de Juárez	Bajo	
64	man4745	0897	003	Oaxaca de Juárez	Bajo	
65	man149	1791	019	Oaxaca de Juárez	Bajo	
66	man4750	1522	026	Oaxaca de Juárez	Medio	
67	man1905	0632	029	Oaxaca de Juárez	Bajo	
68	man1907	0632	050	Oaxaca de Juárez	Medio	
69	man4748	0897	021	Oaxaca de Juárez	Bajo	
70	man4755	0897	002	Oaxaca de Juárez	Bajo	
71	man1909	0632	023	Oaxaca de Juárez	Bajo	
72	man4758	012A	034	Oaxaca de Juárez	Bajo	
73	man205	1791	015	Oaxaca de Juárez	Bajo	
74	man4756	0897	022	Oaxaca de Juárez	Bajo	
75	man4761	0897	016	Oaxaca de Juárez	Medio	
76	man1913	0632	025	Oaxaca de Juárez	Bajo	
77	man1914	0632	022	Oaxaca de Juárez	Bajo	
78	man1915	0632	017	Oaxaca de Juárez	Bajo	
79	man1918	0632	016	Oaxaca de Juárez	Bajo	
80	man1920	0632	010	Oaxaca de Juárez	Bajo	
81	man1936	0613	015	Oaxaca de Juárez	Bajo	
82	man1922	0632	009	Oaxaca de Juárez	Bajo	
83	man4776	1522	004	Oaxaca de Juárez	Bajo	
84	man4774	0897	020	Oaxaca de Juárez	Bajo	
85	man1923	0632	004	Oaxaca de Juárez	Bajo	
86	man4781	0897	006	Oaxaca de Juárez	Bajo	
87	man1622	1503	006	Oaxaca de Juárez	Bajo	
88	man4790	0882	010	Oaxaca de Juárez	Bajo	
89	man4807	0882	013	Oaxaca de Juárez	Medio	
90	man1925	0632	001	Oaxaca de Juárez	Bajo	
91	man4789	012A	016	Oaxaca de Juárez	Bajo	
92	man1927	0632	006	Oaxaca de Juárez	Bajo	
93	man1930	0632	011	Oaxaca de Juárez	Bajo	
94	man4805	0882	003	Oaxaca de Juárez	Bajo	
95	man1931	0632	012	Oaxaca de Juárez	Bajo	
96	man216	1791	014	Oaxaca de Juárez	Bajo	
97	man724	012A	004	Oaxaca de Juárez	Bajo	

Periodo de retorno de 50 años					
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo
98	man1935	0632	019	Oaxaca de Juárez	Bajo
99	man1940	0632	026	Oaxaca de Juárez	Medio
100	man230	1791	004	Oaxaca de Juárez	Bajo
101	man237	1791	033	Oaxaca de Juárez	Bajo
102	man1942	0632	030	Oaxaca de Juárez	Bajo
103	man751	012A	054	Oaxaca de Juárez	Bajo
104	man1944	0632	035	Oaxaca de Juárez	Medio
105	man767	012A	053	Oaxaca de Juárez	Bajo
106	man4350	0613	029	Oaxaca de Juárez	Bajo
107	man562	0825	006	Oaxaca de Juárez	Bajo
108	man1946	0793	039	Oaxaca de Juárez	Bajo
109	man772	0859	028	Oaxaca de Juárez	Bajo
110	man776	0859	027	Oaxaca de Juárez	Bajo
111	man559	0825	005	Oaxaca de Juárez	Muy Alto
112	man780	0859	026	Oaxaca de Juárez	Bajo
113	man781	0859	029	Oaxaca de Juárez	Medio
114	man4825	0859	030	Oaxaca de Juárez	Bajo
115	man784	0859	022	Oaxaca de Juárez	Bajo
116	man786	0859	013	Oaxaca de Juárez	Bajo
117	man4826	0859	014	Oaxaca de Juárez	Bajo
118	man793	0859	003	Oaxaca de Juárez	Medio
119	man614	0825	009	Oaxaca de Juárez	Medio
120	man794	0859	004	Oaxaca de Juárez	Medio
121	man2981	0882	026	Oaxaca de Juárez	Bajo
122	man4830	0859	005	Oaxaca de Juárez	Medio
123	man580	0859	016	Oaxaca de Juárez	Bajo
124	man4835	0859	006	Oaxaca de Juárez	Bajo
125	man1952	0793	054	Oaxaca de Juárez	Bajo
126	man593	0844	011	Oaxaca de Juárez	Medio
127	man603	0859	018	Oaxaca de Juárez	Medio
128	man604	0844	010	Oaxaca de Juárez	Bajo
129	man1956	0793	020	Oaxaca de Juárez	Bajo
130	man617	0844	020	Oaxaca de Juárez	Bajo
131	man842	0543	004	Oaxaca de Juárez	Bajo
132	man1105	0577	034	Oaxaca de Juárez	Bajo

Periodo de retorno de 50 años					
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo
133	man1112	0581	026	Oaxaca de Juárez	Bajo
134	man1117	0577	031	Oaxaca de Juárez	Bajo
135	man854	0543	013	Oaxaca de Juárez	Medio
136	man1116	0577	033	Oaxaca de Juárez	Bajo
137	man1958	0793	019	Oaxaca de Juárez	Bajo
138	man855	0543	002	Oaxaca de Juárez	Bajo
139	man1957	0793	018	Oaxaca de Juárez	Bajo
140	man1135	0581	014	Oaxaca de Juárez	Bajo
141	man1128	0577	030	Oaxaca de Juárez	Bajo
142	man1137	0581	004	Oaxaca de Juárez	Bajo
143	man1961	0793	011	Oaxaca de Juárez	Bajo
144	man3085	1274	056	Oaxaca de Juárez	Bajo
145	man1150	0581	005	Oaxaca de Juárez	Medio
146	man1963	0793	001	Oaxaca de Juárez	Bajo
147	man1147	0577	009	Oaxaca de Juárez	Medio
148	man1154	0581	015	Oaxaca de Juárez	Bajo
149	man1965	0793	044	Oaxaca de Juárez	Bajo
150	man1964	0793	012	Oaxaca de Juárez	Medio
151	man1160	0581	027	Oaxaca de Juárez	Bajo
152	man1159	0577	022	Oaxaca de Juárez	Medio
153	man1157	0577	015	Oaxaca de Juárez	Medio
154	man895	0524	021	Oaxaca de Juárez	Bajo
155	man1166	0581	028	Oaxaca de Juárez	Bajo
156	man1970	0793	013	Oaxaca de Juárez	Medio
157	man1172	0581	036	Oaxaca de Juárez	Bajo
158	man1171	0562	020	Oaxaca de Juárez	Medio
159	man1170	0562	021	Oaxaca de Juárez	Medio
160	man1173	0581	037	Oaxaca de Juárez	Medio
161	man1178	0581	043	Oaxaca de Juárez	Bajo
162	man1176	0562	019	Oaxaca de Juárez	Bajo
163	man1181	0562	032	Oaxaca de Juárez	Bajo
164	man1183	0562	005	Oaxaca de Juárez	Medio
165	man1972	0793	007	Oaxaca de Juárez	Bajo
166	man1179	0562	044	Oaxaca de Juárez	Bajo
167	man1182	0562	003	Oaxaca de Juárez	Medio

	Periodo de retorno de 50 años					
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo	
168	man1184	0562	004	Oaxaca de Juárez	Bajo	
169	man1975	0793	048	Oaxaca de Juárez	Bajo	
170	man1987	0793	015	Oaxaca de Juárez	Medio	
171	man1990	0789	005	Oaxaca de Juárez	Bajo	
172	man933	0524	019	Oaxaca de Juárez	Bajo	
173	man2005	215A	017	Oaxaca de Juárez	Bajo	
174	man2010	0789	021	Oaxaca de Juárez	Bajo	
175	man2007	0789	030	Oaxaca de Juárez	Bajo	
176	man2011	0789	029	Oaxaca de Juárez	Bajo	
177	man975	1062	031	Oaxaca de Juárez	Medio	
178	man969	051A	020	Oaxaca de Juárez	Bajo	
179	man979	0505	042	Oaxaca de Juárez	Muy Alto	
180	man991	0505	041	Oaxaca de Juárez	Medio	
181	man995	1062	030	Oaxaca de Juárez	Muy Alto	
182	man1002	0505	059	Oaxaca de Juárez	Bajo	
183	man1000	0505	056	Oaxaca de Juárez	Bajo	
184	man1015	1448	028	Oaxaca de Juárez	Bajo	
185	man1018	0505	044	Oaxaca de Juárez	Bajo	
186	man2044	1043	073	Oaxaca de Juárez	Bajo	
187	man1064	1560	020	Oaxaca de Juárez	Bajo	
188	man2049	1043	072	Oaxaca de Juárez	Bajo	
189	man338	2022	028	Oaxaca de Juárez	Bajo	
190	man341	2022	029	Oaxaca de Juárez	Bajo	
191	man353	0702	012	Oaxaca de Juárez	Bajo	
192	man346	2022	030	Oaxaca de Juárez	Bajo	
193	man354	0717	017	Oaxaca de Juárez	Bajo	
194	man1061	1560	011	Oaxaca de Juárez	Bajo	
195	man356	0717	005	Oaxaca de Juárez	Bajo	
196		1772	007	Oaxaca de Juárez	Bajo	
197	man369	1594	026	Oaxaca de Juárez	Bajo	
198	man3605	2253	036	Oaxaca de Juárez	Bajo	
199	man371	158A	030	Oaxaca de Juárez	Bajo	
200	man372	158A	029	Oaxaca de Juárez	Bajo	
201	man375	158A	028	Oaxaca de Juárez	Medio	
202	man3609	2253	020	Oaxaca de Juárez	Bajo	

	Periodo de retorno de 50 años							
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo			
203	man385	158A	026	Oaxaca de Juárez	Bajo			
204	man378	158A	027	Oaxaca de Juárez	Bajo			
205	man1082	1772	006	Oaxaca de Juárez	Bajo			
206	man1083	1560	013	Oaxaca de Juárez	Bajo			
207	man472	0702	031	Oaxaca de Juárez	Medio			
208	man469	0702	045	Oaxaca de Juárez	Medio			

Tabla 10.6 Riesgo por manzana para un Tr de 100 años

	Periodo de retorno de 100 años								
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo				
1	man3720	1170	045	Oaxaca de Juárez	Alto				
2	man3722	1170	063	Oaxaca de Juárez	Bajo				
3	man3726	1170	069	Oaxaca de Juárez	Bajo				
4	man3727	1170	064	Oaxaca de Juárez	Bajo				
5	man2194	1452	024	Oaxaca de Juárez	Medio				
6	man2189	1452	031	Oaxaca de Juárez	Bajo				
7	man2190	1452	032	Oaxaca de Juárez	Bajo				
8	man2191	1452	033	Oaxaca de Juárez	Bajo				
9	man2192	1452	025	Oaxaca de Juárez	Bajo				
10	man2198	1452	013	Oaxaca de Juárez	Bajo				
11	man2193	1452	014	Oaxaca de Juárez	Bajo				
12	man2199	1452	017	Oaxaca de Juárez	Bajo				
13	man2195	1452	015	Oaxaca de Juárez	Bajo				
14	man2200	1452	018	Oaxaca de Juárez	Bajo				
15	man2202	1452	039	Oaxaca de Juárez	Bajo				
16	man2204	1452	040	Oaxaca de Juárez	Bajo				
17	man2203	1452	020	Oaxaca de Juárez	Bajo				
18	man2205	1452	041	Oaxaca de Juárez	Bajo				
19	man2207	1452	045	Oaxaca de Juárez	Bajo				
20	man2206	1452	038	Oaxaca de Juárez	Bajo				
21	man2208	1452	044	Oaxaca de Juárez	Bajo				

Periodo de retorno de 100 años						
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo	
22	man2209	1452	046	Oaxaca de Juárez	Bajo	
23	man2212	1452	047	Oaxaca de Juárez	Bajo	
24	man2213	1452	002	Oaxaca de Juárez	Bajo	
25	man2214	1452	005	Oaxaca de Juárez	Bajo	
26	man2216	1452	052	Oaxaca de Juárez	Bajo	
27	man2220	1452	058	Oaxaca de Juárez	Bajo	
28	man2219	1452	059	Oaxaca de Juárez	Bajo	
29	man2225	1448	033	Oaxaca de Juárez	Bajo	
30	man2222	1452	004	Oaxaca de Juárez	Bajo	
31	man2221	1452	051	Oaxaca de Juárez	Bajo	
32	man2223	1452	050	Oaxaca de Juárez	Bajo	
33	man2281	1452	062	Oaxaca de Juárez	Bajo	
34	man2233	1452	042	Oaxaca de Juárez	Bajo	
35	man2236	1039	011	Oaxaca de Juárez	Bajo	
36	man2248	1039	010	Oaxaca de Juárez	Bajo	
37	man2240	1452	060	Oaxaca de Juárez	Bajo	
38	man2600	1005	007	Oaxaca de Juárez	Bajo	
39	man2261	1448	012	Oaxaca de Juárez	Bajo	
40	man2265	1448	002	Oaxaca de Juárez	Bajo	
41	man2266	1448	001	Oaxaca de Juárez	Bajo	
42	man2282	1448	011	Oaxaca de Juárez	Bajo	
43	man2273	1448	010	Oaxaca de Juárez	Bajo	
44	man2276	1448	008	Oaxaca de Juárez	Bajo	
45	man2277	1448	009	Oaxaca de Juárez	Bajo	
46	man2285	1448	020	Oaxaca de Juárez	Bajo	
47	man2291	0986	028	Oaxaca de Juárez	Bajo	
48	man2287	1448	017	Oaxaca de Juárez	Alto	
49	man2288	1448	019	Oaxaca de Juárez	Bajo	
50	man2292	1039	008	Oaxaca de Juárez	Bajo	
51	man2294	1448	031	Oaxaca de Juárez	Bajo	

Periodo de retorno de 100 años						
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo	
52	man2297	1448	039	Oaxaca de Juárez	Bajo	
53	man3876	1005	023	Oaxaca de Juárez	Alto	
54	man4041	0971	025	Oaxaca de Juárez	Bajo	
55	man4038	0971	024	Oaxaca de Juárez	Bajo	
56	man4043	0971	030	Oaxaca de Juárez	Bajo	
57	man4062	0971	003	Oaxaca de Juárez	Bajo	
58	man4053	0971	015	Oaxaca de Juárez	Alto	
59	man4051	1024	008	Oaxaca de Juárez	Bajo	
60	man2628	1486	031	Oaxaca de Juárez	Bajo	
61	man4057	0971	016	Oaxaca de Juárez	Medio	
62	man4060	0971	013	Oaxaca de Juárez	Bajo	
63	man2636	1486	034	Oaxaca de Juárez	Bajo	
64	man4065	0971	004	Oaxaca de Juárez	Bajo	
65	man4061	0971	026	Oaxaca de Juárez	Bajo	
66	man4067	0971	005	Oaxaca de Juárez	Medio	
67	man4069	0971	017	Oaxaca de Juárez	Medio	
68	man4073	0971	012	Oaxaca de Juárez	Bajo	
69	man4074	0971	027	Oaxaca de Juárez	Bajo	
70	man4077	0971	001	Oaxaca de Juárez	Bajo	
71	man4079	0971	006	Oaxaca de Juárez	Bajo	
72	man4084	0971	011	Oaxaca de Juárez	Bajo	
73	man2328	0986	009	Oaxaca de Juárez	Bajo	
74	man4087	0971	028	Oaxaca de Juárez	Bajo	
75	man4086	0971	010	Oaxaca de Juárez	Bajo	
76	man2641	1486	032	Oaxaca de Juárez	Medio	
77	man4092	0971	007	Oaxaca de Juárez	Bajo	
78	man4094	0971	019	Oaxaca de Juárez	Bajo	
79	man4099	0967	022	Oaxaca de Juárez	Bajo	
80	man4098	0971	029	Oaxaca de Juárez	Bajo	
81	man2639	1486	026	Oaxaca de Juárez	Bajo	
				1		

Periodo de retorno de 100 años						
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo	
82	man2640	1486	025	Oaxaca de Juárez	Bajo	
83	man4101	0967	023	Oaxaca de Juárez	Bajo	
84	man4104	0967	024	Oaxaca de Juárez	Bajo	
85	man4106	0967	025	Oaxaca de Juárez	Medio	
86	man2646	1486	033	Oaxaca de Juárez	Bajo	
87	man3412	1490	012	Oaxaca de Juárez	Bajo	
88	man4112	0967	026	Oaxaca de Juárez	Bajo	
89	man4117	0967	005	Oaxaca de Juárez	Bajo	
90	man4115	0204	012	Oaxaca de Juárez	Medio	
91	man2645	1486	028	Oaxaca de Juárez	Medio	
92	man4121	0967	013	Oaxaca de Juárez	Medio	
93	man4119	0967	006	Oaxaca de Juárez	Bajo	
94	man3971	0948	012	Oaxaca de Juárez	Bajo	
95	man4126	0204	028	Oaxaca de Juárez	Alto	
96	man3981	0948	003	Oaxaca de Juárez	Bajo	
97	man3983	0948	004	Oaxaca de Juárez	Bajo	
98	man3423	1490	011	Oaxaca de Juárez	Bajo	
99	man3437	1490	006	Oaxaca de Juárez	Bajo	
100	man4130	0204	011	Oaxaca de Juárez	Alto	
101	man4670	0967	007	Oaxaca de Juárez	Bajo	
102	man3431	1490	032	Oaxaca de Juárez	Bajo	
103	man3438	1490	031	Oaxaca de Juárez	Bajo	
104	man4131	0204	002	Oaxaca de Juárez	Bajo	
105	man4671	0967	014	Oaxaca de Juárez	Muy Alto	
106	man4672	0204	027	Oaxaca de Juárez	Bajo	
107	man4674	0204	010	Oaxaca de Juárez	Bajo	
108	man3991	0952	021	Oaxaca de Juárez	Bajo	
109	man4677	0204	009	Oaxaca de Juárez	Medio	
110	man4680	0967	015	Oaxaca de Juárez	Bajo	
111	man4681	0967	027	Oaxaca de Juárez	Bajo	

Periodo de retorno de 100 años							
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo		
112	man4687	0204	026	Oaxaca de Juárez	Medio		
113	man4683	0967	018	Oaxaca de Juárez	Bajo		
114	man4005	0632	041	Oaxaca de Juárez	Bajo		
115	man4696	0204	024	Oaxaca de Juárez	Alto		
116	man4692	0204	025	Oaxaca de Juárez	Medio		
117	man22	1490	017	Oaxaca de Juárez	Bajo		
118	man4704	0967	016	Oaxaca de Juárez	Alto		
119	man4709	0204	038	Oaxaca de Juárez	Alto		
120	man41	1490	025	Oaxaca de Juárez	Bajo		
121	man4710	0204	037	Oaxaca de Juárez	Alto		
122	man4537	0933	011	Oaxaca de Juárez	Bajo		
123	man4011	0632	038	Oaxaca de Juárez	Bajo		
124	man4539	0933	002	Oaxaca de Juárez	Alto		
125	man4012	0632	037	Oaxaca de Juárez	Bajo		
126	man55	1490	020	Oaxaca de Juárez	Medio		
127	man4715	0897	028	Oaxaca de Juárez	Bajo		
128	man4722	0204	039	Oaxaca de Juárez	Medio		
129	man4723	0897	019	Oaxaca de Juárez	Medio		
130	man4719	1537	017	Oaxaca de Juárez	Bajo		
131	man4721	1537	012	Oaxaca de Juárez	Bajo		
132	man4725	0897	011	Oaxaca de Juárez	Alto		
133	man4736	1537	013	Oaxaca de Juárez	Bajo		
134	man4735	0897	027	Oaxaca de Juárez	Bajo		
135	man77	1490	024	Oaxaca de Juárez	Muy Alto		
136	man4737	0897	018	Oaxaca de Juárez	Alto		
137	man1899	0632	034	Oaxaca de Juárez	Bajo		
138	man4555	0933	020	Oaxaca de Juárez	Alto		
139	man4732	0897	026	Oaxaca de Juárez	Alto		
140	man4734	0897	024	Oaxaca de Juárez	Alto		
141	man82	2287	033	Oaxaca de Juárez	Bajo		

Periodo de retorno de 100 años						
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo	
142	man4565	0929	037	Oaxaca de Juárez	Bajo	
143	man4566	0929	038	Oaxaca de Juárez	Alto	
144	man107	1791	026	Oaxaca de Juárez	Bajo	
145	man4748	0897	021	Oaxaca de Juárez	Bajo	
146	man4744	0897	010	Oaxaca de Juárez	Medio	
147	man4745	0897	003	Oaxaca de Juárez	Alto	
148	man1905	0632	029	Oaxaca de Juárez	Bajo	
149	man4750	1522	026	Oaxaca de Juárez	Medio	
150	man149	1791	019	Oaxaca de Juárez	Bajo	
151	man120	2287	032	Oaxaca de Juárez	Bajo	
152	man1907	0632	050	Oaxaca de Juárez	Alto	
153	man126	2287	024	Oaxaca de Juárez	Medio	
154	man4758	012A	034	Oaxaca de Juárez	Medio	
155		1791	016	Oaxaca de Juárez	Bajo	
156	man4755	0897	002	Oaxaca de Juárez	Alto	
157	man1909	0632	023	Oaxaca de Juárez	Medio	
158	man205	1791	015	Oaxaca de Juárez	Bajo	
159	man4753	1522	023	Oaxaca de Juárez	Bajo	
160	man4756	0897	022	Oaxaca de Juárez	Bajo	
161	man4762	0897	001	Oaxaca de Juárez	Medio	
162	man4761	0897	016	Oaxaca de Juárez	Medio	
163	man4778	0897	007	Oaxaca de Juárez	Bajo	
164	man1914	0632	022	Oaxaca de Juárez	Medio	
165	man1913	0632	025	Oaxaca de Juárez	Bajo	
166	man1915	0632	017	Oaxaca de Juárez	Medio	
167	man4767	1522	018	Oaxaca de Juárez	Bajo	
168	man4771	1522	014	Oaxaca de Juárez	Medio	
169	man1918	0632	016	Oaxaca de Juárez	Bajo	
170	man1920	0632	010	Oaxaca de Juárez	Medio	
171	man4774	0897	020	Oaxaca de Juárez	Bajo	

Periodo de retorno de 100 años												
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo							
172	man1936	0613	015	Oaxaca de Juárez	Alto							
173	man4776	1522	004	Oaxaca de Juárez	Bajo							
174	man1922	0632	009	Oaxaca de Juárez	Bajo							
175	man4781	0897	006	Oaxaca de Juárez	Bajo							
176	man1923	0632	004	Oaxaca de Juárez	Medio							
177	man1622	1503	006	Oaxaca de Juárez	Bajo							
178	man1924	0632	003	Oaxaca de Juárez	Bajo							
179	man4790	0882	010	Oaxaca de Juárez	Alto							
180	man4807	0882	013	Oaxaca de Juárez	Muy Alto							
181	man4796	0882	034	Oaxaca de Juárez	Bajo							
182	man4789	012A	016	Oaxaca de Juárez	Bajo							
183	man1925	0632	001	Oaxaca de Juárez	Medio							
184	man1926	0632	002	Oaxaca de Juárez	Bajo							
185	man1928	0632	005	Oaxaca de Juárez	Alto							
186	man4798	0882	020	Oaxaca de Juárez	Medio							
187	man1927	0632	006	Oaxaca de Juárez	Medio							
188	man4802	0882	019	Oaxaca de Juárez	Medio							
189	man4805	0882	003	Oaxaca de Juárez	Alto							
190	man4803	0882	009	Oaxaca de Juárez	Medio							
191	man1929	0632	007	Oaxaca de Juárez	Medio							
192	man1930	0632	011	Oaxaca de Juárez	Bajo							
193	man1932	0632	013	Oaxaca de Juárez	Bajo							
194	man216	1791	014	Oaxaca de Juárez	Bajo							
195	man1931	0632	012	Oaxaca de Juárez	Bajo							
196	man724	012A	004	Oaxaca de Juárez	Bajo							
197	man4810	0882	800	Oaxaca de Juárez	Alto							
198	man4812	0882	002	Oaxaca de Juárez	Bajo							
199	man1935	0632	019	Oaxaca de Juárez	Bajo							
200	man524	0825	030	Oaxaca de Juárez	Bajo							
201	man1940	0632	026	Oaxaca de Juárez	Alto							

Periodo de retorno de 100 años												
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo							
202	man230	1791	004	Oaxaca de Juárez	Bajo							
203	man237	1791	033	Oaxaca de Juárez	Medio							
204	man751	012A	054	Oaxaca de Juárez	Medio							
205	man1942	0632	030	Oaxaca de Juárez	Medio							
206	man1944	0632	035	Oaxaca de Juárez	Medio							
207	man1945	0613	028	Oaxaca de Juárez	Bajo							
208	man767	012A	053	Oaxaca de Juárez	Medio							
209	man4350	0613	029	Oaxaca de Juárez	Medio							
210	man562	0825	006	Oaxaca de Juárez	Medio							
211	man1946	0793	039	Oaxaca de Juárez	Bajo							
212	man772	0859	028	Oaxaca de Juárez	Medio							
213	man776	0859	027	Oaxaca de Juárez	Medio							
214	man559	0825	005	Oaxaca de Juárez	Muy Alto							
215	man781	0859	029	Oaxaca de Juárez	Alto							
216	man780	0859	026	Oaxaca de Juárez	Medio							
217	man4826	0859	014	Oaxaca de Juárez	Bajo							
218	man786	0859	013	Oaxaca de Juárez	Bajo							
219	man2981	0882	026	Oaxaca de Juárez	Medio							
220	man4830	0859	005	Oaxaca de Juárez	Medio							
221	man580	0859	016	Oaxaca de Juárez	Medio							
222	man4835	0859	006	Oaxaca de Juárez	Bajo							
223	man1952	0793	054	Oaxaca de Juárez	Medio							
224	man3022	0543	046	Oaxaca de Juárez	Bajo							
225	man603	0859	018	Oaxaca de Juárez	Alto							
226	man832	0543	022	Oaxaca de Juárez	Bajo							
227	man1956	0793	020	Oaxaca de Juárez	Bajo							
228	man604	0844	010	Oaxaca de Juárez	Medio							
229	man835	0543	020	Oaxaca de Juárez	Alto							
230	man1969	0793	003	Oaxaca de Juárez	Bajo							
231	man836	0543	009	Oaxaca de Juárez	Medio							

	F	Periodo de reto	rno de 10	00 años	
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo
232	man4845	0543	800	Oaxaca de Juárez	Medio
233	man617	0844	020	Oaxaca de Juárez	Medio
234	man842	0543	004	Oaxaca de Juárez	Medio
235	man846	0543	005	Oaxaca de Juárez	Bajo
236	man1112	0581	026	Oaxaca de Juárez	Bajo
237	man1105	0577	034	Oaxaca de Juárez	Medio
238	man853	0543	014	Oaxaca de Juárez	Muy Alto
239	man854	0543	013	Oaxaca de Juárez	Muy Alto
240	man1116	0577	033	Oaxaca de Juárez	Bajo
241	man1958	0793	019	Oaxaca de Juárez	Bajo
242	man855	0543	002	Oaxaca de Juárez	Medio
243	man1957	0793	018	Oaxaca de Juárez	Bajo
244	man858	1274	027	Oaxaca de Juárez	Bajo
245	man1959	0793	009	Oaxaca de Juárez	Bajo
246	man1135	0581	014	Oaxaca de Juárez	Bajo
247	man1128	0577	030	Oaxaca de Juárez	Medio
248	man1960	0793	005	Oaxaca de Juárez	Bajo
249	man1960	0793	005	Oaxaca de Juárez	Bajo
250	man1961	0793	011	Oaxaca de Juárez	Bajo
251	man3085	1274	056	Oaxaca de Juárez	Bajo
252	man1154	0581	015	Oaxaca de Juárez	Bajo
253	man1965	0793	044	Oaxaca de Juárez	Bajo
254	man1964	0793	012	Oaxaca de Juárez	Medio
255	man1160	0581	027	Oaxaca de Juárez	Medio
256	man1159	0577	022	Oaxaca de Juárez	Bajo
257	man1172	0581	036	Oaxaca de Juárez	Medio
258	man1968	0793	006	Oaxaca de Juárez	Bajo
259	man1171	0562	020	Oaxaca de Juárez	Alto
260	man1970	0793	013	Oaxaca de Juárez	Medio

	F	Periodo de reto	rno de 10	00 años	
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo
261	man1176	0562	019	Oaxaca de Juárez	Medio
262	man1179	0562	044	Oaxaca de Juárez	Bajo
263	man1183	0562	005	Oaxaca de Juárez	Alto
264	man1972	0793	007	Oaxaca de Juárez	Bajo
265	man1184	0562	004	Oaxaca de Juárez	Bajo
266	man906	0524	007	Oaxaca de Juárez	Bajo
267	man1973	0789	025	Oaxaca de Juárez	Bajo
268	man1975	0793	048	Oaxaca de Juárez	Bajo
269	man1987	0793	015	Oaxaca de Juárez	Alto
270	man1990	0789	005	Oaxaca de Juárez	Bajo
271	man1985	0789	033	Oaxaca de Juárez	Bajo
272	man933	0524	019	Oaxaca de Juárez	Medio
273	man2005	215A	017	Oaxaca de Juárez	Medio
274	man2010	0789	021	Oaxaca de Juárez	Bajo
275	man2007	0789	030	Oaxaca de Juárez	Bajo
276	man2011	0789	029	Oaxaca de Juárez	Bajo
277	man975	1062	031	Oaxaca de Juárez	Alto
278	man979	0505	042	Oaxaca de Juárez	Muy Alto
279	man995	1062	030	Oaxaca de Juárez	Muy Alto
280	man991	0505	041	Oaxaca de Juárez	Alto
281	man1002	0505	059	Oaxaca de Juárez	Bajo
282	man1015	1448	028	Oaxaca de Juárez	Bajo
283	man1018	0505	044	Oaxaca de Juárez	Medio
284	man2044	1043	073	Oaxaca de Juárez	Bajo
285	man1064	1560	020	Oaxaca de Juárez	Medio
286	man334	2022	027	Oaxaca de Juárez	Bajo
287	man340	2022	025	Oaxaca de Juárez	Bajo
288	man2049	1043	072	Oaxaca de Juárez	Medio
289	man338	2022	028	Oaxaca de Juárez	Medio

		Periodo de reto	rno de 10	00 años	
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo
290	man350	0702	014	Oaxaca de Juárez	Muy Alto
291	man342	2022	026	Oaxaca de Juárez	Bajo
292	man341	2022	029	Oaxaca de Juárez	Bajo
293	man348	0702	015	Oaxaca de Juárez	Muy Alto
294	man352	0702	013	Oaxaca de Juárez	Muy Alto
295	man353	0702	012	Oaxaca de Juárez	Bajo
296	man346	2022	030	Oaxaca de Juárez	Medio
297	man354	0717	017	Oaxaca de Juárez	Medio
298	man356	0717	005	Oaxaca de Juárez	Bajo
299	man349	2018	027	Oaxaca de Juárez	Bajo
300	man357	0717	041	Oaxaca de Juárez	Muy Alto
301	man361	0717	043	Oaxaca de Juárez	Alto
302	man360	1594	030	Oaxaca de Juárez	Medio
303	man3577	2018	028	Oaxaca de Juárez	Muy Alto
304	man3586	2018	032	Oaxaca de Juárez	Bajo
305	man3589	2253	031	Oaxaca de Juárez	Bajo
306	man362	1594	029	Oaxaca de Juárez	Bajo
307		1772	007	Oaxaca de Juárez	Bajo
308	man365	1594	028	Oaxaca de Juárez	Bajo
309	man3595	2253	032	Oaxaca de Juárez	Alto
310	man366	1594	027	Oaxaca de Juárez	Medio
311	man369	1594	026	Oaxaca de Juárez	Bajo
312	man3605	2253	036	Oaxaca de Juárez	Medio
313	man371	158A	030	Oaxaca de Juárez	Bajo
314	man372	158A	029	Oaxaca de Juárez	Medio
315	man375	158A	028	Oaxaca de Juárez	Muy Alto
316	man3609	2253	020	Oaxaca de Juárez	Bajo
317	man385	158A	026	Oaxaca de Juárez	Medio
318	man378	158A	027	Oaxaca de Juárez	Bajo

	Periodo de retorno de 100 años											
Núm.	Nombre	AGEB	Mza.	Nom_loc	Riesgo							
319	man1082	1772	006	Oaxaca de Juárez	Bajo							
320	man1083	1560	013	Oaxaca de Juárez	Medio							
321	man426	0702	022	Oaxaca de Juárez	Medio							
322	man472	0702	031	Oaxaca de Juárez	Alto							
323	man469	0702	045	Oaxaca de Juárez	Alto							

11 ANEXO B

A continuación se presentan los gastos calculados en litros por segundo para cada subcuenca y microcuenca con el programa PCSWMM y con la formula Mc Math.

Tabla 11.1 Gastos calculados con PCSWMM y con la formula de Mc Math

			ados (I/s) c			SWMM	Gastos calculados (I/s) con la formula Mc Math						
Cuenca	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	
C.1	1,798	2,451	2,948	3,607	4,106	4,605	1,776	2,344	2,774	3,342	3,772	4,202	
C.2	3,331	4,782	5,939	7,534	8,780	10,055	3,853	5,086	6,018	7,251	8,183	9,115	
C.3	2,474	3,311	3,945	4,789	5,426	6,062	2,749	3,628	4,293	5,173	5,838	6,503	
C.4	1,015	1,349	1,600	1,932	2,183	2,434	1,643	2,168	2,566	3,091	3,489	3,887	
C.5	906	1,229	1,473	1,797	2,044	2,292	1,066	1,407	1,665	2,006	2,264	2,522	
C.6	844	1,158	1,394	1,706	1,946	2,186	491	648	767	924	1,043	1,162	
C.7	1,216	1,674	2,023	2,488	2,842	3,199	612	808	956	1,152	1,300	1,448	
C.8	3,330	4,606	5,601	6,945	7,981	9,028	7,987	10,542	12,475	15,030	16,962	18,895	
C.9	419	582	708	877	1,006	1,137	273	360	426	513	579	645	
C.10	1,452	1,945	2,317	2,814	3,189	3,564	787	1,038	1,229	1,480	1,670	1,861	
C.11	551	729	864	1,042	1,177	1,312	2,417	3,191	3,776	4,549	5,134	5,719	
C.12	600	803	956	1,157	1,310	1,461	501	661	782	942	1,063	1,184	
C.13	662	928	1,131	1,402	1,611	1,821	760	1,003	1,187	1,430	1,614	1,798	
C.14	463	657	808	1,016	1,176	1,339	194	256	303	365	412	459	
C.15	1,718	2,344	2,827	3,478	3,980	4,489	1,078	1,423	1,684	2,029	2,290	2,551	
C.16	582	830	1,029	1,307	1,527	1,755	295	390	461	556	627	698	
C.17	176	264	335	434	512	593	80	106	126	151	171	190	
C.18	79	193	275	399	504	618	81	107	127	153	172	192	
C.19	256	346	416	509	581	654	147	193	229	276	311	347	
C.20	641	880	1,063	1,303	1,485	1,670	606	800	947	1,141	1,287	1,434	
C.21	200	281	344	427	490	555	114	150	178	214	242	269	
C.22	207	294	362	455	528	602	154	203	240	290	327	364	
C.23	491	649	770	930	1,050	1,171	8	10	12	15	17	19	
C.24	594	824	1,000	1,239	1,421	1,604	875	1,155	1,367	1,647	1,859	2,071	
C.25	395	543	656	806	920	1,033	314	415	491	592	668	744	
C.26	1,292	1,748	2,094	2,549	2,892	3,234	1,103	1,456	1,723	2,076	2,343	2,610	
C.27	415	582	713	888	1,020	1,152	301	397	470	566	639	711	
C.28	1,810	3,094	4,217	5,877	7,252	8,720	10,238	13,513	15,991	19,266	21,743	24,220	
C.29	425	599	734	918	1,059	1,203	447	590	698	841	949	1,057	
C.30	847	2,030	2,876	4,159	5,242	6,419	1,814	2,394	2,833	3,414	3,853	4,291	
C.31	1,738	2,497	3,098	3,916	4,544	5,176	675	891	1,055	1,271	1,434	1,598	

	Gastos calculados (I/s) con el programa PCSWMM						Gastos calculados (I/s) con la formula Mc Math					
Cuenca	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años
C.32	623	836	996	1,209	1,371	1,532	17	23	27	32	36	41
C.33	5,473	7,471	8,997	11,025	12,566	14,111	2,978	3,931	4,651	5,604	6,324	7,045
C.34	1,213	1,700	2,084	2,595	2,983	3,371	586	773	915	1,103	1,244	1,386
C.35	4,191	5,551	6,583	7,946	8,977	10,007	6,350	8,381	9,918	11,949	13,485	15,022
C.36	1,661	2,383	2,956	3,735	4,332	4,934	682	900	1,065	1,284	1,449	1,614
C.37	5,956	8,215	10,005	12,487	14,447	16,466	10,642	14,046	16,621	20,025	22,600	25,175
C.38	1,341	1,911	2,353	2,952	3,418	3,889	166	219	259	312	352	392
C.39	824	1,161	1,423	1,775	2,046	2,320	368	485	574	692	781	870
C.40	1,913	2,587	3,100	3,775	4,283	4,791	1,905	2,514	2,975	3,584	4,045	4,505
C.41	1,813	2,401	2,845	3,434	3,879	4,323	2,376	3,136	3,710	4,470	5,045	5,620
C.42	805	1,089	1,304	1,588	1,803	2,016	932	1,230	1,456	1,754	1,979	2,205
C.43	54	73	87	105	119	134	3	4	5	6	6	7
C.44	726	996	1,198	1,467	1,673	1,879	653	862	1,020	1,229	1,387	1,545
C.45	6,680	9,064	10,896	13,310	15,130	16,946	5,788	7,640	9,040	10,892	12,293	13,693
C.46	256	338	401	484	547	610	528	696	824	993	1,120	1,248
C.47	37	54	67	84	98	112	156	206	243	293	331	369
C.48	4,198	5,687	6,818	8,327	9,468	10,608	7,151	9,438	11,169	13,456	15,186	16,917
C.49	4,798	6,519	7,845	9,623	10,985	12,357	9,033	11,923	14,108	16,998	19,184	21,369
C.50	487	687	846	1,065	1,237	1,414	333	439	520	626	706	787
C.51	594	833	1,019	1,267	1,455	1,644	280	369	437	527	594	662
C.52	1,768	2,479	3,025	3,752	4,308	4,876	1,178	1,555	1,840	2,216	2,501	2,786
C.53	1,502	2,076	2,525	3,126	3,586	4,050	1,085	1,432	1,695	2,042	2,305	2,567
C.54	1,529	2,080	2,503	3,066	3,494	3,923	1,413	1,865	2,207	2,659	3,001	3,343
C.55	188	249	295	356	402	449	561	741	877	1,057	1,192	1,328
C.56	3,166	4,333	5,235	6,446	7,376	8,315	2,031	2,680	3,172	3,821	4,312	4,804
C.57	1,474	2,103	2,601	3,280	3,807	4,343	535	706	836	1,007	1,136	1,265
C.58	1,109	1,674	2,140	2,797	3,321	3,865	372	491	581	700	789	879
C.59	668	936	1,145	1,430	1,650	1,874	314	415	491	591	667	743
C.60	1,477	2,648	3,700	5,291	6,636	8,096	6,574	8,677	10,268	12,371	13,962	15,552
C.61	7,196	10,048	12,227	15,144	17,402	19,669	3,745	4,943	5,849	7,047	7,954	8,860
C.62	2,650	3,640	4,392	5,388	6,158	6,928	1,971	2,601	3,078	3,708	4,185	4,662
C.63	664	909	1,093	1,337	1,525	1,712	15	20	24	28	32	36
C.64	297	418	512	639	736	832	116	153	182	219	247	275
C.65	919	1,260	1,517	1,856	2,118	2,379	19	25	29	35	40	44
C.66	3,169	4,600	5,721	7,236	8,399	9,572	1,581	2,086	2,469	2,974	3,357	3,739
C.67	943	1,256	1,492	1,804	2,039	2,274	1,561	2,060	2,438	2,937	3,315	3,692
C.68	2,757	3,827	4,671	5,823	6,716	7,625	5,834	7,700	9,112	10,978	12,390	13,802
C.69	1,119	1,601	1,978	2,474	2,849	3,230	1,090	1,439	1,703	2,052	2,315	2,579

	Gastos calculados (I/s) con el programa PCSWMM						Gastos calculados (I/s) con la formula Mc Math					
Cuenca	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años
C.70	1,627	2,452	3,101	3,987	4,683	5,388	1,558	2,056	2,433	2,931	3,308	3,685
C.71	271	385	475	596	689	783	505	666	788	949	1,072	1,194
C.72	1,396	1,958	2,400	3,004	3,474	3,952	651	859	1,016	1,224	1,382	1,539
C.73	487	671	811	997	1,139	1,284	430	568	672	810	914	1,018
C.74	1,419	2,461	3,384	4,767	5,925	7,172	5,530	7,299	8,638	10,407	11,745	13,083
C.75	1,203	2,038	2,760	3,820	4,690	5,613	5,932	7,830	9,265	11,163	12,598	14,033
C.76	2,637	3,764	4,665	5,909	6,882	7,879	5,221	6,891	8,154	9,824	11,087	12,350
C.77	1,134	1,636	2,034	2,578	3,001	3,431	1,290	1,703	2,016	2,428	2,741	3,053
C.78	5,766	8,286	10,291	13,044	15,187	17,373	8,779	11,587	13,712	16,520	18,644	20,768
C.79	1,900	2,742	3,438	4,417	5,197	6,008	5,770	7,616	9,012	10,858	12,254	13,651
C.80	1,693	2,876	3,903	5,411	6,654	7,974	9,341	12,329	14,590	17,578	19,838	22,098
C.81	321	456	559	698	803	908	371	489	579	698	788	877
C.82	85	121	149	186	215	245	107	141	167	201	227	253
C.83	5,393	7,242	8,652	10,512	11,916	13,317	4,789	6,321	7,480	9,012	10,171	11,330
C.84	926	1,369	1,726	2,225	2,615	3,014	366	483	572	689	777	866
C.85	895	1,240	1,505	1,859	2,128	2,399	440	581	688	829	935	1,042
C.86	483	667	808	994	1,135	1,276	381	502	594	716	808	900
C.87	4,026	5,497	6,617	8,102	9,227	10,353	5,377	7,097	8,398	10,118	11,419	12,721
C.88	3,486	4,992	6,206	7,889	9,210	10,566	5,627	7,426	8,788	10,588	11,949	13,311
C.89	2,722	4,011	5,117	6,720	8,031	9,449	8,597	11,347	13,427	16,177	18,257	20,337
C.90	1,337	1,798	2,148	2,614	2,966	3,317	1,922	2,537	3,003	3,617	4,083	4,548
C.91	1,463	1,961	2,338	2,835	3,211	3,585	1,415	1,867	2,210	2,662	3,005	3,347
C.92	507	683	815	990	1,123	1,256	538	710	841	1,013	1,143	1,273
C.93	3,983	5,275	6,254	7,549	8,529	9,507	9,034	11,924	14,110	17,000	19,186	21,372
C.94	1,283	1,699	2,013	2,431	2,747	3,063	2,201	2,906	3,438	4,142	4,675	5,208
C.95	1,718	2,386	2,908	3,614	4,158	4,710	1,336	1,763	2,086	2,513	2,836	3,159
C.96	2,294	4,075	5,670	8,077	10,108	12,310	7,695	10,156	12,019	14,480	16,342	18,204
C.97	1,970	2,631	3,135	3,800	4,302	4,803	2,266	2,991	3,539	4,264	4,812	5,360
C.98	732	1,027	1,260	1,578	1,827	2,081	354	468	553	667	752	838
C.99	4,105	5,657	6,857	8,468	9,702	10,946	4,512	5,955	7,047	8,490	9,582	10,673
C.100	1,331	1,831	2,215	2,722	3,104	3,488	621	819	969	1,168	1,318	1,468
C.101	1,349	1,783	2,111	2,545	2,874	3,202	2,582	3,407	4,032	4,858	5,482	6,107
C.102	309	432	527	656	757	859	203	267	316	381	430	479
C.103	2,934	3,997	4,810	5,884	6,695	7,505	8,610	11,364	13,448	16,202	18,285	20,369
C.104	3,896	5,197	6,176	7,468	8,443	9,417	3,078	4,062	4,807	5,792	6,536	7,281
C.105	4,120	5,729	6,958	8,587	9,822	11,057	8,318	10,979	12,992	15,653	17,665	19,678
C.106	2,222	3,042	3,674	4,516	5,156	5,798	2,221	2,931	3,469	4,179	4,717	5,254
C.107	3,265	4,323	5,122	6,178	6,977	7,775	9,603	12,674	14,998	18,070	20,394	22,717

	Gastos calculados (I/s) con el programa PCSWMM						Gastos calculados (I/s) con la formula Mc Math					
Cuenca	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años
C.108	2,364	4,010	5,437	7,531	9,253	11,082	9,395	12,400	14,674	17,679	19,952	22,225
C.109	847	1,246	1,554	1,972	2,296	2,623	550	726	859	1,035	1,168	1,301
C.110	524	723	876	1,078	1,231	1,384	530	699	827	997	1,125	1,253
C.111	1,381	2,340	3,170	4,387	5,387	6,448	7,205	9,509	11,252	13,557	15,300	17,044
C.112	291	411	504	626	719	812	324	428	506	610	688	767
C.113	5,157	15,381	21,917	31,809	40,178	49,267	4,994	6,592	7,801	9,398	10,607	11,815
C.114	4,832	7,009	8,796	11,310	13,316	15,402	3,420	4,513	5,341	6,435	7,262	8,090
C.115	243	344	422	526	604	682	324	427	505	609	687	765
C.116	172	239	290	359	412	465	220	290	344	414	467	520
C.117	849	1,129	1,340	1,621	1,833	2,045	1,652	2,181	2,581	3,109	3,509	3,909
C.118	72	100	120	148	168	189	111	146	173	208	235	262
C.119	805	1,112	1,344	1,649	1,878	2,109	469	619	732	882	995	1,109
C.120	422	570	683	831	944	1,056	378	499	591	712	803	895
C.121	1,717	2,665	3,494	4,709	5,713	6,786	5,976	7,888	9,334	11,246	12,692	14,138
C.122	6,525	8,855	10,612	12,929	14,695	16,470	5,136	6,778	8,021	9,664	10,906	12,149
C.123	28	44	57	75	89	104	93	123	145	175	197	220
C.124	638	976	1,257	1,657	1,977	2,312	609	804	951	1,146	1,293	1,440
C.125	2,447	4,263	5,882	8,317	10,365	12,578	10,089	13,316	15,758	18,985	21,426	23,867
C.126	13,274	29,148	39,431	54,748	67,552	81,337	8,379	11,059	13,087	15,767	17,795	19,822
C.127	9,116	14,762	20,682	29,612	37,153	45,332	11,410	15,060	17,821	21,471	24,232	26,993
C.128	6,491	8,910	10,795	13,358	15,345	17,373	7,239	9,555	11,306	13,622	15,374	17,125
C.129	6,475	9,270	11,570	14,883	17,564	20,391	8,175	10,789	12,768	15,382	17,360	19,338
C.130	1,804	3,041	4,122	5,721	7,048	8,466	9,756	12,876	15,237	18,358	20,718	23,079
C.131	1,748	2,575	3,253	4,212	4,977	5,779	5,131	6,772	8,014	9,655	10,897	12,139
C.132	1,707	2,346	2,832	3,476	3,964	4,451	2,374	3,133	3,707	4,466	5,041	5,615
C.133	2,536	3,511	4,262	5,268	6,044	6,828	1,918	2,532	2,996	3,610	4,074	4,538
C.134	2,673	3,677	4,458	5,512	6,323	7,144	3,101	4,093	4,844	5,836	6,586	7,336
C.135	1,064	1,894	2,640	3,767	4,719	5,754	4,165	5,497	6,505	7,837	8,845	9,853
C.136	578	821	1,008	1,265	1,463	1,662	314	414	490	590	666	742
C.137	195	261	310	375	425	474	248	327	387	466	526	586
C.138	2,702	3,615	4,301	5,207	5,896	6,583	7,612	10,046	11,888	14,323	16,165	18,006
C.139	1,301	2,161	2,889	3,935	4,785	5,683	6,549	8,643	10,228	12,323	13,907	15,492
C.140	2,042	3,413	4,584	6,279	7,656	9,105	10,602	13,994	16,559	19,950	22,516	25,081
C.141	1,461	2,487	3,384	4,708	5,804	6,975	8,712	11,499	13,607	16,394	18,503	20,611
C.142	1,692	3,084	4,334	6,223	7,821	9,554	3,327	4,391	5,196	6,260	7,065	7,869
C.143	1,167	1,995	2,718	3,788	4,674	5,619	7,568	9,989	11,820	14,241	16,073	17,904
C.144	3,056	4,196	5,093	6,322	7,288	8,280	5,573	7,355	8,704	10,486	11,834	13,183
C.145	1,695	2,855	3,853	5,307	6,495	7,750	8,050	10,625	12,573	15,148	17,096	19,044

	Gastos calculados (I/s) con el programa PCSWMM						Gastos calculados (I/s) con la formula Mc Math						
Cuenca	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	
C.146	2,588	4,657	6,516	9,325	11,699	14,274	9,392	12,397	14,669	17,674	19,947	22,219	
C.147	804	1,346	1,810	2,482	3,028	3,603	4,889	6,453	7,636	9,199	10,382	11,565	
C.148	1,355	1,800	2,135	2,579	2,913	3,248	1,719	2,269	2,685	3,235	3,651	4,067	
C.149	1,866	2,572	3,111	3,830	4,381	4,939	1,925	2,541	3,007	3,622	4,088	4,554	
C.150	913	1,227	1,465	1,779	2,015	2,252	1,143	1,509	1,785	2,151	2,428	2,704	
C.151	976	1,297	1,539	1,858	2,101	2,344	2,096	2,766	3,273	3,944	4,451	4,958	
C.152	2,932	4,855	6,634	9,344	11,650	14,164	3,100	4,092	4,842	5,834	6,584	7,334	
C.153	1,282	2,308	3,229	4,620	5,796	7,071	2,297	3,032	3,588	4,323	4,878	5,434	
C.154	3,208	4,443	5,414	6,744	7,780	8,841	2,950	3,894	4,608	5,551	6,265	6,979	
C.155	553	749	899	1,098	1,248	1,397	829	1,094	1,295	1,560	1,761	1,961	
C.156	976	1,674	2,286	3,196	3,951	4,760	7,618	10,055	11,898	14,335	16,178	18,021	
C.157	553	1,598	2,266	3,276	4,131	5,058	1,569	2,071	2,451	2,953	3,332	3,712	
C.158	1,321	2,209	2,967	4,062	4,952	5,886	6,242	8,238	9,749	11,745	13,255	14,766	
C.159	776	1,309	1,768	2,438	2,986	3,566	4,834	6,381	7,551	9,097	10,267	11,437	
C.160	3,490	5,278	6,859	9,198	11,186	13,350	4,832	6,378	7,547	9,093	10,262	11,431	
C.161	2,397	4,410	6,225	8,974	11,300	13,824	7,467	9,855	11,662	14,050	15,857	17,663	
C.162	1,177	1,724	2,179	2,826	3,345	3,887	1,266	1,671	1,977	2,382	2,688	2,994	
C.163	794	1,059	1,259	1,522	1,721	1,920	1,176	1,552	1,837	2,213	2,497	2,782	
C.164	921	1,259	1,519	1,864	2,126	2,389	1,029	1,358	1,607	1,936	2,185	2,434	
C.165	289	390	466	566	642	717	567	748	885	1,067	1,204	1,341	
C.166	551	734	872	1,054	1,191	1,328	1,113	1,468	1,738	2,093	2,363	2,632	
C.167	7,014	10,732	14,025	18,984	23,221	27,823	1,775	2,343	2,773	3,341	3,770	4,200	
C.168	1,127	1,892	2,546	3,496	4,270	5,085	6,597	8,707	10,303	12,413	14,009	15,605	
C.169	1,577	2,754	3,802	5,377	6,698	8,119	5,502	7,262	8,594	10,354	11,685	13,016	
C.170	1,546	2,751	3,832	5,466	6,848	8,347	5,813	7,673	9,079	10,939	12,345	13,752	
C.171	972	1,654	2,246	3,119	3,838	4,603	4,758	6,280	7,432	8,954	10,105	11,257	
C.172	3,614	5,035	20,644	7,654	8,816	9,995	1,886	2,489	2,945	3,549	4,005	4,461	
C.173	1,349	1,991	2,524	3,292	3,913	4,565	4,794	6,327	7,487	9,020	10,180	11,340	
C.174	876	1,495	2,036	2,835	3,496	4,202	4,172	5,506	6,516	7,850	8,860	9,869	
C.175	1,098	1,859	2,516	3,477	4,266	5,102	6,286	8,297	9,818	11,829	13,350	14,871	
C.176	1,517	2,758	3,871	5,554	6,976	8,519	1,812	2,391	2,830	3,409	3,848	4,286	
C.177	341	471	568	696	794	892	693	914	1,082	1,303	1,471	1,639	
C.178	155	239	307	400	475	550	367	484	573	691	779	868	
C.179	373	583	754	993	1,181	1,374	1,035	1,366	1,617	1,948	2,198	2,449	
C.180	2,016	3,437	4,674	6,499	8,007	9,613	10,289	13,581	16,070	19,362	21,851	24,341	
C.181	734	1,253	1,707	2,376	2,930	3,520	4,845	6,395	7,567	9,117	10,290	11,462	
C.182	2,740	3,787	4,590	5,657	6,466	7,277	2,399	3,166	3,746	4,514	5,094	5,674	
C.183	3,617	6,739	9,546	13,795	17,387	21,287	5,110	6,745	7,981	9,616	10,852	12,089	

	Gast	os calcula	idos (I/s) d	on el prog	grama PCS	MMW	Gastos calculados (I/s) con la formula Mc Math					
Cuenca	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años
C.184	6,724	9,207	11,140	13,758	15,783	17,841	9,610	12,684	15,010	18,084	20,410	22,735
C.185	835	1,415	1,917	2,652	3,257	3,898	4,637	6,120	7,242	8,725	9,847	10,969
C.186	2,086	3,566	4,862	6,777	8,365	10,060	7,124	9,403	11,127	13,406	15,130	16,853
C.187	855	1,467	2,004	2,802	3,466	4,177	4,197	5,540	6,555	7,898	8,913	9,929
C.188	2,627	3,913	4,969	6,455	7,639	8,867	1,688	2,228	2,637	3,177	3,585	3,994
C.189	906	1,496	1,992	2,706	3,286	3,893	4,449	5,872	6,949	8,372	9,448	10,525
C.190	2,537	3,534	4,307	5,349	6,149	6,957	1,957	2,583	3,056	3,682	4,155	4,629
C.191	457	1,256	1,686	2,319	2,842	3,401	3,336	4,403	5,210	6,277	7,084	7,891
C.192	941	2,071	2,704	3,628	4,388	5,194	4,363	5,759	6,815	8,210	9,266	10,322
C.193	1,362	2,406	3,347	4,769	5,972	7,277	7,319	9,660	11,432	13,773	15,544	17,315
C.194	1,782	2,524	3,112	3,914	4,538	5,176	1,394	1,840	2,178	2,624	2,961	3,299
C.195	2,374	5,089	6,704	9,010	10,894	12,844	7,456	9,841	11,645	14,030	15,835	17,639
C.196	1,852	2,622	3,243	4,111	4,802	5,525	5,508	7,269	8,602	10,364	11,697	13,029
C.197	1,043	1,766	2,392	3,310	4,063	4,862	4,676	6,172	7,303	8,799	9,930	11,062
C.198	1,307	2,018	2,630	3,515	4,237	5,000	5,134	6,776	8,018	9,660	10,903	12,145
C.199	6,180	8,279	9,864	11,953	13,530	15,105	9,869	13,026	15,414	18,570	20,959	23,346
C.200	771	1,103	1,359	1,709	1,976	2,245	745	983	1,163	1,402	1,582	1,762
C.201	891	1,213	1,457	1,782	2,027	2,272	1,540	2,033	2,405	2,898	3,271	3,643
C.202	511	688	821	996	1,128	1,260	848	1,120	1,325	1,597	1,802	2,007
C.203	246	353	439	560	655	753	133	175	207	249	282	314
C.204	6,024	8,908	11,271	14,600	17,257	20,020	1,212	1,600	1,893	2,281	2,574	2,867
C.205	3,045	4,197	5,087	6,277	7,186	8,100	7,659	10,109	11,963	14,413	16,266	18,119
C.206	2,260	3,331	4,210	5,449	6,437	7,464	1,083	1,430	1,692	2,038	2,301	2,563
C.207	657	1,106	1,492	2,052	2,510	2,993	3,897	5,144	6,087	7,334	8,277	9,220
C.208	1,005	1,511	1,943	2,567	3,075	3,620	3,051	4,027	4,765	5,741	6,480	7,218
C.209	843	1,426	1,929	2,666	3,270	3,909	4,161	5,492	6,499	7,831	8,838	9,844
C.210	8,485	11,759	14,290	17,719	20,343	22,991	6,725	8,876	10,503	12,655	14,282	15,909
C.211	487	686	844	1,062	1,233	1,408	230	304	360	434	489	545
C.212	1,102	1,519	1,840	2,267	2,591	2,917	1,518	2,004	2,371	2,857	3,224	3,592
C.213	517	719	878	1,092	1,258	1,426	283	374	442	533	601	670
C.214	920	1,303	1,605	2,020	2,342	2,671	537	708	838	1,010	1,139	1,269
C.215	5,104	6,994	8,474	10,489	12,053	13,648	9,377	12,377	14,646	17,645	19,914	22,183
C.216	1,751	2,487	3,058	3,841	4,446	5,057	554	732	866	1,043	1,177	1,311
C.217	3,718	6,979	9,913	14,354	18,111	22,187	7,516	9,920	11,739	14,143	15,962	17,780
C.218	1,007	1,372	1,652	2,025	2,307	2,589	728	960	1,136	1,369	1,545	1,721
C.219	270	371	449	553	632	711	337	444	526	633	715	796
C.220	631	1,058	1,427	1,965	2,406	2,874	4,014	5,298	6,270	7,554	8,525	9,497
C.221	5,099	7,781	10,043	13,317	16,015	18,865	14,101	18,612	22,024	26,534	29,947	33,359

	Gastos calculados (I/s) con el programa PCSWMM							Gastos calculados (I/s) con la formula Mc Math						
Cuenca	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años		
C.222	5,481	7,362	8,775	10,655	12,083	13,509	5,615	7,411	8,770	10,566	11,925	13,284		
C.223	10,163	22,362	30,668	43,131	53,618	64,962	7,520	9,925	11,744	14,150	15,969	17,789		
C.224	7,235	9,966	12,091	14,971	17,195	19,451	11,495	15,171	17,953	21,629	24,411	27,192		
C.225	5,545	7,591	9,167	11,275	12,884	14,502	9,717	12,825	15,176	18,284	20,636	22,987		
C.226	3,592	5,056	6,201	7,738	8,914	10,099	887	1,171	1,386	1,669	1,884	2,099		
C.227	1,036	1,639	2,155	2,908	3,525	4,179	4,369	5,767	6,824	8,222	9,279	10,336		
C.228	8,988	12,668	15,568	19,524	22,588	25,706	7,055	9,312	11,019	13,276	14,983	16,690		
C.229	973	1,366	1,669	2,073	2,380	2,695	440	580	687	827	934	1,040		
C.230	5,990	8,263	10,060	12,519	14,433	16,391	11,271	14,877	17,604	21,209	23,937	26,664		
C.231	3,695	4,999	5,984	7,281	8,258	9,235	4,162	5,493	6,501	7,832	8,839	9,846		
C.232	1,892	2,896	3,781	5,084	6,166	7,351	3,874	5,113	6,050	7,290	8,227	9,164		
C.233	3,353	4,823	6,039	7,814	9,265	10,800	4,853	6,405	7,579	9,131	10,305	11,479		
C.234	2,298	3,090	3,694	4,494	5,099	5,703	2,758	3,640	4,307	5,189	5,856	6,524		
C.235	11,139	16,148	20,400	26,517	31,501	36,854	7,425	9,800	11,597	13,972	15,769	17,565		
C.236	845	1,395	1,867	2,557	3,121	3,717	3,402	4,491	5,314	6,402	7,225	8,049		
C.237	4,772	6,449	7,710	9,371	10,637	11,908	6,743	8,899	10,531	12,688	14,319	15,951		
C.238	5,502	7,547	9,136	11,283	12,939	14,619	7,778	10,266	12,148	14,635	16,517	18,399		
C.239	5,979	8,497	10,527	13,359	15,602	17,925	4,995	6,592	7,801	9,399	10,607	11,816		
C.240	1,023	1,574	2,039	2,717	3,268	3,848	3,893	5,138	6,080	7,325	8,267	9,209		
C.241	852	1,206	1,485	1,868	2,166	2,471	353	466	552	665	750	836		
C.242	321	450	553	693	802	914	202	266	315	379	428	477		
C.243	234	333	409	512	590	669	197	260	307	370	418	465		
C.244	7,111	9,686	11,681	14,370	16,440	18,537	10,030	13,239	15,666	18,874	21,301	23,728		
C.245	3,733	4,978	5,915	7,153	8,087	9,020	5,984	7,899	9,347	11,261	12,709	14,157		
C.246	1,202	1,686	2,067	2,588	2,994	3,407	1,122	1,480	1,752	2,110	2,382	2,653		
C.247	12,807	17,382	20,898	25,543	29,045	32,537	6,777	8,945	10,585	12,753	14,393	16,032		
C.248	11,490	16,123	19,695	24,445	28,066	31,770	8,810	11,628	13,760	16,578	18,710	20,841		
C.249	342	469	566	694	791	889	407	537	636	766	864	963		
C.250	3,323	4,563	5,539	6,877	7,929	9,009	5,876	7,755	9,177	11,056	12,478	13,900		
C.251	2,146	3,603	4,854	6,670	8,152	9,713	10,371	13,689	16,199	19,516	22,026	24,535		
C.252	4,876	6,657	8,036	9,897	11,329	12,780	3,550	4,685	5,544	6,680	7,539	8,398		
C.253	4,512	6,208	7,547	9,384	10,823	12,312	8,365	11,041	13,065	15,741	17,765	19,789		
C.254	2,837	3,924	4,771	5,903	6,767	7,637	2,347	3,097	3,665	4,416	4,983	5,551		
C.255	191	264	322	400	462	525	260	343	406	489	552	615		
C.256	12,575	36,639	50,236	70,677	87,899	106,544	7,890	10,413	12,322	14,846	16,755	18,664		
C.257	3,845	5,387	6,587	8,214	9,469	10,754	3,115	4,111	4,865	5,862	6,615	7,369		
C.258	850	1,344	1,762	2,362	2,849	3,360	3,314	4,374	5,175	6,235	7,037	7,839		
C.259	1,453	2,495	3,412	4,776	5,913	7,131	7,193	9,493	11,234	13,534	15,275	17,015		

	Gastos calculados (I/s) con el programa PCSWMM						Gastos calculados (I/s) con la formula Mc Math						
Cuenca	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	
C.260	326	460	567	713	828	945	192	254	300	362	408	455	
C.261	199	275	334	414	475	538	220	290	343	414	467	520	
C.262	6,413	8,680	10,423	12,719	14,450	16,177	6,424	8,478	10,033	12,088	13,642	15,196	
C.263	1,889	2,551	3,048	3,703	4,198	4,699	3,036	4,007	4,741	5,712	6,447	7,181	
C.264	1,101	1,489	1,783	2,171	2,464	2,756	1,591	2,100	2,485	2,994	3,380	3,765	
C.265	3,006	4,095	4,937	6,065	6,930	7,804	3,194	4,215	4,988	6,009	6,782	7,555	
C.266	1,470	2,477	3,343	4,604	5,636	6,725	8,058	10,636	12,586	15,164	17,113	19,063	
C.267	3,916	5,247	6,249	7,591	8,604	9,614	2,611	3,447	4,079	4,914	5,546	6,178	
C.268	3,393	4,747	5,812	7,263	8,386	9,529	7,174	9,468	11,204	13,499	15,235	16,970	
C.269	1,336	1,808	2,162	2,627	2,979	3,335	1,827	2,412	2,854	3,438	3,880	4,322	
C.270	8,227	11,088	13,270	16,182	18,387	20,593	10,884	14,366	17,000	20,481	23,115	25,749	
C.271	667	927	1,126	1,398	1,606	1,816	318	420	497	599	676	753	
C.272	2,432	3,346	4,055	5,015	5,755	6,506	2,163	2,855	3,378	4,070	4,594	5,117	
C.273	2,410	3,709	4,786	6,316	7,539	8,813	4,214	5,561	6,581	7,929	8,948	9,968	
C.274	1,539	2,135	2,599	3,224	3,700	4,180	1,304	1,721	2,037	2,454	2,770	3,085	
C.275	840	1,340	1,764	2,377	2,876	3,401	3,494	4,612	5,457	6,575	7,420	8,266	
C.276	859	1,343	1,760	2,370	2,871	3,403	2,719	3,588	4,246	5,116	5,774	6,432	
C.277	8,739	12,222	14,955	18,688	21,597	24,575	3,406	4,495	5,319	6,409	7,233	8,057	
C.278	760	1,310	1,795	2,519	3,124	3,774	5,652	7,460	8,828	10,636	12,004	13,371	
C.279	4,481	6,055	7,237	8,793	9,973	11,163	3,686	4,865	5,757	6,936	7,828	8,719	
C.280	1,359	1,988	2,486	3,163	3,689	4,233	591	781	924	1,113	1,256	1,399	
C.281	2,206	3,037	3,666	4,499	5,138	5,781	1,778	2,347	2,777	3,346	3,776	4,207	
C.282	12,089	16,533	19,978	24,604	28,145	31,715	12,187	16,085	19,034	22,933	25,882	28,830	
C.283	3,044	4,252	5,195	6,476	7,464	8,467	2,164	2,856	3,380	4,072	4,595	5,119	
C.284	1,641	2,268	2,754	3,404	3,899	4,398	1,193	1,575	1,864	2,246	2,535	2,823	
C.285	3,200	4,414	5,353	6,624	7,604	8,600	1,853	2,446	2,894	3,487	3,935	4,383	
C.286	1,910	3,210	4,370	6,103	7,555	9,119	15,550	20,524	24,287	29,261	33,024	36,787	
C.287	483	658	791	969	1,103	1,237	446	589	697	840	948	1,056	
C.288	2,640	3,587	4,316	5,279	6,006	6,731	2,297	3,032	3,588	4,322	4,878	5,434	
C.289	2,236	3,186	3,927	4,932	5,718	6,515	580	766	906	1,092	1,233	1,373	
C.290	3,148	4,301	5,171	6,344	7,233	8,122	1,123	1,483	1,755	2,114	2,386	2,658	
C.291	570	816	1,008	1,266	1,464	1,668	325	429	507	611	690	768	
C.292	636	932	1,169	1,491	1,741	1,998	357	471	557	671	758	844	
C.293	915	1,284	1,574	1,961	2,256	2,551	232	306	362	436	492	548	
C.294	671	891	1,057	1,276	1,442	1,608	1,303	1,720	2,036	2,452	2,768	3,083	
C.295	4,854	6,619	7,973	9,779	11,165	12,559	10,428	13,764	16,287	19,623	22,146	24,669	
C.296	1,617	2,217	2,679	3,298	3,776	4,259	1,796	2,370	2,805	3,379	3,814	4,248	
C.297	2,926	3,890	4,616	5,583	6,313	7,042	7,221	9,531	11,278	13,588	15,335	17,083	

	Gast	os calcula	ıdos (I/s) c	on el prog	grama PCS	MMW	Gas	stos calcu	lados (l/s)	con la fo	rmula Mc I	Vlath
Cuenca	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años
C.298	1,342	1,853	2,249	2,774	3,172	3,571	575	759	899	1,083	1,222	1,361
C.299	6,377	9,337	11,747	15,124	17,807	20,588	1,796	2,371	2,805	3,380	3,814	4,249
C.300	320	448	548	685	791	899	216	285	337	406	459	511
C.301	725	1,050	1,303	1,653	1,923	2,195	345	455	539	649	732	816
C.302	2,954	4,057	4,902	6,028	6,885	7,744	6,067	8,007	9,475	11,416	12,884	14,351
C.303	994	1,327	1,580	1,914	2,165	2,417	1,754	2,315	2,740	3,301	3,725	4,150
C.304	980	1,305	1,550	1,874	2,118	2,362	1,720	2,270	2,686	3,236	3,653	4,069
C.305	531	703	833	1,006	1,136	1,266	22	29	34	41	46	52
C.306	2,193	2,968	3,564	4,350	4,942	5,533	2,540	3,352	3,967	4,779	5,394	6,008
C.307	1,145	1,548	1,852	2,251	2,552	2,856	1,785	2,356	2,788	3,358	3,790	4,222
C.308	1,344	1,795	2,139	2,595	2,939	3,282	2,084	2,750	3,254	3,921	4,425	4,929
C.309	3,415	4,748	5,787	7,189	8,264	9,353	2,047	2,702	3,198	3,853	4,348	4,844
C.310	2,197	2,929	3,480	4,206	4,754	5,302	1,285	1,696	2,007	2,418	2,729	3,039
C.311	2,406	3,439	4,241	5,319	6,164	7,018	710	937	1,108	1,335	1,507	1,679
C.312	840	2,019	2,863	4,140	5,221	6,393	1,121	1,479	1,750	2,109	2,380	2,651
C.313	1,202	1,761	2,216	2,855	3,362	3,887	1,138	1,502	1,777	2,141	2,416	2,691
C.314	1,606	2,696	3,630	4,986	6,091	7,255	8,320	10,982	12,995	15,656	17,670	19,683
C.315	2,514	3,362	4,001	4,842	5,478	6,112	6,366	8,402	9,942	11,978	13,519	15,059
C.316	1,951	2,593	3,077	3,717	4,200	4,682	1,120	1,478	1,749	2,107	2,378	2,649
C.317	1,529	2,024	2,397	2,891	3,265	3,639	2,178	2,875	3,402	4,098	4,626	5,152
C.318	2,562	3,402	4,035	4,871	5,503	6,137	3,773	4,980	5,893	7,100	8,013	8,925
C.319	1,241	1,658	1,976	2,395	2,711	3,027	1,522	2,008	2,377	2,863	3,231	3,600
C.320	321	510	668	892	1,072	1,260	1,776	2,344	2,774	3,342	3,772	4,202
C.321	2,667	4,349	5,789	7,879	9,585	11,387	11,750	15,508	18,351	22,110	24,953	27,796
C.322	5,945	9,967	13,516	18,815	23,253	28,036	19,590	25,855	30,596	36,862	41,602	46,342
C.323	5,174	8,326	11,019	14,932	18,125	21,501	15,541	20,513	24,273	29,244	33,005	36,766
C.324	7,351	11,637	15,315	20,691	25,106	29,801	19,664	25,953	30,712	37,001	41,759	46,517
C.325	12,467	17,471	21,316	26,527	30,553	34,622	12,855	16,967	20,078	24,190	27,301	30,411
C.326	2,194	3,678	4,986	6,936	8,566	10,322	12,465	16,452	19,469	23,456	26,472	29,488
C.327	18,577	35,692	43,498	54,121	62,384	70,871	27,616	36,449	43,131	51,965	58,647	65,329
C.328	11,563	22,722	27,929	35,402	42,384	49,785	22,853	30,163	35,693	43,002	48,532	54,062
C.329	16,051	40,086	52,898	71,795	87,476	104,267	36,673	48,403	57,277	69,007	77,881	86,754
C.330	15,516	38,863	51,344	69,787	85,119	101,562	34,465	45,489	53,830	64,854	73,194	81,533
C.331	21,835	55,364	73,180	99,362	121,002	144,093	43,678	57,649	68,218	82,189	92,758	103,326
C.332	10,182	16,092	21,095	28,309	34,164	40,323	18,730	24,721	29,254	35,245	39,777	44,309
C.333	6,851	9,607	11,817	15,021	18,072	21,315	16,025	21,151	25,029	30,155	34,033	37,910
C.334	11,221	17,942	23,494	31,296	37,482	43,864	21,036	27,764	32,854	39,583	44,673	49,762
C.335	10,244	17,304	23,466	32,512	39,941	47,800	13,184	17,401	20,591	24,808	27,998	31,188

	Gast	os calcula	ıdos (I/s) c	on el prog	grama PCS	SWMM	Gastos calculados (I/s) con la formula Mc Math						
Cuenca	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	
C.336	1,340	2,003	2,532	3,255	3,816	4,387	3,149	4,157	4,919	5,926	6,688	7,450	
C.337	5,553	8,683	11,312	15,076	18,114	21,294	12,747	16,824	19,908	23,986	27,070	30,154	
C.338	5,706	8,814	11,507	15,421	18,627	22,028	18,130	23,930	28,317	34,116	38,503	42,890	
C.339	5,429	8,317	10,742	14,218	17,031	19,984	12,886	17,008	20,126	24,248	27,366	30,484	
C.340	2,120	3,179	4,007	5,165	6,121	7,102	8,072	10,653	12,607	15,188	17,142	19,095	
C.341	10,329	24,190	32,305	44,353	54,404	65,218	27,263	35,984	42,581	51,301	57,898	64,495	
C.342	5,007	8,095	10,750	14,624	17,805	21,179	17,891	23,613	27,943	33,665	37,994	42,323	
C.343	15,329	27,201	33,260	42,692	51,432	60,752	26,719	35,266	41,731	50,278	56,743	63,208	
C.344	16,712	31,479	40,991	54,904	66,378	78,623	38,619	50,972	60,318	72,670	82,016	91,360	
C.345	13,750	24,913	30,520	38,180	44,156	50,285	29,667	39,156	46,334	55,824	63,002	70,180	
C.346	8,036	17,325	22,570	30,193	36,436	43,058	24,455	32,277	38,195	46,017	51,935	57,852	
C.347	7,466	17,540	23,437	32,186	39,480	47,325	30,303	39,996	47,329	57,022	64,355	71,687	
C.348	6,543	17,658	24,764	35,494	44,560	54,395	14,521	19,165	22,679	27,323	30,837	34,351	
C.349	7,681	17,047	22,451	30,388	36,948	43,959	34,536	45,582	53,939	64,986	73,343	81,699	
C.350	7,865	11,693	15,148	20,221	24,394	28,833	26,329	34,750	41,121	49,543	55,914	62,284	
C.351	1,279	2,050	2,713	3,680	4,475	5,319	8,751	11,550	13,667	16,466	18,584	20,701	
C.352	1,633	2,678	3,617	5,044	6,254	7,571	12,410	16,380	19,383	23,352	26,355	29,358	
C.353	10,721	16,318	21,129	28,140	33,890	40,001	27,077	35,738	42,290	50,950	57,503	64,054	
C.354	23,167	34,328	43,765	57,361	68,438	80,159	36,000	47,515	56,227	67,742	76,453	85,164	
C.355	10,131	15,585	20,231	26,990	32,536	38,429	26,998	35,634	42,167	50,802	57,335	63,868	
C.356	6,845	11,003	14,508	19,531	23,583	27,822	14,077	18,580	21,987	26,490	29,896	33,302	
C.357	10,371	16,403	21,579	29,141	35,358	41,971	35,685	47,100	55,735	67,149	75,784	84,418	
C.358	7,767	12,499	16,528	22,356	27,101	32,100	20,283	26,770	31,678	38,166	43,074	47,981	
C.359	2,207	3,471	4,548	6,109	7,385	8,734	4,349	5,740	6,793	8,184	9,236	10,288	
C.360	4,802	7,521	9,849	13,245	16,037	19,005	23,701	31,282	37,017	44,598	50,334	56,068	
C.361	4,305	6,825	8,987	12,143	14,736	17,492	23,338	30,802	36,450	43,914	49,562	55,208	
C.362	8,516	13,638	18,033	24,428	29,666	35,213	31,067	41,004	48,522	58,459	65,977	73,494	
C.363	5,183	8,221	10,831	14,635	17,755	21,064	11,881	15,682	18,557	22,357	25,232	28,107	
C.364	8,426	13,370	17,615	23,824	28,951	34,400	29,504	38,941	46,081	55,518	62,657	69,796	
C.365	2,897	4,785	6,430	8,856	10,867	13,016	8,452	11,156	13,201	15,905	17,950	19,995	
C.366	7,813	11,081	13,602	16,995	19,709	22,940	19,861	26,214	31,020	37,373	42,179	46,984	
C.367	2,831	4,525	5,973	8,079	9,803	11,628	6,477	8,549	10,116	12,188	13,756	15,323	
C.368	21,341	31,500	40,073	52,481	62,596	73,305	28,977	38,246	45,258	54,526	61,538	68,549	
C.369	12,050	18,656	24,324	32,638	39,508	46,854	19,528	25,775	30,500	36,747	41,472	46,197	
C.370	3,801	9,944	13,052	17,543	21,195	25,047	18,354	24,225	28,666	34,537	38,978	43,419	
C.371	6,100	15,379	20,083	26,926	32,529	38,475	24,595	32,462	38,413	46,280	52,231	58,182	
C.372	7,488	17,762	24,935	35,796	44,984	54,961	18,338	24,204	28,642	34,507	38,945	43,382	
C.373	7,389	17,627	24,786	35,625	44,795	54,753	24,491	32,324	38,251	46,084	52,011	57,936	

	Gastos calculados (I/s) con el programa PCSWMM						Gastos calculados (I/s) con la formula Mc Math						
Cuenca	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	
C.374	7,157	17,251	24,346	35,089	44,179	54,049	21,938	28,955	34,264	41,281	46,590	51,898	
C.375	7,126	17,211	24,300	35,036	44,119	53,983	7,583	10,008	11,843	14,269	16,104	17,939	
C.376	2,746	4,369	5,746	7,733	9,347	11,045	13,205	17,429	20,624	24,848	28,044	31,239	
C.377	7,591	18,198	25,706	37,076	46,693	57,137	4,968	6,557	7,759	9,348	10,550	11,752	
C.378	5,041	7,892	10,330	13,915	16,867	20,003	19,015	25,097	29,698	35,780	40,381	44,982	
C.379	81,189	193,841	273,873	394,972	497,377	608,572	36,004	47,521	56,233	67,750	76,462	85,173	
C.380	2,866	4,548	5,977	8,044	9,726	11,499	12,782	16,870	19,963	24,051	27,144	30,237	
C.381	1,413	1,997	2,590	3,452	4,164	4,925	6,861	9,056	10,717	12,911	14,572	16,232	
C.382	1,497	2,465	3,300	4,518	5,517	6,576	13,426	17,721	20,970	25,265	28,513	31,762	
C.383	765	1,233	1,630	2,201	2,664	3,150	12,413	16,383	19,387	23,358	26,361	29,365	
C.384	433	660	842	1,091	1,285	1,486	6,334	8,361	9,893	11,920	13,452	14,985	
C.385	4,001	6,261	8,121	10,736	12,830	15,008	27,687	36,543	43,242	52,098	58,798	65,497	
C.386	27,620	44,407	58,723	79,458	96,354	114,175	6,026	7,953	9,411	11,339	12,797	14,255	
C.387	3,922	6,083	7,926	10,609	12,828	15,190	15,997	21,114	24,986	30,102	33,974	37,844	
C.388	2,052	3,258	4,281	5,759	6,960	8,226	8,341	11,009	13,028	15,696	17,714	19,733	
C.389	4,573	7,139	9,334	12,557	15,200	18,003	16,528	21,814	25,814	31,100	35,100	39,099	
C.390	6,381	9,988	12,967	17,166	20,503	23,983	11,741	15,496	18,337	22,092	24,933	27,774	
C.391	7,815	10,963	13,395	16,656	19,422	22,643	20,578	27,160	32,139	38,721	43,701	48,680	
C.392	28,664	53,651	76,262	110,568	139,648	171,258	19,131	25,250	29,879	35,998	40,628	45,256	
C.393	6,137	9,513	12,394	16,588	20,030	23,688	15,138	19,979	23,642	28,484	32,147	35,810	
C.394	44,748	89,261	108,295	134,130	154,175	174,639	30,102	39,731	47,015	56,643	63,928	71,211	
C.395	27,945	69,082	89,474	119,388	144,153	170,548	45,749	60,382	71,453	86,086	97,157	108,226	
C.396	16,639	38,235	48,799	64,105	76,850	90,411	38,077	50,256	59,470	71,649	80,863	90,076	
C.397	13,028	20,383	26,728	36,248	44,157	52,638	33,145	43,746	51,767	62,368	70,389	78,408	
C.398	24,057	35,421	44,824	58,280	69,114	80,462	23,665	31,235	36,961	44,531	50,257	55,983	
C.399	11,075	17,324	22,801	30,874	37,569	44,741	29,809	39,343	46,556	56,091	63,304	70,516	
C.400	5,703	8,239	10,165	12,776	14,764	16,751	89,030	117,507	139,051	167,528	189,072	210,613	
C.401	6,489	10,307	13,566	18,305	22,181	26,282	17,061	22,519	26,647	32,105	36,233	40,361	
C.402	19,760	28,001	34,560	43,624	50,754	58,102	14,094	18,602	22,013	26,521	29,932	33,342	
C.403	8,780	14,032	18,450	24,767	29,857	35,175	24,343	32,130	38,020	45,807	51,697	57,587	
C.404	37,192	64,476	88,776	125,294	155,976	189,122	29,717	39,222	46,413	55,918	63,109	70,299	
C.405	44,911	77,987	107,459	151,726	188,919	229,089	12,513	16,516	19,544	23,547	26,575	29,602	
C.406	2,080	3,083	3,891	5,014	5,900	6,809	7,427	9,803	11,600	13,976	15,773	17,570	
C.407	46,996	91,371	126,182	178,571	222,703	270,476	38,926	51,376	60,796	73,246	82,666	92,084	
C.408	54,325	116,297	160,902	228,066	284,680	345,995	12,074	15,936	18,857	22,719	25,641	28,562	
C.409	57,674	146,618	205,127	293,447	368,057	448,999	49,745	65,656	77,694	93,605	105,643	117,679	
C.410	81,471	194,152	274,193	395,314	497,740	608,921	16,616	21,931	25,951	31,266	35,287	39,307	
C.411	69,940	164,252	231,385	333,144	419,291	512,881	23,554	31,088	36,788	44,321	50,021	55,720	

	Gast	os calcula	idos (I/s) d	on el prog	grama PCS	Gastos calculados (I/s) con la formula Mc Math						
Cuenca	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años	Tr 2 años	Tr 5 años	Tr 10 años	Tr 25 años	Tr 50 años	Tr 100 años
C.412	57,607	130,564	182,317	260,727	327,132	399,299	17,468	23,055	27,282	32,869	37,096	41,323
C.413	45,393	92,557	131,589	190,905	241,175	295,798	5,215	6,883	8,145	9,814	11,076	12,338
C.414	35,400	67,340	96,281	140,181	177,376	217,790	15,099	19,929	23,583	28,412	32,066	35,720
C.415	41,988	86,382	123,029	178,644	225,760	276,954	7,803	10,299	12,187	14,682	16,571	18,459
C.416	28,613	54,190	77,338	112,454	142,219	174,575	16,461	21,726	25,710	30,975	34,958	38,941
C.417	41,111	68,750	93,603	131,170	162,978	197,532	72,424	95,589	113,114	136,280	153,805	171,328
C.418	8,173	13,277	17,599	23,812	28,838	34,106	38,032	50,197	59,400	71,565	80,769	89,971
C.419	3,033	4,904	6,493	8,787	10,648	12,605	25,383	33,502	39,644	47,763	53,906	60,047
C.420	2,171	3,529	4,705	6,431	7,853	9,369	22,607	29,838	35,309	42,540	48,010	53,480
C.421	87,139	128,760	162,165	208,891	245,418	282,754	73,950	97,604	115,499	139,152	157,047	174,940
C.422	81,177	193,829	273,854	394,961	497,358	608,538	2,336	3,084	3,649	4,396	4,962	5,527
C.423	1,510	2,013	2,392	2,892	3,270	3,648	5,489	7,245	8,574	10,329	11,658	12,986
C.424	3,327	4,668	5,726	7,170	8,290	9,431	13,986	18,460	21,844	26,318	29,702	33,086
C.425	6,805	14,731	20,644	29,564	37,096	45,265	1,825	2,408	2,850	3,433	3,875	4,316
C.426	52,145	93,376	114,192	142,122	163,529	185,221	37,855	49,963	59,123	71,231	80,392	89,551