

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA INGENIERÍA ELÉCTRICA – TELECOMUNICACIONES

Análisis para el dimensionamiento de la carga útil de un sistema satelital de observación de la Tierra

Tesis Que para optar el grado de: Maestro en Ingeniería

Presenta: Juan Bolaños Miranda

Tutor:

Dr. Salvador Landeros Ayala

Facultad de ingeniería

México, D.F octubre de 2014

JURADO ASIGNADO:

- Presidente: Dr. Vicente Vivas Esaú
- Secretario: Dr. Matías Maruri José María
- Vocal: Dr. Landeros Ayala Salvador
- 1 er. Suplente: Dra. Moumtadi Fátima
- 2 d o. Suplente: Dr. García Garduño Víctor

México, D.F septiembre 2104

Tutor de tesis:

Salvador Landeros Ayala

Firma

Índice de figurasVI
Índice de tablasX
DedicatoriaXI
Objetivo(s) De la tesisXII
Definición del problemaXII
CAPÍTULO 11
1. Uso del espectro electromagnético en percepción remota1
1.1 Definición1
1.2 El espectro electromagnético y la atmósfera de la tierra2
1.2.1 Ventanas en el espectro electromagnético2
1.3 La naturaleza de la percepción remota5
1.3.1 Factores espectrales en teledetección8
Bibliografía11
CAPÍTULO212
2. Sistemas de percepción remota12
2.1. Características espaciales y radiométricas12
2.2 Modelos de radiaciones ópticas17
2.2.1 Visible en onda corta de la región infrarroja17
2.2.2 Componentes de radiación18
2.3 Componentes de la radiación23
Bibliografía27
CAPÍTULO3
3. Modelos de sensores29
3.1 Introducción29
3.2 Modelo general de un sensor29
3.3 Resolución
3.3.1 La respuesta de los instrumentos

ÍNDICE

3.4 Modelo de sensor simplificado	31
3.5 Distorsión geométrica	32
3.5.1 Sensores de modelos de ubicación	32
3.5.2 Modelos de "attitude sensor"	32
3.5.3 Modelos de escáner	35
3.5.4 Modelo Tierra	
3.5.5 Línea y escaneo geométrico Whiskbroom	39
Bibliografía	40
CAPÍTULO 4	41
4. Análisis y dimensionamiento de la carga útil	42
4.1 Efectos del DRAG	43
4.1.1. Satélite a alturas bajas (200-300 km)	45
4.1.2. Satélite a 700 km de altura	47
4.2 Análisis de las órbitas con SPENVIS	49
4.2.1. Caso 1: satélite a 200 km de altura con SPENVIS	49
4.2.2. Caso 2: satélite a 300km de altura con SPENVIS 4.2.3. Caso 3: satélite a 700km de altura con SPENVIS	51 54
1.2 Efectos de la radiación	ГЛ
4.3 Electos de la radiación	
4.4 Análisis y diseño de un enlace de comunicaciones por satélite	64
4.5 Propuesta de un sistema nacional de percepción remota	86
4.5.1 Diseño de procesos de carga útil de observación	90
Bibliografía	99
CAPÍTULO 5	100
5. Algunos ejemplos de satélites de observación de la Tierra y sus características técnicas	100
5.1 El Programa Landsat	100
5.1.1 LANDSAT 7	100

5.1.2 Envisat	101
5.1.3 IKONOS	103
5.1.3.1 Disposición de datos de IKONOS	103
5.1.3.2 Aplicaciones y ventajas de las imágenes IKONOS	105
5.2 Conclusiones	106
Apéndice A	108
REFERENCIAS BIBLIOGRÁFICAS	110

ÍNDICE DE FIGURAS

Figura 1.1 Bandas espectrales de los satélites Spot4 y LANDSAT51
Figura 1.2 Espectro de susceptibilidad atmosférica5
Figura 1.3 Parte de uno de los sistemas de teledetección en un espacio de parámetros de dos dimensiones7
Figura 1.4 Cuatro bandas de imágenes MODIS recogidas el dos de Marzo de 20068
Figura 1.5. Este simulador de imagen Thematic Mapper aire (TMS) de un devastador incendio forestal en el parque nacional de Yellowstone, Wyoming10
Figura 2.1 Comparación del muestreo espacial y espectral del LANDSAT TM AVIRIS en el rango espectral VNIR13
Figura 2.2. La definición de los parámetros básicos del escáner y la representación de los tres métodos de exploración, con ejemplos concretos de escáneres whiskbroom y Pushbroom14
Figura 2.3. Descripción geométrica simple de un solo elemento detector en el plano focal de un sensor óptico16
Figura 2.4. La relación entre GIFOV y GSI para la mayoría de los sensores de exploración y para el Landsat MSS y AVHRR17
Figura 2.5 Los componentes más importantes de radiación visto por el sensor en la teledetección reflectantes solares son el componente "directa", el componente "tragaluz", y el componente de "camino de radiancia" (comúnmente llamado "neblina")
Figura 2.6 La geometría de la irradiación solar directa sobre la superficie de la tierra20
Figura 2.7 Los componentes se refleja y dispersa de la radiación en el sensor y la analogía de componentes emitida23
Figura 2.8 La dependencia de exitancia radiante de un cuerpo negro en su temperatura a tres longitudes de onda25
Figura 3.1 Los componentes principales en un sistema remoto de detección electro-óptico. Un tipo whiskbroom del sistema se ilustra aquí
Figura 3.2 Definiciones convencionales para los tres ejes de la actitud de una plataforma de sensor, se debe utilizar un sistema de coordenadas de mano derecha

Figura 4.1 Gráfico del coeficiente balístico respecto a la altitud inicial y la vida útil del satélite	.42
Figura 4.2 Mapa que muestra la onda del campo gravitacional de la Tierra obtenida por la de la NASA, GRACE ("Gravity Recovery And Climate Experiment")	a misión .43
Figura 4.3 Gráfico de la trayectoria de un satélite a 200 km de altura	45
Figura 4.4 Gráfico de la trayectoria de un satélite a 300 km de altura	46
Figura 4.5 Imagen de STK en 2D de la órbita de un satélite a 700km de altura y con inclina grados	ación 98,3 47
Figura 4.6 Gráfico de la trayectoria de un satélite a 700 km de altura. En la línea azul veme trayectoria con drag y en la roja la trayectoria sin drag	os la .48
Figura 4.7 Gráfica altitud, latitud, longitud y local time en función del tiempo de órbita	.49
Figura 4.8 Segmentos creados en SPENVIS para el desarrollo de los cálculos a 300 km	.50
Figura 4.9 Gráficas en SPENVIS para cada uno de los segmentos	.51
Figura 4.10 Gráfica generada mediante Gnuplot para unificar cada uno de los segmentos estudiados con SPENVIS, a 300km de altura	.53
Figura 4.11 Gráfica generada mediante Gnuplot para unificar cada uno de los segmentos estudiados con SPENVIS, 5 años a 700 km de altura	54
Figura 4.12 Imagen artística en la cual vemos la radiación solar y sus efectos sobre el cam magnético terrestre	ро .56
Figura 4.13 Gráfica sobre el último ciclo solar	.59
Figura 4.14 Diagrama del apartado Radiation Source and effects del sistema	
SPENVIS	59

Figura 4.15 Gráficas obtenidas de SPENVIS60	
Figura 4.16 Gráficas obtenidas de SPENVIS61	
Figura 4.17 Gráficas obtenidas de SPENVIS61	
Figura 4.18 Gráficas obtenidas de SPENVIS62	
Figura 4.19 Gráficas obtenidas de SPENVIS63	
Figura 4.20 Gráficas obtenidas de SPENVIS64	
Figura 4.21 Gráficas obtenidas de SPENVIS64	
Figura 4.22 Gráficas obtenidas de SPENVIS65	
Figura 4.23Estableciendo un nuevo escenario para el análisis y diseño de un enlace satelital65	i
Figura 4.24 Reporte generado por el escenario creado66	
Figura 4.25 Representación 3D del acceso al satélite por la estación terrena67	
Figura 4.26 Representación 3D del acceso al satélite por la estación terrena	
Figura 4.27 Creación de un nuevo estilo de grafico67	1
Figura 4.28 Gráfico correspondiente a la variación de la potencia isotrópica recibida (RIP)	
Figura 4.29 Limitado el valor de la potencia isotrópica recibida RIP68	
Figura 4.30 Efecto en la cobertura de la estación terrena debido a la limitación establecida e valor del RIP	en el
Figura 4.31 Comparación de los valores del parámetro RIP a)antes y b)después de imponer l limitación70	la)
Figura 4.32 Modificación de las características de la antena en el transmisor para corregir la limitación del RIP71	L
FIGURA 4.33 Grafico 2D después de realizar la corrección en el transmisor ante la limitación RIP72	de
Figura 4.34 Comparativa de los valores del parámetro RIP después de corregir y sin corregir limitación73	la 3
Figura 4.35 Modificando parámetros de transmisión para mejorar el valor del RIP74	
Figura 4.36 Valores de la potencia isotrópica recibida a) aumentando el nivel de potencia b) aumentar la potencia75)sin 5
Figura 4.37 Valores del desplazamiento de frecuencia por efecto Doppler76	5

Figura 4.38 Valores del desplazamiento de frecuencia por efecto Doppler después de limitarlo
Figura 4.39 Gráfico 2D después de establecer la limitación en el desplazamiento Doppler
Figura 4.40 Valores del parámetro densidad de flujo para el enlace de comunicaciones
Figura 4.41 Limitación impuesta al valor de la densidad de flujo en el transmisor78
Figura 4.42 Gráfico 2D del escenario después de limitar el valor de la densidad de flujo79
Figura 4.43 Valores de la densidad de flujo después de limitar su valor
Figura 4.44 Representación 2D del acceso al satélite tras incrementar el nivel de potencia con limitación de la densidad de flujo80
Figura 4.45 Valores de la densidad de flujo de potencia al aumentar el nivel de potencia a 10[dBW]
Figura 4.46 Variación de los parámetros (C/N0) y (C/N)81
Figura 4.47 Limitando los valores del parámetro /C/N81
Figura 4.48 Representación 2D del escenario ante la limitación del valor de (C/N)82
Figura 4.49 Valores de (C/No)y (C/N) después de limitar el valor de (C/N)82
Figura 4.50 Efecto de incrementar el nivel de ganancia del receptor sobre el acceso al satélite
Figura 4.51 Valores de (C/No) y(C/N) después de incrementar el nivel de ganancia del receptor
Figura 4.52 Efecto de reducir el nivel de la figura de ruido del receptor sobre el acceso al satélite
Figura 4.53 Valores de (C/No) y (C/N) después de reducir el valor de la figura de ruido del receptor

Figura 5.2 Representación del satélite Landsat 7 en ór	rbita101
Figura 5.3 Representación del satélite Envisat	

Índice de tablas

Tabla 1.1 Grandes ventanas atmosféricas disponibles para la detección de naves espaciale	!S
remotas. (Ventanas que aparecen en negrita)	.2
Tabla 1.2 Regiones visibles de luz que se absorbe y luz que se refleja de acuerdo a una lon onda aproximada	gitud de 4
Tabla 1.3. Las regiones espectrales primarias utilizadas en teledetección de la tierra	9

Tabla 3.1 El ángulo entre dos pixeles adyacentes de una serie de sensores	32
Tabla 3.2 Ejemplos de distorsiones internas especificadas del sensor	34
Tabla 3.3 Parámetros útiles para la "figura de la Tierra", y su velocidad de rotación	.36

Tabla 4.1 Datos sobre la radiación recibida durante 2007 a 2009 en una órbita de altura 300km	57
Tabla 4.2 Datos sobre la radiación recibida durante 2007 a 2009 en una órbita de altura 300km	58
Tabla 4.3 Tabla de características típicas de carga útil	89
Tabla 4.4 de cálculos de parámetros de diseño de sensores ópticos pasivos	90
Tabla 4.5 Características generales de la constelación SPOT6 y 7	96
Tabla 4.6 Características generales y propuesta de nuestro Sistema Nacional de Percepc Remota	ión 98

Tabla 5.2	101
Tabla 5.1 Características principales de los sensores de ENVISAT	
Tabla 5.3	104

Dedicatoria

A mi Papá Javier Bolaños Nava, a mi Mamá Natividad Miranda Solís, a mis hermanos Javier y Lupita Bolaños Miranda por darme todo su apoyo, así también al Dr. Salvador Landeros Ayala por apoyarme también en todo, y sobre todo gracias al nuestro señor Jesucristo rey de la misericordia que me dio las fuerzas y la inteligencia para seguir adelante en todo momento.

Jesús en ti confió

Objetivo(s) de la tesis

Obtener un análisis para un dimensionamiento de un sistema satelital de observación de la tierra, donde se pueda mostrar los beneficios que se pueden obtener con dicho análisis y cuyo objetivo principal es contar con un sistema satelital orientado a la observación del territorio nacional.

Obtener las características técnicas que nos permitan ver la dimensión de dicho sistema satelital tales como bandas, tipos de sensores, cámaras que espectro vamos a manejar etc.

Llegar a un marco de características técnicas que nos puedan decir si es viable la propuesta de obtener un satélite de observación de la Tierra

DEFINICIÓN DEL PROBLEMA

Con este planteamiento nos damos una idea general del problema haciendo este estudio se podrá obtener, dimensionar de manera profunda un satélite para la observación de la tierra mediante la percepción remota ya que tenemos la necesidad de realizar un análisis dado que en nuestro país no contamos con un sistema satelital de observación de la Tierra dado que la mayoría de datos e imágenes satelitales los adquirimos de satélites extranjeros donde estos datos e imágenes se adquieres a altos costos.

También tenemos la necesidad de hacer este trabajo porque en nuestro país se conoce muy poco de satélites de observación de la Tierra y necesitamos ampliar más este campo de conocimiento, y para poder realizar este trabajo tenemos que buscar nuevas herramientas de trabajo como software y también apoyarnos con los que ya conocemos más como por ejemplo el software STK.

Capítulo 1

1 Uso del espectro electromagnético en percepción remota

1.1 Definición.

El objetivo de un sistema electrónico de comunicaciones es transferir información entre dos o más lugares, cuyo nombre común es estaciones. Esto se logra convirtiendo la información original a energía electromagnética, para transmitirla a continuación a una o más estaciones receptoras, donde se convierte a su forma original. La energía electromagnética se puede propagar en forma de voltaje o corriente, a través de un conductor o hilo metálico, o bien en forma de ondas de radio emitidas hacia el espacio libre, o como ondas luminosas a través de una fibra óptica. La energía electromagnética se distribuye en un intervalo casi infinito de frecuencias.

A continuación también se describe en la siguiente Figura 1.2 la comparación de las bandas de los satélites SPOT 4 y LANDSAT5:

Figura 1.1 Bandas espectrales de los satélites Spot4 y LANDSAT5 [1]

1.2 El espectro electromagnético y la atmósfera de la tierra.

Si no hubiera atmósfera por encima de la superficie terrestre la energía electromagnética de todas las longitudes de onda podrían interactuar con la superficie y podría transmitir información acerca de la naturaleza de esa superficie. Como sucede, sin embargo, la atmósfera de la Tierra es lo suficientemente transparente para la teledetección en sólo una pequeña porción del espectro electromagnético

1.2.1 Ventanas en el espectro electromagnético.

Las ventanas importantes para la teledetección se producen en todo el espectro, las más importantes desde el espacio son como se muestran en la Tabla 1.2. La inspección de este cuadro se desprende que todos las longitudes de onda más cortas de 0,30 μ m son sustancialmente cerrada por teledetección y que el director de mentiras ventanas en el visible (y casi visible), infrarrojos, microondas y regiones. La absorción atmosférica en la región ultravioleta corta que 0.32 μ m es tan intenso que la cantidad de energía solar que alcanza la superficie de la Tierra es insuficiente estar en teledetección

Ultravioleta y visible	0.30-0.75μm
	0.77-0.91
Infrarrojo-cercano	1.0-1.12
	1.19-1.34
	1.55-1.75
	2.05-2.4
Medio-infrarrojo	3.5-4.16
	4.5-5.0
Térmico-infrarrojo	8.0-9-2
	10.2-12.4
	17.0-22.0
Microondas	2.06-2.22mm
	3.0-3.75
	7.5-11.5
	20.0+

Tabla 1.1 Grandes ventanas atmosféricas disponibles para la detección de naves espaciales remotas. (Ventanas que aparecen en negrita).

La radiación ultravioleta es absorbida por la atmósfera superior o bien se disocia o ioniza las moléculas de gas. Fotones con energías de 5-9 eV disocian el oxígeno (O_2) , el ozono (O_3) , y

nitrógeno (N_2), y aquellos con energías de 12-16 eV ionizan O_2 y N_2 . Estas interacciones son tan intensas en la estratosfera e ionosfera que el espectro ultravioleta no sólo es inútil para la teledetección, sino que también protege la superficie de la tierra de esta banda de energía solar dañina y destructiva.

En la región de rayos X, donde incluso los fotones más energéticos ($5x10^1$ a $5x10^5$ eV) que surgen de las transiciones en las capas internas de un átomo, la intensidad de la interacción con los gases atmosféricos es tal que todos los X la radiación se absorbe en unos pocos centímetros a decenas de metros (en función de las energías de los fotones) de paso a través de la atmósfera inferior. Esta región es por lo tanto cerrada tanto a la tele observación de la Tierra y el espacio-emitida Xradiación.

Las longitudes de onda más cortas (y más altas energías electromagnéticas) que se utilizan en sensores remotos están asociadas con la radiación gamma de 1 MeV (10⁶eV). Los Fotones gamma se crean durante las transiciones entre los estados de energía del núcleo de un átomo. Los materiales radiactivos, como el uranio, en la corteza de la Tierra emiten fotones gamma. Estas emisiones pueden ser detectadas con dispositivos llevados en helicópteros o aviones de muy bajo vuelo, pero no se puede detectar en altitudes normal de la aeronave o por satélite, porque la atmósfera terrestre absorbe fuertemente los fotones gamma.

Por lo tanto, en la banda espectral con longitudes de onda más cortas que 0,3 nm, y que es sólo en la región de rayos gamma y que en algunos es restringida la teledetección es factible.

La primera ventana atmosférica significativa empieza a abrirse a 0,3 μ m y tiene una buena transparencia en el espectro visible. Los fotones son absorbidos sólo débilmente en esta región, pero la dispersión por ambas moléculas gaseosas y partículas de neblina y el polvo es de gran influencia en la percepción remota. La ventana visible continúa, pero con interrupciones, en el espectro del infrarrojo cercano, y fuertes (vibraciones) bandas de absorción, principalmente los de vapor de agua (H_2O), aparecen con mayor frecuencia. En la banda del infrarrojo térmico, entre el 4 y 14 μ m, las bandas de absorción fuertes ocurren que son causados por los cambios de vibración-rotación, principalmente en vapor de agua y dióxido de carbono (CO_2). Estas bandas de absorción romper las regiones de infrarrojo cercano e infrarrojo térmico y en una serie de ventanas de transparencia modesto, intercaladas con regiones cerrada por absorción (Tabla 1.2 y Figura 1.3)

A pesar que todas estas ventanas son de importancia en la teledetección, las que tienen entre 1,5 y 1,8, 2,05 y 2,4, 3.5-4 y 4.5-5.0 y 8-9.2, y el 10,2 12.4 μ m-son de especial importancia. Esas ventanas entre 1,5 y 1,8 μ m y 2.5 μ m y 24 μ m son de valor para detectar cambios en el estado de humedad del cultivo de hoja, como se muestra por la reflexión diferencial de la energía solar. Aquellas entre 8.0-9.2, y 10.2-12.4 μ m son de región cubierta de tierra de la emisión normal. Las bandas de 3,5 a 5 μ m de la cubierta de la región donde los incendios forestales emiten su energía pico: esto es una región de cruce, donde contribuyen; por la noche sólo la emisión de la tierra es importante entre 3 y 5 μ m. La absorción espectral está basada en la composición molecular de los elementos de la superficie y depende de las longitudes de onda, la composición química y la composición cristalina del material. En espectroscopia el término luz no sólo se aplica a la forma visible de radiación electromagnética, sino también a las formas UV e IR, que son invisibles.

En la región visible apreciamos el color visible de una solución y que corresponde a las longitudes de onda de luz que transmite, no que absorbe. El color que absorbe es el complementario del color que transmite. Por tanto, para realizar mediciones de absorción es necesario utilizar la longitud de onda en la que absorbe luz la solución coloreada. La fuente de radiación visible suele ser una lámpara a de tungsteno y no proporciona suficiente energía por debajo de 320 nm.

Longitud de onda aproximada	Color de luz que se absorbe	Color de luz que se refleja o	
		ve	
390 - 435	Violeta	Amarillo verdoso	
435 - 490	Azul	amarillo	
490 - 580	Verde	Rojo	
580 - 595	Amarillo	Azul	
595 - 650	Naranja	Azul verdoso	
650 - 780	Rojo	Verde azulado	

Tabla 1.2 Regiones visibles de luz que se absorbe y luz que se refleja de acuerdo a una longitud de onda aproximada

La absorción atmosférica tiene una particular importancia en percepción remota especialmente en lo relativo a sensores pasivos que utilizan la radiación electromagnética proveniente del sol, ya que la atmosfera se comporta como un filtro selectivo de tal forma que algunas regiones del espectro eliminan cualquier posibilidad de observación remota Contrariamente a lo que ocurre en la dispersión, en la absorción se produce una transferencia de energía de la radiación a los constituyentes atmosféricos. Este mecanismo implica absorción de energía de determinada o determinadas longitudes de onda. Desde este punto de vista los absorbentes más eficaces de radiación solar son las moléculas de agua, de dióxido de carbono y ozono. La absorción selectiva de ciertas longitudes de onda por estas moléculas hace que la atmósfera constituya un medio opaco para ciertos rangos espectrales, mientras que ofrezca ventanas libres de absorción para otros rangos. A través de dichas ventanas deben mirar los satélites de observación. En la Figura 1.2 se observan los efectos combinados que diversos componentes atmosféricos ejercen sobre la radiación electromagnética solar en el rango de 0.1 a 3mm a través de la absorción, dispersión y eventual reflexión en nubes.

Figura 1.2 Espectro de susceptibilidad atmosférica [1]

1.3 La naturaleza de la percepción remota

La teledetección se define, para nuestros propósitos, como la medición de las propiedades del objeto en la superficie de la tierra a partir de datos obtenidos de las aeronaves y satélites. Por lo tanto, es un intento de medir alguna cosa a la distancia en lugar determinado. Ya que no estamos en contacto directo con el objeto de interés, debemos confiar en las señales propagadas de algún tipo, por ejemplo, óptica, acústica, o en el microondas. Y en este caso vamos a limitar el debate a la teleobservación de la superficie de la tierra con señales ópticas. Si bien los datos de teledetección que pueden consistir en, mediciones de puntos discretos o un perfil a lo largo de una trayectoria de vuelo, estamos más interesados aquí en mediciones sobre la rejilla espacial de dos dimensiones, es decir, imágenes. Los sistemas de Teledetección en particular los desplegados en los satélites, proporcionan una visión tienda repetitiva y consiente de la tierra que es muy valiosa para monitorear los cambios a corto y largo plazo y el impacto de las actividades humanas. Algunas de las aplicaciones importantes de la tecnología de teledetección son:

- Evaluación y monitoreo ambiental (crecimiento urbano, residuos peligrosos)
- Detección de cambio global y seguimiento (agotamiento del ozono atmosférica, la deforestación, el calentamiento global)
- Agricultura (situación de los cultivos, la predicción del rendimiento, la erosión del suelo)
- Exploración de los recursos no renovables (minerales, petróleo, gas natural)
- Los recursos naturales renovables (humedad, los suelos, los bosques, los océanos)
- Meteorología (dinámica de la atmosfera, la predicción meteorológica)
- Asignación (topografía, uso del suelo, ingeniería civil)
- Vigilancia militar y reconocimiento (política estratégica, evaluación táctica)
- Medios de comunicación (ilustraciones, análisis)

Para satisfacer las necesidades de los diferentes usuarios de los datos, muchos de los sistemas de teledetección se han desarrollado, y que ofrecen una amplia gama de parámetros espaciales, espectrales y temporales. Algunos usuarios pueden requerir frecuente frecuencia, cobertura repetitiva con relativamente baja resolución espacial (meteorología).

Otros pueden desear la más alta posible resolución espacial con la cobertura de repetición solo con poca frecuencia (cartografía), mientras que algunos usuarios necesitan tanto una alta resolución espacial y la cobertura frecuente, con una más rápida entrega de imágenes. Los datos de teledetección correctamente calibrados se pueden utilizar para inicializar y validar los grandes modelos de computadora (tales como los climáticos globales (MCG), que tratan de simular y pre dictaminar el ambiente de la tierra. En este caso una alta resolución espacial puede ser indeseable debido a los requisitos computacionales, pero precisa y consistente de calibración del sensor con el tiempo y el espacio es esencial. Un ejemplo de la utilización de datos de teleobservación es para la vigilancia mundial de la vegetación.

Determinadas clases de sensores hiperespectrales ocupan la parte superior Figura 1.3. El espectrómetro de imágenes avanzadas visible/ infrarroja (AVIRIS) y la HyMAP son sensores de suspensión en el aire que producen cientos de imágenes de la misma área en el suelo en bandas espectrales alrededor de 10nm de ancho sobre la porción reflectante solar del espectro de 400 a 2400nm. El Hyperion estaba en la tierra de la NASA Obseving-1 (EO-1) por satélite como el primer sistema de satélites espectrales civil. Aunque tiene relativamente menos bandas espectrales imágenes de resolución media Spec Trometer de la Agencia Espacial Europea (MERIS) también es un espectrómetro de imágenes. La separación de las bandas espectrales en estos sistemas se consigue con un elemento óptico dispersivo de forma continua, tal como una rejilla o un prisma. La imagen moderada espectrorradiometro (MODIS), un sistema basado en filtros discretos en el rango de 0.4 a 14 micras. Estos sensores han aportado grandes mejoras en la cantidad y calidad de información que se puede obtener sobre la cara sur de la tierra y cerca de medio ambiente. Ejemplo MODIS en la Figura 1.5

Figura 1.3 Parte de uno de los sistemas de teledetección en un espacio de parámetros de dos dimensiones. Las siglas del sensor se definen en el anexo A y las anotaciones se refieren a las regiones espectrales del sensor: V= visible, NIR=Infrarrojo Cercano, LWIR= IR de onda larga, onda media MWIR= IR, SWIR=Short Wave IR y P=pancromática. Todos estos sistemas están en satélites, excepto AVIRIS y HyMAP. Hay una serie de simuladores en el aire de los sistemas de satélite que no se muestran por ejemplo, el MODIS Alrborne Simulator (MAS), el MISR Airborne (AirMISR) y el simulador Thematic Mapper (TMS). [2]

Figura 1.4 Cuatro bandas de imágenes MODIS recogidas el dos de Marzo de 2006, mostrando James Bay, Canadá, en la parte superior, los grandes lagos, en el centro, y la florida en la parte inferior. Todas las bandas se muestran a 1km. [2]

1.3.2 Factores espectrales en teledetección.

Las principales regiones espectrales ópticas utilizadas para la teleobservación de la tierra se muestran en la Tabla 1-4. Estas regiones espectrales particulares son de interés debido a que contienen relativamente transparentes ventanas atmosféricas a través del cual (nubes de restricción en las regiones de microondas) el suelo se puede ver desde arriba y porque hay detectores de radiación efectivas en estas regiones. Entre estas ventanas, varios constituyentes de la atmósfera absorben la radiación, por ejemplo, vapor de agua y dióxido de carbono absorben de 2.5-3µm y 5-8µm. En la región de las microondas dada la Tabla 1.4, hay una banda de absorción de agua menor frecuencia de cerca de 22GHz (la longitud de onda de alrededor de 1,36cm) 6 con una transmitancia de aproximadamente 0.85 (Curlander y MCDonough, 1991). Por encima de 50GHz (por debajo de 0.6cm de longitud de onda), hay una región de absorción de oxígeno mayor a aproximadamente 80GHZ (Elachi, 1988). En las frecuencias de alta sensores de transmitancia atmosférica, de microondas y de radar se caracterizan por su capacidad de penetrar las nubes, niebla, y la lluvia, así como una capacidad de proporcionar imágenes reflejadas la noche en virtud de su propia iluminación activa.

Nombre	Rango de longitud de onda	Fuente de radiación	Propiedad superficial de interés
Visibe (V)	0.4-0.7μm	Solar	Reflectancia
Cercano al	0.7-1.1μm	Solar	Reflectancia
infrarrojo(NIR)			
Infrarrojo de onda	1.1-1.35µm	Solar	Reflectancia
corta (SWIR)	1.4-1.8µm		
	2-2.5μm		
Infrarrojo de onda	3-4-μm	Solar, térmico	Reflectancia,
mediana (MWIR)	4.5-5μm		temperatura
Infrarrojos de onda	8-9.5µm	Térmico	Temperatura
larga o térmico	10-14µm		
Microondas, radar	1mm-1m	Térmico(pasivo)	Temperatura(pasiva)
		Artificial(activo)	rugosidad

Tabla 1.3. Las regiones espectrales primarias utilizadas en teledetección de la tierra. Los límites de algunas ventanas atmosféricas no son distintos y uno encontrara pequeñas variaciones en estos valores en diferentes referencias.

La teledetección pasiva en todas estas regiones emplea sensores que miden la radiación reflejada o emitida desde el suelo, la atmosfera y las nubes naturales. Las regiones visibles, NIR, SWIR (desde 0.4m hasta aproximadamente 3 micras) son el rango espectral solar-reflectante debido a la energía suministrada por el sol en la superficie de la tierra es superior a la emitida por la propia tierra. La región MWIR es una zona de transición solar-reflectante de la radiación térmica. Por encima de 5µm, auto-emitida la radiación térmica de la tierra por lo general domina. Dado que este fenómeno no depende directamente en el sol como fuente, TIR imágenes pueden ser adquiridas por la noche, así como durante el día. Esta radiación auto-emitida puede ser detectada incluso en horno de microondas. Una imagen TIR ejemplo VSWIR multiespectral y se muestra en la Figura 1.7.

Figura 1.5. Este simulador de imagen Thematic Mapper aire(TMS) de un devastador incendio forestal en el parque nacional de Yellowstone, Wyoming, fue adquirida el 2 de septiembre de 1988. Las bandas de TMS son las msmas que las de la MT. En las bandas VNIR, TMS3 y TMS4, solo el humo del fuego es visible, el fuego en si comienza a ser visible en TMS5 (1.55- 1.75µm). El ajuste en la imagen inferior derecha alta ganancia proporciona un mayor nivel en la TIR. (Imágenes de cortesía de Jeffrey Myers, Data Facility aeronaves, centro de investigación de NASA/Ames) [2]

Las técnicas de teledetección activas emplean una fuente artificial de radiación como una sonda. La señal resultante que dispersa de nuevo al sensor caracteriza ya sea la atmosfera o la tierra. Por ejemplo, la radiación dispersada y absorbida a una longitud de onda particular de una sonda de haz de láser a la atmosfera puede proporcionar información de constituyentes moleculares tales como el ozono. En la región espectral de microondas, Radar de Apertura Sintética (SAR) es una tecnología de imagen en la que la radiación es emitida en un haz de luz de un sensor de movimiento, y el componente retrodispersada de vuelta al sensor de la tierra que mide. [1] Ing. Martínez Muñoz Julio, Percepción Remota "Fundamentos de Teledetección Espacial", Primera edición 2005

[2] Robert A. Schowengerdt, REMOTE SENSING models and methods for image Processing, Third edition 2006.

CAPITULO 2

2. Sistemas de percepción remota.

Los detalles de construcción y materiales del sensor varían con las longitudes de onda de interés, y las dimensiones de los sistemas ópticos y detectores dependen de las limitaciones de ingeniería en las regiones espectrales particulares. Sin embargo todos los sensores ópticos pasivos de exploración (visible a través de las regiones espectrales térmicas) operan con los mismos principios de transferencia de radiación óptica, la formación de la imagen, y la detección de fotones. Nuestras descripciones se centrarán en este tipo de sensor.

2.1. Características espaciales y radiométricas.

Cada pixel representa un promedio en cada una de tres dimensiones: espacio, longitud de onda, y de tiempo. El promedio en el tiempo es por lo general muy pequeño (del orden de microsegundos para un escáner whiskbroom tales como TM y milisegundos para un escáner Pushbroom como el SPOT) y es intrascendente en la mayoría de las aplicaciones.

Si nos imaginamos un espacio tridimensional continuo de los parámetros (x, y, λ), definido por las coordenadas espaciales (x, y) y de longitud de onda espectral (λ), podemos visualizar cada pixel de una imagen determinada como representante resentir una integración más de un elemento de volumen relativamente pequeño en el que el espacio continuo (ver Figura 2.1).

Específicamente, el volumen de la integración representada por cada pixel no es un cuadro bien definido, pero se superpone en las dimensiones espacial y espectral con los volúmenes de integración de los pixeles vecinos.

Figura 2.1 Comparación del muestreo espacial y espectral del LANDSAT TM AVIRIS en el rango espectral VNIR. Cada pequeña caja rectangular representa la región de integración espacial espectral de una imagen pixel. Las muestras TM la dimensión espectral de forma incompleta y con bandas espectrales relativamente amplios, mientras que AVIRIS tiene muestreo espectral relativamente constante en el rango VNIR. AVIRIS también tiene un GSI algo más pequeña (20 metros) en comparación con TM (30m). Este tipo de visualización del volumen de datos de imagen espacio – espectrales se denomina "imagen Cubo") [1]

La cuadricula de pixeles que constituyen una imagen digital se logra mediante una combinación de exploración en la dirección transversal de la pista (ortogonal al movimiento de la plataforma de sensores) y por el movimiento de la plataforma a lo largo de la dirección en la vía ver Figura 2.2 (Slater 1980). Cada vez que se crea un pixel el sistema de sensor muestra electrónicamente el flujo continuo de datos proporcionada por el escaneo. Un escáner de la línea utiliza un solo elemento detector para escanear toda la escena.

Escáneres whiskbroom, tales como el Landsat TM, utilizan varios elementos detectores, alineados en la pista, para lograr escaneo paralelo durante cada ciclo del espejo de exploración. Un tipo de escáner relacionado es el paddlebroom, ejemplificado por AVHRR y MODIS, con un espejo de dos caras que gira 360° la exploración continua de ruta transversal. Una diferencia entre icant sig paddlebroom y whiskbroom escáneres es que el paddlebroom siempre escanea en la misma dirección, mientras que el whiskbroom invierte la dirección para cada exploración.

Escáneres Pushbroom, como los del SPOT tienen una serie lineal de miles de elementos detectores, alineados perpendicular a la trayectoria, que escanea todo el ancho de los datos recogidos en paralelo conforme la plataforma se mueve.

Para todos los tipos de escáneres, la cobertura angular perpendicular a la trayectoria completa se le denomina campo de visión (FOV) y la cobertura del suelo correspondiente se llama el campoproyectado planta de vista (GFOV)

Figura 2.2. La definición de los parámetros básicos del escáner y la representación de los tres métodos de exploración, con ejemplos concretos de escáneres whiskbroom y Pushbroom. Las flechas continuas representan el movimiento relativo a una tierra estacionaria. En realidad, la Tierra está girando durante el proceso de exploración, aproximadamente en la dirección perpendicular a la derrota ya que la mayoría de los sistemas de teledetección por satélite se encuentran en una órbita casi polar. Esto resulta en un oeste al este de inclinación en la cobertura de la superficie sobre la escena completa. [1]

El espacio entre pixeles en el suelo es el intervalo de muestreo de tierra que se proyecta (GSI). La ruta transversal y en el seguimiento de GSI están determinados por la pista transversal y frecuencias de muestreo en la vía respectivamente, y la velocidad de la plataforma en la pista. Es una práctica común para el diseño de las frecuencias de muestreo de modo que el GSI es igual a la de campo Instantáneo de Tierra – proyectado de visión (GIFOV),⁴ 10 la proyección geométrica de un solo detector de anchura, w, sobre la superficie de la tierra ver Figura 2.2 y Figura 2.3.

Por lo tanto, los GIFOVs de pixeles vecinos se apoyará, tanto en pista y cross-track. La in-track GSI es disuadir por la combinación necesaria de la velocidad de la plataforma y la frecuencia de muestreo (Pushbroom) o la velocidad de exploración (línea y whiskbroom) para que coincida con el de la pista GIFOV en el nadir. Algunos sistemas tienen una frecuencia de muestreo de ruta transversal superior que conduce a GIFOVs superpuestas, por ejemplo, los modelos de KLM

³ También se le llama la anchura de la hilera, o, a veces, la huella del sensor.

AVHRR y Landsat MMS. Esta ruta transversal "sobre- muestreo" da como resultado una mejora en la calidad de los datos.

El GSI se determina por la altitud del sistema sensor de H, la longitud del sensor focal, f, y el espaciamiento entre – detector (o velocidad de muestreo espacial como se explica anteriormente). Si la frecuencia de muestreo es igual a un pixel por espaciamiento entre – detector, la relación para el GSI en el nadir, es decir, directamente debajo del sensor es simplemente

$$GSI = inter - detector spacing \ x \ \frac{H}{f} = \ \frac{inter - detector spacing}{m} \,. \tag{2.1}$$

Donde $\frac{H}{f}$ es la amplificación geométrica, m, desde el suelo hasta el sensor focal ⁵. Como hemos mencionado, el espaciado entre- detector es generalmente igual a la amplitud del detector, w.

⁴ También denomina distancia de muestra de tierra (GSD)

⁵ Donde $f \ll H$, m es mucho menor que uno.

Figura 2.3. Descripción geométrica simple de un solo elemento detector en el plano focal de un sensor óptico. Los tamaños de w son exagerados en gran medida con respecto a H para mayor claridad. Del mismo modo para la óptica. Parámetros angulares, tales como la IFOV, son los mismos en la imagen y el espacio objeto en este modelo, pero las dimensiones lineales están relacionadas por el $\frac{f}{H}$ magnificación entre los dos espacios. Todo en este diagrama se supone estacionaria y en una vista nadir; con la exploración, plataforma de sensores, y el movimiento de la tierra, los GIFOV se mueve durante el tiempo de integración del detector, lo que resulta en un GIFOV efectivo algo mayor que se muestra. También, como la exploración procede fuera del nadir, los aumentos GIFOV eficaces (a veces llamado "crecimiento Pixel") de proyección oblicua sobre la tierra. [2]

Figura 2.4. La relación entre GIFOV y GSI para la mayoría de los sensores de exploración y para el Landsat MSS y AVHRR. Cada cruz es un pixel. Para MSS, la cruz-pista GSI fue 57m y 80m GIFOV era lo que resulta en 1,4 perpendiculares a la derrota pixeles/ GIFOV. Del mismo modo, los modelos AVHRR KLM tienen 1,36 perpendiculares a la derrota pixeles/GIFOV. La densidad de muestra de ruta transversal superior mejora la calidad de datos, sino que también aumenta la correlación entre los pixeles vecinos y los resultados en más datos recopilados a lo largo de la GFOV. [3]

2.2 Modelos de radiaciones ópticas.

La teledetección pasiva en el régimen óptico depende de dos fuentes de radiación. En lo visible a infrarrojo de onda corta, y la radiación captada por un sistema de teledetección se origina con el sol. Parte de la radiación recibida por un sensor se ha reflejado en la superficie de la tierra y otra parte ha sido dispersada por la atmósfera, sin alcanzar nunca la tierra. En los térmicos infrarrojos, la radiación térmica es emitida directamente por los materiales en la tierra y se combina con la radiación térmica auto emitida en la atmósfera a medida que se propaga hacia arriba. En este tema presentaremos algunas bases y modelos de base adecuadas a la región óptica de lo visible a través del infrarrojo térmico

2.2.1 Visible en onda corta de la región infrarroja.

Todos los materiales en la superficie de la tierra absorben pasivamente y se refleja la radiación solar en el rango espectral de 0.4 a 3 μ m. Algunos materiales también transmiten la radiación solar, por ejemplo, los cuerpos de agua y cubiertas vegetales. A longitudes de onda más largas, los materiales a temperaturas normales comienzan a emitir activamente la radiación térmica. Una descripción de cómo se propaga la radiación solar y se modifica antes de la detección por un sistema óptico.

2.2.2 Componentes de radiación.

Las principales transferencias de radiación de cuidado en el visible a través de las regiones espectrales SWIR se muestran en la figura 2.10. En general, existen tres componentes importantes en el afloramiento de radiación en-sensor

- La no dispersada, superficie-radiación reflejada, L_{λ}^{su}
- La baja dispersión , superficie reflejada skylight L_{λ}^{sd}
- El resplandor camino arriba dispersa, L_{λ}^{sp}

Por tanto, podemos escribir para el brillo total de afloramiento a gran altura en el sensor satelital

$$L_{\lambda}^{s} = L_{\lambda}^{su} + L_{\lambda}^{sd} + L_{\lambda}^{sp}$$
(2.8)

A continuación detallaremos mejor los componentes señalados.

1-.De superficie reflejada, dispersa componente (L_{λ}^{su})

El ambiente es una influencia inevitable en la altitud de detección aérea y por satélite en el visible a través de onda corta de IR, se esparce y absorbe la radiación entre el sol y la tierra y el sensor a lo largo de la ruta de vista. La fracción de la radiación que llega inicialmente a la superficie de la tierra se llama transmitancia trayectoria solar, y es, por definición, entre cero y uno, y sin unidades. En un ambiente altera significativamente la irradiancia espectral entes de que llegue a la tierra. Matemáticamente, la irradiancia en un plano perpendicular a la trayectoria solar y en la superficie de la tierra está dada por, E_{λ}

$$earth's \ surface: \ E_{\lambda} = \ \tau_s(\lambda) E_{\lambda}^u \tag{2.9}$$

Donde τ_s es el camino transmitancia atmosférica solar. Tenga en cuenta que, en la definición de la transmitancia E_{λ} debe ser menor que o igual a E_{λ}^0 .

Con las excepciones de sombras o nubes, se puede suponer que es constante en toda la GFOV de un sensor como el ETM +. La irradiancia en la superficie depende del ángulo de incidencia siendo un, máximo si la superficie es perpendicular al ángulo de incidencia, y menos medida que disminuye al ángulo. La disminución varía como el coseno del ángulo, que puede ser calculada por un producto escalar de dos vectores (ver Figura 2.13). La irradiancia incidente en la ecuación 2.9 debe entonces ser modificada para tener en cuenta la forma del terreno de la siguiente manera

$$E_{\lambda}(x, y) = \tau_{s}(\lambda)E_{\lambda}^{0}\boldsymbol{n}(x, y) \cdot s$$

$$= \tau_{s}(\lambda)E_{\lambda}^{0}\boldsymbol{cos}[\theta(x, y)]$$

$$= \tau_{s}(\lambda)E_{\lambda}^{0}\boldsymbol{cos}[\theta(x, y)]$$
(2.10)

Figura 2.5 Los componentes más importantes de radiación visto por el sensor en la teledetección reflectantes solares son el componente "directa", el componente "tragaluz", y el componente de "camino de radiancia" (comúnmente llamado "neblina"). El sombreado en el diagrama representa la densidad atmosférica disminuye a mayor altitud. Otra radiación puede llegar al sensor, tal como el componente de "adyacencia", que consiste en un reflejo directo de una GIFOV cercano, seguido por cualquiera de una dispersión directamente en el sensor, o una baja dispersión en el GIFOV de interés, seguido por una reflexión hacia el sensor. El fenómeno de adyacencia aumenta correlación espacial local entre píxeles y reduce el contraste de límites oscuro-luz, tales como una línea de costa. Las múltiples reflexiones de la superficie y dispersiones atmosféricas generalmente son de menos importancia, debido a la magnitud de la radiación se reduce en cada reflexión o dispersión de evento. [1]

Figura 2.6 La geometría de la irradiación solar directa sobre la superficie de la tierra. El vector de la longitud **S** de la unidad al sol y el vector de la longitud $\mathbf{n}(x, y)$ es perpendicular a la superficie. El ángulo de elevación solar es θ y el ángulo cenital solar es de 90° - θ . El ángulo de incidencia solar a la superficie es ϑ y el ángulo de exitancia de la normal de la superficie hacia el sensor es φ . El coseno del ángulo ϑ está dada por el producto escalar de vectores $\mathbf{n}(x, y) \cdot \mathbf{s}$. Por razones de simplicidad en este diagrama, se supone que la normal de la superficie a estar en el plano vertical que pasa por el vector solar, pero el cálculo producto escalar es válida para cualquiera de los dos vectores. Tenga en cuenta este efecto relacionado con terreno no involucra el ángulo de visión del sensor. [1]

La siguiente transferencia de energía se produce tras la reflectancia en la superficie de la tierra. La irradiancia sobre una superficie *Lambertian* se convierte en el resplandor superficie, dejando la superficie con la ayuda de un factor geométrico π y una difusa reflectancia espectral ρ ,

earth's surface
$$L_{\lambda}(x, y) = \rho(x, y, \lambda) \frac{E_{\lambda}(x, y)}{\pi}$$

= $\rho(x, y, \lambda) \frac{\tau_s(\lambda)E_{\lambda}^0}{\pi} = \cos[\theta(x, y)]$ (2.11)

Al igual la transmitancia, reflectancia es, por definición, sin unidades y entre cero y uno. La reflectancia varía con la longitud de onda y la ubicación espacial, pero no depende de la vista (sensor) dirección de superficie verdaderamente Lambertian⁹. Ahora tenemos que modificar la ecuación 2.11 de acuerdo con la ruta de vista de transmitancia, para obtener el sensor de luminosidad,

$$at \ sensor \qquad L_{\lambda}^{Su} = \tau_{\nu}(\lambda)L_{\lambda}$$
$$= \rho(x, y, \lambda) \frac{\tau_{\nu}(\lambda)\tau_{s}(\lambda)E_{\lambda}^{0}}{\pi} \cos[\theta(x, y)] \qquad (2.12)$$

Esta componente lleva la señal de interés, a saber, la distribución espacial de la reflectancia espectral $\rho(x, y, \lambda)$

2-. De superficie reflejada, componente atmósfera-dispersa (L_{λ}^{sd})

El sensor también ve radiación resultante de las radiaciones que dispersa hacia abajo por la atmósfera ("skylight") y luego se refleja en la tierra hacía en el IFOV del pixel de interés. Este término $L_{\lambda}^{sd}(x, y)$, es responsable del hecho comúnmente observado que las sombras no son totalmente oscuro. El reflectado-skylight es proporcional a la superficie de reflectancia difusa, ρ , y la irradiancia en la superficie debido a la skylight.

Esta cantidad se utiliza, ya que es directamente medible que el cielo no puede ser completamente visible desde el pixel de interés debido a la topografía de la intervención con un factor, F(x, y),¹⁰

$$at - sensor: \qquad L_{\lambda}^{sd} = F(x, y)\rho(x, y, \lambda) \frac{\tau_{\nu}(\lambda)E_{\lambda}^{d}}{\pi}$$
 (2.13)

3-. Componente en rutas dispersas.

⁹ Una superficie Lambertian exhibe igual luminosidad en todas las direcciones. Visualmente, decimos que parece igualmente brillante en cualquier ángulo de visión. Tal superficie se denomina también perfectamente difusa, sin espejo como la reflexión especular. Muchas superficies naturales son aproximadamente Lambertian dentro de un rango limitado de ángulos de visión, típicamente 20°- 40°; como el ángulo de visión aumenta más allá de que la mayoría de los materiales se convierten en no-Lambertian y muestran reflectancia desigual en direcciones diferentes. Esta propiedad se puede medir por sensores tales como el ángulo de Muli-Imag ING espectrorradiometro (MISR) para caracterizar mejor las características radiativas superficiales.

El término trayectoria de radiancia es una combinación molecular de la dispersión de Rayleigh, que varía con la longitud de onda λ^{-4} , y aerosoles y partículas dispersión de Mie que dependen menos fuertemente, o nada en absoluto, en la longitud de onda. El efecto combinado de Rayleigh y dispersión de Mie en una clara atmosfera resulta en una dependencia de longitud de onda neto de entre $\lambda^{-2} y \lambda^{-0.7}$.

4-. Total, radiación solar at-Sensor (L_{λ}^{s})

El total at-sensor, la radiación solar es la suma de los tres componentes descritos anteriormente.

$$L_{\lambda}^{s}(x,y) = L_{\lambda}^{su}(x,y) + L_{\lambda}^{sd}(x,y) + L_{\lambda}^{sp}$$

= $\rho(x,y,\lambda) \frac{\tau_{\nu}(\lambda)\tau_{s}(\lambda)E_{\lambda}^{0}}{\pi} = \cos[\theta(x,y)] + F(x,y)\rho(x,y,\lambda) \frac{\tau_{\nu}(\lambda)E_{\lambda}^{d}}{\pi} + L_{\lambda}^{sp}$
= $\rho(x,y,\lambda) \frac{\tau_{\nu}(\lambda)}{\pi} \{\tau_{s}(\lambda)E_{\lambda}^{0}\cos[\theta(x,y)] + F(x,y)E_{\lambda}^{d}\} + L_{\lambda}^{sp}$ (2.14)

La descripción de la ecuación 2.14 es que:

- La radiancia espectral total recibida por el sensor es linealmente proporcional a la reflectancia de la superficie difusa, modificado por
- Un multiplicativo, espacialmente y espectralmente variante que depende de la forma del terreno
- Un aditivo espacialmente invariante, espectralmente-variante plazo debido a la dispersión de ver la ruta.

2.3 Componentes de la radiación

Los tres componentes emitidos consideran surgir de:

- La superficie de la radiación emitida desde la tierra. L_{λ}^{eu}
- La baja –emitida , reflejada en la superficie de radiación de la atmosfera, L^{ed}_{λ} ; y
- El camino-radiación emitida, L_{λ}^{ep} .

En la figura 2.14 se muestran, los componentes solares discutidos anteriormente para la comparación.

 $^{^{10}}F$ es la fracción del hemisférico cielo que es visible desde un pixel de interés. Para terreno totalmente plano, F es igual a uno.

Figura 2.7 Los componentes se refleja y dispersa de la radiación en el sensor y la analogía de componentes emitida. En la región espectral de 2.6 a 6 micras, tanto en general debe ser considerado, en la región del IR térmico (8 a 15µm) solo los componentes emitidos son importantes. [1]

En total al sensor d luminosidad de contribución de emisión es:

$$L_{\lambda}^{e} = L_{\lambda}^{eu} + L_{\lambda}^{ed} + L_{\lambda}^{ep}$$
(2.14)

En el MWIR, escribimos para el resplandor total, ¹¹

$$at - sensor (MWIR): L_{\lambda}^{MWIR} = L_{\lambda}^{s} + L_{\lambda}^{e}$$
(2.15)

Donde L_{λ}^{s} esta dada por la ecuación (2.14). En la región 8-15µm sin embargo, la contribución de la energía solar es insignificante en comparación con la de la componente de auto-térmica emitida por lo que solo podemos escribir,

¹¹ vamos a utilizar un componente extra *e*, en algunas cantidades radiación en esta sección para distinguir términos relacionados con las emisiones de los términos de reflectancia solar

 $at - sensor (TIR): L_{\lambda}^{TIR} = L_{\lambda}^{e}$

-Componente de la superficie emitida (L_{λ}^{eu})

La fuente primaria de energía para la termografía es la tierra misma, que tiene una temperatura típica de 300k. de diferentes materiales de la tierra, sin embargo, pueden emitir diferentes cantidades de energía térmica, incluso si están en la misma temperatura. La mayoría de los materiales no son cuerpos negros ideales con 100% de eficiencia de radiación. La eficiencia con la que los materiales reales emiten radiación térmica a diferentes longitudes de onda diferentes se determina por su emisividad, ε . La emisividad juega un papel proporcionalidad en la región térmica muy parecida a la de la reflectancia en el visible, sino que se define como la relación de la exitancia radiante espectral de un cuerpo gris a la emitida por un cuerpo negro (M_{λ} en la ecuación 2.5) la radiación emitida de la tierra está ahí antes,

$$earth'surface: L_{\lambda}(x, y) = \varepsilon(x, y, \lambda) \frac{M_{\lambda}[T(x, y)]}{\pi}$$
(2.16)

Se da a entender en esta ecuación que los diferentes objetos o materiales en la superficie de la tierra pueden tener diferentes temperaturas, y por lo tanto diferentes exitancias radiantes espectrales, así como diferente emisividad. Hay que notar que la similitud entre esta relación y que para la región reflectante solar (ecuación 2.10), para separar los efectos de la emisividad y de la temperatura, los científicos generalmente suponen uno o el otro es espacialmente constante.

La relación entre la radiación emitida y la temperatura de la fuente no es obvia a partir de la ecuación (2.5) y la ecuación (2.16). Para tener una mejor sensación para eso en la figura (2.15) el resplandor espectral de la función de la temperatura para tres longitudes de onda fijas en el TIR, asumiendo emisividad constante. El rango de temperatura 250K a 320K, incluye las temperaturas diurnas y nocturnas normales en la tierra. Vemos que la radiancia espectral es aproximadamente lineal con la temperatura es esta gama, y para cualquier rango menor, como podría encontrado realmente e una imagen térmica, una aproximación lineal es aún mejor. Por lo tanto, para nuestros propósitos, podemos de la ecuación (2.16) por,

earth'surface:
$$L_{\lambda}(x, y) \simeq \varepsilon(x, y, \lambda) \frac{[a_{\lambda}[T(x, y) + b_{\lambda}]}{\pi}$$
 (2.17)

Figura 2.8. La dependencia de exitancia radiante de un cuerpo negro en su temperatura a tres longitudes de onda. La Emisividad se mantiene constante longitud mientras que en realidad puede varias con la temperatura y longitud de onda para un cuerpo gris. El rango de temperatura se muestra es que para temperaturas normales en la superficie de la tierra [3]

La radiación emitida por la tierra se transmite por la atmósfera a lo largo de la ruta de acceso a la vista del sensor,

at - sensor:
$$L_{\lambda}^{eu}(x, y) = \tau_{v}(\lambda)L_{\lambda}(x, y)$$

= $\varepsilon(x, y, \lambda) \frac{[\tau_{v}(\lambda)[a_{\lambda}T(x, y)+b_{\lambda}]}{\pi}$ (2.18)

-De superficie reflejada, componente atmosférica emitida. (L_{λ}^{ed})

El ambiente también emite radiación térmica hacia abajo, que se refleja a continuación, en la cara sur de la tierra y se transmite hacia arriba a través de la atmosfera para el sensor. Este término es análogo el componente claraboya que surge de la dispersión en la región espectral visible

$$at - sensor :: \ L_{\lambda}^{ed} = F(x, y, \lambda)\rho(x, y, \lambda)\frac{[\tau_{\lambda}(\lambda)M_{\lambda}^{a}]}{\pi}$$
(2.19)

Donde M_{λ}^{a} denota la exitancia radiante espectral de la atmosfera. El factor F es la fracción del hemisferio cielo que se ve desde la superficie en (x,y) y es la misma función que se utilizó para claraboya reflejada.

-Componente trayectoria emitida (L_{λ}^{ep})

La atmósfera también emite radiación hacia arriba (según la ley del cuerpo negro de Planck) como una función de la temperatura a diferentes altitudes. La energía total que llega al sensor está integrada en la ruta de acceso vista desde las contribuciones a todas las altitudes. Vamos a llamar a este camino emitido componente L_{λ}^{ep} . La distribución espectral resultante no se aparece en particular la de un cuerpo negro a una temperatura GLE, sino a una mezcla de cuerpos negros en un rango de temperaturas por otra parte la radiación de menor altitud es absorbida y reemitida en altitudes más altas, lo que hace una situación más complicada.

-Radiación total emitida en el sensor. (L_{λ}^{e}) Se escribe a la Radiación total emitida en el sensor como la suma de los tres componentes descrito previamente,

$$L_{\lambda}^{e}(x,y) = L_{\lambda}^{eu} + L_{\lambda}^{ed} + L_{\lambda}^{ep}$$

= $\varepsilon(x,y,\lambda) \frac{\tau_{\nu}(\lambda)}{\pi} [a_{\lambda}T(x,y) + b_{\lambda}] + F(x,y,\lambda)\rho(x,y,\lambda) \frac{\tau_{\nu}(\lambda)M_{\lambda}^{a}}{\pi} + L_{\lambda}^{ep}$ (2.20)

Al igual que en la región de reflectancia solar (ecuación 2.14) se observa que:

- La radiación térmica total espectral recibida por el sensor es aproximadamente linealmente proporcional a la temperatura de la superficie, modificada por un,
- Un aditivo especialmente invariante en el término espectralmente dependiente debida para ver la ruta de emisión

[1] Robert A. Schowengerdt, REMOTE SENSING models and methods for image Processing, Third edition 2006.

[2] Wiley J. Larson, Space Mission Analysis and Design. Third edition 1999.

[3] Herbert J. Kramer, Observation of the Earth and its Environment, Third Edition 1996

3 Modelos de sensores

3.1 Introducción

El sensor convierte la radiación "upwelling" (reflejada y/o emitida) en una imagen de la distribución espacial de resplandor. Varias transformaciones de las propiedades radiométricas, espaciales y geométricas de la radiación se producen en esta etapa. En general, en el sensor se degrada la señal de interés, es decir, la porción de la radiación total, que contiene información acerca de la superficie de la tierra. Es importante, comprender la naturaleza de esta degradación para diseñar adecuadamente algoritmos de procesamiento de imágenes e interpretar sus resultados.

3.2 Modelo general de un sensor

Un sensor electro-óptico puede ser modelado por los procesos mostrados en la Figura 3.1. El funcionamiento de barrido convierte la luminosidad del sensor espacial en una señal variable continua, óptica de los detectores. Los detectores a su vez, que convierten la señal óptica en una señal electrónica variable en el tiempo continuo, que se amplifica y se procesa adicionalmente por la electrónica del sensor. El convertidor analógico/digital (A / D), la señal procesada se muestra en el tiempo y cuantificada en los valores de DN discretos que representan los píxeles de la imagen espacial.

Figura 3.1 Los componentes principales en un sistema remoto de detección electro-óptico. Un tipo whiskbroom del sistema se ilustra aquí. Aunque el comportamiento (attitude) de la plataforma es externo al sensor de por sí, que tiene efectos importantes en las características finales de la imagen y la calidad.

3.3 Resolución

Es un término que se expresa un fuerte sentido intuitivo, pero es difícil de definir cuantitativamente. Sistemas de teledetección desarrollo tienen "resolución" en los dominios de medición espectral, espacial y temporal.

3.3.1 La respuesta de los instrumentos

Ningún instrumento, incluyendo los sistemas de teledetección, puede medir una señal física con precisión infinita. Si la señal varia en el tiempo, el instrumento debe tener un promedio durante un tiempo de integración y este no es cero, y si la señal varia en longitud de onda, el instrumento debe tener un promedio sobre un ancho de banda espectral distinto de cero, o si la señal varía en el espacio, el instrumento debe tener un promedio sobre una distancia espacial distinto de cero.

A continuación tenemos que la respuesta de los instrumentos está dada por:

$$o(z_o) = \int_{w} i(\alpha) r(z_0 - \alpha) d\alpha$$
(3.1)

Donde $i(\alpha)$ = entrada de la señal,

 $r(z_0 - \alpha)$ = Respuesta del instrumento (unidad de superficie), invertido y cambiado por z_0 ,

 $o(z_0)$ = señal de salida en $z = z_0$ y,

W= rango sobre el que la respuesta del instrumento es significativa.

La interpretación física de la ecuación (3.1) es que el peso del instrumento la señal de entrada en las proximidades (W) de z_0 e integra el resultado. A continuación, esta relación se conoce como convolución. Una notación comúnmente utilizada para la ecuación (3.1) es,

$$o(z) = i(z) * r(z)$$
 (3.2)

Esta ecuación nos dice que la "señal de salida es igual a la señal de entrada convolución con la función de respuesta".

3.4 Modelo de sensor simplificado

La respuesta espectral del sensor se supone que es una constante de promedio más una banda espectral efectiva constante promedio más de una banda espectral efectiva. Similarmente, la respuesta espacial del sensor el PSF(x, y) se supone que es una constante de media más de un GIFOV eficaz. Por lo tanto, ambas funciones pueden ser removidos de las integrales y que puede escribirse

$$DN_{pb} = int[K_b \iiint L_{\lambda}(x, y)d\lambda d \, x dy + offset]$$
(3.21)

Donde las funciones de respuesta del sensor se combinan con las demás constantes en la única constante K_b . Las integrales de la ecuación 3.21 se encuentran en la banda espectral efectiva y el GIFOV eficaz. Por tanto, tenemos, a pesar de cuantificación, una relación lineal entre DN y al sensor de luminosidad. Si simplificamos aún más la notación llamando a la banda y espacio integrado en el sensor de luminosidad en un pixel p en particular en la banda b, podemos escribir

Esta simplificación se refiere a los DN de imagen directamente a los resplandores en-sensor, integrado en el paso de banda espectral efectiva y GIFOV. La inversión de la ecuación 3.21 para obtener los valores de radiancia de la banda de la imagen DN se conoce como la calibración del sensor o "calibración al resplandor".

3.5 Distorsión geométrica.

Hemos estado abordando las características del sensor que afectan la calidad radiométrica de las imágenes. Lo cual es importante para responder a la pregunta ¿Qué estamos mirando? Y ¿Dónde estamos buscando? La respuesta a estas preguntas está determinada por las características geométricas de las imágenes, que a su vez son fijados por la órbita, altitud de la plataforma, propiedades del escáner y la rotación de la tierra y forma. A modo de referencia ideal se considera los métodos convencionales de imagen fija con una escena fija. Si la escena es un patrón de cuadricula regular y plana, y las ópticas de la cámara no tienen distorsión, la imagen también será una rejilla regular, correcta, excepto para la escala uniforme en virtud del aumento de la cámara. Ahora se tiene la cámara de un escáner Pushbroom, moviéndose a través de la escena en una altitud constante recta y la ruta de la velocidad. La imagen resultante será geométricamente idéntica al del caso.

3.5.1 Sensores de modelos de ubicación.

Las órbitas de la mayoría de los satélites de teledetección terrestres es casi circular porque se desea una imagen de escala constante. Para el modelado preciso de los satélites se puede considerar constante el tiempo (por ejemplo $1,0153 \times 10^{-3}$ radianes/segundo para el Landsat1 y 2)

3.5.2 Modelos de comportamiento (attitude) del sensor.

Un pequeño cambio en la orientación de la plataforma puede dar lugar a un gran cambio en la ubicación visualizada en el suelo debido al "brazo de palanca" de largo de la aeronaves de gran altitud o sensores satelitales. Para ver esto, calcular el ángulo correspondiente a la GSI entre dos píxeles vecinos (ver Tabla 3.1) cualquier cambio en la posición del satélite en esta cantidad resultara en un cambio de un pixel en la ubicación. Los sensores de alta resolución civiles tienen el mayor control de altitud y presentación de informes requeridos. La actitud se expresa con tres ángulos de rotación de la plataforma: Balanceo, cabeceo y guiñada. Estos se muestran por una convención de sistemas de coordenadas ver en la Figura 3.11. Varios esquemas se utilizan para la posición del satélite de control dentro de los límites especificados, incluyendo sensores de horizonte. Los valores reales de balance, cabeceo y guiñada se muestrean y se registran los datos de la imagen. Por desgracia, estos datos no siempre están disponibles para el usuario final.

Sistema	Altitud	En pista (in-track) GSI(m)	Angulo (mili radianes)
AVHRR	850	800	0.941
Landsat-4,5 TM	705	30	0.0425
(multiespectral)			
SPOT-1 al 4	822	20	0.0243
(multiespectral)			
Lansat-7	705	15	0.0213
ETM+(pancromática)			
Spot-5	822	10	0.0122
(multiespectral)			
Spot-5	822	5	0.00608
(Pancromática)			
orbWiew-3	470	1	0.00213
IKONOS	680	1	0.00147
(pancromática)			
QuickBird	450	0.6	0.00133
(pancromática)			

Tabla 3.1 El ángulo entre dos pixeles adyacentes de una serie de sensores. AVHRR y Landsat no orientable, y todos los otros sensores son orientables. [1]

A pesar de la orientación de la nave espacial no se comporta de una manera predecible dentro de los límites controlados de excursión, es decir, no es sistemática, por lo general puede suponerse que es un cambio lento en función del tiempo. Algunos éxitos se han logrado mediante el modelado de la variable actitud, α (que representa balance, cabeceo o de guiñada) con una serie de polinomios de potencia, durante periodos de tiempo de varios cuadros de imagen para TM y para las tramas individuales SPOT

$$\alpha = \alpha_0 + \alpha_1 t + \alpha_2 t^2 \dots \dots \tag{3.22}$$

La orientación de los sensores de la nave está sujeta a grandes cambios de viento y la turbulencia. Si una plataforma estabilizada giroscopio no se utiliza para el sensor, la imagen resultante puede contener distorsiones severas ver Figura 3.12

Figura 3.2 Definiciones convencionales para los tres ejes de la actitud de una plataforma de sensor, se debe utilizar un sistema de coordenadas de mano derecha. [2]

nadir

+30° off-nadir

Figura 3.3 ASAS Airborne imágenes de Maricopa Farm, cerca de Phoenix, Arizona, una tomada en nadir y el otro a 30° fuera de nadir. Se tiene en cuenta como los cambios en los patrones de distorsión dentro de y entre las dos imágenes, lo cual indica un cambio continuo en la actitud de la plataforma de aeronaves con el tiempo. [2]

3.5.3 Modelos de escáner.

Las distorsiones inducidas por el escáner son uno de los factores más fáciles de modelar, ya que por lo general puede ser descrito por una función de tiempo fijo. Por ejemplo, el SMS tiene una velocidad de exploración de espejo no lineal que fue bien documentado. El efecto de esto fue para causar un desplazamiento sinusoidal como de pixeles a través de cada exploración, con un error máximo de alrededor de ±400m cerca del punto medio de la exploración a cada lado de nadir. Mientras tales distorsiones son consistentes a lo largo de una imagen y de la órbita-a-órbita que pueden ser fácilmente calibrados y corregidos.

Los escáneres whiskbroom tienen más distorsiones inherentes que los escáneres Pushbroom porque tienen piezas móviles. El pixel de posicionamiento transversal a la trayectoria se determina por el movimiento espejo de exploración que se acopla con movimiento del satélite para determinar el posicionamiento de pixeles en-pista. Un escáner Pushbroom, ya sea de tipo lineal o matriz, por otro lado, tiene rígida transversal a la trayectoria geométrica que esta esencialmente desacoplada de la geometría en pista. Algunas de las fuentes más importantes de distorsión del escáner se resumen en la Tabla 3.2

sen- sor	source	effect on imagery	maximum error	reference(s)
	non-unity aspect ratio sampling	cross-track versus in- track scale differential	1.41:1	USGS/NOAA, 1984
MSS	nonlinear scan mirror velocity	nonlinear cross-track distortion	±6 pixels	Anuta, 1973; Steiner and Kirby, 1976
	detector offset	band-to-band misregistration	2 pixels between bands	Tilton et al., 1985
ТМ	TM focal plane distribution between visible (bands 1-4) and lR (bands 5-7) -1.25 pixel		-1.25 pixels	Bernstein <i>et al.</i> , 1984; Desachy <i>et al.</i> , 1985; Walker <i>et al.</i> , 1984
SPOT	OT detector element misalignment in-track and cross-track pixel-to-pixel positional error		±0.2 pixels	Westin, 1992

Tabla 3.2 Ejemplos de distorsiones internas especificadas del sensor. Se advierte al lector que algunas mediciones de distorsión se hicieron a partir de imágenes de tierra-procesado, y que se requiere una lectura cuidadosa de la referencia indicada antes de asumir los errores que se aplican a todas las imágenes de un sensor determinado. Por ejemplo, el registro erróneo plano interfocal de TM se da a registrar con una precisión de 0.5pixel debido a la mejora de procesamiento de tierra [1]

3.5.4 Modelo Tierra

Aunque las propiedades geométricas de la tierra son independientes del sensor, estas interactúan íntimamente a través del movimiento orbital del satélite. Hay dos factores a considerar aquí. Una de ellas es que la tierra no es una esfera exacta, sino que es algo achatada, con el diámetro ecuatorial más grande que el diámetro polar. En muchos modelos de formación de imágenes por satélite, se calcula la intersección del vector de vista del sensor con la superficie de la tierra, por tanto la forma exacta de la tierra es importante. La Tierra elipsoide se describe por la ecuación,

$$\frac{P_x^2 + P_y^2}{r_{eq}^2} + \frac{P_z^2}{r_P^2} = 1$$
(3.23)

Donde P_x , P_y , P_z son las coordenadas geocéntricas de cualquier punto P en la superficie ver Figura 3.13, es el radio ecuatorial r_{eq} es el radio polar. La latitud y longitud geodésica, tal como figura en los mapas, están relacionadas con los componentes de la P.

$$\varphi = asen(\frac{P_z}{r}) \tag{3.24}$$

Y

$$\lambda = \operatorname{atan}(\frac{P_{y}}{P_{x}}) \tag{3.25}$$

Donde r es el radio local de la tierra en el punto P.

$$\varepsilon = \frac{r_{eq}^2 - r_P^2}{r_{eq}^2} \tag{3.26}$$

La excentricidad de una esfera es cero. Algunas propiedades básicas de la tierra se muestran en la Tabla 3.3 para referencia. Los parámetros como los radios son actualizados periódicamente a medida que las naves espaciales precisas de mediciones estén disponibles.

El segundo factor es que la tierra gira a una velocidad angular constante, mientras que el satélite se mueve a lo largo de su órbita y escaneo ortogonal a la misma, la tierra se mueve debajo de oeste a este. La velocidad en la superficie es,

$$v_0 = w_e r_e \cos\varphi \tag{3.27}$$

Donde r_e es el radio de la tierra y φ es la latitud geodésica. Desde satélites como el Landsat y SPOT tienen la inclinación de orbita, i, de alrededor 9.1° de los polos, la rotación de la Tierra no es exactamente paralela a los análisis Cross-track. La velocidad de rotación tierra proyectaba en la dirección de exploración se reduce por lo tanto,

$$v_e = v_0 \cos(i) = 0.98769 v_0 \tag{3.28}$$

Los parámetros más importantes para el modelado de la tierra-orbita se muestran en la figura 3.13. Los tres vectores, **s**, **g** y **p** forman el "triángulo de la observación fundamental" y obedece a la "ecuación vectorial look"

р	=	S	+	g	
---	---	---	---	---	--

(3.29)

Parámetro	Valor
Radio ecuatorial	6,378,137 km
Radio polar	6,356,752 km
Circunferencia ecuatorial	40,075,02 km
Circunferencia polar	39,940,65 km
Excentricidad	0.00669
Velocidad angular	7.2722052 x10 ⁻⁵ rad/sec

Tabla 3.3 Parámetros útiles para la "figura de la Tierra", y su velocidad de rotación. Los valores dimensionales son del Sistema Geodésico de referencia (GRS80 [1]

La órbita que se muestra en la figura 3.13 es una órbita nodo descendente, que es más común entre la Tierra satélites de teleobservación. Para el satélite Terra NASA, resulta en una mañana de cruce dela ecuación de norte a sur a las 10:30 AM en el lado iluminado de la tierra. El satélite Aqua de la NASA se encuentra en una órbita nodo ascendente lo que resulta en una tarde ecuador cruza de sur a norte a las 1:30AM. Esta combinación de orbitas proporciona medidas complementarias del mismo día por Terra y Aqua, sensores, así como por la tarde las mediciones atmosféricas de sensores aguamarina cuando los efectos solares forman un patrón cruzado.

Figura 3.4 Los parámetros clave para el modelado de la geometría de la imagen de un satélite en órbita alrededor de la Tierra en una órbita casi polar descendente en el lado iluminado por el sol, como el utilizado por el Landsat y Terra. La inclinación es el ángulo entre el plano ecuatorial y el plano orbital y se trata de 98° para los satélites de teledetección sol-síncronas. Un sistema de coordenadas geocéntricas fija (no giratoria) se define por (x, y, z). Los tres vectores en que definen el sistema de localización por satélite, la dirección de la vista de un punto P en particular en la superficie de la Tierra (g) y la ubicación P (p). [3]

3.5.5 Línea y escaneo geométrico Whiskbroom.

El muestreo pixel perpendicular a la derrota esta en incrementos de tiempo fijos para la línea o whiskbroom escáneres, que, dada la velocidad de exploración constante, resulta en incrementos angulares fijos $\Delta\Theta$, donde Θ es el ángulo de exploración de nadir. En el escáner lineal y whiskbroom, la cruz-pista GSI por lo tanto varia a través de la exploración, cada vez con el aumento del ángulo de barrido.

$$flat \ earth: \frac{GSI_f(\theta)}{GSI_0} = \left[\frac{1}{\cos(\theta)}\right]^2 \tag{3.30}$$

Suponiendo de nuevo una tierra plana. Esta aproximación es exacta para un ángulo de exploración bastante grande, incluso a la altura de la AVHRR ver Figura 3.14. Sin embrago en ángulos más grandes la curvatura de la tierra debe tenerse en cuenta y la ecuación de la perpendicular a la trayectoria

$$flat \ earth: \frac{GSI_f(\theta)}{GSI_0} = \left[\frac{H + r_e(1 - \cos \theta)}{H \cos(\theta)\cos(\theta + \phi)}\right]^2$$
(3.31)

Donde ϕ es el ángulo geocéntrico correspondiente al punto de la superficie en el ángulo de exploración y se da como,

$$\phi = asen\{[r_e + H]sen(\theta)\} - \theta \tag{3.32}$$

3.7.6 Geométrico escaneo Pushbroom

El GSI perpendicular a la trayectoria de Pushbroom escáneres no varía en la misma forma que los escáneres whiskbroom, suponiendo que el sistema de formación de imágenes tiene aumento constante a través de la matriz de detectores lineales ver Figura 3.15. En un sistema Pushbroom cada línea perpendicular a la derrota de la imagen se forma ópticamente como en una cámara de fotograma convencional. Los elementos detectores están igualmente espaciados a una distancia W a través de la matriz y por lo tanto la cruz-pista cambia IFOV a través de la matriz, es decir, como una función de la vista del ángulo de corte.

$$flat \ earth: GSI_f = w \ x \frac{H}{f}$$
(3.33)

Figura 3.5 La Línea y la geometría del escáner whiskbroom en la dirección perpendicular a la trayectoria utilizan para derivar la ecuación 3.30 y la ecuación 3.31. Los datos a lo largo de la exploración se muestrean a un intervalo de tiempo fijo para crear pixeles. Suponiendo que la velocidad de rotación de exploración es constante, el intervalo de tiempo fijo correspondiente en un intervalo angular fijo $\Delta\theta$. Por lo tanto la ruta transversal GSI aumenta con el aumento de θ , como se muestra a continuación a una altura de 850kilometros. La aproximación de la tierra plana es bueno dentro de 4% a un ángulo de lectura de alrededor de 0,4 radianes o 23°. [3]

Figura 3.6 La cruz-pisa GSI es constante en la aproximación tierra plana, pero aumenta con la opinión de ángulo θ de la verdadera Tierra esférica. La altitud utilizada es 832 kilómetros correspondiente a los satélites SPOT [1]

[1] Robert A. Schowengerdt, REMOTE SENSING models and methods for image Processing, Third edition 2006.

[2] Wiley J. Larson, Space Mission Analysis and Design. Third edition 1999.

[3] Herbert J. Kramer, Observation of the Earth and its Environment, Third Edition 1996

Capítulo 4

4 Análisis y dimensionamiento de la carga útil

Introducción

El proyecto se basa en el diseño de un satélite artificial en órbita baja (*Low Earth Orbit* o LEO). Nos centraremos en los puntos básicos a tratar a lo largo del desarrollo de cualquier misión: el estudio de las posibles órbitas que consideramos idóneas para su desarrollo, el número de satélites que se requerirá, en muchos aspectos acerca de la vida útil del satélite, en las necesidades de la misión tales como las relativas a la incidencia de la radiactividad y los efectos de un posible frenado debido a la atmósfera (*drag*). También se considera su carga útil y trataremos los detalles que surgen al desarrollar un proyecto de esta naturaleza. La utilidad o misión del satélite determinará sus principales características y limitará los aspectos que nos permitirán explotar al máximo las opciones del software y las herramientas de las que disponemos. Éstas tienen una inclinación de 90 grados en referencia al plano ecuatorial terrestre, es decir que cada doce horas sobrevuelan una de las dos zonas polares variando ligeramente su azimut de tal manera que aproximadamente en 14 días se consiga sobrevolar toda la superficie terrestre.

Existen satélites polares que ya se encuentran en órbita en la actualidad, muchos de ellos siguen una inclinación exacta de 90 grados pero algunos de ellos se mueven alrededor de los 80 y los 100 grados. Los satélites con órbitas en este rango de inclinación son utilizados mayoritariamente para vigilancia, estudios meteorológicos y cartográficos.

Dichos objetivos determinan que se utilicen órbitas LEO (*Low Earth Orbit*), entre los 400 km y los 800km de distancia sobre la superficie terrestre (termosfera y exosfera), aunque la teoría general de órbitas LEO los sitúa hasta los 1500km de altura. Algunos ejemplos de misiones en órbita LEO son: *"The International Space Station"* que se encuentra entre 319.6 km y los 346.9 km, IRIDIUM (para el uso en la telefonía móvil), que es una constelación 66 satélites LEO los cuales se encuentran a una altitud de 725-1450 Km, Envisat un satélite de control ambiental que está a unos 790 km de altura con una variación de 10km. Estos, junto a la *"Disaster Monitoring Constellation"* el *"RapidEye"* y el "Orbcom", son las constelaciones LEO más conocidas.

Pensando en la altura a la que hay situar las órbitas del satélite, junto con la necesidad de una resolución mínima, las órbitas LEO parecen la respuesta acertada a estas limitaciones.

No menos importante es la manera en que afecta el frenado debido a la atmósfera, o *drag*, en la vida útil y en la trayectoria de nuestro satélite, así como la radiación sobre todos los componentes electrónicos, en particular sobre los detectores (las CCD) y los paneles solares. El gran margen de alturas nos permite estudiar cómo en órbitas LEO muy bajas la atmósfera nos protege de la radiación, pero el satélite se ve más afectado por la resistencia atmosférica, y en órbitas más altas sucede al contrario.

Para calcular y mostrar nuestros resultados nos apoyaremos en dos software de libre acceso como son SPENVIS y STK.

4.1 Efectos del DRAG.

Las fuerzas principales que afectan a los objetos que orbitan alrededor de la Tierra son el peso y la resistencia atmosférica. En los casos en que el objeto se encuentra a una distancia considerable, puede verse afectado también por las fuerzas gravitatorias de otros cuerpos como la Luna o Venus y Marte, incluso. El *drag* es la palabra inglesa que se suele utilizar para describir la resistencia atmosférica. Sabemos que el *drag* afecta al satélite por el simple hecho de que éste atraviesa la atmósfera, y hace que el satélite descienda hasta producirse su colisión con la superficie de la Tierra. Puesto que el *drag* está causado por la atmósfera, según la altura a la que esté situado nuestro objeto, éste se verá afectado en mayor o menor medida.

La expresión que se utiliza para calcular la resistencia o drag es la siguiente:

debido a que a mayor coeficiente balístico, menor resistencia aerodinámica'.

 $D = \frac{1}{2} \cdot \rho \cdot \nu^2 \cdot S \cdot C_D$ 4.1 donde ρ es la densidad del aire y varía según la zona de la atmósfera en la que nos encontremos, ν es la velocidad del objeto, S es la superficie del objeto y C_D es el coeficiente de resistencia o *drag*. En nuestro caso C_D tendrá siempre el valor 2.2, ya que es el valor estándar que se utiliza en los satélites. En cuanto a la superficie y la masa del satélite, iremos variando éstas según el coeficiente balístico que nos convenga para realizar un estudio lo más realista posible. Como podemos ver en la Figura 4.1, si queremos que la vida útil del satélite sea elevada, debemos indicar un coeficiente

balístico alto para alturas de 200 y 300 km, y coeficientes inferiores para la altura de 700 km. Es

Figura 4.1 Gráfico del coeficiente balístico respecto a la altitud inicial y la vida útil del satélite. [1]

⁷ Coeficiente balístico: es la medida de la capacidad de un cuerpo de superar la resistencia del aire en vuelo. Su expresión es: m/(A· C_D)

Astrogator, realiza los cálculos del drag. Automáticamente y nos ofrece como datos de salida los parámetros de la órbita resultante en función del tiempo. En particular varía internamente los efectos en la altura dependientes del drag, simulando su descenso a través de las capas de la atmósfera. Con el objetivo de poder visualizar este efecto de descenso (sobre todo en las órbitas más bajas) hemos comparado nuestros resultados calculados con drag con los de la órbita que resultaría de una atmósfera ideal sin resistencia, esto es, con $C_D = 0$. Para entender los gráficos comparativos que hemos realizado conviene saber el porqué de la utilización de los semiejes mayores para analizar las alturas de satélite. La opción más inmediata y la que se tomó en primer lugar fueron las alturas en función del tiempo directamente. Pero al hacer esto llegamos a que no obteníamos los resultados que esperábamos. En este punto se llegó a la conclusión de que debido a las perturbaciones de la Tierra, la órbita que simulábamos no era circular, tal y como esperábamos. Como se aprecia en la Figura 4.2, la Tierra no es esférica sino que es un geoide, esto es, una representación del planeta que tiene en cuenta las variaciones de la gravedad en su superficie, considerando el nivel del mar en reposo.

National Aeronautics and Space Administration Earth Science Enterprise http://earth.nasa.gov

Studying Earth's Gravity Field from Space

Figura 4.2 Mapa que muestra la onda del campo gravitacional de la Tierra obtenida por la misión de la NASA, GRACE ("Gravity Recovery And Climate Experiment"). [2]

Era por esa razón que las medidas de las alturas estaban contaminadas por las variaciones en los elementos orbitales clásicos. Analizamos así los semiejes mayores de la órbita y comprobamos que no sufrían esas variaciones y nos servirían para nuestros estudios. En nuestro caso el semieje mayor de la elipse correspondía casi al radio del círculo de la órbita, lo que significa que obtenemos un dato compuesto del radio de la Tierra más la altura del satélite⁸.

4.1.1. Satélite a alturas bajas (200-300 km)

Para poder analizar los resultados de las simulaciones del programa se probó primero con valores de alturas bajas, ya que por el rozamiento con las capas bajas de la atmosfera, el satélite desciende más rápidamente. Elegimos valores de 200 y 300 km, ya que es la mínima altura a la que un satélite podría orbitar. Sabemos que la órbita está afectada por la forma de la Tierra, que no es perfectamente esférica, y el potencial generado por ésta causa variaciones periódicas en todos los elementos orbitales. Los efectos más notables son las variaciones seculares en la ascensión recta del nodo ascendente y el argumento de perigeo, debido a la Tierra aplastada en los polos, representado por el término j_2 . La relación de cambio de la ascensión recta del nodo ascendente debido a j_2 es:

$$\dot{\Omega} = -1'5nJ_2(\frac{R_T}{a})^2(1-e^2)^{-2}$$

 $\approx -2'06474 \cdot 10^{14} a^{-\frac{7}{2}} (\cos i)(\cos i)(1 - e^2)^{-2}$4.2 Dónde: Ω es la variación de la ascensión recta del nodo ascendente en grados/día, J2 = 0.00108263, R es el radio de la Tierra, a es el semieje mayor en km, i es la inclinación y e es la excentricidad. En nuestro caso el término e es 0, ya que se trata de una órbita elíptica, y Ω es un grado por día para seguir una órbita sincronizada con el Sol. La ecuación simplificada para calcular la inclinación será:

Así se puede calcular la inclinación respecto al semieje mayor de la órbita en el caso de un satélite sincronizado con el Sol, para realizar los 360grados alrededor de la Tierra en más o menos un año.

Una vez que tenemos estos datos básicos de la órbita nos queda adaptar el coeficiente balístico del satélite para estas alturas. Al estar en una órbita tan baja necesitamos un coeficiente balístico alto. Para ello supondremos como masa del satélite 1000 kg y $2m^2$ de área.

⁸ En Astrogator se toma como radio de la Tierra: 6378,14 km.

Caso 1: altura de 200 km

Para esta altura, según la ecuación 4.2, tenemos una inclinación de 96,42 grados y un semieje mayor de 6578,14 km.

Figura 4.3 Gráfico de la trayectoria de un satélite a 200 km de altura. En la línea azul se observa la trayectoria con drag, en la roja la trayectoria sin drag y en la verde observamos en qué punto estaría la superficie de la Tierra.

En la Figura 4.3 se puede observar cómo desciende el satélite después de 9 días desde su lanzamiento (línea azul). El satélite empieza su misión el 1 de Julio a las 12.00h y se observa que el 9 de Julio a las 21:45:30 h tendría lugar la colisión con la superficie de la Tierra. Es decir, su viaje sería tan solo de 8 días y 9h 45min 30s exactamente.

Caso 2: altura de 300km

Veremos que 100 km más arriba cambia la vida útil del satélite. En este caso introducimos una inclinación de 96,77 grados y un semieje mayor de 6678,14 km.

Figura 4.4 Gráfico de la trayectoria de un satélite a 300 km de altura. En la línea azul vemos la trayectoria con drag, en la roja la trayectoria sin drag y en la verde se observa en qué punto estaría la superficie de la Tierra.

La Fig 2.4 muestra cómo la trayectoria de descenso es muy parecida a la de 200 km (línea azul). Pero en este caso su viaje tiene una mayor duración. Colisiona con la superficie de la Tierra a las 14:13:22 h del 14 de noviembre, 4 meses 13 días y 2h 13min 22s después de su lanzamiento. Además se ha podido comprobar cuál sería la trayectoria ideal sin la resistencia de la atmósfera: se mantendría entre los 300 y los 281 km más o menos (línea roja de la Figura 4.4).

4.1.2. Satélite a 700 km de altura.

Una vez analizadas las alturas más bajas en las cuales podría actuar nuestro satélite, se trabajará con la altura ideal de los satélites de observación terrestre. La mayoría de estos satélites se encuentran alrededor de los 700km de altura, es por esta razón que hemos escogido esta órbita para nuestro satélite.

Lo siguiente que debemos hacer es indicar la inclinación que nos resulte más conveniente. Como se ha indicado anteriormente debemos utilizar la fórmula 4.3 para encontrar la inclinación que permita a nuestro satélite ser síncrono con el Sol. Si la aplicamos con 7078,14km de semieje mayor obtenemos una inclinación de 98,3 grados, Se simuló a órbita de 98,3grados en STK y obtuvimos la siguiente imagen:

Figura 4.5 Imagen de STK en 2D de la órbita de un satélite a 700km de altura y con inclinación 98,3 grados.

Una vez introducidos los datos de la órbita en Astrogator se pueden realizar órbitas del tiempo que deseemos. Pero a la hora de obtener los resultados en los *report* se observa que el programa tiene un límite de datos posibles a extraer. Por ello decidimos hacer simulaciones de cada 3 meses y obtener más datos para realizar análisis más precisos del viaje total de nuestro satélite.

En cuanto al tiempo de duración de nuestra misión decidimos que 5 años era un viaje adecuado para lo que queríamos utilizar el satélite. Así, que se acabó de realizar 20 simulaciones en total. Para lo que se necesita extraer, a parte del *report* de los semiejes mayores, el de los datos de la órbita para poder simular cada segmento de órbita donde quedó la anterior.

El único dato que queda para poder iniciar las simulaciones es el coeficiente balístico de nuestro satélite a 700km. Como hemos visto en la Figura 4.1 para esta altura no necesitamos un coeficiente tan elevado. Para este caso indicaremos una masa de 500 kg en un área de $20m^2$

Figura 4.6 Gráfico de la trayectoria de un satélite a 700 km de altura. En la línea azul vemos la trayectoria con drag y en la roja la trayectoria sin drag.

Se puede apreciar en la Figura 4.6 cómo desciende la trayectoria del satélite, que se ve afectado por el *drag* de la atmósfera respecto a la trayectoria ideal sin resistencia aerodinámica. Su altura desciende unos 30km en 5 años. Esto no afecta a la vida útil de nuestro satélite, ya que se encuentra en una posición bastante superior al tiempo de pérdida de altura relevante, por lo que podríamos considerar la órbita adecuada para nuestro proyecto.

4.2 Análisis de las órbitas con SPENVIS

Teniendo elegidas las alturas necesarias para realizar nuestro estudio y con el máximo tiempo de vida útil obtenido con STK, para cada caso estudiamos los parámetros orbitales y adoptamos valores medios si es necesario. A continuación analizaremos con SPENVIS los tres casos ya estudiados con STK.

4.2.1. Caso 1: satélite a 200 km de altura con SPENVIS

En primer lugar consideraremos una simulación a 200 km de altura sobre la superficie de la Tierra. Los datos de la simulación son:

Altura: 200km	Periapsis:0deg	
E: Odeg	True anomaly: 90deg	
Inclinación: 96.42deg	Asc. Of Node asc: 0deg	

Según STK esta simulación dura algo más de 8 días puesto que el *drag* consigue que el satélite pierda altura a cada vuelta hasta llegar a chocar con la superficie terrestre. Así pues, ya que no podemos añadir *drag* a SPENVIS, se acotará la duración de la misión según los parámetros de STK.

Figura 4.7 Gráfica altitud, latitud, longitud y local time en función del tiempo de órbita. Se puede comprobar cómo no existe efecto del drag ya que el satélite se mantiene fijo entre valores de 210 a 180 kilómetros de altura. 192h son 8 días.

4.2.2. Caso 2: satélite a 300km de altura con SPENVIS

En segundo lugar tenemos una simulación a 300 km de altura sobre la superficie de la Tierra. Los datos de la simulación son:

Altura: 300km	Periapsis:0deg	
E: 0deg	True anomaly: 90deg	
Inclinación: 96.77deg	Asc. Of Node asc: 0deg	

Según STK esta simulación dura 4 meses y 13 días puesto que, como en el caso anterior, el *drag* consigue que el satélite pierda altura a cada vuelta hasta chocar con la superficie terrestre. Así pues, ya que no podemos introducir *drag* con el programa SPENVIS, acotaremos la duración de la misión según los parámetros de STK. A lo largo de los casi 5 meses de duración los valores como la inclinación y la excentricidad variarán, por lo que para su estudio en SPENVIS se tomaran los valores medios para cada mes. La inclinación varía hasta los 96,82 grados y el RAAN varía de 0 a 92,29 grados.

Number of mission segments: 5		
Segment 1: julio		
Orbit type: general Orbit start: 1/7/2007 12:0:0 Trajectory duration: 30 day(s)		
Segment 2: agosto		
Orbit type: general Orbit start: end of previous segment Trajectory duration: 30 day(s)		
Segment 3: septiembre		
Orbit type: general Orbit start: end of previous segment Trajectory duration: 30 day(s)		
Segment 4: octubre		
Orbit type: general Orbit start: end of previous segment Trajectory duration: 30 day(s)		
Segment 5: nov		
Orbit type: general Orbit start: end of previous segment Trajectory duration: 15 day(s)		

Kack Run

Figura 4.8 Segmentos creados en SPENVIS para el desarrollo de los cálculos a 300 km.

La dificultad de trabajar con SPENVIS es precisamente que no permite hacer cálculos extensos en el tiempo. Así que los datos y gráficas que obtenemos son para cada segmento de un mes de duración⁹.

⁹Hemos utilizado *Gnuplot* como software de soporte para aunar gráficas y segmentos de las misiones.

Figura 4.9 Gráficas en SPENVIS para cada uno de los segmentos. De arriba a abajo numeramos del 1 al 5 segmento.

Figura 4.10 Gráfica generada mediante Gnuplot para unificar cada uno de los segmentos estudiados con SPENVIS, a 300km de altura. El eje x corresponde al número de lecturas que realiza

el programa (del orden de lectura por cada minuto), y el eje y a km de altura sobre la superficie de la Tierra.

4.2.3. Caso 3: satélite a 700km de altura con SPENVIS

En tercer lugar tenemos una simulación a 700 km de altura sobre la superficie de la Tierra. Los datos de la simulación son:

Altura: 700km	Periapsis:0deg
E: Odeg	True anomaly: 90deg
Inclinación: 96.77deg	Asc. Of Node asc: Odeg

Igual que en el caso anterior vamos a necesitar de valores medios para analizar la evolución del satélite a lo largo de un periodo de 5 años.

Figura 4.11 Gráfica generada mediante Gnuplot para unificar cada uno de los segmentos estudiados con SPENVIS, 5 años a 700 km de altura. El eje x corresponde al número de lecturas que realiza el programa (del orden de lectura por cada minuto), y el eje y a km de altura sobre la superficie de la Tierra.

4.3 Efectos de la Radiación

Esta parte del capítulo justifica la utilización de SPENVIS. En él se evaluará dentro de los entornos que hemos creado cómo afecta la radiación, en qué proporciones la encontramos a diferentes alturas y finalmente cómo incide en la carga útil de la misión.

4.3.1. Tipos de radiación

La radiación afecta en mayor o menor medida a nuestro satélite, su estructura y los elementos electrónicos. Haremos énfasis a los paneles solares puesto que estos son la principal fuente de energía de nuestra misión y analizaremos cómo se ven afectados por las diferentes radiaciones, ya que éstas son el medio que utilizaremos para lograr el propósito de la misión: la observación del territorio mexicano y a su vez proveer servicios de teledetección a otros países de américa latina Entendemos como radiación primaria toda radiación que incida sobre nuestro satélite espacial. Esta radiación se compone de partículas cargadas (protones, electrones, alfa...). Existen diversas fuentes de radiación, lo que nos permite hacer una subclasificación según su origen. Tenemos en primer lugar las que proceden de fenómenos solares. En segundo lugar encontramos los rayos cósmicos procedentes de fuera de nuestro sistema solar. La tercera tipología es la de las partículas atrapadas dentro de los cinturones de Van Allen. La radiación secundaria se genera por interacción de las partículas cargadas de la radiación primaria con los materiales de nuestro satélite. Otro aspecto importante a tratar antes de incidir particularmente en cada caso es entender cómo funciona la magnetosfera y como esta influirá en la radiación. *La magnetosfera*

Una forma sencilla de definir magnetosfera y la importancia de tratarla en este apartado sería como una región en torno a la Tierra donde el campo magnético, generado por el núcleo terrestre, actúa como protección frente a la radiación. Es decir que es una región donde el campo magnético de la Tierra frena y captura buena parte del flujo de partículas de radiación, concentrándolas en las regiones cercanas a los polos. Este hecho es muy importante ya que es la zona que nuestro satélite pretende observar. La magnetosfera (500-60.000 km) comprende la exosfera (700-10.000 km) y también parte de la ionosfera, alrededor de unos 500 km. Las órbitas LEO están protegidas por la interacción de la radiación primaria con el campo magnético y con partículas cargadas de la ionosfera; al resultar atrapadas en botellas magnéticas, las partículas de radiación dan lugar a los cinturones de Van Allen

Figura 4.12 Imagen artística en la cual vemos la radiación solar y sus efectos sobre el campo magnético terrestre. [3]

Se analizarán las propiedades de cada uno de los tipos de radiación para estudiar más adelante su efecto en cada uno de los escenarios planteados en: órbitas a 200, 300 y 700 kilómetros de altura sobre la superficie terrestre.

Radiación solar

Estudios de la actividad solar muestras que el ciclo de manchas solares tiene una duración promedio de unos 11 años, aunque no resulta posible realizar predicciones a largo plazo sobre el nivel de actividad solar. Durante el periodo de mayor actividad se producen tormentas solares y eyecciones de masa coronal que producen grandes flujos de partículas de alta energía; este periodo es conocido como *worst case* dentro del estudio de radiaciones.

Figura 4.13 Gráfica sobre el último ciclo solar. Evolución de manchas del ciclo solar estos datos fueron obtenidos hasta el 30 de septiembre de 2007 [4]

El último ciclo completo es el que vemos en la Figura 4.14 y se desarrolló desde 1997 hasta 2008. Sus años de mayor intensidad van de 1999 hasta 2003.

SPENVIS utiliza para calcular estos escenarios sobre la radiación solar el *ESP worst case event* desarrollado por la NASA. Consiste en un conjunto de simulaciones obtenidas de datos sobre pasadas tormentas solares de actividad especialmente elevada para predecir la fluencia de protones solares sobre nuestra atmosfera. Actualmente la evolución de dicho modelo reside en la predicción según la duración de una misión. Su funcionamiento es sencillo: el sistema calcula integrales de fluencia de protones para distancia de una unidad astronómica (AU). El modelo incluye la atenuación de la magnetosfera según la altura en la que se desarrolle la misión sobre la Tierra. El rango de energía es de 1 hasta algunos cientos de MeV. Aunque se disponen de medidas para rangos mayores estos se implementan de forma empírica y no mediante el método de aproximación puesto que los errores en los resultados son frecuentes.

En las siguientes tablas (Tabla 4.1, Tabla 4.2) apreciamos la diferencia entre la fluencia máxima y mínima de protones provenientes de los eventos solares y su rango de energías en dos épocas diferentes dentro de un ciclo solar.

Solar proton model: ESP worst case event

Geomagnetic shielding: Størmer formula for quiet magnetosphere

Earth shielding has been taken into account

Prediction period: 2.10 yr (0.80 yr in solar max., 1.30 yr in solar min, over 1

solar cycles)

95.00% probability of fluences not being exceeded

Tabla 4.1 Datos sobre la radiación recibida durante 2007 a 2009 en una órbita de altura 300km.

magnetosphere					
Fluence a	t spacecraf	ft	Model fluence a	t 1.0 AU	
Total miss	sion fluenc	e	Total prediction p	al prediction period	
Energy (MeV)	Integral (cm ²)	Differential (cm ²) MeV ⁻¹)	Integral (cm ²)	Differential (cm ²) MeV ⁻¹)	
0.10	7.1E+10	2.2E+10	1.7E+11	5.4E+10	
0.50	6.2E+10	2.0E+10	1.5E+11 1.2E+11	4.8E+10 4.1E+10	
1.00	5.3E+10	1.7E+10	8.9E+11	3.0E+10	
2.00	3.8E+10	1.2E+10	6.4E+10	1.8E+10	
3.00	2.9E+10	7.4E+09	5.4E+10	9.7E+09	
4.00	2.3E+10	4.0E+09	4.5E+10	7.3E+09	
5.00	1.9E+10	3.1E+09	3.9E+10	5.5E+09	
6.00	1.7E+10	2.3E+09	3 0F+10	4 2F±09	
8.00	1.3E+10	1.7E+09	0.02710	TILLTVV	

Solar proton fluences for the spacecraft trajectory and outside the

Tabla 4.2 Datos sobre la radiación recibida durante 2007 a 2009 en una órbita de altura 300km

Solar proton model: ESP worst case event

Geomagnetic shielding: Størmer formula for quiet magnetosphere

Earth shielding has been taken into account

Prediction period: 2.10 yr (2.10 yr in solar max., 0.00 yr in solar min, over 1

solar cycles)

95.00% probability of fluences not being exceeded

Solar proton fluences for the spacecraft trajectory and outside the magnetosphere					
	Fluence a	t spacecrat	ft	Model fluence at 1.0 AU	
	Total miss	sion fluenc	e	Total prediction period	
	<i>Energy</i> (MeV)	Integral (cm ²)	Differential (cm ²) MeV ⁻¹)	Integral (cm ²)	Differential (cm ²) MeV ⁻¹)
			0.05 (0	1.9E+11	5.6E+10
	0.10	8.0E+10	2.3E+10	1.7E+11	5.0E+10
	0.50	7.1E+10	2.1E+10	1.4E+11	4.3E+10
	1.00	6.1E+10	1.8E+10	7.7E+11	3.2E+10
	2.00	4.5E+10	1.3E+10	6.6E+10	1.9E+10
	3.00	3.4E+10	8.1E+09	5.5E+10	1.1E+09
	4.00	2.8E+10	4.4E+09	4.8E+10	8.7E+09
	5.00	2.4E+10	3.6E+09	3.7E+10	6.9E+09
	6.00	2.1E+10	2.9E+09	3.0E+10	4.8F+09
	8.00	1.6E+10	2.0E+09		

Tabla 4.2 Datos sobre la radiación recibida durante 2001 a 2003 en una órbita de altura 300km.

La primera se desarrolla durante 2007 a 2009, una etapa de mínima actividad solar, mientras la segunda tabla corresponde a una misión de dos años, comprendidos entre 2001 y 2003, en época de máxima actividad. Como se puede comprobar entre la Tabla 4.1 y la Tabla 4.2 existen 2 diferencias grandes. La primera hace referencia al tiempo que transcurren en actividad máxima y mínima. La primera se divide entre 0,8 años en máxima exposición y 1,3 en mínima lo que se traduce en una diferencia de 10^2 . En cambio la segunda tabla comprende sus 2 años bajo flujo máximo de protones.

Los efectos de la radiación solar y su estudio bajo *Worst Case* demuestran que en los dos primeros casos (para 200km y 300km) debido a la corta duración de la misión (a causa del *drag* atmosférico) y a una época de poca actividad solar, los datos de exposición son muy bajos. A diferencia de una misión de 5 años a 700km la actividad es mayor puesto que parte de la misión se desarrolla en un periodo de máxima actividad solar. Con valores de flujo de 10^{10} partículas para valores entre 0.1 a 10 MeV, de 10^9 partículas hasta los 100Mev y reduciendo su flujo hasta 10^5 partículas con valores de energía de 200MeV o más.

Radiación exterior al sistema solar

Si estudiamos las radiaciones que provienen de fuera de nuestro sistema solar hablamos de rayos cósmicos. Su composición es de 85% de núcleos de hidrogeno (protones), un 14% de núcleos de helio (partículas alfa) y el restante 1% de iones pesados. Su fluencia es de 4 protones, 0,4 iones de helio y 0,04 partículas de *High Z Energetic (HZE) particles* en su mayoría núcleos de hierro. Todas las medidas se dan en (cm^2 s).

Radiación atrapada

Como ya hemos detallado antes en el apartado de la magnetosfera, ésta captura las partículas de radiación y da lugar a los Cinturones de Van Allen. Estos se componen de electrones y protones que se mueven en un movimiento en espiral alrededor de las líneas de campo hasta el punto de reflexión, así como en longitud sobre la Tierra SPENVIS analiza estas radiaciones mediante sus diversas opciones en el apartado *Radiation Source and effects.*

Figura 4.14 Diagrama del apartado *Radiation Source and effects* del sistema SPENVIS.

Para este primer apartado utilizaremos la opción de *Radiation Source* para determinar la diferencia de flujos en cada uno de los casos que estudiamos para nuestro satélite. SPENVIS Utiliza dos modelos (AE-x y AP-x, desarrollados por la NASA) para el estudio de flujos máximos y mínimos de electrones y protones respectivamente. Estos modelos son mapas consistentes en la densidad integral de protones o electrones en función de la energía. Estos mapas se han creado gracias a los datos recogidos por una veintena de satélites desde los años sesenta hasta mediados de los setenta. Los modelos actuales están actualizados en 1991 (AE-8 y AP-8). Ninguno de los mapas recoge variaciones de tiempo más allá del ciclo solar.

Si nos centramos en el modelo de electrones AE-8 su rango de energía va de 0,04MeV hasta 5MeV en el caso del cinturón de Van Allen inferior y hasta 7MeV en el superior. En el caso de los protones estos solo se encuentran retenidos en el cinturón inferior de Van Allen. Su energía va desde 0,1MeV hasta 400MeV.

Caso 1: altura de 200 km

Figura 4.15 Gráficas obtenidas de SPENVIS. Radiación AP8 bajo las condiciones del Caso 1.

En el primer caso a 200 km de altura, la misión dura tan solo 8 días (ya que el rozamiento atmosférico provoca la caída del satélite). Los datos que obtenemos de SPENVIS se muestran en la Figura 4.16 y en los informes numéricos. Como podemos ver en este caso los protones tienen energías desde 0,1MeV hasta 100MeV. Y sobre el mapamundi los valores más elevados suceden en la zona del Atlántico Sur, donde se halla la bien conocida anomalía del Atlántico Sur (SAA). Esto se debe a una falta de simetría del campo magnético terrestre con respecto al eje de rotación de la Tierra.

Figura 4.16 Gráficas obtenidas de SPENVIS. Radiación AE8 bajo las condiciones del Caso 1.

Los datos que obtenemos de SPENVIS se muestran en la Figura 4.17 y en los informes numéricos. Como podemos ver en este caso los electrones tienen energías desde 0,04MeV hasta 6MeV.

Caso 2: altura de 300km

Figura 4.17 Gráficas obtenidas de SPENVIS. Radiación AP8 bajo las condiciones del Caso 2.

A 300 km de altura, la misión dura tan solo 4 meses y aproximadamente 15 días (ya que el rozamiento atmosférico provoca la caída del satélite). Los datos que obtenemos de SPENVIS se muestran en la Figura 4.18 y en los informes numéricos. Como podemos ver en este caso los protones tienen energías desde 0,1MeV hasta 400MeV. Y sobre el mapamundi los valores más elevados suceden en la zona del Atlántico Sur, donde se halla la bien conocida anomalía del Atlántico Sur (SAA). Esto se debe a una falta de simetría del campo magnético terrestre con respecto al eje de rotación de la Tierra.

Figura 4.18 Gráficas obtenidas de SPENVIS. Radiación AE8 bajo las condiciones del Caso 2.

Los datos que obtenemos de SPENVIS se muestran en la Figura 4.19 y en los informes numéricos. Como podemos ver en este caso los electrones tienen energías desde 0,04MeV hasta 6MeV. No varía respecto a los 200km de altura.

Caso 3: altura de 700km

Figura 4.19 Gráficas obtenidas de SPENVIS. Radiación AP8 bajo las condiciones del Caso 3. Los datos que obtenemos de SPENVIS se muestran en la Figura 4.20 y en los informes numéricos. Como podemos ver en este caso los electrones tienen energías desde 0,04MeV hasta 7MeV.

Figura 4.20 Gráficas obtenidas de SPENVIS. Radiación AP8 bajo las condiciones del Caso 3

A 700 km de altura, la misión tiene una duración de 5 años. Los datos que obtenemos de SPENVIS se muestran en la Figura 4.21 y en los informes numéricos. Como podemos ver en este caso los protones tienen energías desde 0,1MeV hasta 400MeV. A diferencia de alturas inferiores el flujo de protones es mayor (unos 10^1 mayor cm $\frac{cm^2}{MeV}/s$).Tras analizar los casos podemos determinar que a mayor altura nuestro satélite bajo el mismo tiempo de exposición este recibe una dosis mayor de radiación, como era de esperar.

Figura 4.21 Gráficas obtenidas de SPENVIS. Evolución Radiación AP8 a alturas de 200 km, 700km y 1300 km.

Figura 4.22 Gráficas obtenidas de SPENVIS. Evolución Radiación AE8 a alturas de 200 km, 700 km y 1300 km.

4.4 Análisis y diseño de un enlace de comunicaciones por satelite

Una de las principales aplicaciones del módulo STK/Communications es el análisis de un enlace de comunicación satelital que se establecen entre una estacion terrena y un satélite. El acceso entre un transmisor y un receptor puede ser restringido a satisfacer una variedad de criterios RF. Con una o mas restricciones en el lugar, se puede ajustar las propiedades de los dispositivos de comunicación entre un receptor de una estación terrena y un transmisor ubicado en un satelite despues se impondran varias restricciones al enlace de comunicaciones, observanco sus efectos antes y despues de ajustar ciertos parametros ya sea del transmisor o receptor con la finalidad de corregir las limitaciones impuestas. Para crear nuestro enlace de el satelite de observacion de latierra en STK primero creamos un nuevo escenario, damos una descripcion sobre lo que se realizara en este nuevp escenario y establecemos el periodo de simulacion.

STK: New Scenar	ic Wizard
Name:	Proyecto_1
Description:	Ánálisis y dideño de un enlace satelita para la comunicacion de un satelite de observación de la terra
Location:	C:\Users\Juan\Documents\STK 10
Start: Stop:	
Do not show	rre this again. OK Cancel Help

Figura 4.23Estableciendo un nuevo escenario para el análisis y diseño de un enlace satelital.

Después añadimos un satélite al escenario y en el método seleccionamos "Orbit Wizard". Al dar clic en "Insert" nos inserta el objeto "Satellite" y nos abre una ventana de donde podemos modificar algunas características de este elemento en nuestro caso ingresaremos un satélite con orbita circular con una inclinación de 96.7° y ubicado a una altitud de 700km.

Al realizar todos los procedimientos para el enlace se le da clic en el botón "Generate" se nos abre otra ventana en el cual se nos muestran los resultados obtenidos para la simulación, este reporte se presenta en forma de columnas, en donde cada una de ellas corresponde a los distintos valores que van tomando el parámetro específico conforme transcurre el tiempo de simulación.

En este caso nos damos cuenta que el reporte generado por una serie de reportes individuales para los distintos periodos de acceso al satélite, es decir para los tiempos de acceso que se presentan en la representación 2D del acceso que tiene la estación terrena al satélite en cada una de las distintas órbitas trazadas por el satélite en su movimiento.

Burt: • 22 Hor 2013 B5:73:6 33 UTC • 2 Hor 2013 D7:44:1156 UTC • 2 Hor 2013 D7:44:156 UTC • 2 Hor	Start: * 22 Nov 2013 18:72:86.33 UTCo * Start: Form: * 22 Nov 2013 70:44 L156 UTCO Time (UTCO) Xatt: Form: Call (db) ELBP (db) Free Space Los (db) Atase Los (db) Bain Loss (db) 2013 18:39:18:0.00 5.000 30.0745 34.074 117.1422 0.0553 5.3595 2013 18:39:18:0.00 5.000 30.0745 34.074 117.1422 0.0553 5.3595 2013 18:39:18:0.00 5.000 30.0745 34.074 117.1539 0.0775 1.3449 2013 18:40:18.000 5.000 30.0745 34.074 167.3398 0.0715 1.0014 2013 18:41:18.000 5.000 30.0745 34.074 167.2727 0.0081 0.7323 2013 18:44:18.000 5.000 30.0745 34.074 164.0015 0.0410 0.6653 2013 18:45:18.000 5.000 30.0745 34.074 165.1785 0.0431 0.5220 2013 18:45:18.000 5.000 30.0745 34.074 1170.4535 0.0410 0.5272 2013 18:20:18.000 5.000 30.0745 34.074 170.4535	- F - A - E - X -	Jump To:	Тор	•					
Step: Direct Dis Status Direct Direct Distribution Step: Direct Direct Distribution Direct Direct Distribution Direct Direct Distribution Time (UTCO) Katr Power (dBM) Xatr Gain (dB) ERP (dBM) Free Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 Bit 33: 18.029 5.000 30.0745 34.874 173.3422 0.6553 Direct Distribution 2013 Bit 33: 18.029 5.000 30.0745 34.874 172.8013 0.1775 1.3449 2013 Bit 43: 18.000 5.000 30.0745 34.874 165.3009 0.0681 0.7323 2013 Bit 43: 18.000 5.000 30.0745 34.874 166.3099 0.6819 0.7323 2013 Bit 43: 18.000 5.000 30.0745 34.874 164.8019 0.6431 0.5622 2013 Bit 43: 18.000 5.000 30.0745 34.874 164.8019 0.6446 0.7323 2013 Bit 43: 18.000 5.000 30.0745 34.874 164.8019 0.6468 0.1537 2013 Bit 43: 18.000 5.000 30.0745 34.874 170.8377 0.6448 2.1107 <	Setter 2 2000 2 2000 Setter 0 Dec P Time (TCO) Xetr Fower (dBM) Zetr (Gain (dB) ELEP (dBM) Free Space Loss (dB) Atmos Loss (dB) Bain Loss (dB) 2013 18:39:18.292 0.6563 5.3956 2.3999 2.3999 2013 18:39:18.000 5.000 30.6745 34.674 172.3910 0.1775 1.3449 2013 18:40:18.000 5.000 30.6745 34.674 172.2013 0.1775 1.3449 2013 18:40:18.000 5.000 30.6745 34.674 167.2207 0.0431 0.7723 2013 18:40:18.000 5.000 30.6745 34.674 166.0099 0.0431 0.5222 2013 18:40:18.000 5.000 30.6745 34.674 166.0099 0.0431 0.5222 2013 18:40:18.000 5.000 30.6745 34.674 172.4872 0.6171 1.242 2013 18:001 5.000 30.6745 34.674 172.4872									
Support Support Control (SDHS) (AH11595010) Time (UTCO) Xatr Fower (dBM) Xatr Gain (dB) ELRF (dBM) Free Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 18:39:18.200 5.000 30.6745 34.874 175.3422 0.6663 5.3856 2013 18:39:18.000 5.000 30.6745 34.874 172.2013 0.1775 1.3449 2013 18:42:18.000 5.000 30.6745 34.874 165.1785 0.0141 1.0057 2013 18:42:18.000 5.000 30.6745 34.874 164.0095 0.0041 1.0522 2013 18:45:18.000 5.000 30.6745 34.874 164.0015 0.0410 0.5397 2013 18:45:18.000 5.000 30.6745 34.874 164.0015 0.0410 0.5397 2013 18:45:18.000 5.000 30.6745 34.874 164.011 0.0410 0.5397 2013 18:45:18.000 5.000 30.6745 34.874 170.8	Store Differ Differ <thdiffer< th=""> <thdiffer< th=""> <thdiffer< th=""></thdiffer<></thdiffer<></thdiffer<>	Start: 6 22 Nov 2013 18:37:36.533	Step:	60 sec 🔛						
Time (UTCO) Xmtr Fover (dBM) Xmtr Gain (db) EIRF (dBM) Free Space Loss (db) Atmos Loss (dB) Rain Loss (dB) 2013 18:39:18.529 5.000 30.8745 34.874 175.3422 0.6663 5.3856 2013 18:39:18.000 5.000 30.8745 34.874 174.1639 0.2999 2.3899 2013 18:41:18.000 5.000 30.8745 34.874 172.2013 0.1775 1.3449 2013 18:43:18.000 5.000 30.8745 34.874 163.9808 0.016 1.0054 2013 18:43:18.000 5.000 30.8745 34.874 164.099 0.0569 0.4663 2013 18:45:18.000 5.000 30.8745 34.874 164.0019 0.6903 0.6903 2013 18:45:18.000 5.000 30.8745 34.874 164.001 0.0410 0.5901 2013 18:45:18.000 5.000 30.8745 34.874 170.8525 0.0693 0.9440 2013 18:45:18.000 5.000 30.8745 34.874 173.8937 0.2464 2.1077	Time (UTCO) Xmtr Power (dHW) Xmtr Gain (dB) EIRP (dHW) Free Space Loss (dB) Atmos Loss (dB) Bain Loss (dB) 2013 18:39:18.529 5.000 30.6745 34.874 175.3422 0.6553 5.3856 2013 18:40:18.000 5.000 30.6745 34.874 172.1639 0.2799 2.3499 2013 18:40:18.000 5.000 30.6745 34.874 172.215 0.1775 1.3449 2013 18:40:18.000 5.000 30.6745 34.874 145.3775 0.0431 0.0759 2013 18:40:18.000 5.000 30.6745 34.874 146.3099 0.0431 0.5620 2013 18:40:18.000 5.000 30.6745 34.874 166.8148 0.0410 0.532 2013 18:40:18.000 5.000 30.6745 34.874 166.8148 0.0410 0.532 2013 18:40:18.000 5.000 30.6745 34.874 170.8337 0.2648 2.1071 2013 18:40:18.000 5.000 30.6745 34.874 170.8337 0.2648 2.1071<	Stop: 6 23 Nov 2013 07:44:11.596	UTCG							
Time (UTCC) Xmtr Fower (dBM) Xmtr Gain (dB) ERP (dBM) Free Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 B13:31:6.29 5.000 30.8745 34.874 175.3422 0.6663 5.3856 2013 B13:81:6.00 5.000 30.8745 34.874 177.2013 0.1773 1.3449 2013 B14:41:6.000 5.000 30.8745 34.874 165.3886 0.0016 1.0077 2013 B14:41:6.000 5.000 30.8745 34.874 165.3886 0.0016 1.0077 2013 B14:41:6.000 5.000 30.8745 34.874 166.3025 0.0059 0.6659 0.6539 2013 B14:61:8.000 5.000 30.8745 34.874 166.9255 0.0759 0.9440 2013 B14:51:8.000 5.000 30.8745 34.874 166.9255 0.0759 0.9440 2013 B14:51:8.000 5.000 30.8745 34.874 175.9173 0.5412 4.6534 2013 <td< th=""><th>Time (UTCO) Xmtr Power (GBM) Xmtr Gain (GB) ERP (GBM) Free Space Loss (GB) Atmos Loss (GB) Rain Loss (GB) 2013 16:33:16.029 5.000 30.0745 34.074 177.4.633 0.2799 2.3499 2013 16:33:16.000 5.000 30.0745 34.074 177.4.633 0.2799 2.3499 2013 16:43:16.000 5.000 30.0745 34.074 16.9.3868 0.016 1.0024 2013 16:43:16.000 5.000 30.0745 34.074 165.1765 0.031 0.7522 2013 16:44:16.000 5.000 30.0745 34.074 164.0099 0.0369 0.4663 2013 16:44:16.000 5.000 30.0745 34.074 164.0099 0.0364 0.6032 2013 16:47:16.000 5.000 30.0745 34.074 172.4977 0.0424 0.6032 2013 16:37:075 0.0431 0.0537 0.24497 0.1617 1.2541 2013 16:37:075 0.03</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	Time (UTCO) Xmtr Power (GBM) Xmtr Gain (GB) ERP (GBM) Free Space Loss (GB) Atmos Loss (GB) Rain Loss (GB) 2013 16:33:16.029 5.000 30.0745 34.074 177.4.633 0.2799 2.3499 2013 16:33:16.000 5.000 30.0745 34.074 177.4.633 0.2799 2.3499 2013 16:43:16.000 5.000 30.0745 34.074 16.9.3868 0.016 1.0024 2013 16:43:16.000 5.000 30.0745 34.074 165.1765 0.031 0.7522 2013 16:44:16.000 5.000 30.0745 34.074 164.0099 0.0369 0.4663 2013 16:44:16.000 5.000 30.0745 34.074 164.0099 0.0364 0.6032 2013 16:47:16.000 5.000 30.0745 34.074 172.4977 0.0424 0.6032 2013 16:37:075 0.0431 0.0537 0.24497 0.1617 1.2541 2013 16:37:075 0.03									
2013 10:30:18:30:18.239 5.000 30.8745 34.874 175.422 0.6563 5.3856 2013 10:30:18.000 5.000 30.8745 34.874 174.1639 0.2999 2.3499 2013 10:30:18.000 5.000 30.8745 34.874 174.1639 0.2999 2.3499 2013 10:40:18.000 5.000 30.8745 34.874 175.3309 0.01174 1.0077 2013 10:42:18.000 5.000 30.8745 34.874 167.2827 0.0681 0.7323 2013 10:44:18.000 5.000 30.8745 34.874 164.0011 0.431 0.5622 2013 18:45:18.000 5.000 30.8745 34.874 166.8922 0.0758 0.9440 2013 18:46:18.000 5.000 30.8745 34.874 170.6535 0.1084 0.9542 2013 18:46:18.000 5.000 30.8745 34.874 170.6535 0.1084 0.9542 2013 18:50:18.000 5.000 30.8745 34.874 170.5357 0.4645 2.1077	2013 16:38:18.229 5.000 30.0745 34.074 175.1422 0.6563 5.3856 2013 16:38:18.000 5.000 30.0745 34.074 174.633 0.2993 2.3895 2013 16:41:8.000 5.000 30.0745 34.074 171.2215 0.1174 1.0077 2013 18:41:8.000 5.000 30.0745 34.074 165.2087 0.0861 0.7322 2013 18:44:18.000 5.000 30.0745 34.074 164.099 0.0369 0.4663 2013 18:45:18.000 5.000 30.0745 34.074 164.099 0.0369 0.4663 2013 18:45:18.000 5.000 30.0745 34.074 166.0314 0.0410 0.5931 2013 18:45:18.000 5.000 30.0745 34.074 170.5357 0.1064 0.9440 2013 18:45:18.000 5.000 30.0745 34.074 173.5377 0.6463 2.1077 2013 18:32:27.229 5.000	Time (UTCG) Xmtr 1	Power (dBW)	Xmtr Gain (dB)	EIRP (dBW)	Free Space	Loss (dB)	Atmos Loss	s(dB) Ra	in Loss (dB)
2013 18:39:18:000 5.000 30.8745 34.874 174.1633 0.2999 2.3499 2013 18:40:18:000 5.000 30.8745 34.874 172.8013 0.1775 1.3449 2013 18:40:18:000 5.000 30.8745 34.874 197.800 0.0016 1.0074 2013 18:43:18:000 5.000 30.8745 34.874 165.72827 0.0581 0.7323 2013 18:44:18:000 5.000 30.8745 34.874 164.0099 0.0431 0.6431 0.0520 2013 18:45:18:000 5.000 30.8745 34.874 166.8148 0.0542 0.6032 2013 18:45:18:000 5.000 30.8745 34.874 166.8148 0.0542 0.6032 2013 18:45:18:000 5.000 30.8745 34.874 172.8037 0.1647 1.2441 2013 18:45:18:000 5.000 30.8745 34.874 172.8037 0.2648 2.1107 2013 18:51:8:000 5.000 30.8745 34.874 175.377 0.6541 5.3700	2013 18:39:18:00 5.000 30.0745 34.074 174.1553 0.2999 2.3499 2013 18:40:18.000 5.000 30.0745 34.074 172.013 0.1775 1.3449 2013 18:40:18.000 5.000 30.0745 34.074 172.013 0.1775 0.1745 2013 18:40:18.000 5.000 30.0745 34.074 165.1765 0.0811 0.0516 0.7323 2013 18:44:18.000 5.000 30.0745 34.074 164.0099 0.0369 0.4663 2013 18:44:18.000 5.000 30.0745 34.074 164.0099 0.0369 0.4663 2013 18:44:18.000 5.000 30.0745 34.074 166.0340 0.0542 0.60397 2013 18:44:18.000 5.000 30.0745 34.074 170.9555 0.1084 0.9940 2013 18:42:18.000 5.000 30.0745 34.074 175.173 0.5412 2.4574 2013 18:42:18.000 5.000 30.0745 34.074 175.173 0.6541 2.9492 2013 18:52:18.000 5.000 30.0745 34.074 175.1737 0.6541	2013 18-38-18 529	5 000	30 8745	34 874		175 3499			5 3856
2013 18:40.18.000 5.000 30.8745 34.874 172.8013 1.1775 1.3449 2013 18:41.8.000 5.000 30.8745 34.874 163.808 0.0816 1.0077 2013 18:41.8.000 5.000 30.8745 34.874 167.2827 0.0581 0.7323 2013 18:44.18.000 5.000 30.8745 34.874 166.1927 0.0681 0.7323 2013 18:46.18.000 5.000 30.8745 34.874 166.1099 0.0369 0.4663 2013 18:46.18.000 5.000 30.8745 34.874 166.818 0.0542 0.6903 2013 18:46.18.000 5.000 30.8745 34.874 170.8555 0.1044 0.9912 2013 18:39.18.000 5.000 30.8745 34.874 173.8937 0.2648 2.1107 2013 18:39.18.000 5.000 30.8745 34.874 175.3377 0.6421 5.322 2013 18:39.18.000 5.000 30.8745 34.874 175.3377 0.6421 5.322 2013	2013 18:40.18:000 5.000 30.8745 34.874 172.8013 0.1775 1.3449 2013 18:42:18:000 5.000 30.8745 34.874 177.22:8013 0.1774 1.0077 2013 18:42:18:000 5.000 30.8745 34.874 116.9.3808 0.0846 1.0054 2013 18:42:18:000 5.000 30.8745 34.874 116.51.785 0.0481 0.5622 2013 18:44:18:000 5.000 30.8745 34.874 116.011 0.0410 0.5397 2013 18:42:18:000 5.000 30.8745 34.874 116.811 0.0410 0.5397 2013 18:42:18:000 5.000 30.8745 34.874 116.8148 0.0542 0.6003 2013 18:42:18:000 5.000 30.8745 34.874 116.8148 0.0542 0.6003 2013 18:42:18:000 5.000 30.8745 34.874 116.8192 0.0758 0.9440 2013 18:42:18:000 5.000 30.8745 34.874 116.8192 0.0758 0.9440 2013 18:42:18:000 5.000 30.8745 34.874 1070.8535 0.1084 0.9512 2013 18:42:18:000 5.000 30.8745 34.874 170.8535 0.1084 0.9912 2013 18:42:18:000 5.000 30.8745 34.874 170.8535 0.1084 0.9912 2013 18:52:18:000 5.000 30.8745 34.874 173.807 0.2448 2.1107 Time (VTCO) Xmtr Power (dBM) Xmtr Gain (dB) ETRP (dBM) Free Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:21:30.000 5.000 30.8745 34.874 175.3177 0.5412 4.6554 2013 18:52:18:000 5.000 30.8745 34.874 175.3377 0.6448 5.3570 2013 20:21:30.000 5.000 30.8745 34.874 175.3377 0.6448 5.3570 2013 20:22:30.000 5.000 30.8745 34.874 175.3377 0.6448 5.3570 2013 20:22:30.000 5.000 30.8745 34.874 174.4708 0.3319 2.8.571 2013 20:22:30.000 5.000 30.8745 34.874 174.2620 0.3152 2.5099 Frop Loss (dB) Freq. Depter Shift (kB) Revd. Freqmency (dB) Fix Density (dB//m²) Revr Gain (dB) Fatmos (f) 18.7846 9.96260 4.50005 -13.7.79 -10.03244 20.0000 13.666 17.8.593 -1.00.7795 20.0000 2.594 15.5933 -1.00.77952 20.0000 2.594 15.5933 -1.00.77952 20.0000 2.594 15.5933 -1.00.77	2013 18:39:18.000	5.000	30.8745	34.874		174.1639		1.2999	2.3499
2013 18:41:18:000 5.000 30.8745 34.874 171.2215 0.1174 1.0077 2013 18:42:18:000 5.000 30.8745 34.874 165.3808 0.0816 1.0054 2013 18:43:18:000 5.000 30.8745 34.874 165.1785 0.4031 0.5522 2013 18:41:80:00 5.000 30.8745 34.874 166.1785 0.4031 0.5522 2013 18:45:18:000 5.000 30.8745 34.874 166.8148 0.0542 0.6597 2013 18:46:18:000 5.000 30.8745 34.874 176.8255 0.1084 0.9912 2013 18:49:18:000 5.000 30.8745 34.874 170.8535 0.1084 0.9912 2013 18:51:8.000 5.000 30.8745 34.874 175.937 0.6648 2.107 2013 18:51:8.000 5.000 30.8745 34.874 175.2917 0.6272 5.4707 Time (TTG) Xmtr Power (dBW) Xmtr Gain (dE) ERF (dBW) Pree Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) </td <td>2013 16:41:80.000 5.000 30:8745 34:874 171.2215 0.1174 1.0077 2013 16:42:18.000 5.000 30:8745 34:874 165.3080 0.0816 1.0054 2013 16:42:18.000 5.000 30:8745 34:874 165.1785 0.0431 0.7323 2013 18:45:18.000 5.000 30:8745 34:874 164.1099 0.0359 0.4663 2013 18:46:18.000 5.000 30:8745 34:874 164:0099 0.0410 0.0410 0.5910 2013 18:46:18.000 5.000 30:8745 34:874 166:6148 0.0542 0.6003 2013 18:49:18.000 5.000 30:8745 34:874 172:492 0.1617 1.2241 2013 18:50:17.00 5.000 30:8745 34:874 172:492 0.4517 4.554 2013 18:52:18.000 5.000 30:8745 34:874 173:537 0.5412 5.4574 2013 18:52:27:18.000 5.000 30:8745 34:874 174:4775.297 0.5412 5.3929</td> <td>2013 18:40:18.000</td> <td>5.000</td> <td>30.8745</td> <td>34,874</td> <td></td> <td>172.8013</td> <td></td> <td>0.1775</td> <td>1.3449</td>	2013 16:41:80.000 5.000 30:8745 34:874 171.2215 0.1174 1.0077 2013 16:42:18.000 5.000 30:8745 34:874 165.3080 0.0816 1.0054 2013 16:42:18.000 5.000 30:8745 34:874 165.1785 0.0431 0.7323 2013 18:45:18.000 5.000 30:8745 34:874 164.1099 0.0359 0.4663 2013 18:46:18.000 5.000 30:8745 34:874 164:0099 0.0410 0.0410 0.5910 2013 18:46:18.000 5.000 30:8745 34:874 166:6148 0.0542 0.6003 2013 18:49:18.000 5.000 30:8745 34:874 172:492 0.1617 1.2241 2013 18:50:17.00 5.000 30:8745 34:874 172:492 0.4517 4.554 2013 18:52:18.000 5.000 30:8745 34:874 173:537 0.5412 5.4574 2013 18:52:27:18.000 5.000 30:8745 34:874 174:4775.297 0.5412 5.3929	2013 18:40:18.000	5.000	30.8745	34,874		172.8013		0.1775	1.3449
2013 18:42:18:000 5.000 30.8745 34.874 169.3808 0.0816 1.0054 2013 18:44:18:000 5.000 30.8745 34.874 165.1785 0.0431 0.7323 2013 18:44:18:000 5.000 30.8745 34.874 166.099 0.0369 0.4663 2013 18:46:18:000 5.000 30.8745 34.874 166.8148 0.0542 0.6032 2013 18:46:18:000 5.000 30.8745 34.874 166.8148 0.0542 0.6032 2013 18:48:18:000 5.000 30.8745 34.874 176.8555 0.1084 0.9912 2013 18:39:18:000 5.000 30.8745 34.874 177.8937 0.2646 2.1107 2013 18:32:18:000 5.000 30.8745 34.874 175.3377 0.6541 5.322 2013 18:32:18:000 5.000 30.8745 34.874 175.3377 0.6541 5.322 2013 20:21:30.000 5.000 30.8745 34.874 175.3377 0.6541 5.322 2013	2013 18:42:18:000 5.000 30:8745 34:874 16:3808 0.0816 1.0054 2013 18:44:18:000 5.000 30:8745 34:874 167.227 0.0581 0.7323 2013 18:44:18:000 5.000 30:8745 34:874 164.001 0.0359 0.0359 2013 18:46:18:000 5.000 30:8745 34:874 164:001 0.0410 0.5397 2013 18:46:18:000 5.000 30:8745 34:874 166:922 0.0758 0.9440 2013 18:49:18:000 5.000 30:8745 34:874 170:0835 0.1084 0.9542 2013 18:49:18:000 5.000 30:8745 34:874 170:0835 0.1084 0.9542 2013 18:52:18:000 5.000 30:8745 34:874 173:3377 0.6461 2.1107 2013 18:52:18:000 5.000 30:8745 34:874 175:3377 0.6411 5.329 2013 19:22:18:000 5.000 30:8745 34:874 175:3377 0.6411 5.3329 2013 20:22:30:000 5.000 30:8745 34:874 174:4708 0.3319 2.8791	2013 18:41:18.000	5.000	30.8745	34.874		171.2215	C	0.1174	1.0077
2013 18:43.18.000 5.000 30.8745 34.874 167.2827 0.0581 0.7323 2013 18:45.18.000 5.000 30.8745 34.874 165.1785 0.0431 0.5622 2013 18:45.18.000 5.000 30.8745 34.874 164.0011 0.0469 0.0569 0.4663 2013 18:46.18.000 5.000 30.8745 34.874 166.8148 0.0542 0.6903 2013 18:46.18.000 5.000 30.8745 34.874 170.8535 0.1084 0.99440 2013 18:51.18.000 5.000 30.8745 34.874 177.8937 0.2648 2.1107 2013 18:51.18.000 5.000 30.8745 34.874 175.2917 0.6671 5.4707 Time (UTCG) Xmtr Fower (dBM) Xmtr Gain (dB) ELRP (dBM) Free Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:21.30.760 5.000 30.8745 34.874 174.4976 0.431.0 5.9372 2013 20:22:30.000 5.000 30.8745 34.874 174.4746 <td< td=""><td>2013 18:43:18:000 5.000 30.8745 34.874 167:2827 0.0581 0.7323 2013 18:44:18:000 5.000 30.8745 34.874 166.1785 0.0431 0.5522 2013 18:44:18:000 5.000 30.8745 34.874 166.011 0.6359 0.6522 2013 18:46:18:000 5.000 30.8745 34.874 166.8148 0.0542 0.6303 2013 18:46:18:000 5.000 30.8745 34.874 176.8525 0.1084 0.9912 2013 18:49:18:000 5.000 30.8745 34.874 177.8937 0.2648 2.1107 2013 18:51:18:000 5.000 30.8745 34.874 175.3173 0.6541 5.322 2013 18:52:18.000 5.000 30.8745 34.874 175.3377 0.6541 5.322 2013 18:32:18.000 5.000 30.8745 34.874 174.38377 0.6541 5.322 2013 20:32:30.000 5.000 30.8745 34.874 174.2642 0.6541 5.3220 2013</td></td<> <td>2013 18:42:18.000</td> <td>5.000</td> <td>30.8745</td> <td>34.874</td> <td></td> <td>169.3808</td> <td>C</td> <td>0.0816</td> <td>1.0054</td>	2013 18:43:18:000 5.000 30.8745 34.874 167:2827 0.0581 0.7323 2013 18:44:18:000 5.000 30.8745 34.874 166.1785 0.0431 0.5522 2013 18:44:18:000 5.000 30.8745 34.874 166.011 0.6359 0.6522 2013 18:46:18:000 5.000 30.8745 34.874 166.8148 0.0542 0.6303 2013 18:46:18:000 5.000 30.8745 34.874 176.8525 0.1084 0.9912 2013 18:49:18:000 5.000 30.8745 34.874 177.8937 0.2648 2.1107 2013 18:51:18:000 5.000 30.8745 34.874 175.3173 0.6541 5.322 2013 18:52:18.000 5.000 30.8745 34.874 175.3377 0.6541 5.322 2013 18:32:18.000 5.000 30.8745 34.874 174.38377 0.6541 5.322 2013 20:32:30.000 5.000 30.8745 34.874 174.2642 0.6541 5.3220 2013	2013 18:42:18.000	5.000	30.8745	34.874		169.3808	C	0.0816	1.0054
2013 18:44:18.000 5.000 30.8745 34.874 165.1785 0.0431 0.5522 2013 18:46:18.000 5.000 30.8745 34.874 164.0099 0.0369 0.4663 2013 18:46:18.000 5.000 30.8745 34.874 166.8144 0.0542 0.6903 2013 18:4718.000 5.000 30.8745 34.874 166.8148 0.0542 0.6903 2013 18:49.18.000 5.000 30.8745 34.874 170.8535 0.10758 0.9440 2013 18:52.18.000 5.000 30.8745 34.874 173.9937 0.2648 2.1107 2013 18:52.18.000 5.000 30.8745 34.874 175.173 0.5412 4.6554 2013 18:52.72.29 5.000 30.8745 34.874 175.377 0.6641 5.3292 2013 20:21:30.760 5.000 30.8745 34.874 174.4746 0.4428 3.5710 2013 20:23:30.000 5.000 30.8745 34.874 174.4646 0.4428 3.5710 2013 <td>2013 18:44:18.000 5.000 30.8745 34.874 165.1785 0.0431 0.562 2013 18:46:18.000 5.000 30.8745 34.874 164.0019 0.0359 0.4663 2013 18:46:18.000 5.000 30.8745 34.874 166.8148 0.0542 0.6303 2013 18:47:18.000 5.000 30.8745 34.874 166.8148 0.0542 0.6303 2013 18:48:18.000 5.000 30.8745 34.874 176.8555 0.1084 0.9912 2013 18:50:18.000 5.000 30.8745 34.874 173.8937 0.2648 2.1107 2013 18:52:18.000 5.000 30.8745 34.874 175.3377 0.6541 5.322 2013 20:21:30.760 5.000 30.8745 34.874 174.5377 0.6541 5.322 2013 20:21:30.760 5.000 30.8745 34.874 174.2642 0.3152 2.5093 2013 20:21:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5093 2013<td>2013 18:43:18.000</td><td>5.000</td><td>30.8745</td><td>34.874</td><td></td><td>167.2827</td><td>0</td><td>0.0581</td><td>0.7323</td></td>	2013 18:44:18.000 5.000 30.8745 34.874 165.1785 0.0431 0.562 2013 18:46:18.000 5.000 30.8745 34.874 164.0019 0.0359 0.4663 2013 18:46:18.000 5.000 30.8745 34.874 166.8148 0.0542 0.6303 2013 18:47:18.000 5.000 30.8745 34.874 166.8148 0.0542 0.6303 2013 18:48:18.000 5.000 30.8745 34.874 176.8555 0.1084 0.9912 2013 18:50:18.000 5.000 30.8745 34.874 173.8937 0.2648 2.1107 2013 18:52:18.000 5.000 30.8745 34.874 175.3377 0.6541 5.322 2013 20:21:30.760 5.000 30.8745 34.874 174.5377 0.6541 5.322 2013 20:21:30.760 5.000 30.8745 34.874 174.2642 0.3152 2.5093 2013 20:21:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5093 2013 <td>2013 18:43:18.000</td> <td>5.000</td> <td>30.8745</td> <td>34.874</td> <td></td> <td>167.2827</td> <td>0</td> <td>0.0581</td> <td>0.7323</td>	2013 18:43:18.000	5.000	30.8745	34.874		167.2827	0	0.0581	0.7323
2013 18:45:18.000 5.000 30.8745 34.874 164.0099 0.3569 0.4663 2013 18:46:18.000 5.000 30.8745 34.874 164.0099 0.0542 0.6033 2013 18:46:18.000 5.000 30.8745 34.874 166.8148 0.0542 0.6033 2013 18:46:18.000 5.000 30.8745 34.874 170.8355 0.1084 0.9912 2013 18:50:18.000 5.000 30.8745 34.874 173.8937 0.2648 2.1107 2013 18:51:18.000 5.000 30.8745 34.874 175.173 0.5412 4.6554 2013 18:52:18.000 5.000 30.8745 34.874 175.2917 0.6272 5.4707 Time (UTCO) Xmtr Power (dBW) Xmtr Gain (dB) EIRP (dBW) Free Space Loss (dE) Atmos Loss (dB) Rain Loss (dE) 2013 20:21:30.760 5.000 30.8745 34.874 174.846 0.4428 3.5710 2013 20:22:30.000 5.000 30.8745 34.874 174.846 0.4428 3.5710 <td>2013 18:45:18.000 5.000 30.0745 34.874 164.0099 0.0369 0.0649 2013 18:46:18.000 5.000 30.0745 34.874 166.0011 0.0410 0.5397 2013 18:46:18.000 5.000 30.0745 34.874 166.8148 0.0542 0.6693 2013 18:46:18.000 5.000 30.0745 34.874 170.8555 0.1084 0.9940 2013 18:50:18.000 5.000 30.6745 34.874 173.9937 0.2648 2.1107 2013 18:50:18.000 5.000 30.6745 34.874 175.3977 0.6272 5.4707 71me (0TCG) Xmtr Power (dBM) Xmtr Gain (dB) EIRP (dBM) Pree Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:22:30.000 5.000 30.9745 34.874 174.4466 0.4229 3.5710 2013 20:22:30.000 5.000 30.9745 34.874 174.4466 0.4229 3.5711 2013 20:22:30.000 5.000 30.9745 34.874 174.4466 0.4229</td> <td>2013 18:44:18.000</td> <td>5.000</td> <td>30.8745</td> <td>34.874</td> <td></td> <td>165.1785</td> <td>C</td> <td>0.0431</td> <td>0.5622</td>	2013 18:45:18.000 5.000 30.0745 34.874 164.0099 0.0369 0.0649 2013 18:46:18.000 5.000 30.0745 34.874 166.0011 0.0410 0.5397 2013 18:46:18.000 5.000 30.0745 34.874 166.8148 0.0542 0.6693 2013 18:46:18.000 5.000 30.0745 34.874 170.8555 0.1084 0.9940 2013 18:50:18.000 5.000 30.6745 34.874 173.9937 0.2648 2.1107 2013 18:50:18.000 5.000 30.6745 34.874 175.3977 0.6272 5.4707 71me (0TCG) Xmtr Power (dBM) Xmtr Gain (dB) EIRP (dBM) Pree Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:22:30.000 5.000 30.9745 34.874 174.4466 0.4229 3.5710 2013 20:22:30.000 5.000 30.9745 34.874 174.4466 0.4229 3.5711 2013 20:22:30.000 5.000 30.9745 34.874 174.4466 0.4229	2013 18:44:18.000	5.000	30.8745	34.874		165.1785	C	0.0431	0.5622
2013 18:46:18.000 5.000 30.8745 34.874 164.8011 0.4410 0.5397 2013 18:47:18.000 5.000 30.8745 34.874 166.8148 0.0552 0.6903 2013 18:49:18.000 5.000 30.8745 34.874 166.8148 0.0552 0.6903 2013 18:49:18.000 5.000 30.8745 34.874 172.4872 0.1617 1.2241 2013 18:50:18.000 5.000 30.8745 34.874 175.173 0.5412 4.6554 2013 18:52:18.000 5.000 30.8745 34.874 175.2917 0.5641 5.329 2013 20:21:30.760 5.000 30.8745 34.874 175.3377 0.6541 5.329 2013 20:22:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.8571 2013 20:22:30.000 5.000 30.8745 34.874 174.4708 0.428 3.5710 2013 20:23:30.000 5.000 30.8745 34.874 174.4708 0.35052 2.5099 20:32:0:	2013 18:46:18.000 5.000 30.0745 34.874 164.8011 0.0410 0.5397 2013 18:47:18.000 5.000 30.0745 34.874 166.8146 0.0542 0.6903 2013 18:49:18.000 5.000 30.0745 34.874 170.8535 0.1084 0.9912 2013 18:49:18.000 5.000 30.0745 34.874 173.9937 0.2648 2.1107 2013 18:52:18.000 5.000 30.0745 34.874 175.1173 0.5412 4.6554 2013 18:52:18.000 5.000 30.0745 34.874 175.3377 0.6641 5.4707 Time (UTCG) Xmtr Power (dBW) Xmtr Gain (dB) ELRP (dBW) Free Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:22:30.000 5.000 30.0745 34.874 174.74.446 0.4428 3.5710 2013 20:23:30.000 5.000 30.0745 34.874 174.2642 0.3152 2.5979 2013 20:32:30.000 5.000 30.0745 34.874 174.2642 0.3152 <td< td=""><td>2013 18:45:18.000</td><td>5.000</td><td>30.8745</td><td>34.874</td><td></td><td>164.0099</td><td>C</td><td>0.0369</td><td>0.4663</td></td<>	2013 18:45:18.000	5.000	30.8745	34.874		164.0099	C	0.0369	0.4663
2013 18:47:18.000 5.000 30.8745 34.874 166.8148 0.0542 0.6903 2013 18:48:18.000 5.000 30.8745 34.874 170.8535 0.1094 0.9912 2013 18:49:18.000 5.000 30.8745 34.874 170.8535 0.1094 0.9912 2013 18:50:18.000 5.000 30.8745 34.874 173.8937 0.2648 2.1107 2013 18:50:18.000 5.000 30.8745 34.874 175.173 0.5412 4.6554 2013 18:52:27.229 5.000 30.8745 34.874 175.2917 0.6272 5.4707 Time (UTCO) Xmtr Power (dBW) Xmtr Gain (dB) EIRP (dBW) Free Space Loss (dB) Atmos Loss (dB) 2013 20:21:30.760 5.000 30.8745 34.874 174.3846 0.4428 3.5710 2013 20:22:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.5099 20:32:30.230.00 5.000 30.8745 34.874 174.4708 0.3519 2.5099 20:32:30.000	2013 18:47:18.000 5.000 30.8745 34.874 166.8148 0.0542 0.6903 2013 18:49:18.000 5.000 30.8745 34.874 170.8535 0.1084 0.9912 2013 18:49:18.000 5.000 30.6745 34.874 170.8535 0.1084 0.9912 2013 18:50:18.000 5.000 30.6745 34.874 173.9937 0.2648 2.1107 2013 18:52:18.000 5.000 30.6745 34.874 175.2917 0.6672 5.4707 Time (UTCG) Xmtr Power (dBM) Xmtr Gain (dB) ELRP (dM) Pree Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:22:30.000 5.000 30.8745 34.874 175.3377 0.6541 5.3571 2013 20:23:30.000 5.000 30.8745 34.874 174.4708 0.3152 2.5093 2013 20:23:30.000 5.000 30.8745 34.874 174.4708 0.3152 2.5093 2013 20:24:30.000 5.000 30.8745 34.874 174.4708 0.3152 2.5093 <	2013 18:46:18.000	5.000	30.8745	34.874		164.8011	C	0.0410	0.5397
2013 18:48:18.000 5.000 30.8745 34.874 108.9525 0.0788 0.9440 2013 18:48:18.000 5.000 30.8745 34.874 170.8555 0.1084 0.9912 2013 18:51:18.000 5.000 30.8745 34.874 173.8937 0.2648 2.1107 2013 18:52:18.000 5.000 30.8745 34.874 175.2917 0.6272 5.4707 2013 18:52:27.229 5.000 30.8745 34.874 175.3377 0.65541 5.3929 2013 20:22:30.000 5.000 30.8745 34.874 174.8446 0.4428 5.5710 2013 20:22:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.8571 2013 20:22:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5091 2013 20:23:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5091 2013 20:21:30.766 5.000 30.8745 34.874 174.2642 0.3152 2.5091 2013	2013 18:49:18.000 5.000 30.8745 34.874 108.3922 0.0786 0.9440 2013 18:49:18.000 5.000 30.8745 34.874 110.8335 0.1084 0.9912 2013 18:50:18.000 5.000 30.8745 34.874 112.8972 0.1617 1.2241 2013 18:52:18.000 5.000 30.8745 34.874 175.173 0.5412 4.654 2013 18:52:17.29 5.000 30.8745 34.874 175.2317 0.6541 5.329 2013 20:21:30.000 5.000 30.8745 34.874 175.3377 0.6541 5.329 2013 20:22:30.000 5.000 30.8745 34.874 174.4708 0.3319 2.6571 2013 20:23:00.00 5.000 30.8745 34.874 174.4708 0.3319 2.6571 2013 20:24:30.000 5.000 30.8745 34.874 174.4708 0.3319 2.6571 2013 20:23:00.000 5.000 30.8745 34.874 174.4708 0.3319 2.5099 2013	2013 18:47:18.000	5.000	30.8745	34.874		166.8148	0	0.0542	0.6903
2013 16:49:18:000 5.000 30:8745 34.874 170.8535 0.1084 0.9912 2013 16:50:18:000 5.000 30:8745 34.874 172.4872 0.1617 1.2241 2013 16:50:18:000 5.000 30:8745 34.874 173.8937 0.2648 2.1107 2013 16:52:27.229 5.000 30:8745 34.874 175.2917 0.6272 5.4707 Time<(UTCO)	2013 18:49:18:000 5.000 30.8745 34.874 10.8335 0.1084 0.9912 2013 18:51:18.000 5.000 30.8745 34.874 173.8337 0.2648 2.1107 2013 18:52:18.000 5.000 30.8745 34.874 175.1173 0.5412 4.6554 2013 18:52:27.229 5.000 30.8745 34.874 175.2317 0.6272 5.4707 Time (UTCO) Xmtr Power (dBW) Xmtr Gain (dB) ELRP (dBW) Free Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:22:30.000 5.000 30.8745 34.874 174.8446 0.4428 3.5710 2013 20:22:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.8371 2013 20:22:30.000 5.000 30.8745 34.874 174.4708 0.3515 2.8971 2013 20:22:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.8971 2013 20:21:30.765 5.000 30.8745 34.874 174.2642 0.3152 2.	2013 18:48:18.000	5.000	30.8745	34.874		168.9525	l	1.0758	0.9440
2013 16:50:18:000 5:000 30:8743 34:874 172.4972 0:121 1:.2541 2013 18:52:18:000 5:000 30:8745 34.874 173.173 0.2648 2.1107 2013 18:52:18:000 5:000 30:8745 34.874 175.1173 0.5412 4.6554 2013 18:52:72:29 5:000 30:8745 34.874 175.377 0.6641 5.3299 2013 20:22:30.000 5:000 30:8745 34.874 174.4446 0.4428 3.5710 2013 20:22:30.000 5:000 30:8745 34.874 174.2642 0.3152 2.5099 2013 20:22:30.000 5:000 30:8745 34.874 174.2642 0.3152 2.5099 2013 20:22:30.000 5:000 30:8745 34.874 174.2642 0.3152 2.5099 2013 20:24:30.000 5:000 30:8745 34.874 174.2642 0.3152 2.5099 2013 20:24:30.000 5:000 30:8745 34.874 174.2642 0.3152 2.5099 213	2013 10: J0: 16: 10: 000 3: 000 30: 0745 34: 074 172: 8072 0: 10: 17 1. 20: 17 2013 16: 52: 18: 000 5: 000 30: 0745 34: 074 175: 0937 0: 26: 18 20: 13 2013 16: 52: 18: 000 5: 000 30: 0745 34: 074 175: 0917 0: 6272 5: 4707 Time (UTCC) Xmtr Gain (dB) ELRP (dBW) Pree Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20: 22: 30: 000 5: 000 30: 0745 34: 074 175: 3917 0: 6541 5: 3929 2013 20: 22: 30: 000 5: 000 30: 0745 34: 074 174: 4706 0: 3519 2: 35101 2013 20: 22: 30: 000 5: 000 30: 0745 34: 074 174: 4706 0: 3519 2: 35012 2013 20: 22: 30: 000 5: 000 30: 0745 34: 074 174: 4708 0: 3519 2: 35012 2013 20: 22: 30: 000 5: 000 30: 08745 34: 074 174: 4746 0: 4319 34: 074 174: 4746 0: 4428 3: 5710 20: 30: 0000 5: 000 <td>2013 18:49:18.000</td> <td>5.000</td> <td>30.8745</td> <td>34.874</td> <td></td> <td>170.8535</td> <td>L L</td> <td>1.1084</td> <td>0.9912</td>	2013 18:49:18.000	5.000	30.8745	34.874		170.8535	L L	1.1084	0.9912
2013 18:52:18.000 5.000 30.8745 34.874 175.173 0.4010 4.6544 2013 18:52:17.229 5.000 30.8745 34.874 175.2317 0.6272 5.4707 Time (UTCG) Xmtr Power (dBM) Xmtr Gain (dB) EIRF (dBM) Free Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:21:30.760 5.000 30.8745 34.874 175.3377 0.6541 5.3929 2013 20:22:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.8371 2013 20:23:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.8371 2013 20:23:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.8371 2013 20:24:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 Wint © 21007.0213.02.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 Ist.3841 \$9.650089 4.500099 -141.939 171.98772 20.0000 33.066 174.3237 \$77.67831 4.500099 -144.939	2013 18:52:18.000 5.000 30.0745 34.074 175.173 0.5412 4.6544 2013 18:52:27.229 5.000 30.0745 34.874 175.173 0.6272 5.4707 Time (UTCG) Xmtr Power (dBW) Xmtr Gain (dB) EIRP (dBW) Pree Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:21:30.760 5.000 30.8745 34.874 175.3377 0.6541 5.3929 2013 20:22:30.000 5.000 30.8745 34.874 174.3846 0.4428 3.5710 2013 20:22:30.000 5.000 30.8745 34.874 174.4846 0.4428 3.5719 2013 20:22:30.000 5.000 30.8745 34.874 174.4768 0.3519 2.8371 2013 20:22:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 WW WW WW WW WW WW Frequency (0Hz) Revr Gain (dB) Tatmos (E) 176.8136 99.077459 4.500100 -146.510 -111.99752 20.0000 33.056 176.8136 99.077459 4.500109 -136.953 </td <td>2013 18:51:18 000</td> <td>5.000</td> <td>30.8745</td> <td>34.074</td> <td></td> <td>173 8037</td> <td></td> <td>0.1017</td> <td>2 1107</td>	2013 18:51:18 000	5.000	30.8745	34.074		173 8037		0.1017	2 1107
2013 18:52:27.229 5.000 30.8745 34.874 175.2917 0.6272 5.4707 Time (UTCG) Xmtr Power (dBW) Xmtr Gain (dB) EIRP (dBW) Free Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:21:30.760 5.000 30.8745 34.874 175.3377 0.6541 5.3929 2013 20:22:30.000 5.000 30.8745 34.874 174.8446 0.4428 3.5710 2013 20:23:40.000 5.000 30.8745 34.874 174.4708 0.3519 2.8371 2013 20:24:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 Stop: *	2013 18:52:27.229 5.000 30.8745 34.874 175.2917 0.6272 5.4707 Time (UTCG) Xmtr Power (dBW) Xmtr Gain (dB) EIRP (dBM) Pree Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:22:30.000 5.000 30.8745 34.874 175.3377 0.6541 5.3929 2013 20:22:30.000 5.000 30.8745 34.874 174.8446 0.4428 3.5710 2013 20:22:30.000 5.000 30.8745 34.874 174.2642 0.33152 2.8371 2013 20:22:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 W W W W W W W W W W W W W W W W W W W	2013 18:52:18.000	5.000	30.8745	34.874		175.1173		1.5412	4.6554
Time (UTCG) Xmtr Power (dBW) Xmtr Gain (dB) EIRP (dBW) Free Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 2012130.760 5.000 30.8745 34.874 175.3377 0.6541 5.3929 2013 2012130.000 5.000 30.8745 34.874 174.8446 0.44228 3.5711 2013 20123:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.8371 2013 20123:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 WW Wmp To: po W Step: @lsc. W Step: @lsc. W Step: @lsc. Step	Time (UTCG) Xmtr Power (dBW) Xmtr Gain (dB) EIRP (dBW) Pree Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:22:30.000 5.000 30.8745 34.874 175.3377 0.6541 5.3929 2013 20:22:30.000 5.000 30.8745 34.874 174.8446 0.4428 3.5710 2013 20:22:30.000 5.000 30.8745 34.874 174.2642 0.3519 2.8371 2013 20:22:30.000 5.000 30.8745 34.874 174.2642 0.3519 2.8571 2013 20:22:30.000 5.000 30.8745 34.874 174.2642 0.3519 2.8571 2013 20:22:30.000 5.000 30.8745 34.874 174.2642 0.3519 2.8571 2013 20:22:30.000 5.000 8mm for 9mm 9mm 9mm 30.876 34.874 174.2642 0.3152 2.5099 Freq. Doppler Shift (kHz) Rovd. Frequency (OHz) Rovd. Iso. Power (dBW) Flux Density (dBW/m²2) Rovr Gain (dB) Tatmos (b) 111.3841 99.650088 4.500100 -146.510 -111.98972 20.0000 133.056 <	2013 18:52:27.229	5.000	30.8745	34,874		175.2917		0.6272	5,4707
Time (UTCG) Xmtr Power (dBW) Xmtr Gain (dB) EIRP (dBW) Free Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:21:30.760 5.000 30.8745 34.874 175.3377 0.6541 5.3929 2013 20:22:30.000 5.000 30.8745 34.874 174.4746 0.4428 3.5710 2013 20:22:30.000 5.000 30.8745 34.874 174.4748 0.3519 2.8371 2013 20:24:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 Start 6 22Nov 2013 18:37:36.533 UTCC • Step: 60 sec • Freq. Loss (dB) Freq. Doppler Shift (kHz) Rcvd. Frequency (GHz) Rcvd. Iso. Power (dBM) Flux Density (dBM/m ² 2) Rcvr Gain (dB) Tatmos (K) 181.3841 99.650088 4.500100 -146.510 -111.98752 20.0000 33.056 176.8136 9.077459 4.500099 -139.449 -104.923352 20.0000 15.656 176.8136 9.077459 4.5000099 -139.449 -10	Time (UTCG) Xmtr Power (dBM) Xmtr Gain (dB) EIRP (dBM) Free Space Loss (dB) Atmos Loss (dB) Rain Loss (dB) 2013 20:21:30.760 5.000 30.8745 34.874 175.3377 0.6541 5.3929 2013 20:22:30.000 5.000 30.8745 34.874 174.8446 0.4428 3.5711 2013 20:23:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.8371 2013 20:24:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 With © With With © With Non To State © State Ø Ø Ø </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2013 20:21:30.760 5.000 30.8745 34.874 175.3377 0.6541 5.3929 2013 20:22:30.000 5.000 30.8745 34.874 174.8446 0.4428 3.5710 2013 20:22:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.8371 2013 20:22:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.8371 2013 20:24:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.8399 W	2013 20:21:30.760 5.000 30.8745 34.874 175.3377 0.6541 5.3229 2013 20:22:30.000 5.000 30.8745 34.874 174.4846 0.4428 3.5710 2013 20:22:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.8371 2013 20:24:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 Image:	Time (UTCG) Xmtr 1	Power (dBW)	Xmtr Gain (dB)	EIRP (dBW)	Free Space	Loss (dB)	Atmos Loss	s (dB) Ra	in Loss (dB)
2013 20:22:30.000 5.000 30.8745 34.874 174.4446 0.4428 3.5710 2013 20:23:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.8371 2013 20:24:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5039 2013 20:24:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5039 2014 20:20:20:307.44:11.596 UTCC 5tep: 60 sec 9	2013 20:22:30.000 5.000 30.8745 34.874 174.8446 0.428 3.5710 2013 20:22:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.8371 2013 20:22:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 Image: Image	2013 20:21:30.760	5.000	30.8745	34.874		175.3377	C	0.6541	5.3929
2013 20:23:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.8371 2013 20:24:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 Image: Image	2013 20:23:30.000 5.000 30.8745 34.874 174.4708 0.3519 2.8371 2013 20:24:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 Start: 6 22Nov 2013 18:37:36:533 UTCG • Start: 6 22Nov 2013 07:44:11.596 UTCG • Start: 9 600000 -146.510 -111.999752 20.0000 33.056 176.8136 9.077459 4.500099 -131.4939 -107.419218 20.0000 15.656 176.8136 9.077459 4.500099 -133.449 -104.92335 20.0000 9.821 172.3466 94.818355 4.500099 -133.193 -96.678755 20.0000 2.924 166.0732 77.223020 4.5000052 -133.199 -98.678755 20.0000 2.94 166.733 1.73.32067 4.499927 -132.693	2013 20:22:30.000	5.000	30.8745	34.874		174.8446	0	0.4428	3.5710
2013 20:24:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 Start: • 22 Nov 2013 18:37:36.533 UTCG • Step: 60 sec • • *	2013 20:24:30.000 5.000 30.8745 34.874 174.2642 0.3152 2.5099 Start: 6 22Mov 2013 18:37:36.53UTCG Jump Te: Top Imp	2013 20:23:30.000	5.000	30.8745	34.874		174.4708	C	0.3519	2.8371
Image Image <th< td=""><td>Image Image Image Image Start: 22Nov 2013 18:37:36.533 UTCG Step: 50 sec Image Prop Loss (dB) Freq. Doppler Shift (kHz) Rcvd. Frequency (GHz) Rcvd. Iso. Power (dBM) Flux Density (dBM/m^22) Rcvr Gain (dB) Tatmos (R) 181.3841 99.650088 4.500100 -146.510 -111.989752 20.0000 33.056 176.8136 99.077459 4.500099 -131.393 -107.419218 20.0000 15.656 174.3237 97.675431 4.500059 -133.449 -104.929335 20.0000 9.321 172.3466 94.818355 4.500059 -135.593 -101.073402 20.0000 4.56 170.4678 89.108220 4.500052 -130.909 -96.389367 20.0000 2.94 165.7838 51.819400 4.500052 -130.909 -96.389367 20.0000 2.141 167.5594 -73.240501 4.499956 -130.507 -59.8164987 20.0000 2.144 166.5723 -89.906 -137.079</td><td>2013 20:24:30.000</td><td>5.000</td><td>30.8745</td><td>34.874</td><td></td><td>174.2642</td><td>C</td><td>0.3152</td><td>2.5099</td></th<>	Image Image Image Image Start: 22Nov 2013 18:37:36.533 UTCG Step: 50 sec Image Prop Loss (dB) Freq. Doppler Shift (kHz) Rcvd. Frequency (GHz) Rcvd. Iso. Power (dBM) Flux Density (dBM/m^22) Rcvr Gain (dB) Tatmos (R) 181.3841 99.650088 4.500100 -146.510 -111.989752 20.0000 33.056 176.8136 99.077459 4.500099 -131.393 -107.419218 20.0000 15.656 174.3237 97.675431 4.500059 -133.449 -104.929335 20.0000 9.321 172.3466 94.818355 4.500059 -135.593 -101.073402 20.0000 4.56 170.4678 89.108220 4.500052 -130.909 -96.389367 20.0000 2.94 165.7838 51.819400 4.500052 -130.909 -96.389367 20.0000 2.141 167.5594 -73.240501 4.499956 -130.507 -59.8164987 20.0000 2.144 166.5723 -89.906 -137.079	2013 20:24:30.000	5.000	30.8745	34.874		174.2642	C	0.3152	2.5099
Start: e 22 Nov 2013 18:37:36.533 UTCG step: step: form Step: 22 Nov 2013 07:41:1596 UTCC step: form Step: 22 Nov 2013 07:41:1596 UTCC Step: form Step: Step: Step: Step: Step: Step: Step: Step: Step: Step: Step: Step: Step: Step: Step: Step:	Start: é 22 Nov 2013 18:37:36.333 UTCG Step:	🔲 🗃 🛤 🖬 🔍 🐺 🗃 🕑	Jump To: Top		•					
Start: # 22 Nov 2013 18:37:85.533 UTCG Step: 60 sec P Bits: # 23 Nov 2013 07:44:11.596 UTCG Image: Step: Step: Fequency (GHz) Rcvd. Iso. Power (dBM) Flux Density (dBM/m^2) Rcvr Gain (dB) Tatmos (K) 181.3841 99.650088 4.500100 -146.510 -111.989752 20.0000 33.056 176.8136 99.077459 4.500098 -139.449 -104.492335 20.0000 15.656 174.3237 97.675431 4.500095 -137.472 -102.952244 20.0000 9.321 172.3466 94.818355 4.500095 -137.472 -102.952244 20.0000 4.136 165.7838 81.819400 4.500095 -137.472 -002.952244 20.0000 4.196 165.7838 51.819400 4.5000052 -130.909 -96.389367 20.0000 2.294 165.3818 -43.668785 4.4999257 -132.685 -98.164987 20.0000 2.795 169.9723 -87.326601 4.499905 -137.079 -102.558739 20.0	Start: é 22 Nov 2013 18:37:35.533 UTCG Step: Step: 60 sec P Stop: é 23 Nov 2013 07:44:11.596 UTCG Step: 60 sec Prop Loss (dB) Freq. Doppler Shift (kHz) Rovd. Frequency (GHz) Rovd. Iso. Power (dBM) Flux Density (dBM/m^2) Rovr Gain (dB) Tatmos (K) 181.3841 99.650088 4.500100 -146.510 -111.989752 20.0000 15.656 174.3237 97.675431 4.500098 -133.449 -104.929335 20.0000 9.321 172.3466 94.818355 4.500095 -137.472 -102.952244 20.0000 4.000 4.000									
Stop: # 23 Nov 2013 07:44:11.596 UTCC Map: Mark Revd. Frequency (GHz) Revd. Iso. Power (dBW) Flux Density (dBW/m^2) Revr Gain (dB) Tatmos (K) 181.3841 99.650088 4.500100 -146.510 -111.999752 20.0000 33.056 176.8136 99.077459 4.500109 -146.510 -111.999752 20.0000 33.056 174.3237 97.657431 4.500099 -141.393 -107.419218 20.0000 9.331 172.3466 94.818355 4.500095 -137.472 -102.952244 20.0000 4.000 165.7838 51.819400 4.500052 -130.909 -96.389367 20.0000 2.944 165.7838 51.819400 4.500052 -130.507 -95.987419 20.0000 2.944 165.3818 -43.668785 4.499956 -130.507 -95.987419 20.0000 2.744 165.7938 51.819400 4.599957 -132.685 -96.164987 20.0000 2.745 165.9723 -687.326901 4.4999957 -132.685	Stop: # 23 Nov 2013 07:44:11.596 UTCS Jage. Werk Werk Prop Loss (dB) Freq. Doppler Shift (kHz) Revd. Frequency (GHz) Revd. Iso. Power (dBW) Flux Density (dBW/m^2) Revr Gain (dB) Tatmos (K) 181.3841 99.650088 4.500100 -146.510 -111.989752 20.0000 33.086 176.6136 99.077459 4.500099 -141.939 -107.419218 20.0000 33.086 171.3237 97.675431 4.500095 -133.449 -104.929335 20.0000 9.321 170.4678 89.108220 4.500095 -137.472 -102.952244 20.0000 4.092 165.7838 51.819400 4.500056 -130.909 -96.389367 20.0000 2.944 165.7838 51.819400 4.500056 -130.507 -95.987419 20.0000 2.944 165.7838 -43.668785 4.499956 -130.507 -95.987419 20.0000 2.755 167.5594 -73.302067 4.499953 -135.598 -90.164867 20.0000 2.755 1	Start: & 22 Nov 2013 18:37:36.533 UTCG	Eten: 60 sec							
Prop Loss (dB) Freq. Doppler Shift (kHz) Revd. Frequency (GHz) Revd. Iso. Power (dBM) Flux Density (dBM/m^2) Revr Gain (dB) Tatmos (K) 181.3841 99.650088 4.500100 -146.510 -111.989752 20.0000 33.056 176.8136 99.077459 4.500109 -141.939 -107.419218 20.0000 33.056 174.3237 97.675431 4.500099 -139.449 -104.929335 20.0000 9.321 170.4678 89.108220 4.500099 -137.472 -102.952244 20.0000 4.196 165.7838 51.819400 4.500052 -137.99 -96.389367 20.0000 2.294 165.5818 -43.668785 4.499956 -130.507 -95.987419 20.0000 2.294 165.7934 -73.320207 4.500052 -130.507 -95.987419 20.0000 2.294 165.7838 51.819400 4.500052 -130.507 -95.987419 20.0000 2.194 165.7934 -43.668785 4.499956 -130.507 -95.987419 20.0000 </th <th>Prop Loss (dB) Freq. Doppler Shift (kHz) Rovd. Frequency (GHz) Rovd. Iso. Power (dBM) Flux Density (dBM/m^2) Rovr Gain (dB) Tatmos (K) 181.3841 99.650088 4.500100 -146.510 -111.989752 20.0000 33.056 176.8136 99.077459 4.500099 -141.939 -107.419218 20.0000 33.056 174.3237 97.675431 4.500095 -137.472 -102.952244 20.0000 6.022 170.4678 89.108220 4.500095 -137.472 -102.952244 20.0000 4.196 165.7838 51.819400 4.500055 -137.99 -96.389367 20.0000 2.294 165.7838 51.819400 4.500056 -129.659 -95.18652 20.0000 2.294 165.7838 -74.302067 4.499955 -130.507 -95.987419 20.0000 2.194 165.9723 -67.3502067 4.499955 -130.507 -95.987419 20.0000 2.795 165.9723 -97.342773 4.499903 -137.079 -102.58739 20.0000<!--</th--><th>Stop: 💩 23 Nov 2013 07:44:11.596 UTCG</th><th>Step. of Sec</th><th>×</th><th></th><th></th><th></th><th></th><th></th><th></th></th>	Prop Loss (dB) Freq. Doppler Shift (kHz) Rovd. Frequency (GHz) Rovd. Iso. Power (dBM) Flux Density (dBM/m^2) Rovr Gain (dB) Tatmos (K) 181.3841 99.650088 4.500100 -146.510 -111.989752 20.0000 33.056 176.8136 99.077459 4.500099 -141.939 -107.419218 20.0000 33.056 174.3237 97.675431 4.500095 -137.472 -102.952244 20.0000 6.022 170.4678 89.108220 4.500095 -137.472 -102.952244 20.0000 4.196 165.7838 51.819400 4.500055 -137.99 -96.389367 20.0000 2.294 165.7838 51.819400 4.500056 -129.659 -95.18652 20.0000 2.294 165.7838 -74.302067 4.499955 -130.507 -95.987419 20.0000 2.194 165.9723 -67.3502067 4.499955 -130.507 -95.987419 20.0000 2.795 165.9723 -97.342773 4.499903 -137.079 -102.58739 20.0000 </th <th>Stop: 💩 23 Nov 2013 07:44:11.596 UTCG</th> <th>Step. of Sec</th> <th>×</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Stop: 💩 23 Nov 2013 07:44:11.596 UTCG	Step. of Sec	×						
181.3841 99.650088 4.500100 -146.510 -111.989752 20.0000 33.056 176.8136 99.077459 4.500099 -141.939 -107.419218 20.0000 15.656 174.3237 97.675431 4.500098 -133.449 -104.929335 20.0000 9.321 172.3466 94.818355 4.500095 -137.472 -102.952244 20.0000 6.022 170.4678 89.108220 4.500089 -133.193 -96.678755 20.0000 2.994 166.0732 77.223020 4.500052 -130.909 -96.678755 20.0000 2.924 164.5131 5.745723 4.500052 -130.909 -96.678755 20.0000 2.924 165.7838 -43.668785 4.499957 -132.685 -95.118692 20.0000 2.194 167.5594 -73.326601 4.499927 -132.685 -98.164987 20.0000 2.785 171.9301 -94.007615 4.499903 -135.098 -100.577992 20.0000 3.897 171.93030	181.3841 99.650088 4.500100 -146.510 -111.989752 20.0000 33.056 176.8136 99.077459 4.500099 -141.939 -107.419218 20.0000 15.656 174.3237 97.675431 4.500098 -133.449 -104.929335 20.0000 9.321 172.3466 94.818355 4.500085 -137.472 -102.952244 20.0000 6.022 170.4678 89.108220 4.500077 -133.193 -96.678755 20.0000 2.994 165.7838 51.819400 4.500052 -130.909 -96.639367 20.0000 2.224 165.7838 51.819400 4.500055 -130.909 -96.678755 20.0000 2.994 165.7838 51.819400 4.500056 -129.639 -95.18659 20.0000 2.194 165.3818 -43.668785 4.499927 -132.685 -98.164987 20.0000 2.175 165.9723 -87.326901 4.499903 -137.079 -102.578739 20.0000 3.897 171.9531	Prop Loss (dB) Freq. Doppler	Shift (kHz) R	cvd. Frequency (GHz)	Revd. Iso. P	ower (dBW)	Flux Density	(dBW/m^2)	Revr Gain (d	B) Tatmos (K)
176.6136 99.077459 4.500099 -141.939 -107.419218 20.0000 15.656 174.3237 97.675431 4.500098 -139.449 -104.92935 20.0000 9.321 172.3466 94.618355 4.500095 -137.472 -102.952244 20.0000 6.022 170.4678 89.108220 4.500095 -137.472 -102.952244 20.0000 4.196 165.7738 87.122320 4.500077 -133.199 -96.678755 20.0000 2.994 165.7738 51.819400 4.500052 -130.909 -96.389367 20.0000 2.224 165.7838 51.819400 4.500052 -130.507 -95.987419 20.0000 2.194 165.7838 -43.668785 4.499957 -132.685 -98.164987 20.0000 2.194 165.7934 -73.326601 4.499913 -135.098 -100.577982 20.0000 3.897 171.9531 -94.007615 4.499903 -137.079 -102.558739 20.0000 5.562 173.9030	176.8136 99.077459 4.500099 -141.939 -107.419218 20.0000 15.656 174.3237 97.675431 4.500096 -139.449 -104.929335 20.0000 9.321 172.3466 94.818355 4.500095 -137.472 -102.952244 20.0000 6.022 170.4678 89.108220 4.500095 -137.472 -102.952244 20.0000 4.196 165.7838 51.819400 4.500052 -130.909 -96.389367 20.0000 2.294 165.7838 51.819400 4.500052 -130.909 -96.389367 20.0000 2.294 165.3818 -43.668785 4.499956 -130.507 -95.987419 20.0000 2.144 167.5554 -73.302067 4.499957 -135.098 -100.577892 20.0000 2.894 171.9531 -94.007615 4.499903 -137.079 -102.558739 20.0000 3.897 173.3020 -97.344773 4.499903 -137.079 -102.558739 20.0000 3.897 173.62691 </td <td>181.3841</td> <td>99.650088</td> <td>4.500100</td> <td></td> <td>-146.510</td> <td>-:</td> <td>111.989752</td> <td>20.00</td> <td>00 33.056</td>	181.3841	99.650088	4.500100		-146.510	-:	111.989752	20.00	00 33.056
174.3237 97.675431 4.500096 -139.449 -104.929335 20.0000 9.321 172.3466 94.818355 4.500095 -137.472 -102.95224 20.0000 6.022 170.4678 89.108220 4.500095 -137.472 -102.95224 20.0000 4.196 168.0732 77.223020 4.500077 -133.199 -98.678755 20.0000 2.994 165.7838 51.819400 4.500052 -130.99 -96.639367 20.0000 2.224 164.5131 5.745723 4.500006 -129.639 -95.118692 20.0000 1.906 165.5318 -73.302067 4.499927 -132.685 -98.164987 20.0000 2.795 169.9723 -87.326901 4.499913 -137.079 -100.577892 20.0000 3.897 171.9531 -94.007615 4.499903 -139.029 -104.508591 20.0000 8.267 173.9030 -97.344773 4.499903 -139.029 -104.508591 20.0000 8.267 176.6261	174.3237 97.675431 4.500096 -139.449 -104.929335 20.0000 9.321 172.3466 94.818355 4.500095 -137.472 -102.952244 20.0000 6.022 170.4678 89.108220 4.500095 -137.533 -101.073402 20.0000 4.196 165.7838 51.619400 4.500052 -133.99 -96.389367 20.0000 2.294 165.7838 51.619400 4.500052 -130.909 -96.389367 20.0000 2.294 165.3818 -43.668785 4.499956 -130.507 -95.987419 20.0000 2.114 167.5594 -73.302067 4.499953 -132.685 -98.164987 20.0000 2.793 171.9531 -94.007615 4.499953 -135.098 -100.577892 20.0000 3.897 173.9030 -97.344773 4.499903 -137.079 -102.58739 20.0000 5.52 176.2691 -99.015381 4.499900 -144.395 -106.874734 20.0000 3.267 180.3138	176.8136	99.077459	4.500099	1	-141.939	-:	107.419218	20.00	00 15.656
172.3466 94.818355 4.500095 -137.472 -102.952244 20.0000 6.022 170.4678 89.108220 4.500095 -135.593 -101.073402 20.0000 4.196 168.0732 77.223020 4.500077 -133.199 -98.678755 20.0000 2.94 165.7838 51.819400 4.500052 -130.909 -96.678755 20.0000 2.94 164.5131 5.745723 4.500066 -129.639 -95.118692 20.0000 2.94 165.3818 -43.668785 4.499956 -130.507 -95.987419 20.0000 2.14 167.5594 -73.302067 4.499927 -132.685 -98.164987 20.0000 2.755 169.9723 -87.326901 4.499906 -137.079 -100.577892 20.0000 3.897 171.9531 -94.007615 4.499903 -139.029 -104.508591 20.0000 8.267 173.9030 -97.344773 4.499903 -139.029 -104.508591 20.0000 8.267 176.2651 -99.015381 4.499900 -141.395 -106.674734 20.0000 8.	172.3466 94.818355 4.500095 -137.472 -102.952244 20.0000 6.022 170.4678 89.108220 4.500089 -135.593 -101.073402 20.0000 6.022 166.0732 77.223020 4.500077 -133.199 -96.678755 20.0000 2.94 165.7838 51.819400 4.500052 -130.093 -96.678755 20.0000 2.94 164.5131 5.745723 4.500006 -129.639 -95.118692 20.0000 2.144 165.3818 -43.668785 4.499957 -132.685 -98.164987 20.0000 2.175 169.9723 -87.326901 4.499906 -137.079 -102.558739 20.0000 3.897 171.9531 -94.007615 4.499905 -133.029 -104.508551 20.0000 8.267 173.9030 -97.344773 4.499903 -133.029 -104.508551 20.0000 8.267 180.3138 -99.015381 4.499900 -144.395 -106.874734 20.0000 13.456 180.3138	174.3237	97.675431	4.500098		-139.449	-:	104.929335	20.00	00 9.321
1/1.4010 1/2.4010 1/2.10100 2/2.10100 2/2.10100 2/2.10100 2/2.10100 2/2.10100 2/2.10100 2/2.10100 2/2.101000 2/2.101000 2/2.10100	10.100 05.100220 4.00009 -103.050 100.1002 20.0000 4.120 165.0732 77.223020 4.500077 -133.199 -96.678755 20.0000 2.294 165.7838 5.1819400 4.500052 -130.909 -96.389367 20.0000 2.294 164.5131 5.745723 4.500066 -129.639 -95.18692 20.0000 2.194 165.3818 -43.668785 4.499957 -130.507 -95.987419 20.0000 2.144 167.5534 -73.302667 4.499927 -132.685 -98.164987 20.0000 2.795 169.9723 -87.326901 4.499913 -135.098 -100.577882 20.0000 3.897 171.9531 -94.007615 4.499903 -139.029 -104.508591 20.0000 5.562 176.2691 -99.015381 4.499903 -139.029 -104.508591 20.0000 13.456 180.338 -99.759845 4.499900 -146.515 -111.995168 20.0000 31.108 Prop Loss (dB) Freq. Doppler Shift (kBZ) Rcvd. Frequency (GBZ) Rcvd. Iso. Power (dBW) Flux	172.3466	94.818355	4.500095		-137.472	-	102.952244	20.00	00 6.022
165.7838 51.819400 4.500052 -130.909 -96.389367 20.0000 2.224 164.5131 5.745723 4.500056 -129.639 -95.118692 20.0000 1.906 165.7838 -4.3.668785 4.499956 -130.507 -95.987419 20.0000 2.114 167.5594 -73.302067 4.499927 -132.685 -98.164987 20.0000 2.795 169.9723 -87.326901 4.499913 -135.098 -100.577892 20.0000 3.897 171.9531 -94.007615 4.499906 -137.079 -102.558739 20.0000 5.562 173.9030 -97.344773 4.499903 -143.9029 -104.508591 20.0000 8.267 176.62611 -99.015381 4.499900 -141.395 -106.574734 20.0000 8.267 180.3138 -99.759845 4.499900 -145.439 -110.919446 20.0000 27.003 181.3896 -99.817743 4.499900 -146.515 -111.995168 20.0000 31.108 181.3	165.7838 51.613400 4.80052 -130.809 -96.389367 20.0000 2.224 164.5131 5.745723 4.500066 -129.639 -95.118692 20.0000 1.906 165.3818 -43.668785 4.499956 -130.507 -95.997419 20.0000 2.124 167.5594 -73.302067 4.499927 -132.685 -98.164987 20.0000 2.739 169.9723 -97.32601 4.499913 -135.098 -100.577892 20.0000 3.897 171.9531 -94.007615 4.499906 -137.079 -102.558739 20.0000 5.827 176.2691 -99.015381 4.499900 -141.395 -106.874734 20.0000 13.456 180.3138 -99.59845 4.499900 -146.515 -111.995168 20.0000 13.456 181.3896 -99.817743 4.499900 -146.515 -111.995168 20.0000 31.108 Prop Loss (dB) Freq. Doppler Shift (kHz) Rcvd. Frequency (GHz) Rcvd. Iso. Power (dBM) Flux Density (dBM/m^2) Rcvr Gain (dE) <td>168.0732</td> <td>77.223020</td> <td>4.500077</td> <td></td> <td>-133.199</td> <td>_</td> <td>-98.678755</td> <td>20.00</td> <td>00 4.190</td>	168.0732	77.223020	4.500077		-133.199	_	-98.678755	20.00	00 4.190
164.5131 5.745723 4.500006 -129.639 -95.118692 20.0000 1.906 165.3818 -43.668785 4.499956 -130.507 -95.987419 20.0000 2.114 167.5594 -73.302067 4.499927 -132.685 -98.164987 20.0000 2.134 169.9723 -87.326501 4.499913 -135.098 -100.577892 20.0000 3.897 171.9531 -94.007615 4.499906 -137.079 -102.558739 20.0000 8.527 173.9030 -97.344773 4.499903 -139.029 -104.508591 20.0000 8.267 176.6261 -99.015381 4.499900 -141.395 -106.874734 20.0000 8.267 180.3138 -99.759845 4.499900 -145.439 -110.919446 20.0000 27.003 181.3896 -99.817743 4.499900 -146.515 -111.951.68 20.0000 31.108 Prop Loss (dB) Freq. Doppler Shift (kHz) Rovd. Frequency (GHz) Rovd. Iso. Power (dBM) Flux Density (dBM/m2) Revr Gain (dB)<	164.5131 5.745723 4.500006 -129.639 -95.118692 20.0000 1.906 165.3818 -43.668785 4.499956 -130.507 -95.987419 20.0000 2.114 167.5594 -73.302067 4.499927 -132.685 -98.164987 20.0000 2.134 169.9723 -87.326901 4.499913 -135.098 -100.577892 20.0000 3.897 171.9531 -94.007615 4.499906 -137.079 -102.558739 20.0000 8.267 173.9030 -97.344773 4.499903 -139.029 -104.508591 20.0000 8.267 176.6561 -99.015381 4.499900 -141.395 -106.674734 20.0000 8.267 180.3138 -99.759845 4.499900 -145.439 -110.919446 20.0000 27.003 181.3896 -99.817743 4.499900 -146.515 -111.95168 20.0000 31.108	165.7838	51.819400	4.500052		-130.909		-96.389367	20.00	00 2.224
165.3818 -43.668785 4.499956 -130.507 -95.987419 20.0000 2.114 167.5594 -73.302067 4.499957 -132.685 -98.164987 20.0000 2.795 169.9723 -87.326501 4.499966 -137.079 -100.577992 20.0000 3.897 171.9331 -94.007615 4.499906 -137.079 -102.58739 20.0000 8.567 173.9030 -97.344773 4.499903 -139.029 -104.508591 20.0000 8.267 176.2691 -99.015381 4.499900 -141.395 -106.674734 20.0000 13.456 180.3138 -99.75945 4.499900 -145.439 -101.919446 20.0000 13.456 181.3896 -99.817743 4.499900 -146.515 -111.995168 20.0000 31.108 Prop Loss (dB) Freq. Doppler Shift (kHz) Rcvd. Frequency (GHz) Rcvd. Iso. Power (dBM) Flux Density (dBM/m^2) Rcvr Gain (dB) Tatmos (K)	165.3818 -43.668785 4.499956 -130.507 -95.987419 20.0000 2.114 167.5594 -73.302067 4.499927 -132.685 -98.164987 20.0000 2.795 169.9723 -87.326501 4.499913 -135.098 -100.577892 20.0000 3.897 171.9531 -94.007615 4.499905 -137.079 -102.558739 20.0000 5.552 173.9030 -97.344773 4.499903 -139.029 -104.508591 20.0000 8.267 176.2691 -99.015381 4.499900 -141.395 -106.674734 20.0000 13.456 180.3138 -99.759845 4.499900 -146.515 -111.95168 20.0000 31.108 Prop Loss (dB) Freq. Doppler Shift (kHz) Rovd. Frequency (GHz) Rovd. Iso. Power (dBW) Flux Density (dBW/m²) Rovr Gain (dB) Tatmos (K) Prop Loss (dB) Freq. Doppler Shift (kHz) A.500049 -146.510 -111.990245 20.0000 32.896 178.8884 37.510696 4.500024 -143.984 -109.4640	164.5131	5.745723	4.500006	i	-129.639		-95.118692	20.00	00 1.906
167.3594 -73.302067 4.499927 -132.685 -98.164967 20.0000 2.795 169.3594 -67.325001 4.499913 -135.098 -100.577892 20.0000 3.897 171.9531 -94.007615 4.499903 -137.079 -102.558739 20.0000 5.562 173.9030 -97.344773 4.499903 -139.029 -104.508591 20.0000 8.267 176.2691 -99.015381 4.499901 -141.395 -106.874734 20.0000 8.267 180.3138 -99.759845 4.499900 -145.439 -110.919446 20.0000 27.003 181.3896 -99.817743 4.499900 -146.515 -111.995168 20.0000 31.108 Prop Loss (dB) Freq. Doppler Shift (kHz) Rcvd. Frequency (GHz) Rcvd. Iso. Power (dBW) Flux Density (dBW/m^2) Rcvr Gain (dB) Tatmos (K)	167.3594 -73.302067 4.499921 -132.685 -94.164967 20.0000 2.799 169.3594 -73.25601 4.499913 -135.098 -100.577692 20.0000 3.897 171.9531 -94.007615 4.499903 -137.079 -102.556739 20.0000 5.852 173.9030 -97.344773 4.499903 -133.029 -104.508591 20.0000 5.827 176.2691 -99.015381 4.499900 -141.395 -106.874734 20.0000 13.455 180.3138 -99.759455 4.499900 -145.439 -111.995166 20.0000 31.168 Prop Loss (dB) Freq. Doppler Shift (kHz) Rcvd. Frequency (GHz) Rcvd. Iso. Power (dBM) Flux Density (dBM/m^2) Rcvr Gain (dB) Tatmos (K)	165.3818	-43.668785	4.499956		-130.507		-95.987419	20.00	00 2.114
171.9531 -94.007615 4.499906 -137.079 -102.558739 20.0000 5.562 173.9030 -97.344773 4.499903 -139.029 -104.508591 20.0000 8.267 176.2691 -99.015381 4.499901 -141.395 -106.574734 20.0000 8.267 180.3138 -99.759845 4.499900 -145.439 -110.919446 20.0000 27.003 181.3896 -99.817743 4.499900 -146.515 -111.995168 20.0000 31.108 Prop Loss (dB) Freq. Doppler Shift (kHz) Rcvd. Frequency (GHz) Rcvd. Iso. Power (dBM) Flux Density (dEM/m^2) Rcvr Gain (dB) Tatmos (K)	171.9531 -94.007615 4.499906 -137.079 -102.558739 20.0000 5.562 173.9030 -97.344773 4.499906 -137.079 -104.508591 20.0000 8.267 176.6591 -99.015381 4.499900 -141.395 -106.574734 20.0000 8.267 180.3138 -99.759845 4.499900 -145.439 -110.919446 20.0000 27.003 181.3896 -99.817743 4.499900 -146.515 -111.995168 20.0000 31.108 Prop Loss (dB) Freq. Doppler Shift (kHz) Rcvd. Frequency (GHz) Rcvd. Iso. Power (dBM) Flux Density (dBM/m^2) Rcvr Gain (dB) Tatmos (K) 178.8584 37.510696 4.500024 -142.785 -108.265361 20.0000 22.849 177.6598 23.947067 4.500024 -142.785 -108.265361 20.0000 22.849	169 9723	-73.302067	4.499927		-132.685	_	-98.164987 100 577892	20.00	UU 2.795 NN 3.897
173.9030 -97.344773 4.499903 -139.029 -104.508591 20.0000 8.267 176.2651 -99.015381 4.499901 -141.395 -106.674734 20.0000 13.456 180.3138 -99.759845 4.499900 -145.439 -110.919446 20.0000 13.456 181.3896 -99.817743 4.499900 -146.515 -111.995168 20.0000 31.108 Prop Loss (dB) Freq. Doppler Shift (kHz) Revd. Frequency (GHz) Revd. Iso. Power (dBM) Flux Density (dBM/m^2) Rev Gain (dB) Tatmos (K)	173.9030 -97.344773 4.499903 -139.029 -104.508591 20.0000 8.267 176.2691 -99.015381 4.499903 -141.395 -106.674734 20.0000 13.456 180.3138 -99.75945 4.499900 -145.439 -110.919446 20.0000 13.456 181.3896 -99.817743 4.499900 -146.515 -111.995168 20.0000 31.108 Prop Loss (dB) Freq. Doppler Shift (kHz) Rcvd. Frequency (GHz) Rcvd. Iso. Power (dBM) Flux Density (dBM/m^2) Rcvr Gain (dB) Tatmos (K) 178.8384 37.510696 4.500038 -143.984 -109.464017 20.0000 32.896 177.6598 23.347067 4.500024 -142.785 -108.265561 20.0000 32.896	171.9531	-94.007615	4.499906		-137.079	-	102.558739	20.00	00 5.562
176.2691 -99.015381 4.499901 -141.395 -106.874734 20.0000 13.456 180.3138 -99.759845 4.499900 -145.439 -110.919446 20.0000 27.003 181.3896 -99.817743 4.499900 -146.515 -111.995168 20.0000 31.108 Prop Loss (dB) Freq. Doppler Shift (kHz) Rcvd. Frequency (GHz) Rcvd. Iso. Power (dBW) Flux Density (dBW/m ²) Rcvr Gain (dB) Tatmos (K)	176.2691 -99.015381 4.499901 -141.395 -106.874734 20.0000 13.455 180.3138 -99.759845 4.499900 -145.439 -110.919446 20.0000 27.003 181.3896 -99.817743 4.499900 -146.515 -111.995168 20.0000 31.168 Prop Loss (dB) Freq. Doppler Shift (kHz) Rovd. Frequency (GHz) Rovd. Iso. Power (dBM) Flux Density (dBM/m^2) Rovr Gain (dB) Tatmos (K) 181.3846 48.928151 4.500049 -146.510 -111.990245 20.0000 32.896 178.6884 37.510696 4.500024 -142.785 -108.46017 20.0000 22.896 177.6598 23.947067 4.500024 -142.785 -108.46017 20.0000 22.849	173.9030	-97.344773	4.499903	1	-139.029	-:	104.508591	20.00	00 8.267
180.3138 -99.759845 4.499900 -145.439 -110.919446 20.0000 27.003 181.3896 -99.817743 4.499900 -146.515 -111.995168 20.0000 31.108 Prop Loss (dB) Freq. Doppler Shift (kHz) Rcvd. Frequency (GHz) Rcvd. Iso. Power (dBM) Flux Density (dBM/m ²) Rcvr Gain (dB) Tatmos (K)	180.3138 -99.759845 4.499900 -145.439 -110.919446 20.0000 27.003 181.3896 -99.817743 4.499900 -146.515 -111.995168 20.0000 31.108 Prop Loss (dB) Freq. Doppler Shift (kHz) Rovd. Frequency (GHz) Rovd. Iso. Power (dBW) Flux Density (dBW/m ²) Rov Gain (dB) Tatmos (K) 181.3846 48.928151 4.500049 -146.510 -111.990245 20.0000 32.896 178.8584 37.510696 4.500028 -143.984 -109.464017 20.0000 32.849 177.6598 23.947067 4.500024 -142.785 -108.265361 20.0000 18.23	176.2691	-99.015381	4.499901		-141.395		106.874734	20.00	00 13.456
Prop Loss (dB) Freq. Doppler Shift (kHz) Rovd. Frequency (GHz) Rovd. Iso. Power (dBW) Flux Density (dBW/m^2) Rovr Gain (dB) Tatmos (K)	Prop Loss (dB) Freq. Doppler Shift (kHz) Rcvd. Frequency (GHz) Rcvd. Iso. Power (dBM) Flux Density (dBM/m ²) Rcvr Gain (dB) Tatmos (K) 181.3846 48.928151 4.500049 -146.510 -111.990245 20.0000 32.849 178.8584 37.510696 4.500024 -142.785 -108.265361 20.0000 22.849 177.6599 23.947067 4.500024 -142.785 -108.265361 20.0000 18.223	180.3138	-99.759845	4.499900		-145.439		110.919446	20.00	00 27.003
	181.3846 48.928151 4.500049 -146.510 -111.990245 20.0000 32.896 178.8584 37.510696 4.500038 -143.864 -109.464017 20.0000 22.849 177.6598 23.947067 4.500024 -142.785 -108.265361 20.0000 18.223	Prop Loss (dB) Freq. Doppler	Shift (kHz) R	cvd. Frequency (GHz)	Rovd. Iso. P	ower (dBW)	Flux Density	(dBW/m^2)	Rovr Gain (d	 B) Tatmos (K)
	181.3846 48.928151 4.500049 -146.510 -111.990245 20.0000 32.896 178.8584 37.510696 4.500038 -143.984 -109.464017 20.0000 22.849 177.6598 23.947067 4.500024 -142.785 -108.265361 20.0000 18.223									
181.3846 48.928151 4.500049 -146.510 -111.990245 20.0000 32.896 178.8584 37.51666 4.500038 -103.864 -100.454117 00.0000 32.896	177.6599 23.947067 4.500024 -142.785 -108.26361 20.0000 22.689	181.3846	48.928151	4.500049		-146.510		111.990245	20.00	UU 32.896
177,6538 23,947067 4,50024 -142,785 -108,26536 20,0000 18,223		T10.0304		/		-1/3 98/		109 464017	20 00	nn <u> </u>
	177.0893 8.886187 4.50009 -142.215 -107.694878 20.0000 15.968	177.6598	23.947067	4.500038		-143.984 -142.785		109.464017 108.265361	20.00	00 22.849

Figura 4.24 Reporte generado por el escenario creado

Antes de continuar si vemos las representaciones 2D y 3D de nuestro escenario vemos que ya existen modificaciones en el caso de la representación 2D se observa que se han generado una serie de líneas las cuales representan los periodos de las distintas orbitas en las cuales se tiene línea de vista para que la estación acceda al satélite. Es decir, vemos que no todas las trayectorias descritas por el satélite van a tener acceso en línea de vista hacia la estación terrena particular.

En el caso de la representación 3D se observa el momento en el existe comunicación entre el satélite y la estación terrena cada vez que la órbita permite e establecimiento del enlace.

Figura 4.25 Representación 3D del acceso al satélite por la estación terrena

Figura 4.26Representación 3D del acceso al satélite por la estación terrena

Primero analizaremos el comportamiento de algunos parámetros de manera gráfica para ello regresamos a la pestaña "Report & Graph Manager", seleccionamos la carpeta destinada a nuestros estilos y damos clic en el botón "Create New Graph Style", esto nos crea un nuevo estilo el cual renombramos como RIP que es el parámetro que graficaremos, después de dar enter se nos abre una ventana donde nos dirigiremos a la llave "Link Information" y buscamos el parámetro de interés y lo pasamos al eje Y.

Ryles ☑ Show Reports ☑ Show Graphs	Graph Type TimeXY
	Yuh Elevation Y2 Asis Y2 Asis Y2 Asis

Figura 4.27 Creación de un nuevo estilo de grafico

Después de guardar las modificaciones, nos regresamos a la pestaña "Report & Graph Manager" y damos doble clic sobre el nuevo estilo de gráfico creado "RIP". Esto nos genera el siguiente gráfico. En dicho grafico se observan las variaciones que presenta el parámetro definido a través de la potencia isotrópica recibida, se observa que existen intervalos de tiempo dentro de todo el periodo de simulación en los cuales se registran datos de este parámetro algo que ya sabíamos de la representación 2D de los tiempos de acceso al satélite por parte de la estación terrena.

Figura 4.28 Gráfico correspondiente a la variación de la potencia isotrópica recibida (RIP)

Ahora procedemos a limitar el nivel de potencia isotrópica recibida (RIP), lo que nos permitirá descartar valores de RIP menores a -145dB. Para ello seleccionamos el receptor que será el que impondrá esa limitación. Después damos clic en el icono de "Properties" y nos dirigimos a la opción "Constraints" en el apartado "Comm" y buscamos el parámetro que deseamos limitar estableciendo el valor de -141dBW.

Figura 4.29 Limitado el valor de la potencia isotropica recibida RIP

Al dar clic "Apply" y observar la representación 2D del escenario podemos observar claramente el impacto que tuvo esta modificación en la restricción para el valor de la potencia isotrópica recibida. Si comparamos la imagen siguiente con la obtenida previamente notaremos dicha variación.

Figura 4.30 Efecto en la cobertura de la estación terrena debido a la limitación establecida en el valor del RIP

Si nos regresamos a la pestaña "Report" y damos clic en el icono "Refresh" vemos que ahora los valores correspondientes a la variable que representa la potencia isotrópica recibida (RIP) se encuentran por debajo del valor establecido de -150dBW, es decir, se han eliminado aquellos

resultados cuyo valor es más pequeño en termino de potencia que -145dBW. La curva que acompaña a los datos en la siguiente imagen se obtiene de la misma manera que el caso de la gráfica de la potencia isotrópica reciba RIP, solo es necesario crear otro estilo de gráfico y nombrarlo según sea el parámetro que deseamos graficar dentro de las opciones de la llave "Link Information"

b)

Figura 4.31 Comparación de los valores del parámetro RIP a)antes y b)después de imponer la limitación

Como vemos el limitar el valor la potencia isotrópica recibida (RIP) nos reduce el periodo de tiempo en el que el satélite tendrá acceso al receptor de la estación terrena, con lo cual si queremos mejorar este rendimiento del enlace lo que podríamos realizar es incrementar el nivel de ganancia del transmisor dado que es un parámetro que podemos controlar y que se encuentra ligado a los valores que toma el parámetro RIP.

Por lo tanto para realizar dicha modificación, damos doble clic sobre el transmisor lo cual nos abre la ventana de propiedades del transmisor, ahora recordemos que la ganancia de la antena en este caso de tipo Gaussiana está ligada con el diámetro de la antena, por lo tanto modificaremos este parámetro para poder modificar el nivel de ganancia de la antena transmisora. Nos ubicamos en la opción "Basic" y el apartado "Definition", luego nos dirigimos a la pestaña "Antenna" y modificamos el parámetro del diámetro, establecemos un valor de 1.5m y damos clic en "Apply" para guardar las modificaciones.

Esta modificación en el diámetro de la antena nos da un nivel de ganancia de 34.39dB, un nivel mayor al que se tenía previamente para la antena de 1m de aproximadamente 30.87dB.

Object Browser 🔹 🔻 🗡			_
📕 X 🖻 🖻 🗙 🗛 💡	Basic Definition	Type: Complex Transmitter Model	
Proyecto_4	Refraction Description	Model Specs Antenna Modulator Filter Additional Gains and Losses	
k∰ Receiver1 ≫ Satellite1	2D Graphics Contours	Model Specs Polarization Orientation	
Sensor1	Boresight 3D Graphics	Type: Gaussian	
	Attributes Vector	Design Frequency: 4.5 GHz	
	Constraints Basic	Beamwidth: 3.4313 deg 🛛 Use Beamwidth	
	Comm Interference	Diameter: 0 Use Diameter	
	Sun Temporal	Main-lobe Gain: 34.3963 dB 🕎 🔿 Use Main-lobe Gain	
	Advanced Zones	E fficiency: 55 %	
	Targeting	B ack-lobe Gain: -30 dB	
	Speedel Speedel		

Figura 4.32 Modificación de las características de la antena en el transmisor para corregir la limitación del RIP

Si analizamos ahora el grafico 2D de nuestro escenario, nos damos cuenta de que hubo ciertas mejoras en el acceso que tenía el satélite en la estación terrena con respecto al grafico 2D antes de haber impuesto la limitación en el valor de la potencia isotrópica recibida (RIP).

4.33 Grafico 2D después de realizar la corrección en el transmisor ante la limitación de RIP

Igualmente si damos "Refresh" en la pestaña "Report" vemos que el tiempo de acceso ha aumentado en cierta manera debido a que se incrementaron el número de datos correspondientes al valor del RIP que cumplen con la limitación de -141dBW anteriormente establecida.

Ahora si lo analizamos la manera de mejorar el rendimiento del enlace que aplicamos, nos damos cuenta de que esta modificación no va a ser posible de realizar si el satélite ya fue puesto en órbita, de ahí radica la importancia de utilizar simulaciones que nos permitan prever posibles escenarios y por lo tanto realizar las modificaciones pertinentes para evitar este tipo de problemas.

Otra posible modificación en el enlace para corregir la limitación en el valor de la potencia isotrópica recibida RIP puede ser realizada a través de un incremento de la potencia empleada por el transmisor en el satélite, para verificar esto debemos de volver el diámetro de la antena previamente modificado a 1m, después incrementamos la potencia a 10dBW.

Model Specs Antenna	Modulator Filter	Additional Gains and Losses				
Model Specs Polar	ization Orientation		Basic	Type: Complex Tran	ismitter Model	
Type:	Gaussian		Refraction			
			Description	Model Specs Ar	ntenna Modulato	r Filter
Design Frequency	4.5 GHz		2D Graphics			
Beamwidth:	5.14694 deg	- Use Beamwidth	Contours Boresight	Frequency:	4.5 GHz	÷
Diameter:	[1 m	👽 💿 Use Diameter	3D Graphics	Power:	10 dBW	Ţ

Figura 4.35 Modificando parámetros de transmisión para mejorar el valor del RIP

Si comparamos los resultados nuevamente del valor del RIP veremos nuevamente las mejoras que se obtienen

Figura 4.36 Valores de la potencia isotrópica recibida a) aumentando el nivel de potencia b)sin aumentar la potencia

Ahora analizaremos el caso cuando restringimos el valor del parámetro desplazamiento Doppler, dicho parámetro se encuentra relacionado con la capacidad del receptor de ajustar su frecuencia ante las posibles variaciones que presente en función del movimiento que lleva a cabo el satélite.

La expresión empleada para calcular la frecuencia recibida en función del desplazamiento Doppler se presenta a continuación, como se observa la frecuencia de recepción es función tanto de la frecuencia de operación del transmisor y de las correspondientes variaciones que existen entre el equipo transmisor del satélite y receptor de la estación terrena

Frecuencia recibida por el efecto Doppler:
$$f_{RX} = f_{TX} \sqrt{\frac{c - \dot{r}}{c + \dot{r}}}$$

Donde c= $3x10^8$ [m/s] y \dot{r} : Velocidad relativa entre el transmisor y el receptor

Antes de comenzar debemos de quitar la limitante establecida al parámetro RIP, la modificación del diámetro de la antena y el nivel de potencia de transmisión realizado para corregir la limitación del RIP, es decir, debemos de regresar al estado inicial del escenario. Habiendo realizado esto damos clic en el icono "Refresh" para actualizar el reporte. Si analizamos el reporte previo en la columna referente al parámetro de desplazamiento Doppler vemos que se presenta una variación máxima de aproximadamente de ±80kHZ.

Figura 4.37 Valores del desplazamiento de frecuencia por efecto Doppler

En este caso restringiremos el valor que puede tomar dicho desplazamiento Doppler, lo limitaremos a un rango entre ±50kHz. Para ello damos doble clic sobre el receptor, se nos abre la ventana de propiedades de este elemento. Nos dirigimos a la opción "Constraints" y el apartado "Comm", establecemos el valor mínimo para el desplazamiento Doppler de -50kHz y el máximo valor de 50kHz. Damos clic en "Apply"

En el caso del reporte, después de dar clic en "Refresh" vemos que el parámetro "Shift Doppler" ahora se encuentra limitado a los valores que ingresamos para el receptor en las restricciones para dicho parámetro

Figura 4.38 Valores del desplazamiento de frecuencia por efecto Doppler después de limitarlo

Analizamos el comportamiento del escenario bajo esta restricción en el desplazamiento Doppler, en el caso de la representación 2D vemos nuevamente el impacto que tiene dicha restricción comparado con la representación del escenario original sin restricción de parámetros.

Figura 4.39 Gráfico 2D después de establecer la limitación en el desplazamiento Doppler

En este caso, los cambios de frecuencia por efecto Doppler no pueden ser corregidos a través de modificaciones de los parámetros ya sea del trasmisor o receptor dado que es un fenómeno externo producido por los movimientos del satélite alrededor de su órbita. Por lo tanto en este caso las limitaciones de las variaciones de frecuencia por efecto Doppler pueden ser empleadas para seleccionar algún tipo de órbita en específico que permite minimizar las variaciones que presenta por efectos Doppler o para poder corregir las variaciones que se pudieran presentar en cuanto al movimiento del satélite alrededor de su órbita.

Ahora realizaremos una restricción del parámetro densidad de flujo "Flux Density", para ello primero debemos de quitar las restricciones impuestas al desplazamiento Doppler, por lo cual damos doble clic sobre el receptor y quitamos las restricciones. De igual manera nos ubicamos en la pestaña "Report", ahora vemos que los valores toma el parámetro "Flux Density" están en el rango de -100dBW/m² y -123dBW/m².

Figura 4.40 Valores del parámetro densidad de flujo para el enlace de comunicaciones.

Ahora consideramos que deseamos restringir el valor de la densidad de flujo "Flux Density" a valores mayores que -110dBW/ m^2 para ello damos doble clic sobre el transmisor dado que este parámetro se encuentra relacionado con el valor del PIRE que nos da el transmisor. Ahora nos ubicamos en la opción de "Constraints" y el apartado "Comm", y por último restringimos el valor de "Flux Density" para que tenga un valor mínimo de -110dBW/ m^2

3D Graphics	Rovd Isotropic Power	Flux Densitu	
Attributes	Min:	✓ Min: -110 dBW/m ²	ц.
Vector		 Max:	ų.
Basic	Exclude Time Intervals	Exclude Time Intervals	
Noise	Doppler Shift		
Lomm "I			

Figura 4.41 Limitación impuesta al valor de la densidad de flujo en el transmisor

Después de dar clic en "Apply", observamos el comportamiento en la representación 2D; en este caso resulta claro el impacto de la restricción impuesta al parámetro "Flux Density" con una reducción de los trayectos descritos por la órbita del satélite que cumplan con los requerimientos impuestos al parámetro densidad de flujo.

Figura 4.42 Gráfico 2D del escenario después de limitar el valor de la densidad de flujo

Si analizamos el reporte después de dar clic en el icono "Refresh" veremos que ahora los valores que toma el parámetro "Flux Density" se encuentran por debajo de -110dBW/ m^2 que corresponden a la restricción impuesta previamente en este parámetro

Figura 4.43 Valores de la densidad de flujo después de limitar su valor

Al igual que en el caso de la potencia isotrópica recibida RIP, el parámetro densidad del flujo "Flux Density" no es susceptible de mejorarse a través de ajustes en las propiedades del receptor, pero puede ser mejorada a través de modificaciones en las propiedades del transmisor como por ejemplo eliminar las pérdidas de apuntamiento de -1dB. Otra forma de mejorar las características del enlace ante la limitación impuesta es de a través de un incremento en un nivel de potencia de transmisión de 5dBW a 10dBW.

Figura 4.44 Representación 2D del acceso al satélite tras incrementar el nivel de potencia con limitación de la densidad de flujo

Figura 4.45 Valores de la densidad de flujo de potencia al aumentar el nivel de potencia a 10[dBW]

Ahora analizaremos el caso en que restringimos el valor que puede tomar el parámetro (C/N_0) (relación portadora a densidad de ruido) para ello antes de iniciar debemos de eliminar todas las restricciones que existan, para ello revisamos las propiedades del transmisor y receptor en la opción de "Constraints" en el apartado "Comm".

Una vez realizado esto actualizamos el reporte generado para observar que los valores que toma el parámetro (C/N_0) . En este caso vemos que dicho parámetro (C/N_0) tiene variación en el rango de 64dBHz a 93dBHz, mientras que el parámetro (C/N) varía en el rango de -10dB a 17dB.

Figura 4.46 Variación de los parámetros (C/ N_0) y (C/N)

Ahora procederemos a restringir el valor de (C/N) a un mínimo de 10dB para ello debemos de dar doble clic en el receptor y establecer un valor mínimo de (C/N) de 10dB en la opción "Constraints" en el apartado "Comm" como se muestra a continuación. Al dar clic en "Apply", nos dirigimos a la representación 2D y nos daremos cuanta claramente de cuál es el impacto de dicha restricción en el valor de este parámetro (C/N)

Figura 4.47 Limitando los valores del parámetro /C/N

Figura 4.48 Representación 2D del escenario ante la limitación del valor de (C/N)

En el caso del reporte al dar clic en "Refresh" vemos que ahora el conjunto de valores que toma el parámetro (C/N) está restringido a 10dB. Y en este caso dado que el parámetro (C/N_0) está relacionado con (C/N) ahora el conjunto de valores que toma se encuentra en el rango de valores de 85dB/Hz a 90dB/Hz.

FOR UNFUNDED EDUCATIONAL USE ONLY

Figura 4.49 Valores de (C/No)y (C/N) después de limitar el valor de (C/N)

En contraste con los otros casos vistos, los valores que toman los parámetros (C/N_0) y (C/N) pueden ser mejorados a través de ajustes ya sea del equipo transmisor o receptor. Esto debido a que las expresiones para dichos parámetros según STK presentadas a continuación, se observa

claramente la dependencia que tienen con las características de ganancia tanto del trasmisor como del receptor:

$$\left(\frac{C}{N_0}\right) = \frac{(EIRP)L_pL_ag_r}{kT_{eq}}$$

Donde L_p : perdidas por espacio libre, L_a : Pérdidas atmosféricas, T_{eq} : Temperatura equivalente de ruido y EIRP: Potencia Isotrópica Radiada Efectiva y k constante de Boltzmann.

$$\left(\frac{C}{N}\right) = \frac{1}{BW_{RF}} \left(\frac{C}{N}\right)$$

Donde BW_{RF} : Ancho de banda RF.

Debido a ello podemos realizar las siguientes modificaciones tanto en el transmisor como en el receptor para mejorar los resultados obtenidos debido a la limitación impuesta, esto a través del análisis de los reportes generados y gráficamente en los resultados 2D. Primero modificaremos el nivel de ganancia del receptor

Figura 4.50 Efecto de incrementar el nivel de ganancia del receptor sobre el acceso al satélite

Figura 4.51 Valores de (C/N₀) y(C/N) después de incrementar el nivel de ganancia del receptor

Otra forma es reduciendo el valor de la figura de ruido en el receptor esto se conseguiría con la selección correcta de los elementos que conforman al receptor para poder obtener dicho nivel en la figura de ruido

Figura 4.52 Efecto de reducir el nivel de la figura de ruido del receptor sobre el acceso al satélite

Figura 4.53 Valores de (C/N₀) y (C/N) después de reducir el valor de la figura de ruido del receptor

Otra manera de mejorar las condiciones del enlace bajo la restricción impuesta puede ser a través de cambiar el tipo modulación empleada.

Otra manera es estableciendo en el receptor una pre-ganancia que permita mejorar las características del enlace. Por ultimo aprovechando la configuración particular de la órbita del satélite se presentan las variaciones que presentan las atenuaciones por lluvia y por gases atmosféricos en función del ángulo de elevación.

Como vemos en la curva que define cada atenuación se muestra sus niveles de atenuación y tienden a incrementarse a medida que los ángulos de elevación se reducen. Por otra la contribución de atenuación generada por efectos de lluvia es mucho mayor que los niveles de atenuación generados por gases atmosféricos.

4.5 Propuesta de un Sistema Nacional de Percepción Remota

La carga útil es la combinación del hardware y el software en la nave espacial que interactúa con el sujeto (la porción de la parte del mundo exterior que la nave espacial está observando o interactuando para cumplir los objetivos de la misión. Las cargas útiles son típicamente únicas para cada misión y son la razón fundamental por la que la nave espacial es lanzada. El propósito del resto de la nave espacial es mantener la carga útil saludable, apuntando en la dirección correcta. Desde una perspectiva de la misión vale la pena tener en cuenta que el cumplimiento de estas exigencias es lo que impulsa en gran medida el tamaño de la misión, el costo y riesgo. En consecuencia, una parte crítica del análisis de la misión y diseño es entender lo que impulsa a un determinado conjunto de cargas útiles espaciales para que estos elementos puedan formar parte del proceso general del sistema diseñado para cumplir con los objetivos de la misión a un costo mínimo y el riesgo. En este capítulo 4 se resume el proceso general del diseño de la carga útil y el tamaño. En general, la transformación de procesos de formación que son más aleatorias y produce huellas de ancho de banda más amplio, mientras que un proceso más organizado produce un retorno más coherente. Por ejemplo, el calor generado por un motor diésel se irradia en un amplio ancho de banda en el espectro infrarrojo, mientras que un láser (una transformación de la energía más organizada) genera radiación de banda estrecha. En la nave espacial teledetección nos ocupa mediciones de procesamiento de cuatro tipos espectrales primarios. A continuación de describe o se resume los pasos a seguir para la configuración o selección de la carga útil de un sistema satelital.

1. Seleccionar los objetivos de la carga útil, estos objetivos, por supuesto, para el caso de nuestra propuesta. Sus objetivos son la de tomar imágenes de identificación de desastres naturales como incendios, ganadería pesca, recursos naturales, seguridad nacional etc.

2. Realizar Operaciones. Una parte clave de la operación objeto es determinar qué el sujeto es o debería ser. Para un sistema de comunicaciones móviles, es la mano del usuario receptor en espera. Aquí se debe determinar la cantidad de capacidad de poner en la unidad de usuario y cuánto poner en el satélite. Para nuestro satélite, podemos llegar a diferentes resultados si definimos como un ejemplo especifico al sujeto como por ejemplo en particular la radiación IR producida por el fuego o como el humo o parpadeo visible que el fuego produce. Además de definir el tema, y determinar los umbrales de rendimiento a la que debe operar el sistema

3. Desarrollar el Concepto de Operaciones de carga. En última instancia, los datos o producto producido por la carga debe llegar al usuario en un formulario o formato adecuado. ¿Cómo será el usuario final de los datos de nuestro satélite a recibir y sobre los datos de satélite? ¿Cómo será el fabricante de la recuperación de los materiales y definir lo que se debe hacer en el siguiente vuelo? Operaciones de carga tendrán un impacto importante en el costo tanto de la nave espacial y operaciones de la misión. Las operaciones de carga útil pueden realizarlas los de la misma instalación y el personal que manejan la nave espacial, puede ser una actividad de operaciones completamente diferentes.

4. Determinar la capacidad de carga útil requerida. ¿Cuál es el rendimiento y el rendimiento requerido del equipo de carga para cumplir con los umbrales de rendimiento definido en el paso 2? Para nuestro satélite ¿cuál es la especificación de los equipos necesarios para cumplir con la temperatura, la resolución, o los requisitos de geolocalización?

5. Identificar candidatos de cargas útiles. Aquí identificamos las posibles cargas y sus especificaciones. Para las misiones sencillas, habrá un único instrumento de carga útil. Para la mayoría de las misiones, habrá múltiples instrumentos o unidades que con frecuencia tienen que trabajar juntos para cumplir requisitos de la misión. Los diferentes complementos de equipos puede romper las tareas en diferentes formas e incluso puede trabajar con diferentes aspectos de la el sujeto. Por lo tanto, un sistema diseñado para identificar la fuente de las tormentas solares puede tener un reproductor de imágenes y un espectrómetro o un magnetómetro y un instrumento para asignar pequeña fluctuaciones de temperatura en la fotosfera o en el viento solar.

6. Estimar candidatos de la carga útil y sus características: Aquí tenemos que determinar la características de rendimiento , el coste y el impacto en el autobús nave espacial y la tierra sistema, de manera que podamos entender el costo vs rendimiento para cada uno de los viables sistemas a candidatos . Las cargas útiles serán diferentes en su rendimiento y el costo, sino también en el peso, el poder, el señalar, velocidad de datos, térmicas, soporte estructural, órbita, al mando, y requisitos de procesamiento. Debemos conocer todos estos impactos significativos para llevar a cabo el comercio

7. Evaluar a los candidatos y seleccionar una línea de base. Aquí examinamos las alternativas y hacer una selección preliminar de la combinación de carga útil que mejor se adapta a nuestros objetivos de costos y rendimiento. En la selección de una línea de base, debemos decidir qué elementos del desempeño valen la cantidad de dinero. La línea de base de carga útil es fuertemente en relación con la línea de base la misión y no se puede definir de manera aislada del resto de las partes de la misión y lo que será capaz de hacer para el usuario final.

8. Evaluar costo del ciclo de vida y operatividad. En última instancia, queremos determinar misión utilidad como una función de coste. Por lo general no va a ser un simple nivel de costes frente a la caracterización del rendimiento. Más bienes un oficio complejo que requiere la interacción sustancial con los usuarios potenciales y con la organización que financia la actividad. Puede que sea necesario en este momento para relajarse o dar prioridad a algunos de los requisitos de la misión con el fin de cumplir con los objetivos de costos y el calendario.

9. Definir los requisitos de carga derivados. En este paso, se proporciona un detallado definición de los efectos de las cargas seleccionadas en los requisitos para el resto de la sistema (es decir, el bus de la nave espacial, el segmento de tierra y operaciones de la misión). Nuestro satélite tendrá el poder, el señalar, geolocalización, y los requisitos de velocidad de datos. En la nave espacial niveles de limpieza y control de jitter. Estos, a su vez, pueden imponer requisitos secundarios tales como el almacenamiento de los comandos a bordo o la estabilidad térmica para señalar y jitter de control.

10. Documentar y reiterar. Se hace un hincapié una vez más la necesidad de documentar lo que hemos decidido y por qué. La "por qué" es fundamental para permitir que las operaciones del sistema para proceder en un tiempo futuro. Podemos tomar decisiones preliminares para una amplia variedad de razones, pero debemos entender estas razones, a fin de continuar con inteligencia para hacer la carga útil y el sistema de comercio. Como todos los análisis misión espacial y el proceso de diseño, la definición de carga útil es iterativa

Una vez vistos los pasos tenemos que tener en cuenta lo siguiente:

Frecuentemente se requiere una capacidad de carga útil y hay varias maneras de cumplir requisitos de la misión. Cómo ordenar a través de estos enfoques múltiples no siempre es evidente. El enfoque general para nosotros un esquema nos proporciona un marco repetible para la elección de una carga útil para satisfacer una remota detección de la misión. Una vez que seleccionamos una fenomenología física (por ejemplo, la medición térmica radiación infrarroja para detectar el bosque incendios, ganadería, pesca etc.), a continuación, dos cosas tienen que ser establecidas. La categorización de las misiones de teleobservación se complica por el hecho de que los sensores normalmente suelen tener múltiples usos, y se pueden clasificar de acuerdo con cualquier número de diferentes aspectos, tales como la técnica de medición (activa o pasiva), medidos según el evento (tales como incendio o deforestación, control de plagas, seguridad nacional, Ganadería, etc.), y la resolución de la medición (espacial, espectral, radiométrica, temporal). A modo de ejemplo, sin embargo, la tabla 4-3 ofrece una pequeña muestra de teledetección en cargas útiles y las correspondientes misiones de naves espaciales.

Size Purpose Size Instrument Name Size L×W × D (m) Provide (m) Provide Provide (M) Data Provide Provide (M) Aper- fication (M) Aper- ficatio					A	1		Darlington of
Solar Physics Lyman-Alpha Coronograph X-ray Telescope Spectrom. 2.8 x 0.88 x 0.73 2.7 x 1 dia. 465 465 30 0.4	Purpose	Instrument Name	Size L×W×D (m)	Masa (Pg)	Ê¥T. 8129 ¥ (¥)	Data Rata (Mbps)	Aper- ture (m)	Accu- racy (deg)
Physics X-ray Telescope Spectrom. Solar Optical Telescope 2.7 × 1 da. (3.0 × 0.000) 4.65 30 0.4 0.003 Solar Optical Telescope Extreme UV Telescope 7.3 × 3.8 da. (3.0 × 0.4 × 0.4 143 322 2.4 0.003 Speco Solar Gamma Ray Spectrum. Extreme UV Telescope 1 × 1 × 2 1,000 500 0.1 Speco Non Mass Spectrumsfer 0.5 × 0.5 × 0.4 80 334 0.01 Plasma Bay Spectrum. Physics 0.6 × 0.7 × 0.7 + 17 36 0.016 Plasma Disgnostics 0.6 × 0.7 × 0.7 + 17 36 0.016 Proton (on) Accelerature 0.7 × 3.4 × 3.10 500 1,500 0.228 Astro-physics Proton Ray Transflor 3.7 × 2.7 da. 1.8 × 1.8 × 3 1,000 300 0.025 1 × 3 0.1 Hop Carrio Ray Transflor 3.3 da. × 4 10,000 100 0.003 3 0.1 Proto	Solar	Lyman-Alpha Coronograph	2.8 × 0.88 × 0.73	250	87	13.5	-	0.003
Solar Optical Tobescope Solar Magnetic Velocity Fleid 100 m Pintub Camera Externe UV Telescope Solar Gamma Ray Spectrom. 7.3 $\times 3.8$ dia. 6,600 2,000 50- 2.7 1.25	Physics	X-ray Telescope Spectrom.	2.7 × 1 da.	485	30	0.4	-	0.003
Solar Magnetic Velocity Field 2 × 0.4 × 0.4 163 322 2+ 0.003 Extreme UV releacepe Star Gamma Ray Spectrum. 1 × 1 × 2 1,000 500 0.5 <td>-</td> <td>Solar Optical Telescope</td> <td>7.3 × 3.8 dia.</td> <td>6,600</td> <td>2,000</td> <td>80+</td> <td>1.25</td> <td>- </td>	-	Solar Optical Telescope	7.3 × 3.8 dia.	6,600	2,000	80+	1.25	-
100 m Pintudo Camera $1 \times 1 \times 2$ 1,000 500 0.5 - - - Solar Gamma Ray Spectrom. $1 \times 1 \times 3$ 2,000 500 0.1 140 cm ² 0,003 Spicor Reama Beam Plasma $0.5 \times 0.5 \times 0.4$ 60 334 0.01 - 1 Plasma Descreta $0.5 \times 0.5 \times 0.4$ 60 334 0.01 - 1 Plasma Disgnostics $0.5 \times 0.5 \times 0.4$ 80 334 0.01 - - - Protein (lon) Accelerations $0.7 \times 0.7 + 0.7 + 0.7 + 0.000 150 0.25 = 0.5 0.200 = 0.25 - $		Solar Magnetic Velocity Field	2×0.4×0.4	163	322	2+		0.003
Extreme UV Telescope Solar Gamma Ray Spectrom. 273 × 0.88 × 0.254 1 × 1 × 3 128 2,000 1564 1.38 0.003 Sparre Physics Ion Mass Spectromeller Plasma Diagnostics Doppler Imaging Interferom. Proton (Ion) Accelerators 0.5 × 0.6 × 0.4 0.25) ³ 600 0.01 1 1 - -		100 m Pinholo Camera	1×1×2	1,000	500	0.6	_	-
Solar Gamma Ray Spectrom. 1 x 1 x 3 2,000 300 0.1 140 cm² 0.003 Space Plasma Physics Ion Mass Spectrometer Beam Plasma 0.5 x 0.5 x 0.4 0.8 x 0.7 x 0.7 + beo 0.7 dia. ant. 60 334 0.01 1 Plasma Diagnostics Depter Imaging Interferom. Proton (Ion) Accelerators 0.7 x 3.4 x 3.10 500 120 0.01		Extreme UV Telescope	2.78 × 0.85 × 0.254	128	154	1.23		
		Solar Gamma May Spectrom.	12123	2,000	500	0.1	140 CM ²	0.003
Plasma Physics Beam Plasma Physics $0.6 \times 0.7 \times 0.7 + bw 0.7$ dia. ant. bw 0.7 dia. ant. bw 0.7 dia. ant. - 17 38 0.016 6 Physics Plasma Diagnostics Doppier Imaging Interferon. Proton (Ion) Accelerations - 2,000 250 50 <	Space	Ion Mass Spectrometer	0.5 × 0.5 × 0.4	60	334	0.01	_	1
Physics Plasma Disgnostics Depter Imaging Interform. Proton (Ion) Accelerators beo 0.7 dia. ant. (0.25) ³ 100 200 250 50 High Energy Also- physics Gamma Ray Burst 2 × 4 db. 1,000 120 0.01 3	Plasma	Beam Plasma	0.6 x 0.7 x 0.7 +	17	38	0.016	—	6
Plasma Disgnostics Doppier Imaging Interferom. Protom (Ion) Accelerators $-$ (0.25) ³ 6.7 × 3.4 × 3.10 2000 600 250 100 620 0.2 $-$ (4.2 TV) $-$ (4.2 TV) High Energy Astro- physics Gamma Ray Buret Cosmic Ray Tranaition X-ray Spectrom/Polarimeter physics 2×4 dia. 3.7×2.7 dia. Short X-ray $1,000$ 120 0.01 3 $-$ 0.1 Hi Energy Gamma Ray Tela. $3 dia \times 4$ $1,000$ 300 0.025 1×3 0.1 Hi Energy Gamma Ray Tela. $3 dia \times 4$ $10,000$ 100 0.003 $ 0.1$ Resources Gravity Gradiomotor Synthetic Aperture Radar Multi-Spectral M6d-IR 0.23 m ephene $2.8 \times 3.7 \times 1.4$ 3030 3000 120 8×2.8 2.5 Multi-Spectral M6d-IR Thematic Mapper $1 \times 1 \times 2$ 900 500 0 $ -$ Processing Solidification Experiment Assem. Processing $1 \times 1 \times 2$ 900 500 0 $ -$ Life Sciences Life Science Lab Module 7×4 dia. $6,800$ $8-25$ 1.0 $ -$	Physics		bwo 0.7 dia. ant.				<u></u>	
Depper Imaging Interferom. Proton (ion) Accelerations $(0.25)^3$ 100 620 0.2 $ -$ High Energy Asbo- physics Gamma Ray Burst Cosmic Ray Transition 2×4 dia. $1,000$ 120 0.01 3 $-$ Asbo- physics Gamma Ray Burst Cosmic Ray Transition 3.7×2.7 dia. $1,600$ 220 0.01 3 $-$ Asbo- physics Short X-ray Short X-ray $1.8 \times 1.8 \times 3$ $2,000$ 300 0.025 1×3 0.1 Resources Grawity Gradiometer Synthetic Aperture Rader Muti-Spectral Mod-IR 0.23 m sphere 10 1 1×2 900 300 100 0.003 3 0.1 Resources Grawity Gradiometer Synthetic Aperture Rader Muti-Spectral Mod-IR 0.23 m sphere 10 1 1×2 900 300 $1 \otimes 2$ 8×2.8 2.5 Resources Grawity Gradiometer Synthetic Aperture Rader Muti-Spectral Mad-IR $1 \times 1 \times 2$ 900 500 0 $ -$ <		Plasma Diagnostics	_	2,000	250	5 0	—	—
Proton (ion) Accessrations $6.7 \times 3.4 \times 3.10$ 500 $1,500$ 0.288 $ 1$ High Energy Altro- physics Gamma Ray Burst $2 \times 4 dia.$ $1,000$ 120 0.01 3 $-$ Altro- physics Cosmic Ray Transition $3.7 \times 2.7 dis.$ $1,600$ 230 0.001 3 $-$ Altro- physics Short X-ray Field State $2.44 dis.$ $1,000$ 200 0.03 $ 0.1$ Altro- physics Short X-ray Field State $3.42.7 dis.$ $1,000$ 0.003 $ 0.1$ Altro-physics Gravity Gradiometer $0.23 m$ sphere 10 1 1×2 0.00 300 1×0.1 0.1 Resources Gravity Gradiometer $0.23 m$ sphere 10 1 $1 - 2$ 0.003 30 1 0.1 Resources Gravity Gradiometer $0.23 m$ sphere 100 1 $0.20 30$ 1 0.1 Higherials Experiment Assean		Doppler Imaging Interferom.	(0.25) ³	100	620	0.2	-	-
High Energy Astro- physics Camma Ray Burst Cosmic Ray Transition 2×4 db. 3.7×2.7 db. $1.8 \times 1.8 \times 3$ $1,000$ 120 0.01 3 $-$ Astro- physics X-ray Spectrom/Polarimster Short X-ray $1.8 \times 1.8 \times 3$ $2,000$ 300 0.03 $ 0.1$ Resources Gravity Gradiometer Synthetic Aperture Radar Mubi-Spectral Mod-IR Thermatic Mapper 0.23 m sphere $2.8 \times 3.7 \times 1.4$ $10,000$ 100 0.003 $ 0.1$ Resources Gravity Gradiometer Synthetic Aperture Radar Mubi-Spectral Mod-IR Thermatic Mapper 0.23 m sphere $2.8 \times 3.7 \times 1.4$ 600 300 120 8×2.8 2.5 Mubi-Spectral Mod-IR Thermatic Mapper $1 \times 1 \times 2$ 900 300 1 0.1 Attentals Experiment Assem. $1 \times 1 \times 2$ 900 300 0.02 $ -$ Processing Solitification Experiment Solitification Experiment Solitification Experiment Solitification Experiment Solitification Experiment Solitification Experiment Solitification Experiment 4.8×1.9 dia. $-$ 800 125 0.52 $ -$ Environ- mental Linb Scanning Red		Proton (Ion) Accelerators	6.7 × 3.4 × 3.10	500	1,500	0.256	_	1
High Energy Astro- physics Gamma Ray Burst Cosmic Ray Tranation 2 × 4 dia. 1,000 120 0.01 3 Astro- physics X-ray Spectrom./Polarimster Short X-ray 1,8 × 1.8 × 3 2,000 300 0.03 0.1 Resources Gravity Gradiometer Synthetic Aperture Radar 3 dia. × 4 10,000 100 0.003 3 0.1 Resources Gravity Gradiometer Synthetic Aperture Radar 0.23 m sphere 2.8 × 3.7 × 1.4 10 1 1-2 1-2 Multi-Spectral Mid-IR Thematic Mapper 0.23 m sphere 2.8 × 3.7 × 1.4 100 10 0.003 3 0.1 Multi-Spectral Mid-IR Thematic Mapper 1.5 × 1 dia. 800 900 30 0.022 - - Processing Materials Experiment Assem. 1 × 1 × 2 900 500 0 - - - Intermatic Mapper 7 × 4 dia. 6,800 8-25 1.0 - - - - Intermatic Mapper 4.8 × 1.9 dia. - 800 125 0.52 -						6475 1.41		
Energy Astro- physics Cosmic Ray Transition X-ray Spectrom/Polarimeter 3.7 × 2.7 dia. 1.8 × 1.8 × 3 1,600 220 0.10 2.70 0.1 Astro- physics X-ray Spectrom/Polarimeter Short X-ray 1.8 × 1.8 × 3 2,000 300 0.03 0.1 Resources Gravity Gradiometer Synthetic Aperture Radar Multi-Spectral Mod-IR 0.23 m sphere 10 1 1 1-2 Resources Gravity Gradiometer Synthetic Aperture Radar Thematic Mapper 0.23 m sphere 10 1 1 1-2 Multi-Spectral Mod-IR 1.5 × 1 dia. 800 300 0.02 Processing Materials Experiment Assem. 1 × 1 × 2 900 500 0 Vie Life Sciences Lab Module 7 × 4 dia. 6,800 8-25 1.0 Environ- mental Life Sciences Lab Module 7 × 4 dia. - 800 125 0.52 Life Sciences Lab Module 7 × 4 dia. - 800 125 0.52	High	Gamma Ray Burst	2 × 4 dfa.	1,000	120	0.01	3	-
Astro- physics X-ray Spectrom/Polarimeter Short X-ray 1.6 × 1.6 × 3 1 × 1 × 3 2,000 1 × 1 × 3 300 300 0.03 0.025 1 × 3 0.1 0.1 Resources Gravity Gradiometer Synthetic Aperture Radar Multi-Spectral Md-IR Thematic Mapper 0.23 m sphere 2.8 × 3.7 × 1.4 10,000 100 0.003 3 0.1 Materials Gravity Gradiometer Synthetic Aperture Radar Multi-Spectral Md-IR Thematic Mapper 0.23 m sphere 2.8 × 3.7 × 1.4 10 1 1 1-2 Multi-Spectral Md-IR Thematic Mapper 0.23 m sphere 2.8 × 3.7 × 1.4 803 3,000 30 1 0.1 Materials Multi-Spectral Md-IR Multi-Spectral Md-IR 1.5 × 1 dia. 800 900 30 0 Vite Solidification Experiment Assem. Solidification Experiment 1 × 1 × 2 900 500 0	Energy	Cosmic Ray Transition	3.7 × 2.7 dis.	1,500	230	0.10	2.70	
projects Short X-ray HI Energy Gamma Ray Telo. 1 × 1 × 3 3 dla. × 4 1,000 100 300 0.025 1 × 3 1 × 3 0.1 0.003 Resources Grevity Gradiometer Synthetic Aperture Radar Multi-Spectral Mod-IR Thematic Mapper 0.23 m sphere 2.8 × 3.7 × 1.4 1.5 × 1 dla. 10 1 1 1-2 8 × 2.8 12 2.5 Matterials Processing Materials Experiment Assem. Solutification Expertment 1 × 1 × 2 2 × 0.7 × 0.9 900 239 500 250 0 - - Materials Sciences Materials Experiment Assem. Sciences 1 × 1 × 2 1 × 1 × 2 900 30,000 0.02 - - - Life Science Lab Mochule 7 × 4 dla. 6,800 8 8-25 1.0 1.0 - - - Envicor- mental Limb Scanning Radiometer Dual Frequency Scatterom. Docean SAR 4.8 × 1.9 dia. 20 × 2 × 0.2 - 200 120 0.01 4.6 × 0.3 1 1 Ceans Mar 20 × 2 × 0.2 250 300 120 20 × 2 0.1 0.1 - - - Soler Spectrum Doppter Imager Photometric Imaging 1.4 × 1.4 × 0.5 147 330 0.01 - ±3.5 <td>Astro-</td> <td>X-ray Spectrom/Polarimeter</td> <td>1.8 × 1.8 × 3</td> <td>2,000</td> <td>300</td> <td>0.03</td> <td>-</td> <td>0.1</td>	Astro-	X-ray Spectrom/Polarimeter	1.8 × 1.8 × 3	2,000	300	0.03	-	0.1
Hit Energy Gamma Hay Tale. 3 dia. ×4 10,000 100 0.003 3 0.1 Resources Gravity Gradiomotor 0.23 m sphere 10 1 1 1-2 1-2 Synthetic Aperture Radar 2.8 × 3.7 × 1.4 803 3,000 120 8 × 2.8 2.5 Multi-Spectral Md-IR 1.5 × 1 dia. 800 900 30 1 0.1 Processing Materials Experiment Assem. 1 × 1 × 2 900 500 0 Processing Solidification Experiment 1 × 1 × 2 900 500 0 Life Sciences 1 × 1 × 2 900 500 0 Life Sciences 1 × 1 × 2 900 500 0.2 Life Sciences 1 × 1 × 2 900 500 0.2 Sciences Lifts Science Lab Module 7 × 4 dia. 6,800 8-25 1.0	projesces	Short X-ray	1×1×3	1,000	300	0.025	1×3	0.1
Resources Gravity Gradiometer Synthetic Aperture Radar Multi-Spectral Mid-IR Thematic Mapper 0.23 m sphere 2.8 × 3.7 × 1.4 1.5 × 1 dia. 2 × 0.7 × 0.9 10 1 1 1-2 Multi-Spectral Mid-IR Thematic Mapper 1.5 × 1 dia. 2 × 0.7 × 0.9 800 900 30 1 0.1 Materials Solidification Experiment Assem. Solidification Experiment 1 × 1 × 2 900 500 0 Life Sciences Uite Science Lab Module 7 × 4 dia. 6,800 8-25 1.0 Environ- mental Limb Science/Radiometer Microwave Radiometer 4.8 × 1.9 dia. ~ 800 125 0.52 Environ- mental Limb Science/Radiometer Dual Frequency Scienterom. 4.8 × 1.9 dia. ~ 800 125 0.52 Cean SAR Doppter Imager 0.4 × 0.3 × 0.8 16 60 Low ±83 Comm. TDRS Comm. Payload 2.6 × 2.5 × 1 680 715 300 (x2) 4.8 -0.3 Comm. ToRS Comm. Payload 2.6 × 2.5 × 1 680 715		HI Energy Gamma Hay Tele.	3 CIA. × 4	10,000	100	800.0	3	0,1
Synthetic Aperture Radar Multi-Spectral Mod-IR Thematic Mapper 2.8 × 3.7 × 1.4 1.5 × 1 dia. 2 × 0.7 × 0.9 803 239 3,000 120 30 8 × 2.8 1 2.5 0.406 Materials Processing Materials Experiment Assem. Solidification Expertment 1 × 1 × 2 900 500 0 Life Solidification Experiment 1 × 1 × 2 900 500 0 Life Solidification Experiment 7 × 4 dia. 6,800 8-25 1.0 Environ- mental Linb Scanning Radiometer Microwave Radiometer 4.8 × 1.9 dia. ~ 800 125 0.52 Dual Frequency Scatterom, Soler Spectrum 0.4 × 0.3 × 0.8 16 60 1.00 Oppler Imager Photometric Imaging 1.4 × 1.4 × 0.5 147 320 0.01 4.8 × 0.3 1 Comm. TDRS Comm. Payload 2.6 × 2.5 × 1 680 715 300 (x2) 4.8 ~ 0.3 + 50	Resources	Gravity Gradiometer	0.23 m sphere	10	1			1-2
Multi-Spectral M8d-IR Thematic Mapper 1.5 × 1 dia. 2 × 0.7 × 0.9 800 239 900 290 30 85 1 0.1 0.406 Materials Processing Materials Experiment Assem. Solidification Experiment 1 × 1 × 2 900 500 0 Life Sciences Life Science Lab Module 7 × 4 dia. 6,800 8-25 1.0 Life Sciences Life Science Lab Module 7 × 4 dia. 6,800 8-25 1.0 Environ- mental Limb Scanning Rediometer Microwave Radiometer 4.8 × 1.9 dia. ~ 800 125 0.52 Environ- mental Limb Scanning Rediometer Microwave Radiometer 4.8 × 1.9 dia. ~ 800 125 0.52 Cean SAR 20 × 2 × 0.2 250 300 120 29 × 2 0.1 Soler Spectrum 0.4 × 0.3 × 0.8 16 60 Low 4.3 Doppter Imager 1.25 × 0.6 × 0.8 191 165 20 4.3 Photometric Imagi		Synthetic Aperture Radar	2.8 × 3.7 × 1.4	803	3,000	120	8×2.8	2.5
Thematic Mapper 2 × 0.7 × 0.9 239 280 85 0.406 0.08 Materials Materials Experiment Assem. Solitification Experiment 1 × 1 × 2 900 500 0 <i>Processing</i> Solitification Experiment 1 × 1 × 2 900 500 0.02 <i>Life</i> Solitification Experiment 7 × 4 dla. 6,800 8-25 1.0 <i>Life</i> Life Science Lab Module 7 × 4 dla. 6,800 8-25 1.0 <i>Embron-</i> Microwave Radiometer 4.8 × 1.9 dia. ~ 800 125 0.52 <i>Embron-</i> Microwave Radiometer 4.8 × 1.9 dia. ~ 800 125 0.52 Dual Frequency Scatterom. 4.8 × 1.9 dia. ~ 800 125 0.52 Ocean SAR 20 × 2 × 0.2 250 300 120 20 × 2 0.1 Solar Spectrum 0.4 × 0.3 × 0.6 16 60		Multi-Spectral Mid-IR	1.5 x 1 da.	800	900	30	1	0.1
Materials Processing Materials Experiment Assem. Solidification Experiment 1 × 1 × 2 900 500 0 Life Sciences Life Science Lab Module 7 × 4 dla. 6,800 8-25 1.0 Life Sciences Life Science Lab Module 7 × 4 dla. 6,800 8-25 1.0 Emicron- mental Limb Scanning Rediometer Microwave Radiometer 4.8 × 1.9 dia. ~ 800 125 0.52 Emicron- mental Microwave Radiometer Dual Frequency Scatterom, Ocean SAR 4.8 × 1.5 × 0.3 150 200 0.01 4.8 × 0.3 1 20 × 2 × 0.2 250 300 120 20 × 2 0.1 4.8 × 0.3 × 0.8 16 60 Low - ±3 Dopptar Imager Photometric Imaging 1.4 × 1.4 × 0.5 147 330 0.01 - ±1.8 Comm. DSC\$ III 550 491 -		Thematic Mapper	2 × 0.7 × 0.9	239	280	85	0.406	0.08
Processing Solidification Expertment 1,100 3,000 0.02 Life Life Science Lab Module 7 × 4 dla. 6,800 8-25 1.0 Sciences Limb Sciencing Radiometer 4.8 × 1.9 dia. ~ 800 125 0.52 Emotron- mental Limb Sciencing Radiometer 4.8 × 1.9 dia. ~ 800 125 0.52 Emotron- mental Microwayo Radiometer 4.8 × 1.9 dia. ~ 800 125 0.52 Dual Frequency Scatterom. 4.8 × 1.5 × 0.3 150 200 0.01 4.8 × 0.3 1 Ocean SAR 20 × 2 × 0.2 250 300 120 20 × 2 0.1 Soler Spectrum 0.4 × 0.3 × 0.6 16 60 Low ±3 Doppter Imager 1.25 × 0.6 × 0.8 191 165 20 ±3 Comm. TDRS Comm. Payload 2.6 × 2.5 × 1 680 715 300 (x2) 4.8	Matariais	Materials Experiment Assem.	1×1×2	600	500	0	_	_
Life Sciences Life Science Lab Module 7 × 4 dia. 6,800 8-25 1.0 <	Processing	Solidification Experiment		1,100	3,000	0.02	_	-
Sciences Line octation can include 1.0 model 1.0 model<	1.000	Life Science Lab Morbile	7 x 4 dia.	8 800	8-25	10	_	_
Emilion- mental Limb Scanning Radiometer 4.8 × 1.9 dia. ~ 800 125 0.52 Microwave Radiometer mental 4.8 × 1.9 dia. ~ 800 125 0.52 Microwave Radiometer Dual Frequency Scatterom. 4.8 × 1.5 × 0.3 150 200 0.01 4.8 × 0.3 1 Ocean SAR 20 × 2 × 0.2 250 300 120 20 × 2 0.1 Solar Spectrum 0.4 × 0.3 × 0.8 16 60 Low ±3 Doppter Imager 1.25 × 0.6 × 0.8 191 165 20 ±1.8 Comm. TDRS Comm. Payload 2.8 × 2.5 × 1 680 715 300 (x2) 4.8 ~ 0.3 + 50	Sciences		101946	0,000	Ŵ	1.4	_	_
Emitorial Limb Scanning Headometer 4.8 × 1.9 out. ~ 800 125 0.52 mental Microwaya Radiometer 4 × 4 × 4 325 470 0.20 4 ±0.1 Dual Frequency Scatterom. 4.8 × 1.5 × 0.3 150 200 0.01 4.8 × 0.3 1 Ocean SAR 20 × 2 × 0.2 250 300 120 20 × 2 0.1 Solar Spectrum 0.4 × 0.3 × 0.6 16 60 Low ±3 Doppter Imager 1.25 × 0.6 × 0.8 191 165 20 ±3 Photometric Imaging 1.4 × 1.4 × 0.5 147 330 0.01 ±1.5 Comm. TDRS Comm. Payload 2.6 × 2.5 × 1 680 715 300 (x2) 4.8 ~ 0.3 + 50 550 491								
Matrometer 4 × • × • 323 470 0.20 4 20.1 Dual Frequency Scatterom. 4.8 × 1.5 × 0.3 150 200 0.01 4.8 × 0.3 1 Ocean SAR 20 × 2 × 0.2 250 300 120 20 × 2 0.1 Solar Spectrum 0.4 × 0.3 × 0.6 16 60 Low ±3 Doppter Imager 1.25 × 0.6 × 0.8 191 165 20 ±3 Photometric Imaging 1.4 × 1.4 × 0.5 147 330 0.01 ±1.5 Comm. TDRS Comm. Payload 2.5 × 2.5 × 1 680 715 300 (x2) 4.8 ~ 0.3 + 50 DSCS III 550 491	Emuon-	LIND Scanning Hadiometer	4.8 × 1.9 00a.	~ 800	125	0.52		
Dual Frequency Scatteront. 4.6 × 1.5 × 0.3 150 200 0.01 4.6 × 0.3 1 Ocean SAR 20 × 2 × 0.2 250 300 120 20 × 2 0.1 Solar Spectrum 0.4 × 0.3 × 0.6 16 60 Low ±3 Dopplar Imager 1.25 × 0.6 × 0.8 191 165 20 ±3 Photometric Imaging 1.4 × 1.4 × 0.5 147 330 0.01 ±1.5 Comm. TDRS Comm. Payload 2.6 × 2.5 × 1 680 715 300 (x2) 4.8 ~ 0.3 + 50 - - 550 491	menter	Microwaya Hadiometer	42424	325	4/0	0.20	40.00	#0.1
Solar Spectrum 0.4 × 0.3 × 0.6 16 60 Low - ±3 Dopptar Imager 1.25 × 0.6 × 0.8 191 165 20 ±3 Photometric Imaging 1.4 × 1.4 × 0.5 147 330 0.01 ±1.5 Comm. TDRS Comm. Payload 2.5 × 2.5 × 1 680 715 300 (x2) 4.8 ~ 0.3 DSCS III 550 491		Coses PAD	4.0 X 1.0 X 0.2	160	200	120	4.8 XU.3 90 - 9	
Comm TDRS Comm. Payload 2.6 × 0.6 × 0.8 191 165 20 ±1.8 Comm. TDRS Comm. Payload 2.6 × 2.5 × 1 680 715 300 (x2) 4.8 ~ 0.3 DSCS III 550 491		Color Coorter	2026244	230	800	120	60 X 6	<u>10</u>
Photometric imaging 1.4 × 1.4 × 0.5 147 330 0.01 - ±1.5 Comm. TDRS Comm. Payload 2.5 × 2.5 × 1 680 715 300 (>2) 4.8 ~ 0.3 DSCS III - 550 491 - - - -		Constant Spectrum	125 0 6 0 0 0	101	1.60	20		- 10 - 10
Comm. TDRS Comm. Payload 2.6 x 2.5 x 1 680 715 300 (x2) 4.8 ~ 0.3 DSCS III — 550 491 — — —		Photometric Issaning	1.4×14×05	147	330	0.01	_	±1.5
Comm. TDRS Comm. Payload 2.5 × 2.5 × 1 680 715 300 (×2) 4.8 ~ 0.3 + 50 + 50 DSCS III - 650 491			1.7.0.1.7.0.2.0					
DSCS III - 550 491	Солин.	TDRS Comm. Payload	2.5×2.5×1	680	715	300 (>2)	4.8	~ 0.3
		DSCS III	_	550	491	—	—	-

- -

.....

Tabla 4.3 Tabla de características	típicas de carga útil.	[5]
------------------------------------	------------------------	-----

4.5.1 Diseño de procesos de carga útil de observación

La Tabla 4.4 contiene los detalles del proceso de diseño para sistemas en visible e infrarrojo Comenzamos con los parámetros básicos de diseño, como la altura orbital, mínimo ángulo de observación y la resolución del suelo. A continuación, calculamos las cantidades que describen el rendimiento del instrumento en particular, definimos el procesamiento de parámetros de pixeles y la velocidad de datos del sistema, el tamaño de la óptica para un tamaño de pixel dado, y la radiometría del sensor. Los cálculos de nuestro satélite para la carga útil se dan en la tercera columna. La velocidad de datos requerida para cargas útiles de observación depende de la resolución, la cubierta la edad, y la precisión de la amplitud. Con el máximo ángulo de mirada, actitud nave espacial, h, y perpendicular a la trayectoria de tamaño de píxel, X, tenemos que la imagen $2\eta h/X$ píxeles por línea de barrido (cross-track). Con la nave espacial de la pista de tierra V_g velocidad y el tamaño de los píxeles a lo largo de la pista Y, tenemos que escanear V_g/Y líneas en un segundo.

Paso c	tálculos	SATELITE	comentarios
	Paso 1 Definimos parár	netros de orbita	
SE DEFINE ALTITUD DE LA ORBITA <i>,h</i>	DE LA SIMULACION	<i>h</i> =700km	ver simulación.
Calculo de periodo de órbita. <i>P</i>	Ecuación 1	<i>ρ=</i> 98.8[min]	asumimos que es una órbita circular.
Calcular la velocidad de la pista de tierra, <i>Vg</i>	Ecuación 2	<i>Vg</i> =6.78[km/h]	asumimos que es una órbita circular.
Calculo de nodo, ΔL	Ecuación 3	<i>∆L</i> =24.8 [°]	Función de inclinación.
Pa	aso 2 Definir parámetros d	le visualización del se	ensor.
Cálculo de radio angular de la Tierra, ρ	Ecuación 4	ρ=64.3[°]	Depende de la altitud de la órbita.
Cálculo de la máxima Distancia de horizonte	Ecuación 5	<i>D_{max}=3,069[Km]</i>	Depende de la altitud de la órbita.
Definir el máximo Ángulo de incidencia, IA	Parámetro diseñado por IRC*	IA=70[°]	Ajustar el ancho de franja para una buena cobertura.
Calculo del ángulo de visión del sensor (= ángulo nadir),	Ecuación 6	η=57.9[°]	será menos que ρ

Tabla 4.4 de cálculos de parámetros de diseño de sensores ópticos pasivos.

Calculo del ángulo mínimo de elevación ε=90-IA		ε=20[°]	
Calculo Max. ángulo Central de la tierra, <i>ECA_{max}</i>	Ecuación 7	<i>ECA_{max}=</i> 12.1[°]	si se da <i>ɛ,</i> calcule <i>ECA_{max}</i>
Calcular la distancia oblicua, R _s	Ecuación 8	<i>R_s</i> =1,578[km]	
Encontrar ancho de franja	2ECA _{max}	2 <i>ECA_{max}</i> =24.2 [°]	Determina cobertura.
Pa	lso 3 definir parámetros de	píxeles v velocidad de	datos
Especificar máx.	parámetros de diseño	<i>Y_{máx}=68[m]</i> Ba	sado en los
requerimientos			
distancia a lo largo		de r	esolución espacial
de la pista de		ECA	4 _{max}
muestreo del			
suelo, Y _{máx}			
Determinar el campo de visión instantáneo, IFOV	$IFOV = \frac{Y_{máx}}{R_s} \cdot \frac{180^\circ}{\pi}$	IFOV=0.00245 [°] U	In ancho de pixel.
Encontrar máx.	$X_{m\acute{a}x} = \frac{Y_{m\acute{a}x}}{\cos(IA)}$	X _{máx=} 199.8[m] i	mpulsado por la
cruz nista níxeles			n el alcance máximo de
de resolución X_{max}		in	clinación.
en ECA _{max}			
mux			
Determina la	$X = IFOV. h. \left[\frac{\pi}{180^{\circ}}\right]$] X=30[m] Me	ejor resolución
resolución de píxeles	100	per	pendicular a la
trayectoria			
de tierra perpendicu	lar	de e	este instrumento
a la trayectoria,			
X en el nadir			

Determina la	Y = IFOV.h.	$\left[\frac{\pi}{180^{\circ}}\right]$ Y=30[m	n] Mejor resolución a lo largo
de resolución de píxeles de tierra a lo largo de la pista, Y en el nadir			la trayectoria de este instrumento.
Determina numero de ruta transversal píxeles Z_c	$Z_c = \frac{2\eta}{IFO}$	\overline{V} $Z_c = 4.4x$	10 ⁴ El tamaño de pixel sobre sobre el terreno varia a lo largo de la franja
Encontrar el número sucesivas	$Z_a = \frac{V_g * 1seg}{Y}$	$Z_a = 225$	6. 6 Numero de hileras
de franjas registrado largo de la derrota en 1 segundo, Z_a			sin lagunas en el nadir
Encuentra el número de pixeles recorridos en, Z	$Z = Z_c *$	Z _a Z=1.06x1	10 ⁷
especificar el numero	Parámetros	de 8 bits	Basado sobre una
radiometrica de bits para codificar el pixel, B	diseño		resolución requerido y rango dinámico
Paso 4. D	efinir los parámetro	os de integración	de sensores
Especificar el número de pixeles para de	Parámetro de diseño	N _m =256	Debe ser lo suficientemente para permitir suficiente tiempo
Whiskbroom inst. N_m			Integración.
Encontrar pixel período	$T_i = \frac{Y}{V_a} \cdot \frac{N_m}{Z_c}$	$T_i = 24.1[\mu s]$	Tiempo de integración de
cada de integración, T_i	0		pixel del detector.
	Paso 5. Definir óp	otica del sensor	
Especificar el ancho de los detectores cuadrados, d	Parámetro de diseño	d=30[µm]	Típico para los detectores disponibles.
Especificar el factor de calidad de la imagen, Q	Parámetro de diseño	Q=1.1	0.5 <q<2(q=1.1 buena<br="" para="">calidad de imagen)</q<2(q=1.1>
Especificar la operación	Parámetro	λ=4.2[μm]	Basado en temas de oficios

de la longitud de onda ,λ	de diseño		
Definir la longitud del focal, <i>f</i>	$f=\frac{h*d}{X}$	<i>f</i> =0.7[m]	Usar la altitud
Encontrar el limite de difracción de diámetr de apertura, D	$D = rac{2.44\lambda * f * Q}{d}$ o	D=0.263[m]	
Cálculo de numero de de ópticas F, F#	$\mathbf{F} \# = \frac{f}{D}$	F#=2,7	Típico rango=4-6
Calculo del campo de visión del sistema optico, FOV	FOV = IFOV *	N _m FOV=0.628[°]	Para la matriz de pixeles
Frecuencia de corte, F_c	<i>F_c</i> =D/λh	<i>F_c</i> =0.09[linepairs/	m] Referente al Nadir
Determinar la trayectoria perpendicular para la frecuencia de Nyquist	$F_{nc}=1/2X$	$F_{nc} = 0.017[\frac{lp}{m}]$	Referido a la Tierra de la de la resolución del pixel del nadir
Determinar la trayectoria larga para la frecuencia de Nyquist	$F_{na} = 1/2Y$	$F_{na} = 0.017 \left[\frac{lp}{m}\right]$	Referido a la Tierra de la de la resolución del pixel del nadir
Calculo de la frecuencia relativa de Nyquist , F_{qc} , F_{qa}	$F_{Qc} = rac{F_{nc}}{F_c}; F_{Qa}$	$F_{Qa} = \frac{F_{na}}{F_c}; F_{Qc} = 19\%$ $F_{Qa} = 19\%$	 % de frecuencia de corte usado en este caso
Pase	o 6. Estimación Sens	sor Radiométrico (pa	ra Nadir)
Definir la operación Del ancho de banda Δλ	Parámetro de diseño	Δλ=1.9[µm]	Sobre la base de operaciones sujetas
Definir el equivalente	Parámetros	T=290[K]	Temperatura de cuerpo

negro de temperatura de cuerpo negro . T	de diseño		de la tierra
Calcular el poder	$P_{en} = \frac{L}{h^2} \cdot \left(\frac{D}{2}\right)^{2*} \pi$	P _{en} =4.3x10 ⁻¹¹ [W	V] P_{en} es la potencia de
De entrada, P_{en}			de la óptica-
Definir el factor sistemas	Parámetro	τ ₀ =0.75	Típica valuación para
óptico de transmisión, τ ₀	de diseño		ópticos.
Encontrar el poder de entrada en el detector del pixel, P _D	$P_D = P_{in} * \tau_0$	<i>P_D</i> =3.2x10 ⁻¹¹ [W] Muy poca energía llega al pixel
Determinar la energía disponible después del tiempo de integración <i>E</i>	<i>E=P_D</i> * <i>T_I</i>	<i>E</i> =7.8x10 ⁻¹⁶ [W	V] Diseño radiométrico
Encontrar número fotones disponibles N _F	N _P =Eλ/hc	N _P =1.7x10 ⁴ γ	h es la constante de planck c es la velocidad de la luz
Definir la eficiencia Cuántica, QE, del Detector de λ	Parámetro de diseño	QE=0.5 Prop de	piedad física típica de detector material
Calcular el número de ideal electrones disponible A	$N_e = N_{p*}QE$	<i>N_e</i> =8.3x10 ³	Valuado para un detector
Determinar el número ruido De electrones de ruido	$N_n = \sqrt{N_e}$ N_n	<i>N</i> _n =91	Considere un disparo de
Definir de número de	Parámetro	N _r =25	Típica valuación

lectura de los electrones de ruido N_r	de diseño		
Determinar el número total De ruido de electrones N_T	$N_T = \sqrt{N_n^2 N_r^2}$	N _T =95	Asume proceso de ruido no correlacionado
Encontrar la señal razón a ruido, SNR	$SNR=N_e/N_T$	SNR=88	Suponiendo que la señal domina el fondo

Un segundo reto con el diseño es la relativamente pobre relación señal-ruido de 88. Si consideramos un píxel en el límite del campo de vista, entonces la información radiométrica vuelve indistinguible de ruido. Finalmente el número F de la óptica de 2. 7 (impulsado por la longitud focal de 0,7 m y una abertura diámetro de 26 cm) es un diseño óptico bastante exigente. Ahora seleccionamos un "instrumento similar" de la Tabla 9-13 para nuestro satélite. Parecemos tener dos opciones: el instrumento Thematic Mapper o el Multiespectral Mid-IR. Tentativamente seleccionamos el multiespectral de Mid-IR como nuestro instrumento similar y escalará de sus parámetros fundamentales de 1,5 mx 1 m de diámetro, 800kg de peso, y 900 W de potencia, por su 1-m de abertura. Primero calculamos el radio de apertura

R=0.26/1.0= 0.26

Con este radio fundamental, ahora estimaremos nuestros parámetros de la carga útil.

Tamaño=0.4m X 0.3 m diámetro

Peso= 2 x 800 x 0.26³ = 28kg

Poder= 2 X 900 x 0.26³= 32W

De todas las misiones de satélites de observación terrestre de la ESA encontramos uno en concreto que compartía muchas características con nuestros satélites. En la siguiente tabla 4.5 se muestra los diferentes aspectos con el satélite SPOT 6 y 7 para comprobar que ampliando algunos de ellos se podría implementar una constelación de satélites SATelite1 y SATelite2 de manera real. La constelación SPOT6 y 7 son satélites de observación terrestre. Su misión es medir uso de la tierra, la agricultura, la silvicultura, geología, cartografía, ordenación del territorio etc. Spot 6 y Spot 7 forman una constelación de satélites de observación de la Tierra diseñada para garantizar la continuidad de la disponibilidad de los datos de alta resolución y campo amplia cobertura hasta 2024. Sabemos también que la vida útil de estos satélites es de diez años operativos. SATelite1 y SATelite2 también son satélites de observación del territorio entre otros. Analizamos 3 posibles alturas descartando las correspondientes a 200 y 300 km por la necesidad de un motor de iones para contrarrestar el *drag* generado por la atmósfera, por lo que SATelite1 y SATelite2 se sitúa a 700 km.

La inclinación obtenida (ecuación 4.2 de este Capítulo) era de 98,3 grados (inclinación no polar). SPOT 6 y 7 tiene una masa de 720 kg. Este peso tiene en cuenta tanto la carga útil como el combustible. Para obtener la masa de SATelite1 y SATelite2 hemos utilizado el coeficiente balístico y a una altura de 700 km la masa obtenida es de 500kg. SPOT 6 y 7 tiene paneles de 5.4m de diámetro. Por otro lado SATelite1 y SATelite2 utiliza paneles solares abatibles y su material elegido es Arseniuro de Galio. SPOT 6 y 7 tiene como sensores principales un 2 x NAOMI. SATelite1 y SATelite2 utiliza HRG ofrece imágenes con una resolución de 5 metros

Características del satélite SPOT6 y 7				
Nombre	SPOT6			
Tipo de Orbita	Órbita: Spot 6 y 7 estarán en fase sobre la misma órbita que Pléyades 1 y 2, a 694 km. de altitud			
Índice de masa	720 kg (incluyendo 60 kg de carga útil y 80 kg de combustible)			
Dimensiones	Módulo de servicio: ~ 1,55 x 1,75 x 2,7 m			
Altitud	694km			
Sensores	2 x NAOMI			
Resolución espacial	Pan: 2 m, MS: 8 m			
Cargas adicionales	NO			
Tipo de modulación	QPSK			
Cobertura	Casi todo el paneta			
Tiempo de actualización de datos	Cada 24Hrs			
Bandas espectrales	Pancromática: 0,450-0,745 µm			
	Azul: 0,450-0,520 μm			
	Verde: 0,530-0,590 µm			
	Rojo 0,625-0,695 μm			
	Infrarrojo cercano: 0,760-0,890 μm			
	Adquisición de datos simultánea en las 5 bandas.			
Aplicaciones principales	uso de la tierra, la agricultura, la silvicultura, geología, cartografía, ordenación del territorio, anejo de desastres naturales entre otros			
Vida útil	10 años			

Tabla 4.5 Características generales de la constelación SPOT6 y 7
Ahora propondremos nuestro Sistema Nacional de Percepción Remota de acuerdo a todos los análisis estudiados y descritos con anterioridad se puede proponer dicho Sistema Nacional de Percepción Remota contara con una constelación de satélite llamados SATelite1 y SATelite2 ubicados en una órbita helio síncrona, a una altura de 700km básicamente está formado de CUATRO sensores HRG(PRINCIPAL) ,HRS, Vegetación y DORIS que operan en las bandas B1, B2, B3, SWIR y PAN estos sensores nos permitirán analizar grandes extensiones del territorio mexicano cubriendo una gran cantidad de aplicaciones.

En la siguiente tabla 4.6 se muestran las características y se presenta la propuesta de nuestro Sistema Nacional de Percepción Remota de los satélites SATelite1 y SATelite2.

Nombre(s)	SATelite1 y SATelite2.
Tipo de Orbita	Órbita SATelite1 y SATelite2, a 700 km. de
	altitud
Índice de masa	500 kg (incluyendo 28 kg de carga útil y 80 kg de combustible)
Dimensiones	Módulo de servicio: ~ 1,55 x 1,75 x 2,7 m
Altitud	Se consideran 3
	diferentes alturas:
	· En las dos primeras órbitas
	correspondientes a 200 y 300
	km. Seria necesario un motor
	de lones para contrarrestar el
	arug generado por la atmosfera. Se situara el
	utilizada en los satélites de observación
	terrestre. Además el efecto del <i>drag</i> es mucho
	menor a medida que la atmosfera se acaba, así
	que nos afecta mucho menos a 700 km. Es por
	esto que elegimos esta altura para SATelite1 y
	SATelite2.
Sensores	HRG Pap: 5 m (2.5 m suparmoda)
Resolution espacial	MS: 10 m, SWIR: 20 m
Cargas adicionales	VEGETATION, DORIS, HRS
Tipo de modulación	QPSK
Cobertura	Todo el territorio mexicano incluyendo dominio
	marítimo pudiendo ofrecer sus servicios en
	américa latina
l lempo de actualización de datos	Cada 24Hrs
Bandas espectrales	PAN a SIII Banda1 vicible, Banda2 Infrarreie medie
	Banda 3 Vanor de agua a 10m - SWIR a 20m
Aplicaciones principales	Uso de la tierra, la agricultura, la silvicultura.
	geología, cartografía, ordenación del territorio,
	y de desastres naturales entre otros
Vida útil	5 años
inclinaciones	Las inclinaciones utilizadas han
	sido el producto de la ecuación
	1.2 Dara los dos primoros sasos obtunimos
	4.2. Para los dos primeros casos obtuvimos
	4.2. Para los dos primeros casos obtuvimos inclinaciones de 96,42gradosy 96,77grados. Para el caso de SATelite1 y SATelite2 La

Tabla 4.6 Características generales y propuesta de nuestro Sistema Nacional de Percepción Remota [1] Ing. Martínez Muñoz Julio, Percepción Remota "Fundamentos de Teledetección Espacial", Primera edición 2005.

[2] http://www.nasa.gov/multimedia/imagegallery/index.html

[3] http://www.ehowenespanol.com/efectos-radiacion-solar-sobre_85799/

[4] http://www.astromia.com/glosario/ciclosolar.htm

[5] Robert A. Schowengerdt, REMOTE SENSING models and methods for image Processing, Third edition 2006.

CAPITULO 5

5. Algunos ejemplos de satélites de observación de la Tierra y sus características técnicas.

5.1. El Programa Landsat

Los satélites Landsat, administrados por la United States Geological Survey (USGS- Servicio Geológico de los Estados Unidos) – y la NASA, han tomado imágenes de resolución espacial media desde el año 1972. La misión más actual, Landsat 7 ETM+ (Enhanced Thematic Mapper +) fue lanzada en abril de 1999 (Figura 5.2). Provee imágenes útiles para diversas aplicaciones como la identificación de recursos de la Tierra, el estudio de la superficie del terreno e identificación de coberturas, monitoreo ambiental, agricultura y forestación, monitoreo y evaluación de desastres, detección de coberturas de nieve y hielo, y el monitoreo del cambio geológico.

Figura 5.2 Representación del satélite Landsat 7 en órbita. Crédito de la imagen: NASA

5.1.1. LANDSAT 7

Actualmente se tiene un último satélite de esta serie, el denominado LANDSAT 7. Este satélite tiene un peso de 1,969 Kg, perigeo de 701 Km, apogeo de 703 Km e inclinación de 98.2°. LANDSAT 7 consta, al igual que sus predecesores de los instrumentos anteriores a bordo, aunando además: Scanner multiespectral (MSS): Tiene está cámara una resolución de 30m para todas sus bandas, excepto para el infrarrojo térmico que consigue resoluciones espaciales de 60m. Este instrumento brinda la posibilidad de realizar mapas temáticos. Cámara pancromática (Pan): Con una resolución de hasta 15 metros, la utilización de esta cámara por los científicos se desarrolla dentro del campo de la cartografía. Cuenta además con un nuevo sensor denominado ETM+ (Enhanced Thematic Mapper Plus). Su operación es administrada por la NASA (National Space and Space Administration) y la producción y comercialización de imágenes depende del USGS (United Sates Geological Survey). Una imagen LANDSAT 7 ETM+ está compuesta por 8 bandas espectrales que pueden ser combinadas de distintas formas para obtener variadas composiciones decolor u opciones de procesamiento. Entre las principales mejoras técnicas respecto de su antecesor, el satélite LANDSAT 5, se destaca la adición de una banda espectral (Banda Pancromática) con resolución de 15 metros. También, cuenta con mejoras en las características geométricas y radiométricas y una mayor resolución espacial de la banda térmica para 60 m. Estos avances permiten emplear datos del LANDSAT 7 en aplicaciones directas hasta una escala de 1:25.000, principalmente, en áreas rurales o territorios de grandes extensiones. El intervalo espectral y espacial del Satélite LANDSAT 7 se muestra en la siguiente Tabla 5.2:

Banda.	Número de rango espectral	Resolución espacial (m).
	(micras).	
1	0.45 a 0.515	30
2	0.525 a 0.605	30
3	0.63 a 0.690	30
4	0.75 a 0.90	30
5	1.55 a 1.75	30
6	10.40 a 12.5	60
7	2.09 a 2.35	30
8 (Pan)	0.52 a 0.90	15

Tabla 5	5.2
---------	-----

5.1.2 Envisat (Environmental Satellite)

Fue lanzado en marzo de 2002 por la ESA (Figura 5.3). Su principal objetivo es brindarle a las naciones europeas una plataforma de percepción remota para colaborar en estudios medioambientales. Lleva un sensor activo llamado Advanced Synthetic Aperture Radar (ASAR-Radar de Apertura Sintética Avanzado). Este instrumento es muy útil para una amplia variedad de aplicaciones, incluyendo el estudio de las corrientes oceánicas, la topografía oceánica y del terreno, la detección y monitoreo de los derrames de petróleo en el mar, etc. Además a bordo del ENVISAT se encuentra un sensor óptico pasivo que se utiliza para aplicaciones atmosféricas, del terreno y del océano y regiones costeras como imágenes de color oceánico, de vegetación y cobertura de nubes y/o precipitaciones. Posee también un sensor infrarrojo que proporciona con gran exactitud datos sobre la temperatura superficial del mar y la vegetación del suelo. Un paquete de tres instrumentos que miden concentraciones de elementos químicos atmosféricos proporciona datos acerca de los gases residuales menores y de contaminantes atmosféricos.

Figura 5.3 Representación del satélite Envisat. Crédito de la imagen: Agencia Espacial Europea.

Los sensores que utiliza son:

*ASAR (advanced synthetic aperture radar).- Vigila la superficie del planeta generando imágenes de amplia o reducida cobertura geográfica, que supervisa el relieve terrestre.

*MERIS (medium resolution imaging specrometer instrument).- Toma imágenes de la superficie del planeta y de las nubes capturando la luz de las zonas visible e infrarroja del espectro electromagnético. Es capaz de conocer el color exacto de la superficie oceánica y zonas costeras, reflejar la actividad biológica, observar las nubes, detectar el vapor de agua invisible de la atmósfera e identificar las distintas etapas de crecimiento de las plantas.

*RA-2 Y MWR (radar altimeter 2 & microwave radiometer).- Miden con una exactitud de 4.5 cm la distancia desde el satélite hasta la superficie del planeta. Su combinación con otros datos permite trazar el perfil de la superficie del mar o hielo, condiciones de las olas y velocidad del viento en el océano.

*GOMOS (global ozone monitoring by occultation of stars).- Sigue las estrellas y mide sus espectros electromagnéticos. Es capaz de producir tantos datos como una red de 360 estaciones de terrenas.

*MIPAS (michelson interferometer for passive atmospheric sounding).- Observa laatmósfera en el rango infrarrojo medio y es capaz de rastrear agentes contaminadores industriales y gases de efecto invernadero.

*AATSR (advanced along track scanning radiometer).- Explora la superficie del océano en varias frecuencias infrarrojas y visibles para medir exactamente su temperatura. La de la superficie del mar la precisa a una exactitud de 0.3 °C.

*DORIS Y EL LLR (doppler orbitography and radiopositioning integrated by satellite & laser retroreflector).- Miden su posición orbital con una exactitud de 4.5 cm y su velocidad orbital con una exactitud de 0.4 mm/s. Producen mapas de la superficie del océano y de la topografía terrestre.

*SCIAMACHY (scanning imaging absorption spectrometer for atmospheric chartography).- Vigila la atmósfera en un amplio rango de longitudes de onda, lo que permite medir cantidades totales y perfiles de gases.

La siguiente Tabla 5.1 muestra un resumen técnico de los sensores del satélite ENVISAT.

INSTRUMENTO	CICLO	RESOLUCIÓN GEOMÉTRICA	LONGITUD DE ONDA	RANGO DE FRECUENCIA
ASAR	Continuo	Imagen: 30X30 m	Banda C	5.3331 GHz
	Imagen-30 min	Ancho de barrido:		
		150 X150 Km		
		Global: 1X1 km		
GOMOS	Continuo	17 Km vertical	UV, Visible	250-952 nm
			IR cercano	
LLR			Visible	532-694 nm
MERIS	Solo de día	Completo: 250 X250 m	Visible	390-1,040 nm
	(43 min)	Reducido: 1 X 1 Km	IR Cercano	
MIPAS	Continuo	3 Km vertical	IR medio	4.2-14.6 μm
MWR	Continuo	20 km	Banda K y Ka	23.8 GHz
				36.5 GHz
RA-2	Continuo		S-,Banda Ku	3.2 GHz
AATSR	Continuo	1X1 Km.	Visible	13.57 GHz
			IR cercano	
			IR medio	
DORIS	Continuo	Orbita: 10m radial	Banda S	0.55;0.67;0.865;1.6;3.
		25 m otras		7;10.85;12 µm
SCIAMACHY	Continuo	3 Km vertical	UV, visible,	240-2,380 nm
			IR cercano	

Tabla 5.1 Características principales de los sensores de ENVISAT.

5.1.3 IKONOS

5.1.3.1 Disposición de datos de IKONOS

El satélite IKONOS-2 fue lanzado en septiembre de 1999 y ha estado entregando datos comerciales desde principios de 2000. IKONOS es el primero de la generación de satélites espaciales de alta resolución. Esto significa que el satélite IKONOS es el primer satélite de tipo comercial que posibilita la captación de imágenes con un metro de resolución espacial. El término "IKONOS" proviene del griego y significa "imagen". IKONOS colecta información de cualquier área en promedio dos veces al día, cubriendo áreas de 20,000 km2 en una misma pasada y produciendo como resultado imágenes de 1 metro de resolución cada tres días y de 2 m de resolución todos los días. El satélite IKONOS pesa unos 720 Kg. y órbita la Tierra cada 98 minutos a una altitud de casi 680 Km. en forma sincronizada con el Sol, pasando sobre un determinado lugar aproximadamente a las 10:30 a.m. hora local. La órbita cubierta por el satélite se concentra lejos del área directamente debajo del recorrido del mismo, y los datos de un lugar determinado puede ser captados casi diariamente, si bien no en todos los casos con 1 m de resolución. El sensor digital de imágenes del satélite está diseñado para producir imágenes con elevado contraste, resolución espacial y precisión. Fecha de lanzamiento del satélite: 24/09/99

- Lugar de lanzamiento: Vandenberg Air Force Base, California /USA
- Altitud: 681 km
- Inclinación: 98.1º
- Velocidad: 7km/s
- Sentido de la órbita: descendente

- Duración de la órbita: 98 minutos
- Tipo de órbita: sincrónica con el sol
- Angulo de vista: rápida alternancia entre diferentes ángulos
- Tiempo de revista: 1 a 3 días
- Resolución en el terreno de cada banda:

f Pancromática: 1m (considerando posición nominal de 26º para el nadir)

f Multiespectral: 4m (considerando posición nominal de 26º para el nadir)

• Bandas espectrales:

f Pan: 0.45 - 0.90 μm

f Azul: 0.45 - 0.52 μm

f Verde: 0.52 - 0.60 μm

f Rojo: 0.63 - 0.69 μm

f Infrarrojo próximo: 0.76 - 0.90 μm

• Rango Dinámico: posibilita que la información sea almacenada en 11 bits por píxel, con lo cual redunda en un mayor rango dinámico que facilita el contraste y discriminación de la información. No obstante, los productos pueden ser entregados al usuario en 8 bits por píxel.

• La operación de sus bandas se resume en la tabla 5.3

	Ancho de banda	Resolución espacial
Pancromático	0,45 - los 0.90µm	1 metro
Banda 1	0,45 - los 0.53µm (azul)	4 metros
Banda 2	0,52 - los 0.61µm (verde)	4 metros
Banda 3	0,64 - los 0.72µm (rojo)	4 metros
Banda 4	0,77 - los 0.88µm (cerca de infrarrojo)	4 metros

Tabla 5.3

5.1.3.2 Aplicaciones y ventajas de las imágenes IKONOS

Por el hecho de ser IKONOS el primer satélite comercial que brinda un producto de 1 m de resolución espacial, se tiene la posibilidad de definir los tipos de estándares para imágenes de alta resolución. A través de estas imágenes, ofrece más que simples datos, ya que brinda valiosa información que ayudará a los usuarios a tomar decisiones sobre la base de un cubrimiento diario. A través de la utilización de productos elaborados por IKONOS y otros satélites tales como LANDSAT, actualmente es posible que:

• Los agricultores pueden monitorear con mayor precisión la condición y vitalidad de sus cultivos y predecir con mayor acierto sus volúmenes de cosecha; además, pueden prevenir problemas y ahorrar importantes sumas de dinero a través de su determinación en estados tempranos.

• Los científicos ambientalistas pueden predecir tendencias en áreas de elevada fragilidad ambiental.

• Los planeadores urbanísticos pueden evaluar los avances de planes comunales de viviendas y las compañías de seguros pueden medir y mapear daños a propiedades luego de desastres naturales.

• Los geólogos ya no necesitarán recurrir a vuelos fotográficos para interpretaciones geológicoestructurales. A partir de la posibilidad que ofrece IKONOS de generar productos con elevado nivel de resolución y recubrimiento estereoscópico, estas imágenes resultan comparativamente más ventajosas que las fotografías aéreas. Entre las ventajas merecen citarse:

1.- Mejor calidad métrica y geométrica. Con IKONOS es posible obtener una orto imagen que cubra totalmente el área de interés, a partir de sólo unos pocos puntos de control terrestre, reduciendo así considerablemente el tiempo de procesamiento.

2.-No requieren procesos de mosaicos.

3.- Posibilitan la visualización e interpretación estereoscópica tradicional, más la posibilidad de realizar estéreo análisis digital

4.- La interpretación estereoscópica digital facilita el y la integración de la información en una base de datos georreferenciada, posibilitando la superposición y el modelado espacial.

5.- Permite la utilización de diferentes combinaciones de bandas espectrales, incluyendo productos en infrarrojo, lo que aumenta considerablemente las capacidades de diferenciación y discriminación.

6.- Posibilitan la obtención de cartografía de alta calidad en diferentes escalas y combinaciones de bandas, a partir de composiciones de mapas que incluyen diferentes capas temáticas superpuestas, símbolos cartográficos, leyendas, etc.

5.2 Conclusiones

La capacidad de la percepción remota tuvo un impórtate impacto en la primer década del siglo XXI ya que se agregaron cerca de 100 satélites a la configuración de la constelación actual. El desarrollo futuro de la percepción remota puede ubicarse en los esfuerzos que se hacen para satisfacer las diversas necesidades de los usuarios de información geográfica a través de la continua mejora en la resolución espacial de las imágenes; a este respecto, es probable que el detalle de observación tienda a desplazar el uso de la actual fotografía aérea para fines cartográficos. En el otro extremo, la disponibilidad de imágenes de baja resolución para amplias coberturas permitirá el monitoreo de las condiciones ecológicas en visiones nacionales, continentales y/o globales.

La frecuencia con la cual se podrá observar el territorio deberá ser también un aspecto en el que los sensores remotos habrán de competir. En esta amplia oferta de información cada vez más precisa y con mayor contenido, el usuario tendrá la posibilidad de emplear imágenes digitales georreferenciadas en complemento a los tradicionales mapas.

Entre las principales necesidades de información que se tienen y en las cuales la percepción remota ocupa un lugar estratégico están la naturaleza de los recursos forestales, localización de zonas agrícolas, ubicación de regiones ganaderas, distribución de recursos pesqueros, prevención y mitigación de desastres naturales, regulación de la tenencia de la tierra, situación de los recursos hidráulicos y la observación de fenómenos meteorológicos.

En los países en desarrollo, en donde los recursos económicos, humanos y materiales para la observación de su territorio son limitados, se requiere de organismos administradores de datos de percepción remota que hagan más eficientes las inversiones dedicadas a este rubro, armonicen el desarrollo de estas tecnologías y constituyan bancos de información para cualquier consulta. Las facilidades que otorga la tecnología de la comunicación en nuestros días ofrecen interesantes herramientas para el logro de estas funciones.

La mayoría de los países cuentan con programas de cartografía apoyados en mayor parte en datos satelitales, incluyendo al sistema de posicionamiento global (GPS)

Además de la gran cantidad de satélites que permiten múltiples posibilidades y combinaciones entre ellas, cada nueva misión tiene como meta incrementar la calidad de los datos (sensores más precisos, resolución espacial, la periocidad o mejor selección de bandas). El detalle espacial y la cantidad de bandas son los aspectos sobresalientes.

La disparidad de los avances en percepción remota de cada país es un reflejo de las diferencias económicas, intereses políticos y sociales entre ellos. Así, mientras en los países desarrollados la teledetección es ya una técnica sólidamente establecida e integrada en su totalidad a otras ramas de la investigación; en los países de menor desarrollo la teledetección está lejos de integrarse plenamente a la solución de los problemas reales.

El establecimiento de estas soluciones autóctonas requiere una fuerte inversión en tecnología y capacidad, inversión de la cual se carece todavía en muchas regiones en desarrollo. En África, por ejemplo, la infraestructura de teledetección de muchos países (exceptuando Sudáfrica) sufre una grave escasez de recursos financieros, experiencia técnica y compromiso político.

Pocos países en el continente tienen programas espaciales activos, y muchos generadores de política simplemente no reconocen a la teledetección como una herramienta útil para el desarrollo.

Algunas organizaciones internacionales trabajan para mejorar esta situación. La UN plataforma for Space-based Information for Disaster Management and Emergency Response (UNSPIDER) realiza talleres regionales y proporciona asesoría técnica a países de manera individual. En 2008 envió un grupo técnico a Burkina Faso para asesorar al gobierno en como incluir la tecnología espacial en sus planes de desarrollo.

De las conclusiones citadas anteriormente surge la necesidad de que México desarrolle su propio sistema de percepción remota ya que actualmente en américa latina varios países como Colombia, Chile, Venezuela, Perú entre otros ya cuenta o están desarrollando sus propios sistemas de percepción remota y por eso es la necesidad de hacer un análisis de viabilidad de us sistema de percepción remota para el territorio mexicano

Cabe recalcar que dentro de este trabajo se tuvieron grandes obstáculos ya que casi no se cuenta con mucha información en satélites de observación terrestre y fue un reto porque se tuvo que hacer una configuración general de lo que fue la carga útil, además que también se tuvieron que buscar herramientas de trabajo como los softwares SPENVIS y STK.

Es importante señalar que en este trabajo nos podemos dar cuenta que hace falta adentrarse y/o conocer más profundamente los sistemas de percepción remota. Se podría hacer un análisis de bandas espectrales, de sensores, resolución en los casos volcanes, derrames de petróleo, evaluación de riesgos sísmicos y porque no hacer mejoras a la propuesta más detalladas de este trabajo

En los primeros capítulos 1,2 y 3 nos dio una visión muy general de cómo opera la percepción remota ya que no se contaba con conocimientos específicos de la percepción remota y sirvió de gran ayuda ya que para el capítulo 4 nos pudimos dar cuenta de que herramientas y que es lo que teníamos que hacer para hacer una propuesta y un análisis de un satélite de observación terrestre, y como se pudo observar se incluyen en un principio poner un marcha un primer satélite y después otro todo esto para forman una constelación de satélites de observación de la Tierra diseñada para garantizar la continuidad de la disponibilidad de los datos de alta resolución. Gracias a esta capacidad es posible actualizar regularmente la cartografía nacional liberándose de los condicionantes derivados de los efectos estacionales y además que están en fase a 180º sobre la misma órbita de la constelación

Apéndice A

Siglas de sensores

Tabla A-1. Algunos de los acrónimos más comunes del sistema de un sensor remoto.

Acrónimo	Nombre	Referencia
SeaWiFS	Sea-viewing Wide Field-of- view Sensor	Bames and Holmes, 1993
SPOT	Systeme Probatoire d'Observation	Chevrel et al1981
SSM/I	Special Sensor Microwave/Imager	Hollinger et al1990
TIMS	Thermal Infrared Multiespectral Scanner	Kahle and Goetz,1983
ТМ	Thematic Mapper	Engel and Weinstein, 1983
TMS	Thematic MapperSimulator	Myers and Arvesen, 1995
VHRR	Very-High Resolution Radiometer	Kramer,2002
VIIRS	Visible/Infrared Imager/Radiometer Suite	NPOESS
WiFS	Wide Field Sensor	IRS-IC
ADEOS	Advanced Earth Observing Satellite	Kramer,2002
AIS	Airbone Imaging Spectrometer	Vane et al1984
ALI	Advanced Land Imager	Ungar et al2003
AOCI APT	Airbone Ocean Color Imager Automatic Picture	Wrigley et al1992 Bonner, 1969
	Transmission	
ASAS	Advanced Solid-State Array Spectroradiometer	Irons et al1991
ASTER	Advanced Spaceborne Thermal Emission and Reflection Radiometer	Asrar and Greenstone,1995
AVHRR	Advanced Very High Resolution Radiometer	Kramer, 2002
AVIRIS	Airbone Visible/Infrared Imaging Spectrometer	Poter and Enmark, 1987
CZCS	Coastal Zone Color Scanner	Kramer, 2002
ETM+	Enhanced Thematic Mapper Plus	Kramer, 2002
GOES	Geostationary Operational Environmental Satellite	Kramer, 2002
нсмм	Heat Capacity Mapping Mission	Short and Stuart, 1982

HIS	HiperSpectral Imager	Kramer, 2002
HYDICE	Hyperspectral Digital Imagery	Basedow et al1995
	Collection Experiment	
НуМар	HYperspetral Mapper	Huang et al2004
IRS	India Remote sensing Satellite	Kramer, 2002
JERS	Japanese Earth Resources	Nishidai, 1993
	Satellite (Fuyo-1 Post-launch)	
LISS	Linear Self Scanning Sensor	IRS
MAS	Modis Airbone Simulator	Myers and Arvesen, 1995
MERIS	Medium Resolution Imaging	Curran and Steele,2005
	Spectrometer	
MISR	Muli-angle Imaging	Diner et al1989
	SpectroRadiometer	
MODIS	Moderate Resolution Imaging	Salomonson et al,1989
	Spectroradiometer	
MMS	Multiespectral Scanner System	Lansing and Cline, 1975
MTI	Multispectral Thermal Imager	Szymanski and Weber,2005
RBV	Return Beam Vidicon	Kramer,2002

REFERENCIAS BIBLIOGRAFICAS

1. Ruiz de Angulo J.J.G, Los Satélites de comunicaciones, Volumen II año 1989 editorial Boixareu

2. Rosado Carlos, comunicación por satélite, limusa 1999.

3. Firro Sebastiano, Satellite Communication Systems Design, first printing June 1993, Editorial Plenum Press.

4. Wilbur L. Pritchard, Henri G. Suyderhoud and Robert A. Nelson, "Satellite communication systems engineering", Prentice-Hall, Second edition, 1993.

5. Rodolfo Neri Vela, "Comunicaciones por satélite", México, Thomson, 2003.

6. Madhavendra Richharia, "Satellite communications systems: design principles", United States of America, McGraw-Hill, 1999.

7. José Sanjurjo Vílchez y Risto Kalliola, Iquitos Perú, Instituto de investigaciones de la amazonia Peruana, 2004, Manual para la elaboración de mosaicos de imagines de satélite Landsat TM para la selva baja peruana

8. Ing. Julio Martínez Muñoz, México, Comisión Nacional del Agua, 2005

9. Ing. Alberto Cortez Farfán, Lima, Perú 2009, Clasificación de los sensores remotos

10. Uriel Pérez G. Tolima, Colombia. Universidad de Tolima, 2005.

11. Ing. Fabián Reuter. Santiago del Estero, Argentina, Universidad Nacional de Santiago del Estéreo, 2009, Plataformas Orbitales y Sensores.

Fuentes de internet:

12.SciDevNet(Red de Ciencia y Desarrollo) http://www.scidev.net/es/new-technologies/remote-sensing-for-natural-disasters-1/opinions/constelaci-n-de-sat-lites-para-manejo-de-desastres-.html 12/09/14

13. Emagister http://grupos.emagister.com/ficheros/dspflasview?idFichero=483376 12/09/14