"RELACIÓN ENTRE LAS PROPIEDADES PETROFÍSICAS DE LA ROCA ALMACENADORA EN DEPÓSITOS TURBIDÍTICOS Y LA PRODUCCIÓN DE HIDROCARBUROS: ANÁLISIS DEL SECTOR CENTRAL DEL CAMPO TAJIN DE LA CUENCA DE CHICONTEPEC"

TESIS

QUE PARA OBTENER EL TÍTULO DE:

INGENIERO PETROLERO

PRESENTA:

NOÉ FIGUEROA GASPARIANO

DIRECTOR DE TESIS:
M. C. NOÉ SANTILLAN PIÑA

Ciudad Universitaria, México, D.F. Agosto 2013
SR. NOÉ FIGUEROA GASPARIANO

Presente

En atención a su solicitud, me es grato hacer de su conocimiento que la opción de titulación: POR TESIS, así como el tema y contenido propuestos por el M.C. Noé Santillán Piña, en calidad de Director de Tesis, han sido aprobados por el comité de titulación de la carrera de Ingeniería Petrolera y se muestran a continuación.

RELACIÓN ENTRE LAS PROPIEDADES PETROFÍSICAS DE LA ROCA ALMACENADORA EN DEPÓSITOS TURBÍDICOS Y LA PRODUCCIÓN DE HIDROCARBUROS: ANÁLISIS DEL SECTOR CENTRAL DEL CAMPO TAJÍN DE LA CUENCA DE CHICHANTEPEC

I GENERALIDADES
II PROPIEDADES DE LA ROCA ALMACENADORA EN YACIMIENTOS TERRÍGENOS
III PROPIEDADES PETROFÍSICAS EN YACIMIENTOS TERRÍGENOS
IV MARCO GEOLÓGICO REGIONAL
V ANÁLISIS DE DATOS DE PRODUCCIÓN DE POZOS UBICADOS EN EL SECTOR CENTRAL DEL CAMPO TAJÍN

Por otra parte, le comunico que le han sido asignado el siguiente jurado que tendrá como función básica, avalar su trabajo escrito y autorizar la réplica oral requerida para la obtención del título profesional, de acuerdo al Reglamento de Opciones de Titulación vigente.

PRESIDENTE: ING. MANUEL VILLAMAR VIGUERAS
VOCAL: M.C. NOÉ SANTILLÁN PIÑA
SECRETARIO: ING. ISRAEL CASTRO HERRERA
1ER. SUPLENTE: ING. BERNARDO MARTELL ANDRADE
2DO. SUPLENTE: DR. RAFAEL HERRERA GÓMEZ

Ruego a usted cumplir con la disposición de la Dirección General de Administración Escolar, en el sentido que se imprima en lugar visible de cada ejemplar del trabajo escrito, el título de este.

Asimismo, le recuerdo que para optar por el título profesional, es necesario haber acreditado el 100% de los créditos establecidos en el plan de estudios, haber realizado el Servicio Social de acuerdo con la Legislación Universitaria y haber aprobado el examen de comprensión de lectura de un idioma extranjero, en términos de lo dispuesto por el Consejo Técnico.

Atentamente
"POR MI RAZA HABLARÁ EL ESPÍRITU"
CD. Universitaria, D. F. a 9 de Mayo de 2013,
El Presidente del Comité de Titulación de Ingeniería Petrolera

DR. JOSÉ ANTONIO HERNÁNDEZ ESPRÍU

ccp Coordinador de la Carrera
ccp Interesado
AGRADECIMIENTOS

A MIS PADRES: por que por su esfuerzo, sacrificio, carencias, amor y cuidado eh llegado hasta hoy. Gracias sin Ud. no hubiera sido nada los AMO.

GRACIAS GOYITO: por que por ti y por tus enseñanzas me has enseñado a ser un hombre, me enseñaste con tu ejemplo como salir adelante, me mostraste que no hay imposibles y que la familia es lo más importante. Te agradezco por haberte educado como lo hiciste, por ser el mejor papa del mundo, gracias por siempre cuidaste de nosotros y nunca hubo cosa más importante que tus hijos. Gracias por ser mi padre.

A TI MAMI: por tus cuidados, por sacrificar tu cuerpo, tu tiempo, tus fuerzas en mí. Te agradezco por apoyarme en todo y por permitirme ser y lograr muchas cosas, por que por tu apoyo hoy estamos terminando esta etapa. Te quiero mami, gracias por habernos dado la vida y por ser mi madre. Te AMO.

GRACIAS A MI FAMILIA: mis herman@s JUAN CARLOS, ALICIA, IRENE por apoyarme, por cuidarme cuando era un niño, por sus golpes, consejos, aguantar mi mal genio, estar conmigo siempre; gracias por ser mi familia, por que no puede haber tenido familia mejor, los AMO. Gracias a mis sobrinos MARI, JORGE, AXEL, ITZEL, AI DEE, ALEJANDRO.

A MIS AMIGOS: por acompañarme en mi vida y ser parte de ella, por que son la familia que escogemos, gracias por que soy parte de todos y han sido parte de mi. Todos ustedes han estado en mi camino y seguirán en el GRACIAS VLADIMIR FABIOLA, JUANCARLOS, ANGELICA, MICHELL, ROSA, ANTONIO, LILIANA, TANIA, DIANA, JAVIER, FREDY, DAVID MONSALVO, ALBERTO (JT), ALBERTO (CH) MISAEL, MERARI, ERICK, ERIKA, FELIX, GATO, LAURA, GARCES, MANUEL, VERO, ILEANA, DAVID, YALIL, MARIANA, BRENDA, RAUL, LA RASTA, PELOS, PIPEN, GUADALUPE, MONTSERRAT, J.J.GARCIA. A TODOS UD GRACIAS.

A MI AMOR (GATITA, CAHITA, MI VIDA, NEGRITA, GOTITA DE MIEL, MI PRINCESITA HERMOSA) A TI MARIEL: por que llegaste en el peor momento de mi vida y has estado conmigo hasta hoy, gracias por el apoyo, por tu esfuerzo y dedicación, te AMO, gracias a ti y A TU FAMILIA POR EL APOYO Y CARINO.

GRACIAS A LA UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO Y A LA FACULTAD DE INGENIERIA: por haberme recibido y por formarme como persona y profesionista. Por que es un orgullo y placer ser azul y oro.

GRACIAS AL M. C. NOÉ SANTILLAN PIÑA: por su dedicación tiempo y esfuerzo para la realización de este trabajo. Muchas gracias.

GRACIAS A DIOS QUE ME PERMITE LLEGAR CON VIDA Y TERMINAR MIS ESTUDIOS, POR TENER SALUD Y EL AMOR DE TANTA GENTE.

GRACIAS

“POR QUE LOS GUERREROS SOMOS DE OTRO NIVEL”
ÍNDICE

"RELACIÓN ENTRE LAS PROPIEDADES PETROFÍSICAS DE LA ROCA ALMACENADORA EN DEPÓSITOS TURBIDÍTICOS Y LA PRODUCCIÓN DE HIDROCARBUROS: ANÁLISIS DEL SECTOR CENTRAL DEL CAMPO TAJIN DE LA CUENCA DE CHICONTEPEC"

CONTENIDO

<p>| RESUMEN | ... | 1 |
| 1.- GENERALIDADES | .. | 2 |
| 1.1 INTRODUCCIÓN | .. | 2 |
| 1.2 OBJETIVO | .. | 4 |
| 1.3 METODOLOGÍA DE TRABAJO | .. | 4 |
| 1.4 TRABAJOS GEOLÓGICO-PETROLEROS PREVIOS | .. | 5 |
| 1.5 UBICACIÓN DE LA ZONA DE ESTUDIO | .. | 6 |
| 2.- PROPIEDADES DE LA ROCA ALMACENADORA EN YACIMIENTOS TERRÍGENOS | .. | 9 |
| 2.1 PARÁMETROS TEXTURALES | .. | 9 |
| 2.1.1 TAMAÑO DE GRANO | .. | 9 |
| 2.1.2 FORMA | .. | 11 |
| 2.1.3 REDONDEZ | .. | 12 |
| 2.1.4 ESFERICIDAD | .. | 12 |
| 2.1.5 EMPAQUE | .. | 13 |
| 2.1.6 COLOR | .. | 14 |
| 2.1.7 MADUREZ TEXTURAL | .. | 14 |
| 2.1.8 GRADO DE CLASIFICACIÓN O SELECCIÓN | .. | 15 |
| 2.1.9 FÁBRICA | .. | 16 |
| 2.1.10 POROSIDAD (Ø) | .. | 17 |
| 2.1.10.1 POROSIDAD ABSOLUTA | .. | 19 |
| 2.1.10.2 POROSIDAD EFECTIVA | .. | 19 |
| 2.1.10.3 POROSIDAD PRIMARIA | .. | 19 |
| 2.1.10.4 POROSIDAD SECUNDARIA | .. | 20 |
| 2.1.11 PERMEABILIDAD (k) | .. | 25 |</p>
<table>
<thead>
<tr>
<th>ÍNDICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.11.1 PERMEABILIDAD ABSOLUTA (k_a): ... 27</td>
</tr>
<tr>
<td>2.1.11.2 PERMEABILIDAD EFECTIVA (k_{ef}) ... 28</td>
</tr>
<tr>
<td>2.1.11.3 PERMEABILIDAD RELATIVA (k_r): ... 28</td>
</tr>
<tr>
<td>2.2 CLASIFICACION DE LAS ROCAS CLÁSTICAS ... 29</td>
</tr>
<tr>
<td>2.2.1 CLASIFICACIÓN SEGÚN DOOT .. 33</td>
</tr>
<tr>
<td>2.2.2 CLASIFICACIÓN SEGÚN FOLK .. 34</td>
</tr>
<tr>
<td>3. PROPIEDADES PETROFÍSICAS EN YACIMIENTOS TERRÍGENOS ... 35</td>
</tr>
<tr>
<td>3.1 SATURACIÓN (S_f) .. 35</td>
</tr>
<tr>
<td>3.1.1 SATURACIÓN INICIAL ... 37</td>
</tr>
<tr>
<td>3.1.2 SATURACIÓN RESIDUAL .. 37</td>
</tr>
<tr>
<td>3.1.3 SATURACIÓN CRÍTICA .. 38</td>
</tr>
<tr>
<td>3.2 MOJABILIDAD .. 39</td>
</tr>
<tr>
<td>3.3 FUERZAS CAPILARES .. 43</td>
</tr>
<tr>
<td>3.4 PRESIÓN CAPILAR (P_c) ... 44</td>
</tr>
<tr>
<td>3.5 TENSIÓN INTERFACIAL (σ) ... 48</td>
</tr>
<tr>
<td>3.6 RESISTIVIDAD .. 50</td>
</tr>
<tr>
<td>3.7 COMPRESIBILIDAD (c) ... 51</td>
</tr>
<tr>
<td>3.8 TORTUOSIDAD (ζ) .. 53</td>
</tr>
<tr>
<td>4. MARCO GEOLÓGICO REGIONAL ... 54</td>
</tr>
<tr>
<td>4.1 DEPÓSITOS TURBÍDITICOS: PROCESOS Y ESTRUCTURAS RESULTANTES 54</td>
</tr>
<tr>
<td>4.2 GEOLOGÍA DE LA CUENCA DE CHICONTEPEC ... 59</td>
</tr>
<tr>
<td>4.3 SISTEMA PETROLERO ... 63</td>
</tr>
<tr>
<td>4.3.1 SISTEMA GENERADOR .. 65</td>
</tr>
<tr>
<td>4.3.2 MIGRACIÓN .. 66</td>
</tr>
<tr>
<td>4.3.3 ALMACÉN ... 66</td>
</tr>
<tr>
<td>4.3.5 SELLO ... 67</td>
</tr>
<tr>
<td>4.3.6 TRAMPA .. 67</td>
</tr>
<tr>
<td>4.3.7 SINCRONÍA .. 68</td>
</tr>
<tr>
<td>4.3.8 PLAYS CHICONTEPEC .. 69</td>
</tr>
</tbody>
</table>
5.- ANÁLISIS DE DATOS DE PRODUCCIÓN DE POZOS UBICADOS EN EL SECTOR CENTRAL DEL CAMPO TAJÍN. ... 72
 5.1 CARACTERÍSTICAS PETROFÍSICAS DE LOS INTERVALOS PRODUCTORES.. 74
 5.2 PROFUNDIDAD Y ESPESOR DE LOS INTERVALOS PRODUCTORES .. 81
 5.3 DATOS DE PRODUCCIÓN DE LOS POZOS ANALIZADOS POR SECTOR... 84
 5.4 RELACIÓN ENTRE LAS PROPIEDADES PETROFÍSICAS DE LA ROCA ALMACENADORA Y LA PRODUCCIÓN DE HIDROCARBUROS. ... 86
 5.5 DATOS DE PRODUCCIÓN CON SISTEMA ARTIFICIAL DE PRODUCCIÓN ... 90

CONCLUSIONES Y RECOMENDACIONES.. 95

BIBLIOGRAFÍA.. 97
La cuenca de Chicontepec se encuentra ubicada en la porción centro oriente de la República Mexicana sobre la planicie costera del Golfo de México.

El proyecto “Aceite Terciario del Golfo” se divide en 7 laboratorios de campo; el Campo Tajín se encuentra en el “Proyecto de desarrollo-laboratorio de campo y desarrollo tecnológico: Corralillo-Tajín”.

Los parámetros texturales de la roca son muy útiles, ya que muestran cuáles son las características de la formación y su estructura interna. La importancia de comprender y estudiar estos parámetros es de gran relevancia ya que puede mostrar cómo se encuentra conformada la roca almacén. Las propiedades de mayor interés al estudiar los yacimientos son: la porosidad y la permeabilidad.

De igual forma, las propiedades petrofísicas son datos de suma importancia ya que determinan el comportamiento de los fluidos en el yacimiento, siendo la saturación de aceite la propiedad que más se estudió, con el propósito de establecer la relación que existe entre las propiedades petrofísicas de la roca almacén de origen turbidítico y la producción de hidrocarburos del sector central del campo Tajín (sector central), Chicontepec, para lo cual se revisaron datos de informes de 86 pozos, y se construyeron tablas y gráficos con los valores de producción inicial y los valores reportados de las propiedades petrofísicas; además, se analizaron datos de producción antes y después de intervenciones y de reingeniería en los pozos, para establecer una diferencia con la producción inicial de los pozos.
1.- GENERALIDADES

1.1 INTRODUCCIÓN

Durante años, la industria petrolera se ha visto obligada a mantener una continua evolución, invirtiendo grandes cantidades de recursos en la investigación. Estos esfuerzos han llevado al desarrollo de nuevas técnicas que hoy por hoy hacen posible mejorar la explotación de los campos petroleros. Estas nuevas técnicas han basado su desarrollo en el avance de distintas ramas de la ciencia, como: sistemas de cómputo, ingeniería de materiales, sistemas de comunicación satelital, estandarización de procedimientos, sistemas de control y monitoreo en tiempo real, entre otras.

La comprensión de la historia de las rocas sedimentarias clásticas que almacenan aceite y/o gas, ofrece muchas ventajas a los especialistas involucrados en todas las etapas de la vida productiva de los yacimientos, desde la exploración hasta el abandono.

Una de las prioridades de las expectativas petroleras más importantes que actualmente existe en México se encuentra hacia el noreste del país y es conocido como Paleocanal de Chicontepec. Por sus dimensiones y reservas contiene una de las mayores acumulaciones de hidrocarburos en México. En el año 2011 el proyecto “Aceite Terciario del Golfo” contabilizó una producción de 53 mil barriles
diarios. Durante el 2011, se han ejecutado más de 1,970 actividades relacionadas a la operación de pozos, como son: optimización de pozos fluyentes, instalación y optimización de sistemas artificiales, limpieza de pozos, refracturamientos, inducciones químicas, entre otras. (PEMEX, PEP, 2011)

El paleocanal de Chicontepec es un sistema geológico de características complejas (cuerpos arenosos complejos), por lo que se requieren establecer metodologías que permitan ser aplicables al tipo de yacimientos de tal paleocanal.

Desde el segundo semestre del 2010 se logró disminuir considerablemente la declinación de los pozos en operación mediante la creación de grupos de especialistas dedicados a estudiar su productividad, además, de iniciar una campaña intensa de medición de la producción y de la implementación de un centro de monitoreo con el cual se puedan observar las 24 horas de los 365 días del año las principales instalaciones, ductos y pozos del Activo, entre otras estrategias. Antes de implementar estas mejoras operativas, se tenían factores de declinación mensual del 8 y 10%, y actualmente el factor oscila del 2 al 4%. (PEMEX, PEP, 2012)

Actualmente, el “Paleocanal de Chicontepec” representa más del 29% de las reservas probadas de hidrocarburos del país y el 81% de las de la Región Norte. Es uno de los yacimientos más importantes de México. (PEMEX, PEP, 2012)
1.2 OBJETIVO

Preparar mediante la revisión de informes de pozo existentes, un banco datos de propiedades petrofísicas y de producción, de pozos ubicados en el área central del Campo Tajín de la cuenca de Chicontepec.

Analizar la relación que existe entre la producción de hidrocarburos y las propiedades petrofísicas de la roca almacenadora.

1.3 METODOLOGÍA DE TRABAJO

Se revisó la información de 86 pozos (historia del pozo) del área central del Campo Tajín de la cuenca de Chicontepec, registrando datos de producción, así como datos de propiedades petrofísicas de la roca almacenadora; con los cuales se llevó a cabo la construcción de tablas y gráficos que apoyaron el análisis que intenta mostrar la relación que existe entre las propiedades de la roca almacén con la producción de los hidrocarburos.
1.4 TRABAJOS GEOLÓGICO-PETROLEROS PREVIOS

Muchos trabajos y estudios que se realizan sobre el proyecto de Chicontepec (llamado también Aceite Terciario del Golfo), se desarrollan como laboratorios de campo para optimizar la producción de la cuenca, trabajos que son realizados por diferentes compañías contratadas por Pemex, por lo que es muy difícil tener acceso a los trabajos de investigación. Como resultado de lo anterior, a continuación se mencionan sólo algunos trabajos sobre el tema.

La Comisión Nacional de Hidrocarburos (CNH 2010), en el informe del proyecto Aceite Terciario del Golfo revisa los resultados del proyecto y propone métodos para la obtención de resultados óptimos; realiza un análisis de los resultados esperados y obtenidos, dando un balance final del mismo.

Narváez (2012) en su trabajo “Retos y avances en el desarrollo y operación de un yacimiento no convencional, Chicontepec” hace una revisión global acerca del proyecto Aceite Terciario del Golfo, donde involucra las propiedades petrofísicas del campo con la producción, mostrando procesos y tecnologías para optimizar la producción del proyecto.

1.5 UBICACIÓN DE LA ZONA DE ESTUDIO

La Cuenca de Chicontepec se sitúa en la porción centro oriente de la República Mexicana sobre la planicie costera del Golfo de México; su eje axial tiene una longitud de 250 km, orientado NW-SE y cubre una superficie oval de 11,300 km2 con una anchura promedio de unos 60 km. Se encuentra comprendida principalmente en dos Provincias Fisiográficas: la de la Llanura Costera del Golfo Norte (subprovincia de llanuras y lomeríos), así como en la Sierra Madre Oriental (subprovincia del Carso Huasteco). Geológicamente pertenece a la provincia Tampico-Misantla, sus coordenadas geográficas son de 20° 18′ – 21° 08′ de latitud norte y 97° 10′ – 98° 00′ de longitud oeste (Figura 1.1)

Figura 1.1. Ubicación de la cuenca de Chicontepec (Mayol, 2005).
Los estratos paleógenos que conforman la cuenca de Chicontepec afloran en la porción occidental y sureste en la parte marginal de la Cuenca Tampico- Tuxpan, principalmente en la parte norte del estado de Veracruz; aunque también se extienden en el extremo sur del estado de Tamaulipas y las porciones más orientales en los estados de San Luis Potosí, Hidalgo y norte de Puebla.

En la figura 1.2 se observan los laboratorios de campo establecidos por Pemex (2011), dentro del paleocanal de Chicontepec, en donde se encuentran los campos petroleros que lo conforman.

Figura 1.2. Laboratorios del Activo Integral Aceite Terciario del Golfo y localización del campo Tajín, (Pemex, 2011).
El campo Tajín se localiza en el sector sur oriental del paleocañón de Chicontepec en el sector administrativo número 7 “Proyecto de desarrollo-laboratorio de campo y desarrollo tecnológico: Corralillo-Tajín”; a 3 km al W del poblado de Papantla, y a 5 km al S de la ciudad de Poza Rica, Ver.
2.- PROPIEDADES DE LA ROCA ALMACENADORA EN YACIMIENTOS TERRÍGENOS

2.1 PARÁMETROS TEXTURALES

La textura concierne al aspecto físico general de una roca; al tamaño, forma y arreglo de las partículas que la constituyen. Existen dos tipos principales de textura en las rocas sedimentarias: las clásticas y las no clásticas.

TEXTURA CLÁSTICA

El término clástico se deriva de la voz griega que significa “roto” o fragmentado. Las rocas que han sido formadas por el depósito de minerales y fragmentos de roca se dice que tienen textura clástica.

TEXTURA NO CLÁSTICA

Algunas rocas sedimentarias formadas por procesos químicos, tienen una textura no clástica en la que los granos están entrelazados. En realidad, la mayoría de las rocas sedimentarias con textura no clástica tienen una estructura cristalina.

2.1.1 TAMAÑO DE GRANO

Se expresa en función de un diámetro, pero al no ser los granos esféricos hay que referirlo a una media. Sobre una referencia lineal se utilizan el diámetro de malla o
tamaño de la malla a través de la cual pasa la partícula. Se tienen también “diámetros lineales”, medidos directamente a partir de la mayor superficie proyectada donde se encuentran el diámetro largo y el intermedio, y perpendicularmente a este plano el diámetro corto. Udden (1914), realizó una escala geométrica de clases y tamaños, que posteriormente Wentworth 1922 (tomada de Krumbein, W.C. op. cit.) (Figura 2.1), modificó y determinó una escala que proporciona un medio para normalizar la terminología en los tamaños; cada grado representa un tamaño, de tal forma que difiere del anterior, y cada uno tiene un nombre específico para identificar a las partículas.

<table>
<thead>
<tr>
<th>Límites de Clases (milímetros)</th>
<th>Clases de tamaño</th>
<th>Término para roca</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>G Peñascos</td>
<td>Conglomerado</td>
</tr>
<tr>
<td>16</td>
<td>G Mataténas</td>
<td>Brecha</td>
</tr>
<tr>
<td>4</td>
<td>G Guijarros</td>
<td>Rudita</td>
</tr>
<tr>
<td>2</td>
<td>G Gránulos</td>
<td>Rocas rudáceas</td>
</tr>
<tr>
<td>1</td>
<td>Arenas muy gruesas</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>Arenas gruesas</td>
<td>Arenisca</td>
</tr>
<tr>
<td>0.25</td>
<td>Arenas medianas</td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td>Arenas finas</td>
<td></td>
</tr>
<tr>
<td>0.0625</td>
<td>Arenas muy finas</td>
<td></td>
</tr>
<tr>
<td>0.0312</td>
<td>L Limo grueso</td>
<td>Limolita</td>
</tr>
<tr>
<td>0.0156</td>
<td>L Limo medio</td>
<td></td>
</tr>
<tr>
<td>0.0078</td>
<td>L Limo fino</td>
<td></td>
</tr>
<tr>
<td>0.0039</td>
<td>L Limo muy fino</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arcilla</td>
<td></td>
</tr>
</tbody>
</table>

Figura 2.1. Escala granulométrica (según Wenworth, 1922).
2.1.2 FORMA

Es la relación que guardan entre sí los tres ejes principales de la partícula.

Las formas esferoidales o equidimensionales proceden de rocas de composición y estructura uniformes; las formas discoidales y tabulares proceden de rocas estratificadas o con minerales laminados (micas); las formas proladas, laminadas o en barra corresponden con rocas metamórficas o con minerales elongados; las formas biogénicas corresponden con estructuras orgánicas. (Figura 2.2)

![Figura 2.2. Algunas formas de partículas, (Manual para el trabajo de campo, 2010).](image-url)
2.1.3 REDONDEZ
La redondez de la partícula como un todo es el promedio del redondeamiento de todas sus esquinas. Depende del tamaño y la resistencia mecánica de los granos y, en general, aumenta con el transporte. La redondez es el dato morfológico de mayor interés en la tipificación del ambiente de sedimentación de algunas rocas sedimentarias, especialmente las areniscas y limolitas.

2.1.4 ESFERICIDAD
Es la medida del grado a que se aproxima una partícula a la forma de una esfera. Definiendo también el comportamiento dinámico de la partícula, está relacionada con las diferencias existentes entre los distintos diámetros o longitudes de los ejes de la partícula. (Figura 2.3)

Figura 2.3. Grado de Redondez y Esfericidad que puede tener una partícula
(Adams y Cols., 1997).
2.1.5 EMPAQUE
Se refiere a cómo los granos individuales de arreglan entre sí; el empaque determina la porosidad, ya que ésta se basa en la medida de los espacios vacíos remanentes entre los granos. Si consideramos a los granos como esferas, el empacamiento tiene dos arreglos extremos: A) cúbico, cuando una esfera descansa directamente sobre otra y, B) romboedral (figura 2.4), cuando la esfera descansa en la depresión formada por cuatro esferas. En el primero la porosidad puede llegar a ser del 47% mientras que el segundo se reduce a un 25%.

Figura 2.4. Diferentes tipos de empaque, (Manual para el trabajo de campo, 2010).
2.1.6 COLOR
El color es una de las propiedades más evidentes de las rocas sedimentarias. La descripción precisa del color de las muestras de roca sólo es posible cuando son comparadas con una guía estándar de colores; la más recomendada es la Carta de Color de la Roca (rock color chart; Goddard, 1984).

2.1.7 MADUREZ TEXTURAL
Representa el grado de desarrollo que han alcanzado los procesos de transporte y sedimentación, y si éstos han sido no selectivos. Se dice que una roca sedimentaria es más madura cuanto más redondeados y seleccionados estén los clastos que la integran. La madurez textural es un índice que refleja el tiempo transcurrido entre la erosión del material detrítico original y su depositación final (Figura 2.5)

La madurez textural puede ser evaluada mediante los siguientes parámetros.

• Proporción de matriz
• Grado de clasificación o selección
• Redondeamiento de los granos
2.1.8 GRADO DE CLASIFICACIÓN O SELECCIÓN

El grado de clasificación o selección es la propiedad que describe la variabilidad del tamaño de grano en una roca sedimentaria detrítica. Aquellas rocas que muestran solo una clase granulométrica bien definida, siendo el tamaño de todas las partículas similar, se dicen bien seleccionadas. Por lo contrario, aquellas en que sus constituyentes presentan una gran diversidad de tamaños se denominan mal seleccionadas. La selección de una roca es una propiedad que condiciona...
fuertemente su porosidad y, por lo tanto, su comportamiento frente a la circulación de cualquier fluido, por ejemplo agua, gas o aceite. (Figura 2.6)

2.1.9 FÁBRICA
La fábrica es una medida del grado en que los granos se encuentran en contacto con sus vecinos, o entrelazado y su distribución en tres dimensiones. Los contactos pueden ser suturados cóncavos, convexos, lineales y flotantes. (Figura 2.7)
2.1.10 POROSIDAD (ϕ).

Es la medida del espacio poroso en una roca; en este espacio es donde se pueden acumular fluidos. Se calcula con la expresión:

$$\phi = \frac{V_p}{V_b}$$

Donde:
- V_p: volumen de poros del medio poroso.
- V_b: Volumen total del medio poroso.
Como parámetro esencial para que ocurra un depósito de petróleo, es la roca almacén cuyo rasgo más importante es la porosidad, ya que debe tener poros, o huecos de determinado tamaño y naturaleza para permitir el almacenamiento de aceite y gas en yacimientos; estos deben ser suficientemente amplios y distribuidos en un volumen de roca importante para que se justifique su explotación.

Todas las secuencias sedimentarias varían en el tamaño de sus poros; estas variaciones se denominan primarias si dependen de:

1. El ambiente de depositación de la roca.
2. El grado de uniformidad del tamaño de la partícula
3. La naturaleza de los materiales que componen la roca.
4. El contenido de matriz que tenga la roca.

Las variaciones se denominan secundarias, si dependen de acontecimientos que tuvieron lugar después de que ocurrió la sedimentación de la roca, estos incluyen a:

1. El fracturamiento.
2. La disolución.
3. La re-sedimentación y cementación.
4. La compactación debida a un aumento en la sobrecarga.
2.1.10.1 POROSIDAD ABSOLUTA
Considera el volumen poroso tanto de los poros aislados como los comunicados.

2.1.10.2 POROSIDAD EFECTIVA
Considera solamente los poros comunicados.

En el caso de una roca basáltica se puede tener una porosidad absoluta muy alta, pero muy reducida o nula porosidad efectiva. En lo sucesivo se usará $\bar{\Phi}$ para referirse a la porosidad efectiva, a menos que se indique lo contrario.

La porosidad puede ser primaria o secundaria, dependiendo del proceso que le dió origen, (Figura 2.8).

2.1.10.3 POROSIDAD PRIMARIA
Es el resultado de los procesos originales de formación del medio poroso, tales como depositación, compactación.

POROSIDAD INTERGRANULAR
Esta porosidad ocurre en los espacios entre los granos detríticos que forman a la roca, los cuales forman la fábrica (conjunto de caracteres estructurales de una roca) de un sedimento. Es una porosidad muy importante ya que está inicialmente presente en todas las rocas sedimentarias. La porosidad intergranular es reducida progresivamente por la diagénesis en carbonatos, pero es el tipo de porosidad dominante en areniscas y conglomerados.
POROSIDAD INTRAPARTÍCULA

En arenas, particularmente en aquellas con restos de fósiles, la porosidad primaria puede estar presente dentro de los granos esqueletales.

2.1.10.4 POROSIDAD SECUNDARIA

Se debe a procesos posteriores que experimenta el mismo medio poroso, como disolución del material calcáreo, cementación y fracturamiento.

La propiedad se expresa en fracción, pero es común también expresarla en por ciento. La porosidad varía normalmente en los yacimientos entre el 5 y el 30 %.

La porosidad puede obtenerse directamente de núcleos en el laboratorio o indirectamente a partir de los registros geofísicos de pozos.

POROSIDAD INTERCRISTALINA

Puede presentarse en algunos carbonatos, los cuales han sufrido la cristalización y es importante particularmente en dolomías recristalizadas.

Los poros en rocas cristalizadas son esencialmente cavidades planas que se cortan oblicuamente una con otra sin estrechamientos de las gargantas entre los poros adyacentes; tales rocas son muy importantes en algunos yacimientos de aceite y/o gas, de México.
POROSIDAD VUGULAR
Es porosidad secundaria que se forma por la disolución en rocas carbonatadas, como moldes cortan transversalmente a la fábrica del depósito primario de la roca y se encuentran típicamente en carbonatos rodeados por cristales. La porosidad vugular es para disolución que deja huecos con diámetros menores a 50 centímetros, y la porosidad en fracturas es en huecos mayores a los 50 centímetros.

POROSIDAD EN CAVERNAS
Con el incremento de tamaño del vúgulo, se gradúa al término de porosidad de caverna; los vúgulos son de dimensiones pequeñas y las cavernas están comúnmente desarrolladas debajo de las inconformidades; este sirve como depósito petrolero en un gran número de Campos.

POROSIDAD DE FRACTURAS.
Las fracturas corresponden con un tipo de porosidad secundaria y ocurren frecuentemente en las rocas que presentan comportamiento frágil. Las fracturas en el sentido de ruptura en la laminación (disposición de los elementos detríticos de una capa en bandas finas a menudo onduladas, paralelas u oblicuas, cada una de estas bandas se denomina lámina) del depósito, pueden ocurrir al mismo tiempo con la sedimentación, durante la diagénesis o en etapas posteriores por esfuerzos tectónicos.
Durante la sedimentación o durante la diagénesis a menudo se desarrollan microfallas, las cuales son originadas principalmente por hundimiento, deslizamiento y compactación. Las fracturas en sedimentos plásticos son selladas instantáneamente; sin embargo, en rocas duras, pero quebradizas, las fracturas pueden permanecer abiertas después de su formación, por lo que da lugar a la porosidad en fracturas.
<table>
<thead>
<tr>
<th>TIPOS DE POROSIDAD</th>
<th>Tamaños de Poro</th>
<th>Variedad en tamaño</th>
<th>Forma del Poro</th>
<th>Selectividad de la Estructura</th>
<th>Se originó durante:...</th>
<th>Su depósito</th>
<th>Permeabilidad</th>
<th>Relación con el recuperación (0-20%)</th>
<th>Anisotropía del sistema poroso</th>
<th>Presencia en los yacimientos más importantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARIA MEJORADA</td>
<td>0.01 - 1 mm.</td>
<td>Pequeño</td>
<td>Si</td>
<td>Su depósito</td>
<td>Pobre</td>
<td>Moderada</td>
<td>Muy baja 0-5%</td>
<td>45-48%</td>
<td>Isotrópico</td>
<td>Muy raro</td>
</tr>
<tr>
<td>INTERPARTICULAR</td>
<td>0.05 -1 mm.</td>
<td>Pequeño a grande</td>
<td>Si</td>
<td>Su depósito</td>
<td>Pobre</td>
<td>Moderada</td>
<td>Muy baja 0-5%</td>
<td>45-48%</td>
<td>Isotrópico</td>
<td>Muy raro</td>
</tr>
<tr>
<td>VUGULAR</td>
<td>0.1 -10 mm.</td>
<td>Grande</td>
<td>No</td>
<td>Diagenesis</td>
<td>Pobre</td>
<td>Buena</td>
<td>15-30%</td>
<td>45-60%</td>
<td>Anisotrópico</td>
<td>Comúnmente</td>
</tr>
<tr>
<td>MÓLICA</td>
<td>0.2 -10 mm.</td>
<td>Moderado</td>
<td>No</td>
<td>Posterior a la diagenesis</td>
<td>Pobre</td>
<td>Moderada</td>
<td>15%</td>
<td>45-60%</td>
<td>Anisotrópico</td>
<td>Raro / común</td>
</tr>
<tr>
<td>BRECCHAS Y FRACTURAS</td>
<td>0.1 mm y de 10 cm a 10 m de largo</td>
<td>Moderado - Grande</td>
<td>No</td>
<td>Posterior a la diagenesis y compacidad</td>
<td>Moderada a Buena</td>
<td>Buena</td>
<td>15%</td>
<td>Fuertemente anisotrópico</td>
<td>Fuertemente anisotrópico</td>
<td>Comúnmente</td>
</tr>
<tr>
<td>ESTILOLÍTICA</td>
<td>No</td>
<td>1 mm - 1 m.</td>
<td>Grande</td>
<td>Diagenesis</td>
<td>Pobre</td>
<td>Buena</td>
<td>15%</td>
<td>45-60%</td>
<td>Anisotrópico</td>
<td>Comúnmente</td>
</tr>
</tbody>
</table>

Figura 2.8. Tipos de Porosidad y sus características (Choquette y Pray 1975).
La porosidad de la mayor parte de los yacimientos varía entre un 5 y 30% y frecuentemente está entre el 10 y el 20% (Levorsen, 1967). Los yacimientos carbonatados tienen, por lo general, una porosidad ligeramente inferior que los yacimientos en areniscas, pero la permeabilidad de las rocas carbonatadas puede ser superior, si contiene fracturas. Generalmente se considera que una roca que tiene una porosidad inferior al 5% es descartable para una explotación comercial, a no ser que existan factores de compensación, como puede ser las fracturas, oquedades y cavernas. (Tabla 2.1)

<table>
<thead>
<tr>
<th>Porosidad en %</th>
<th>Evaluación</th>
<th>Permeabilidad (md)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 5</td>
<td>despreciable</td>
<td><0.1</td>
</tr>
<tr>
<td>5 – 10</td>
<td>Pobre</td>
<td>0.1 -- 1</td>
</tr>
<tr>
<td>10 – 15</td>
<td>Moderada</td>
<td>1.0 – 10</td>
</tr>
<tr>
<td>15 – 20</td>
<td>Buena</td>
<td>10 – 100</td>
</tr>
<tr>
<td>20 – 25</td>
<td>Muy buena</td>
<td>100 – 1000</td>
</tr>
<tr>
<td>>25</td>
<td>Excelente</td>
<td>> 1000</td>
</tr>
</tbody>
</table>

Tabla 2.1. Evaluación de la porosidad y permeabilidad (Levorsen, 1967).
2.1.11 PERMEABILIDAD (k)

Es la propiedad que permite el paso de un fluido a través de los poros interconectados de una roca, sin que se dañen ni se desplacen las partículas de la roca.

En otras palabras, la permeabilidad es la medida de la conductividad de fluidos que tiene una roca, y es probablemente la propiedad aislada más importante de una roca que pertenece al tipo de yacimiento. La unidad más utilizada para indicar la permeabilidad de una roca es el milidarcy. La permeabilidad es controlada por varios aspectos; como la porosidad efectiva de la roca, la geometría de los poros, incluyendo su tortuosidad, y la medida de las gargantas entre los poros; la fuerza capilar entre la roca y los fluidos que las invaden se pueden determinar por la ley de Darcy usando la siguiente ecuación (Figura 2.9):

![Diagrama de Darcy](image)

Figura 2.9. Representación gráfica donde se muestra la ley de Darcy que define el movimiento de fluidos a través del medio poroso (Halliburton, 2010).
\[k = \frac{q_1 L}{A \Delta P} \]

donde:

- \(k \) = permeabilidad (Darcys)
- \(q \) = magnitud del flujo (volumen por unidad de tiempo), \((\frac{cm^3}{s}) \)
- \(A \) = área total de la sección transversal, \((cm^2) \)
- \(\mu \) = viscosidad del fluido, \((\text{centipoise}) \)
- \(L \) = distancia que recorre el fluido (cm)
- \(\Delta P \) = diferencia de presión en \(L \), \((p_1 - p_2) \), (atm)

La unidad de medida de la permeabilidad de una roca en el sistema cegesimal (CGS) se denomina darcy en honor a Henri Philibert Gaspard Darcy (1856), quien llevó a cabo experimentos con la circulación de líquidos a través de medios porosos. Un medio poroso tiene una permeabilidad de un darcy cuando un fluido monofásico de un centipoise de viscosidad, que llena por completo los huecos del medio fluye a un gasto de un centímetro cúbico por segundo por centímetro cuadrado de sección, bajo una presión o gradiente hidráulico equivalente a una atmósfera (76.0 cm de Hg) por centímetro.

La permeabilidad de la mayoría de las rocas es menor a un darcy y generalmente usado en milidarcy (1 md=0.001 darcy). La permeabilidad de las rocas es altamente variable y su rango de variación va de 10 a 100 milidarcys, el cual es
considerado bueno; arriba de este rango son consideradas excepcionalmente altas.

La porosidad y permeabilidad son propiedades dependientes de un sedimento o secuencia sedimentaria; ya que por lo general la permeabilidad es baja, si la porosidad no está muy interconectada, por lo contrario la permeabilidad es alta cuando la porosidad está bien interconectada; tiene buena porosidad efectiva.

2.1.11.1 PERMEABILIDAD ABSOLUTA (k_a)
A la facilidad con que se puede fluir una fase con respecto a otra a través del medio poroso, se le denomina permeabilidad absoluta.

$$k_a = \frac{q_f \mu_f L}{A \Delta p}$$

Donde:

- K_a = permeabilidad absoluta (darcys)
- μ_f = viscosidad del fluido (centipoase)
- A = área de la muestra de roca transversal al flujo de fluidos (cm2)
- q_f = gasto del fluido (cm^3/s)
- L = longitud de la muestra (cm)
- Δp = diferencia de presión (atm) ($p_1 - p_2$)
2.1.11.2 PERMEABILIDAD EFECTIVA (k_{ef}):

Se le llama permeabilidad efectiva a un fluido cuando el medio está saturado por 2 o más fases con facilidad o no de flujo, y cada una de ellas tiene permeabilidad.

$$K_{ef} = \frac{q_f u_f L}{A \Delta p}, \text{si } s_f < 100\%$$

2.1.11.3 PERMEABILIDAD RELATIVA (k_r):

Se define a la permeabilidad relativa como el cociente de la permeabilidad efectiva con respecto a la permeabilidad absoluta; matemáticamente se expresa como:

$$k_r = \frac{k_{ef}}{k_{abs}} \quad r = o, g, w$$

Donde:
- k_{ef} permeabilidad efectiva
- k_{abs} permeabilidad absoluta
- o = aceite
- g = gas
- w = agua
2.2 CLASIFICACIÓN DE LAS ROCAS CLÁSTICAS

Las rocas sedimentarias, a pesar de ser las menos abundantes (5 % en volumen), cubren el 75% de la superficie de los continentes y casi el 100% de los fondos oceánicos. Además constituyen el recurso natural más consumido después del aire y el agua.

Las rocas sedimentarias se han clasificado en tres grandes grupos caracterizados por el origen y la composición: detríticas, químicas y orgánicas.

En este trabajo solo se hablará de las rocas detríticas.

ROCAS DETRÍTICAS.

Son rocas constituidas por granos, matriz y cemento. El diámetro y la composición de los granos, así como su porcentaje con respecto al total de la roca, son muy variables.

Una roca detrítica se origina por la acumulación de granos en una cuenca. Simultáneamente o posteriormente, se produce el relleno de los huecos por granos de menor tamaño (matriz) y, por último, por precipitación de cemento químico que da consistencia a la roca. Posteriormente, la roca puede sufrir cambios mineralógicos, de acuerdo con los procesos diagenéticos que experimente. A la hora de clasificar rocas detríticas, se establecen una serie de parámetros. Todos ellos dan idea de la madurez del sedimento.
Las rocas, de acuerdo a su tamaño de grano, se pueden clasificar en:

CONGLOMERADOS (Psefitas).
Son las rocas detríticas cuyo diámetro de grano es mayor de 2 mm, (por tanto se considera matriz a todos aquellos granos minerales menores de 2 mm). La composición de los granos de los conglomerados es generalmente silicatada (cuarzo, feldespatos) o composición carbonatada.
Si todos los granos son del mismo mineral, la roca se denomina Oligomíctica.
Si todos los granos son de minerales distintos, la roca se denomina Polimíctica.
De acuerdo al grado de consolidación se clasifican en:
Gravas- si los granos no están cementados.
Conglomerados –si los granos están cementados.

ARENISCAS (Psamitas).
Son rocas detríticas con el diámetro de grano comprendido entre 0.0625 de mm y 2 mm, por lo tanto se considera matriz a todos los minerales menores de 0.0625
mm). Se clasifican por su porcentaje de matriz y por la composición mineralógica de sus granos (clasificación de Dott (1964) y Folk (1968)).

Para efectos de clasificación, se considera la composición de los granos del siguiente modo:

- granos de cuarzo.
- granos de feldespato.
- fragmentos de roca (líticos)

Las areniscas con menos de un 15% de matriz se denominan arenitas. (Cuarcitas si predominan los granos de cuarzo, arcosas si predominan los granos de feldespato, y arenita lítica si predominan los fragmentos de roca.

Las areniscas con un porcentaje de matriz comprendido entre el 15 y el 75% se denominan grauwacas. (Cuarzo-grauwacas si predominan los granos de cuarzo, grauwacas feldespáticas si predominan los granos de feldespato, y grauwacas líticas si predominan los fragmentos rocosos).

Una roca con más del 75% de matriz, es considerada una lutita.

Existen otros nombres tradicionales como las calcarenitas, las areniscas ferruginosas, dependiendo de la composición mineralógica dominante.

LUTITAS (Pelitas).

Son rocas cuyo diámetro de grano es menor a 0.0625 de mm.

Clasificar lutitas es complicado porque sus minerales sólo son visibles en microscopio electrónico.
Según el tamaño de grano, se clasifican en:

- limo- diámetro de grano comprendido entre 0.0625 de mm y 1/256 de mm.
- arcilla- diámetro de grano inferior a 1/256 mm.

La composición de los minerales de las lutitas es muy variable:

- del grupo de los filosilicatos: illita, caolinita, clorita, montmorillonita, biotita, moscovita.
- otros silicatos: feldespatos.
- carbonatos: calcita, dolomita.
- cuarzo

Frecuentemente se las nombra según el mineral que predomina (lutitas ferruginosas, lutitas silíceas, lutitas carbonatadas, lutitas bituminosas).
2.2.1 CLASIFICACIÓN SEGÚN DOOT

Dott (1964) establece que las areniscas que tienen menos del 10 % de matriz se denominan arenitas y las que tienen entre 10 y 75 % se llaman grauwacas. Por otro lado, según la relación porcentual entre el cuarzo, los feldespatos y los fragmentos líticos, se reconocen diferentes campos. De esta manera, las arenitas cuarzosas (cuarcitas) son las que tienen menos del 10 % de matriz y más del 95 % de clastos silíceos. Se caracterizan por su composición, dominada por cuarzo y cemento principalmente silíceo, y una textura bien seleccionada, con clastos moderadamente a bien redondeados. En contraste, las grauwacas son areniscas con alto porcentaje de matriz y una presencia variable de cuarzo, feldespatos o fragmentos líticos (cuarzo-grauwacas, grauwacas feldespáticas y grauwacas líticas) (figura 2.10).

2.2.2 CLASIFICACIÓN SEGÚN FOLK
La clasificación de Folk (1968) para areniscas se basa en la presencia de cuarzo (Q), feldespatos (Ftos), fragmentos de roca (F. roca) y el % de matriz (figura 2.11).
Las areniscas presentan menos del 15% de matriz, las grauwacas entre el 15 y el 75 %, y las lutitas más del 75%.

Figura 2.11. Clasificación de las areniscas según Folk, 1968.
3. PROPIEDADES PETROFÍSICAS EN YACIMIENTOS TERRÍGENOS

3.1 SATURACIÓN (Sf)

Es la fracción del volumen de poros de una roca que se encuentra lleno con fluido (aceite, agua o gas). Se obtiene al dividir el volumen del fluido \(v_f \) a condiciones del medio poroso, entre el volumen de huecos intercomunicados del medio poroso.

\[
S_f = \frac{V_f}{V_p}
\]

Donde:

- \(V_f \) = es el volumen del fluido (aceite, gas o agua) a condiciones del medio poroso.
- \(V_p \) = es el volumen de poros del medio poroso.

Los poros en un yacimiento siempre estarán saturados de fluidos, nunca habrá poros vacíos.

\[
\sum S = 1 \\
S_0 + S_w = 1 \\
S_w + S_g = 1 \\
S_o + S_g + S_w = 1
\]

donde:

- \(S_0 \) = saturación de aceite
- \(S_g \) = saturación de gas
- \(S_w \) = saturación de agua
La saturación de un fluido en un medio poroso es una indicación del volumen de fluidos en el espacio poroso de una roca, a las condiciones de presión y temperatura a las que se encuentra el yacimiento (Figura 3.1).

![Diagrama de saturación de fluidos en roca](image)

Figura 3.1. Saturación de fluidos en la roca (De la Garza, 2000).

\[
VR = A \times B \times C \\
VP = VR \times \varnothing \\
Vf = VP \times SF
\]

Donde
- \(VR \) = volumen de la roca
- \(VP \) = volumen de los poros
- \(SF \) = saturación del fluido
Donde V_f puede representar: aceite(o), agua (w) o gas (g), por lo que:

\[
S_o = \frac{V_o}{V_p}
\]
\[
S_w = \frac{V_w}{V_p}
\]
\[
S_g = \frac{V_g}{V_p}
\]

Dependiendo las condiciones a las que se encuentre, existen diferentes formas de clasificar las saturaciones (Tabla 3.1), dentro de las más comunes tenemos:

3.1.1 SATURACIÓN INICIAL
Será aquella a la cual es descubierto el yacimiento. En el caso del agua también se le denomina saturación del agua congénita y es el resultado de los medios acuosos donde se forman los hidrocarburos, dependiendo su valor, el agua congénita podrá tener movimiento o no.

3.1.2 SATURACIÓN RESIDUAL
Es aquella que se tiene después de un periodo de explotación en una zona determinada, dependiendo el movimiento de los fluidos, los procesos a los cuales se está sometiendo el yacimiento y el tiempo, ésta puede ser igual, menor o en casos excepcionales mayor que la saturación inicial.
3.1.3 SATURACIÓN CRÍTICA

Será aquella a la que un fluido inicia su movimiento dentro del medio poroso.

En todos los yacimientos de hidrocarburos existe agua y la saturación inicial puede variar comúnmente entre 10 y 30 %. En yacimientos con entrada de agua natural o artificial, puede alcanzar valores del orden del 50% o más y residuales de aceite del orden del 40%. Las saturaciones de fluido pueden obtenerse directamente de núcleos preservados, en el laboratorio o indirectamente a partir de registros geofísicos de pozos.

<table>
<thead>
<tr>
<th>Características</th>
<th>Sistema mojado por</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Agua</td>
</tr>
<tr>
<td>1.- Saturación de agua irreductible en el volumen poroso</td>
<td>Usualmente mayor del 20% poroso</td>
</tr>
<tr>
<td>2.- Saturación en la cual $K_{rw} = K_{ro}$</td>
<td>Mayor del 50% de S_w</td>
</tr>
<tr>
<td>3.- Permeabilidad relativa al agua, al máximo punto de saturación de agua</td>
<td>Generalmente menor del 30%</td>
</tr>
</tbody>
</table>

Tabla 3.1. Características de un sistema mojado en función de la saturación (Arana. 2007).
3.2 MOJABILIDAD

Cuando una roca contiene más de un fluido saturando su espacio poroso, la tensión interfacial, es la que determina la preferencia de la roca a ser mojada por algunos de los fluidos. La mojabilidad es la tendencia de un fluido a extenderse o adherirse sobre una superficie sólida, en presencia de otro fluido. Un parámetro que refleja tal preferencia es el ángulo de contacto. Si la roca es mojada por aceite se dice que es oleofílica, y si lo es por agua será hidrófila

La mojabilidad es de gran importancia para el flujo de aceite en un medio poroso. Se ha demostrado que si la roca es mojada por agua, la permeabilidad relativa al aceite es muy superior al caso en el que la roca sea mojada por aceite. Esto es debido a que la fase mojante está adherida a la roca, disminuyendo de esta manera su movilidad.

Como se ilustra en la Figura 3.2, el valor del ángulo (θ) de contacto de menos de 90 ($\theta < 90^\circ$), medido a través de la fase de agua, indica condiciones de mojabilidad preferentemente por agua, mientras que los ángulos de contactos mayores de 90 ($\theta > 90^\circ$), indican condiciones de mojabilidad preferente por aceite (Figura 3.3). Un ángulo de contacto exactamente de 90$^\circ$ indica que la superficie de la roca tiene igual preferencia de ser mojada por el agua o por el aceite (Figura 3.4).
Figura 3.2. Roca mojada por agua (Arana, 2007).

Figura 3.3. Roca mojada por aceite (Arana, 2007).
Figura 3.4. Roca sin preferencia a ser mojada por agua o aceite (Arana, 2007).

El gas natural es el fluido no mojante; el aceite es el fluido mojante cuando se compara con el gas y por lo regular el aceite es el fluido no mojante cuando se compara con el agua. Dependiendo del tipo de roca en el yacimiento, la capacidad de mojabilidad varía. El fluido mojante cubrirá por completo la superficie de la roca y estará ubicado en los espacios porosos más pequeños debido a la acción de la capilaridad. La fase no mojante tenderá a congregarse en grandes espacios porosos, o en el centro de éstos.

Rara vez se indican los límites cuantitativos de estos términos cualitativos de mojabilidad. Sin embargo, a veces se usan los límites aproximados siguientes: los ángulos de contacto cercanos a 0° y a 180° se consideran respectivamente como fuertemente mojados por agua o por aceite. Los ángulos de contacto cercanos a 90° tienen una moderada preferencia de mojabilidad y cubren la gama llamada mojabilidad intermedia (Tabla 3.2).
<table>
<thead>
<tr>
<th>FASE MOJANTE</th>
<th>FASE NO MOJANTE</th>
</tr>
</thead>
</table>
| - La fase mojante ingresa al medio poroso en forma espontánea. Y, por lo tanto, es necesario entregar energía para sacarla del medio poroso.
- Se adhiere preferentemente a la superficie de la roca
- Debido a las fuerzas de atracción entre la roca y el fluido mojante, éste tiende a ubicarse en los poros más pequeños de la roca.
- La fase mojante usualmente no es móvil.
- Las fuerzas de atracción entre las fases y la superficie de la roca impiden que la saturación de la fase mojante descienda por debajo de un valor mínimo (saturación irreductible)
- Muchos yacimientos tienden a ser total o parcialmente mojados por agua | - La fase no mojante es expulsada del medio poroso en forma espontánea. Y, por lo tanto, no es necesario entregar energía para extraerla de los poros.
- Solo es necesario disponer de una fuente de fase mojante para que la reemplace de forma espontánea.
- No tiene preferencia a adherirse a la superficie de la roca.
- Debido a las fuerzas de repulsión entre la roca y el fluido no mojante, éste tiende a ubicarse en los poros más grandes de la roca.
- La fase no mojante es usualmente la fase mas móvil, especialmente a saturaciones alta de la fase no mojante.
- El gas natural es siempre la fase no mojante, en yacimientos de hidrocarburos. |

Tabla 3.2. Características de la fase mojante (Arana, 2007).
3.3 FUERZAS CAPILARES

Son el resultado de los efectos combinados de las tensiones interfaciales y superficiales, de tamaño y forma de los poros y del valor relativo de las fuerzas de cohesión de los líquidos, es decir, de las propiedades de mojabilidad del sistema roca-fluidos (Figura 3.5).

Figura 3.5. Diagrama donde puede observarse la Presión Capilar (Arana, 2005).

donde:

- \(\sigma_{as} = \) tensión interfacial aire – superficie
- \(\sigma_{ws} = \) tensión interfacial agua – superficie
- \(\sigma_{wa} = \) tensión interfacial agua – aire
- \(P_w = \) presión en el agua
- \(P_a = \) presión en el aire
De la figura anterior, para que el sistema esté en equilibrio tenemos:

(↑) Fuerzas Capilares = peso del líquido (↓)

\[2\pi r \sigma \cos \theta = \rho g \pi r^2 h \]

Despejando \(h \)

\[h = \frac{2 \sigma \cos \theta}{r \rho g} \Rightarrow \rho g h = \Delta P = \frac{2 \sigma \cos \theta}{r} \]

Esta es precisamente la presión capilar que actúa en la interface; la \(\Delta P \) multiplicada por el área es igual a la fuerza capilar (unidades de fuerza).

3.4 PRESIÓN CAPILAR (Pc)

Es la diferencia de presiones que existe en la interface que separa dos fluidos inmiscibles, uno de los cuales moja preferentemente a la roca.

También se define la presión capilar como la capacidad que tiene el medio poroso de succionar el fluido que la moja y de repeler al no mojante (Figura 3.6).
Figura 3.6. Esquemas que ilustran el fenómeno de mojabilidad y presión capilar mediante dos fluidos conocidos. El ángulo θ representa el contacto de la fuerza capilar que gobierna la mojabilidad de los fluidos. En la figura A el agua es el fluido mojante, mientras que en la figura B el mercurio no moja la superficie (De la Garza, 2007).

La magnitud de la saturación de agua en un yacimiento, para una altura determinada, está controlada por:

1.- La estructura porosa de la roca.

2.- La densidad de los fluidos.

3.- Las características de energía superficial.

El efecto de la estructura porosa se determina a partir de las curvas de presión capilar determinadas en el laboratorio. Los poros en las rocas del yacimiento son considerados análogos a los tubos capilares, si se toma en cuenta que los diámetros son pequeños.
Las rocas de baja permeabilidad presentan altas presiones capilares y zonas de transición de un gran espesor, mientras que las rocas de alta permeabilidad presentan menores presiones capilares y delgadas zonas de transición.

Cuando dos fluidos inmiscibles están en contacto dentro de los poros, una superficie curvada se forma entre los dos. La presión en el lado del fluido no-mojante de la interface (Pnm), es mayor que la presión para el lado del fluido mojante (Pm). Esta diferencia de presiones se define como presión capilar (Pc).

\[\text{Pc}=\text{Pnm}-\text{Pm} \]

Cuando dos o más fluidos están presentes en una formación porosa a la misma elevación (por ejemplo, respecto del nivel del mar), y aún cuando los fluidos estén a la presión de equilibrio, éstos no se encuentran a la misma presión. Esta situación se genera debido a que la atracción mutua entre la roca y el fluido (tensión de adhesión) es diferente para cada fluido. La diferencia en la presión entre las dos fases en equilibrio a la misma elevación se denomina presión capilar entre las fases. El fluido con la mayor tendencia a mojar la roca almacenará tendrá la presión más baja.

Típicamente los fluidos no son miscibles, por ejemplo, al poner en contacto físico aceite y agua, exhiben una interface, con una presión diferencial alrededor de ésta. Esta diferencia de presión entre las dos fases inmiscibles (en este caso aceite y agua) es referida como presión capilar.
La presión capilar normalmente es definida como la presión en la fase no mojante (Pnm), menos la presión en la fase mojante (Pm).

\[P_c = P_{nm} - P_m \]

Donde:
- \(P_c \) = presión capilar
- \(P_{nm} \) = presión de la fase no mojante
- \(P_m \) = presión de la fase mojante

En el caso de aceite (o) y agua (w):

\[P_c = P_o - P_w \]
\[P_c = (\rho_o - \rho_w) \, gh \]

Donde:
- \(P_o \) = presión del aceite
- \(P_w \) = presión del agua
- \(\rho_o \) = densidad del aceite
- \(\rho_w \) = densidad del agua
- \(g \) = gravedad
- \(h \) = altura
3.5 TENSIÓN INTERFACIAL (σ)

Dos fluidos inmiscibles en contacto no se mezclan y los separa su interfase. Las moléculas no se mezclan por su mayor afinidad con las moléculas de su propia clase. Cerca de la superficie las moléculas se atraen con mayor intensidad produciendo una fuerza mecánica en la superficie que se conoce como tensión interfacial, σ. Esta fuerza es el resultado de efectos moleculares por los cuales se forma una interfase o superficie que separa los fluidos; en el caso de los líquidos, si σ es nula, se dice que los líquidos son miscibles entre sí. En el caso en que se tenga una interfase líquido-gas, al fenómeno se le llama tensión superficial (Figura 3.7). Un ejemplo clásico de fluidos inmiscibles se tiene con el agua y el aceite.

![Figura 3.7. Representación gráfica de una gota de petróleo adherida a una superficie sólida, con las respectivas fuerzas presentes y el ángulo de contacto entre ambas superficies. (Halliburton, 2010).](image-url)
Las energías de superficie en un sistema de este tipo se relacionan mediante la ecuación siguiente:

\[A_t = \sigma_{SO} - \sigma_{SW} = \sigma_{WO} \cos \theta_c \]

Donde:

- \(A_t \) = tension de adhesión, \(\frac{dina}{cm} \)

- \(\sigma_{SO} \) es la energía interfacial (tensión interfacial) entre el aceite y el sólido, \(\frac{dina}{cm} \)

- \(\sigma_{SW} \) es la energía interfacial entre el agua y el sólido, \(\frac{dina}{cm} \)

- \(\sigma_{WO} \) es la energía interfacial entre el aceite y el agua, \(\frac{dina}{cm} \)

- \(\cos \theta_c \) es el coseno del ángulo de interfase o de contacto aceite – agua, con respecto al sólido, medido a través del agua, grados

Ninguna de las energías interfaciales, aceite-sólido o agua-sólido, pueden medirse directamente.
3.6 RESISTIVIDAD

La resistividad de una sustancia o de un material es la medida de su oposición al paso de la corriente eléctrica. La resistividad de una roca porosa depende de:

- La cantidad de agua saturante.
- La resistividad del agua que se encuentra en los poros.
- La mojabilidad.
- La litología.
- La textura de la roca.
- La temperatura.
- La presión.

Es un parámetro necesario para determinar el factor de formación. La resistividad es una propiedad petrofísica, conocer su valor es de gran importancia para conocer las saturaciones de agua mediante análisis cuantitativos de registros eléctricos.

La resistividad de una roca saturada 100% con agua se denomina Ro y la podemos escribir:

$$Ro = \text{función } (Rw, f)$$
Donde:

- R_w es la resistividad del agua, en $\Omega\cdot m$
- f es la porosidad, en fracción.

Es decir, R_o está relacionado con R_w por un factor denominado de formación F, tal que:

$$R_o = F R_w$$

3.7 COMPRESIBILIDAD (c)

La compresibilidad c es una medida del cambio del volumen del fluido con la presión, considerando un volumen dado V. un promedio ponderado con respecto a la saturación de fluidos, más la compresibilidad de la formación, es lo que se conoce como (c_t)

$$c_t = c + c_f$$

Siendo c_f = compresibilidad de la formación

Donde:

$$c = c_o S_o + c_g S_g + c_w S_w$$
La compresibilidad de un fluido se define como:

\[c = -\frac{1}{V} \frac{\partial V}{\partial P} t \]

Donde:

- \(V = \text{volumen} \)
- \(\frac{\partial V}{\partial P} = \text{parcial del volumen} \)
- \(\frac{\partial P}{\partial t} = \text{parcial de la presión} \)
- \(t = \text{tiempo} \)

El signo menos se utiliza para que se obtenga un valor positivo de \(c \), puesto que

\[\left(\frac{\partial V}{\partial P} \right)_t < 0 \]

Se llama compresibilidad efectiva de un fluido, por ejemplo el aceite, a:

\[c_{of} = \frac{c_t}{S_o} \]
3.8 TORTUOSIDAD (ζ)

La tortuosidad es la relación entre la longitud del tubo capilar equivalente al medio poroso (L_c) y la longitud del medio poroso (L).

$$\zeta = \left(\frac{L_c}{L}\right)^2$$

donde:

- $L_c = \text{Distancia promedio recorrida por el flujo}$
- $L = \text{Longitud entre dos superficies donde ocurre el flujo}$

Figura 3.8. El medio poroso no es totalmente recto, por el contrario es sinuoso y la relación entre la longitud total del medio poroso y la longitud de la roca donde ocurre el flujo es la tortuosidad (Halliburton, 2010).
4. MARCO GEOLÓGICO REGIONAL

El estudio de los depósitos turbidíticos nos permite comprender mejor el medio en el que se forma la roca (indicándonos condiciones paleográficas, tectónicas y depositacionales de aguas profundas); así como las características complejas de la roca almacenadora.

4.1 DEPÓSITOS TURBÍDITICOS: PROCESOS Y ESTRUCTURAS RESULTANTES

Una turbidita es una formación geológica que se deposita mediante una corriente turbidítica, es decir, una avalancha submarina que redistribuye en las profundidades del océano grandes cantidades de sedimentos clásticos provenientes de áreas cercanas al continente.

Las turbiditas son secuencias de sedimentos, resultado del depósito de los sólidos que son transportados por las corrientes de turbidez. Dichas corrientes son las principales transportadoras de sedimentos terrígenos de plataforma continental, a través del talud continental, al fondo oceánico. Estas corrientes presentan un flujo alto, con velocidades de hasta 100 kilómetros por hora.

El término “turbidita” se aplica a una alternancia de materiales (capas de areniscas y de arcillas fundamentalmente) con una estratificación muy regular debida a corrientes de turbidez que se depositan en los bordes inferiores de los taludes continentales y en las llanuras abisales. Sus capas se caracterizan por poseer una
cierta ritmicidad, por tener contactos planos paralelos entre ellas y una serie de estructuras internas primarias muy características.

Existen dos tipos de turbiditas: las turbiditas carboníticas, que están formadas por fragmentos de calizas micríticas de color negruzco, originadas por sedimentación, a partir de suspensiones turbulentas diluidas, y turbiditas de origen siliciclástico derivadas de plataformas deltáicas. Algunos autores dividen las corrientes de turbidez en tres partes: cabeza, cuerpo y cola (Figura 4.1). Las turbiditas generalmente se encuentran formando abanicos submarinos.

![Figura 4.1. Subdivisión esquemática de una corriente de turbidez (Glenn S. Visher).](image)

Una corriente de turbidez se mueve pendiente abajo a lo largo del fondo marino debido a la gravedad que actúa sobre los sedimentos suspendidos en el agua y causa que la masa (agua-sedimento) fluya como un fluido más denso que el agua que le rodea. Termina el movimiento de la corriente de turbidez cuando la carga de sedimentos que lleva, en forma turbulenta, se deposita o cuando se ha depositado tal cantidad de sedimentos que la densidad de la masa agua—sedimento no excede la densidad del agua con la que está en contacto.
Las corrientes de turbidez periódicamente se generan y acarrean sedimentos que son depositados de forma cíclica, por lo que en una secuencia vertical de sedimentos de corrientes de turbidez se pueden observar secuencias verticales para cada una de ellas o sea para cada turbidita.

GENERACIÓN DE TURBIDITAS

En ciertas regiones del fondo marino, tales como límites de las plataformas continentales o de deltas, se forman apilamientos de sedimentos fácilmente desparramables. En esas partes, la pendiente del fondo marino es tan inestable que con fenómenos como temblores o tormentas fuertes se origina el movimiento pendiente abajo de esos sedimentos dentro de una masa de agua (Figura 4.2). En su trayectoria hacia abajo, los sedimentos prácticamente se mezclan formando una mezcla agua-sedimentos que llega a tener la principal característica de una corriente de turbidez, que es formar una mezcla con densidad mayor que la del agua dentro de la cual se mueve y sedimentos que viajan con la turbulencia. Esta mezcla lodosa se mueve a gran velocidad corriente abajo, abriendo brechas y canales en la pendiente, depositando de manera gradual los sedimentos (en un arreglo granocreciente) mas finos a medida que la corriente turbidítica va perdiendo movimiento. Cuando ya no existe movimiento en el fondo del mar por efecto de la corriente de turbidez se vuelven a depositar las arcillas, que normalmente se estaban sedimentando en ese ambiente antes de que llegaran los sedimentos de dicha corriente. Este fenómeno se puede repetir formando una apilamiento de secuencias turbidíticas, es decir un apilamiento de ciclos de sedimentación (Figura 4.3).
FIGURA 4.2. Depósito de sedimentos de una corriente turbidítica (Sanders, 1965).
FIGURA 4.3. Mecanismos de transporte de fluidos turbidíticos, (Society of Economic Paleontologists and Mineralogist, 1965).
4.2 GEOLOGÍA DE LA CUENCA DE CHICONTEPEC

La cuenca de Chicontepec es de tipo ante-fosa, en donde se depositaron sedimentos arcillo-arenoso de ambiente turbidítico con una marcada asociación faunística de aguas profundas (Cabrera y Lugo, 1984). En su porción media-sureste se tiene evidencia de un paleocanal, de edad Eoceno temprano, que se profundiza hacia el sureste.

Paleográficamente el paleocanal de Chicontepec es una depresión alargada, que se encuentra orientado de noroeste a sureste, originada por una combinación de eventos tectónicos y erosivos. Se llenó con una pila sedimentaria marina turbidítica, en donde el contenido faunístico de foraminíferos bentónicos indican depositación en ambiente nerítico externo y batial de aguas profundas; en algunos lugares con mas de 2700 m de espesor. La columna geológica está integrada por conglomerados, areniscas, limolitas y lutitas, con edades que van del Paleoceno al Eoceno Temprano. Sus características geológicas son complejas debido a que no hay una distribución uniforme en el paleocanal.

Este sistema originado por el relleno de materiales de corrientes submarinas que circularon sensiblemente paralelas a los márgenes de la sierra madre oriental, y de la plataforma de Tuxpan, se cortaron en la porción sur sedimentos comprendidos desde el Jurásico al Paleoceno. También se aprecia que la discordancia es más abrupta en el área norte. El relleno de esta depresión se llevó a cabo en el Eoceno Inferior por corrientes que drenaban de la Sierra Madre Oriental, y que transportaron y depositaron sedimentos tipo flysch, representados...
por alternancia de areniscas y lutitas ricas en fauna mezclada y retrabajada de plataforma y cuenca, de diferentes edades.

El canal fue rellenado por sedimentos arcillosos y arenosos en forma alternada, cubriendo un área de aproximadamente 123 km de longitud por 25 km de amplitud, lo que dio lugar a trampas estratigráficas localizadas a profundidades que varían desde los 800 m en la porción norte, hasta alrededor de los 2500 m en la porción sur, cerca de Tecolutla. El espesor neto de las formaciones productoras va desde unos pocos centímetros hasta 400 metros (Mayol, 2005), y están conformadas principalmente por: Chicontepec Inferior (Paleoceno superior), Chicontepec Medio (Paleoceno Superior), Chicontepec Superior (Eoceno Inferior temprano) y Chicontepec Canal (Eoceno Inferior tardío) (Figura 4.4)

![Figura 4.4. Columna estratigráfica del paleocanal de Chicontepec (Yáñez, 1998).](image-url)
Las secuencias turbidíticas se depositaron por eventos múltiples, incluyendo flujo de escombros y deslizamientos, algunas veces retrabajadas por corrientes de fondo marino, afectados por una serie de eventos erosivos, de los cuales sobresale regionalmente la discordancia de la base del Eoceno Inferior, la cual forma un canal que se profundiza de noroeste a sureste (NW -- SE) donde sedimentos terciarios y del Jurásico Superior están en contacto.

Hacia la parte norte y centro del paleocanal de Chicontepec la mayoría de los intervalos productores se localiza por debajo de esta discordancia, mientras que en porción sur la producción se ubica en las arenas basales que le sobreyacen.

Al igual que la base del Eoceno Inferior, su cima es discordante. Dichas discordancias en la base y cima de este nivel estratigráfico, son ejemplos de eventos erosivos entre los cuales fueron desarrolladas pequeñas subcuencas de interés petrolero. Esto debido en parte a la presencia de zonas incompetentes y a la distribución de los principales sistemas de paleocorrientes. Allí la columna del Cretácico Medio al Eoceno Inferior temprano está ausente, pues la Formación Chicontepec Canal yace directamente sobre el Jurásico Superior.

Regionalmente, la geometría de las arenas está asociada en forma directa con el medio ambiente de depósito de abanicos submarinos superpuestos, conformando estructuras suaves y amplias (anticlinales y sinclinales) en facies de abanico medio distal. Las estructuras más profundas y deformadas se encuentran en la porción occidental del paleocanal de Chicontepec, en las facies de abanico...
superior o cercano a la fuente de aporte, situación por la que el aspecto estructural está al menos parcialmente subordinado al carácter estratigráfico (figura 4.5).

FIGURA 4.5. Sección estructural que muestra la discordancia regional del Eoceno Inferior. Los números indican las tres áreas de interés económico (Mayol, 2005).
4.3 SISTEMA PETROLERO

Clasificación de los sistemas petroleros.

Los sistemas petroleros varían considerando la forma, la geometría, el tipo de yacimiento y la evolución geológica disponible referente a la roca generadora, de aquí que los sistemas se clasifiquen como conocidos, hipotéticos o especulativos (Tabla 4.1):

Sistemas puros. Tienen la particularidad de no presentar deformación estructural significativa, ya que sus características se deben principalmente a los aspectos sedimentológicos, como consecuencia, sus trampas son principalmente estratigráficas.

Sistemas híbridos. Se caracterizan por presentar orientación estructural por efecto de la deformación, por lo que estos sistemas se distinguen por trampas en pliegues anticlinales y en fallas, o en combinación de estas, aunque lo más frecuente es que el sistema tenga pliegues dislocados (trampas mixtas).

Sistemas hipotéticos. Son aquellos en que la información geoquímica identifica a la roca generadora pero no se tiene correlación con acumulaciones de hidrocarburos en la cuenca o no existen yacimientos.

Sistemas especulativos. Los sistemas son especulativos cuando sólo se tienen evidencias geológicas y/o geofísicas de la existencia de las rocas generadoras y acumulaciones de petróleo, pero no se han hecho estudios detallados.
DEFINICION DE NIVELES DE CERTEZA

<table>
<thead>
<tr>
<th>Nivel de certeza</th>
<th>Criterios</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conocido</td>
<td>Existe correlación entre aceite /roca generadora o gas/roca generadora</td>
<td>(!)</td>
</tr>
<tr>
<td>Hipotético</td>
<td>No existe correlación aceite/ roca generadora o gas/roca generadora</td>
<td>(.)</td>
</tr>
<tr>
<td>especulativo</td>
<td>Evidencias geológicas y geofísicas</td>
<td>(?)</td>
</tr>
</tbody>
</table>

Vásquez (2008), define al sistema Chicontepec como puro dado que no presenta deformación estructural significativa, las trampas de tipo estratigráfico se asocian con abanicos submarinos, superficies de erosión, barras arenosas y con rellenos de paleocanal; por otra parte es considerado un sistema conocido en cuanto a su nivel de certeza, ya que en los campos en que se ha estudiado existen datos de importantes volúmenes de producción de aceite, el cual se correlaciona positivamente con la roca generadora. El grupo Chicontepec contiene una de las mayores acumulaciones de hidrocarburos del país.
4.3.1 SISTEMA GENERADOR

El sistema generador de la cuenca de Chicontepec está compuesto por tres formaciones principales que son Formación Santiago, Tamán y Pimienta, todas ellas del Jurásico Superior.

La Formación Santiago está constituida por lutitas carbonatadas negras, microlaminadas, limolitas arcillosas, mudstones arcillo-piritizados y horizontes de nódulos calcáreos; la fauna es pobre y está representada por algunos vívalos y cefalópodos de edad Oxfordiano. Sus espesores varían entre 10 y 755 m, ubicándose los mayores espesores en la porción sur de la cuenca (Vázquez, 2008).

La Formación Tamán está compuesta por calizas mudstone, calizas arcillosas, lutitas calcáreas laminares y escasas limolitas con espesores máximos de 998 m, sus características fundamentales son la buena estratificación y el predominio de los carbonatos sobre la arcilla. Los organismos presentes son radiolarios, esponjas, pelecípodos, cefalópodos y equinodermos del Kimmeridiano.

La Formación Pimienta está compuesta por mudstone y calizas arcillosas negras, ligeramente piritizadas, de estratificación delgada con intercalaciones de lutita negra laminar, bentonita y lentes de pedernal con espesores máximos de 485 m; la fauna está constituida por Calpionella sp., Fibrosphaera sp. y Globochaete alpina del Tithoniano.

La mayor riqueza orgánica se encuentran en las formaciones Santiago y Pimienta, teniendo kerógeno tipo I y II, encontrándose predominantemente dentro de la ventana del aceite. Los mayores espesores de las rocas generadoras se
concentran en 12 grabens, los cuales al madurar la materia orgánica se convirtieron en los principales focos oleogeneradores (Vázquez, 2008).

4.3.2 MIGRACIÓN
En este sistema la migración se dio principalmente en una sola dirección, en sentido vertical ascendente con moderada extensión hacia las rocas de mayor porosidad como lo son los estratos arenosos lenticulares del grupo Chicontepec o de la Formación Aragón del Eoceno Inferior.

4.3.3 ALMACÉN
Las rocas almacenadoras ocupan aproximadamente el 33% del relleno de la cuenca. Son principalmente areniscas del Eoceno Inferior de la Formación Chicontepec Superior, originadas por sistemas de depósitos turbidíticos cíclicos de abanicos submarinos; también existen acumulaciones en rocas del Paleoceno Superior y Eoceno Superior.
Las formaciones del grupo Chicontepec presentan alta variabilidad vertical en cuanto a sus características petrofísicas de porosidad y permeabilidad; relacionada al ambiente de depósito, a la distancia del transporte ya que sus constituyentes líticos carbonatados tienen un porcentaje que varía entre el 35 y 40%. Los paquetes de areniscas con mayor potencial almacenador tienen geometrías de barras de desembocadura y canales distributarios con espesores de entre 12 y 18 m; las secuencias arenosas de grandes espesores son escasas
pero ofrecen las más atractivas posibilidades para contener hidrocarburos. La Formación Aragón es correlacionable con la Formación Chicontepec y es igualmente almacenadora y sello por sus horizontes arcillosos, esta formación se encuentra fuera de la cuenca de Chicontepec.

4.3.5 SELLO
Las mismas formaciones del grupo de Chicontepec en sus facies de lutitas interestratificadas con areniscas de grano fino, las que constituyen un sello de este sistema petrolero. En la parte norte y central de la cuenca, el sello lo componen sedimentos arcillosos del mismo grupo de Chicontepec localizados por encima de la erosión regional de edad Eoceno Temprano, mientras que al sureste el sello son los sedimentos arcillosos de la Formación Guayabal (Vázquez, 2008).

4.3.6 TRAMPA
El patrón de entrampamiento del sistema Chicontepec está formado por una gran cantidad de trampas por variación de la permeabilidad, en la mayoría de los casos son lutitas intercaladas con areniscas de grano fino de estratificación delgada que limitan en su clima, en su base y literalmente a los desarrollos arenosos que son los que forman las principales trampas, por lo que es en estos cuerpos arenosos donde se encuentran las principales acumulaciones comerciales de hidrocarburos. Predominan las trampas de tipo estratigráfico complejo, cuya geometría fue influenciada por la ocurrencia de grandes paleoestructuras en el subsuelo, como son los paleocanales, en algunos casos controlados por la geometría del depósito
debida a la superposición de abanicos submarinos y superficies de erosión dentro del paleocanal, que determinan los espesores y el comportamiento estructural de las secuencias del relleno, pudiendo llegar a construir trampas combinadas. En cuerpos localizados en la porción occidental de la Cuenca las trampas muestran un componente estructural.

4.3.7 SINCRONÍA
La sincronía se refiere a la ocurrencia de todos los elementos necesarios en tiempo y espacio para que sea posible la generación y entrampamiento de los hidrocarburos susceptibles de ser explotados económicamente. Para muchos autores, el hecho de que la erosión que dio origen al paleocanal de Chicontepec durante el Paleoceno Tardío-Eoceno temprano, además de que las secuencias clásticas depositadas no sufrieron deformación significativa, que modificara sus propiedades físicas por efectos de la Orogenia Laramide y el tiempo de maduración para que se generaran los hidrocarburos en capas inferiores dentro de la zona fue preciso; todos estos son elementos necesarios que se asocian para tener la sincronía de un sistema petrolero. En la Figura 4.6., se muestra de manera esquemática la ocurrencia de cada uno de estos elementos que dieron origen a las acumulaciones de hidrocarburos en la cuenca de Chicontepec, así tenemos que la generación de hidrocarburos fue en el Jurásico Tardío dando de esta manera el tiempo necesario para migrar y entramparse en las secuencias del Cenozoico.

4.3.8 PLAYS CHICONTEPEC

En Chicontepec han sido reconocidas tres áreas productoras (Pemex, 2011):

a) Play Chicontepec Paleoceno-Eoceno Inferior

b) Play Chicontepec canal Eoceno Inferior Tardío

c) Play Tantoyuca Eoceno Superior

a) El Play Chicontepec se localiza en parte de los estados de Veracruz, Puebla e Hidalgo, y corresponde a una secuencia sedimentaria marina turbidítica de ambiente neríco externo batial, depositada en forma de lóbulos y abanicos submarinos de edad Paleoceno-Eoceno Inferior Temprano. En algunos lugares rebasa los 1,700 m de espesor. Estas secuencias de areniscas, limolitas y lutitas tienen características muy variables y distribución irregular, ya que se localizan por
debajo de una discordancia regional y encima de ella, se tienen sedimentos arcillosos.

La roca generadora de donde pueden provenir los hidrocarburos pertenece a las facies arcillo-carbonatadas de Jurasico Superior de las formaciones Santiago, Tamán y Pimienta. Su espesor varía entre 200 y 800 m.

La roca almacenadora corresponde a areniscas de grano medio a fino del Paleoceno-Eoceno Inferior, su espesor es variable y su continuidad lateral es dependiente de la geometría y tamaño de la cuenca. Los tipos de trampas encontradas en esta área son predominantemente combinadas. El entrampamiento está dado por lutitas intercaladas que limitan en su base y lateralmente a los desarrollos arenosos.

B) Play Chicontepec Canal. Esta secuencia se depositó en una gran depresión alargada orientada NW-SE. El relleno tuvo lugar después de un evento erosivo de gran magnitud y corresponde a una secuencia marina, turbidítica, de ambiente nerítico externo batial. En algunos lugares rebasa los 1000 metros de espesor. En esta zona la erosión fue muy profunda y pone en contacto rocas del Jurasico Superior de la Formación San Andrés con las del Eoceno Inferior de la Formación Chicontepec Superior.

Se considera que los tipos de roca generadora más favorables de donde puedan provenir están representados por las facies arcillo-carbonosas del Jurásico Superior correspondiente a las formaciones Santiago, Tamán y Pimienta.

La roca esta constituida por areniscas de espesor variable, y su continuidad lateral es dependiente de la geometría y magnitud de la erosión.
Estas rocas presentan constituyentes líticos carbonatados en un rango del 35-40%. La secuencia de areniscas descansa discordantemente sobre la Formación San Andrés. Los tipos de trampas son estratigráficas y combinadas. Los procesos relacionados con la erosión y la migración han propiciado la degradación de los hidrocarburos cambiando sus propiedades químicas y físicas.

C) Play Tantoyuca. Corresponde a una secuencia sedimentaria de edad Eoceno Superior, representada por arenas, conglomerados, limolitas y lutitas, que fueron depositadas en ambientes de aguas someras; rica en macro foraminíferos y pobre en pelágicos (Cabrera y Lugo 1984), su distribución está restringida principalmente hacia el borde oriental del paleocanal de Chicontepec y la plataforma de Tuxpan. Su depósito tuvo lugar en deltas de abanico y canales submarinos. El espesor promedio de la formación alcanza los 500 metros. Las rocas generadoras en esta área son lutitas arcillo-carbonosas y las calizas arcillosas, principalmente de la Formación Santiago, aunque existe generación de las formaciones Tamán y Pimienta.

La roca almacenadora está constituida por areniscas con geometría de barras de desembocadura y canales distribuidores; los cuerpos de arena tienen espesor entre 12 y 18 metros. Son comunes las litarenitas de grano fino a medio. En algunos intervalos existen conglomerados con matriz arenosa. Las rocas sello están formadas por las lutitas de la Formación Palma Real Superior, de edad Oligoceno Medio, además de las lutitas interestratificadas con los cuerpos arenosos de la Formación Tantoyuca. El tipo de trampa predominante es la estratigráfica, pero hay combinadas.
5.- ANÁLISIS DE DATOS DE PRODUCCIÓN DE POZOS UBICADOS EN EL SECTOR CENTRAL DEL CAMPO TAJÍN.

Se realizó el análisis del sector central del campo Tajín en función de datos de producción y propiedades petrofísicas, para lo cual se revisó la historia de 86 pozos de ellos sólo el 76% (66 pozos), contaban con la información necesaria para poder analizar sus características y datos de producción (Figura 5.1 y 5.2).

Figura 5.1. Ubicación del Campo Tajín y de la zona de análisis (sector central).
En la figura 5.2 se muestran los sectores en que se dividió la región central del campo Tajín: Noreste (NE), Sureste (SE), Suroeste (SW), y Noroeste (NW), con el propósito de contar con un marco de referencia durante el análisis y en donde se incluyó un número similar de pozos en cada sector.

Figura 5.2. Ubicación esquemática de los pozos analizados en el sector central del campo Tajín (círculos rellenos). Los círculos en blanco representan aquellos pozos que no cuentan con la información (historia de pozo).
La información extraída se trata de un conjunto de parámetros característicos de los pozos. Las propiedades que se manejan en este trabajo son propiedades petrofísicas de la roca almacén tales como:

- Permeabilidad (K)
- Porosidad (Φ)
- Saturación de agua (Sw)
- Saturación de aceite (So)

Otros datos tomados para el análisis son:

- Producción (P)
- Intervalo productor
- Formación productora
- Producción mediante Sistema Artificial de Producción (SAP).

5.1 CARACTERÍSTICAS PETROFÍSICAS DE LOS INTERVALOS PRODUCTORES.

La tabla 5.1 muestra los datos de producción, propiedades petrofísicas e información geológica de cada pozo analizado.
TABLA 5.1. PROPIEDADES PETROFÍSICAS Y DE LOS FLUIDOS, DE LOS POZOS ANALIZADOS EN EL SECTOR CENTRAL DEL CAMPO TAJÍN.

<table>
<thead>
<tr>
<th>Pozo</th>
<th>Ubicado en el sector</th>
<th>K(md)</th>
<th>Φ (%)</th>
<th>Sw(%)</th>
<th>So(%)</th>
<th>P (b/día)</th>
<th>Intervalo productor (m)</th>
<th>Formación</th>
<th>S.A.P.</th>
<th>Fluido</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFG1</td>
<td>NW</td>
<td>10</td>
<td>41</td>
<td>59</td>
<td>56</td>
<td>1755</td>
<td>1780</td>
<td>echc</td>
<td>BM</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG5</td>
<td>NW</td>
<td>15</td>
<td>63</td>
<td>37</td>
<td>119</td>
<td>1795</td>
<td>1830</td>
<td>pechim</td>
<td>CP</td>
<td>A</td>
</tr>
<tr>
<td>NFG6</td>
<td>NW</td>
<td>15</td>
<td>50</td>
<td>50</td>
<td>56</td>
<td>1715</td>
<td>1750</td>
<td>pechim</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG7</td>
<td>NW</td>
<td>16</td>
<td>44</td>
<td>56</td>
<td>105</td>
<td>1695</td>
<td>1714</td>
<td>echc</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG8</td>
<td>NW</td>
<td>16</td>
<td>55</td>
<td>45</td>
<td>70</td>
<td>1890</td>
<td>1915</td>
<td>pechim</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG9</td>
<td>NW</td>
<td>14</td>
<td>51</td>
<td>49</td>
<td>105</td>
<td>1528</td>
<td>1598</td>
<td>pechm</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG10</td>
<td>NW</td>
<td>11</td>
<td>62</td>
<td>38</td>
<td>35</td>
<td>1788</td>
<td>1808</td>
<td>pechm</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG11</td>
<td>NW</td>
<td>0.72</td>
<td>9</td>
<td>63</td>
<td>37</td>
<td>105</td>
<td>1810</td>
<td>echc</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG12</td>
<td>NW</td>
<td>0.7</td>
<td>16</td>
<td>41</td>
<td>59</td>
<td>77</td>
<td>1550</td>
<td>echc</td>
<td>F</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG13</td>
<td>NE</td>
<td>18</td>
<td>50</td>
<td>50</td>
<td>154</td>
<td>1584</td>
<td>1628</td>
<td>echc</td>
<td>BM</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG18</td>
<td>NW</td>
<td>0.5</td>
<td>19</td>
<td>48</td>
<td>52</td>
<td>245</td>
<td>1470</td>
<td>pechm</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG19</td>
<td>NW</td>
<td>22</td>
<td>55</td>
<td>45</td>
<td>56</td>
<td>1501</td>
<td>1519</td>
<td>pechm</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG20</td>
<td>NW</td>
<td>0.2</td>
<td>8</td>
<td>51</td>
<td>49</td>
<td>77</td>
<td>1700</td>
<td>pechm</td>
<td>BM</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG21</td>
<td>NW</td>
<td>0.7</td>
<td>17</td>
<td>39</td>
<td>61</td>
<td>56</td>
<td>1806</td>
<td>echc</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG22</td>
<td>NW</td>
<td>11</td>
<td>37</td>
<td>63</td>
<td>203</td>
<td>1746</td>
<td>1790</td>
<td>echc</td>
<td>CP</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG23</td>
<td>NW</td>
<td>0.1</td>
<td>9</td>
<td>31</td>
<td>69</td>
<td>56</td>
<td>1810</td>
<td>echc</td>
<td>BM</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG24</td>
<td>NW</td>
<td>16</td>
<td>39</td>
<td>61</td>
<td>28</td>
<td>1579</td>
<td>1611</td>
<td>pechm</td>
<td>F</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG25</td>
<td>NE</td>
<td>0.7</td>
<td>15</td>
<td>37</td>
<td>63</td>
<td>105</td>
<td>1495</td>
<td>echc</td>
<td>F</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG26</td>
<td>NE</td>
<td>14</td>
<td>38</td>
<td>62</td>
<td>70</td>
<td>1575</td>
<td>1590</td>
<td>echc</td>
<td>BM</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG34</td>
<td>NW</td>
<td>11</td>
<td>54</td>
<td>46</td>
<td>105</td>
<td>1663</td>
<td>1687</td>
<td>echc</td>
<td>BM</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG35</td>
<td>NW</td>
<td>0.2</td>
<td>15</td>
<td>49</td>
<td>51</td>
<td>70</td>
<td>1498</td>
<td>echc</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG36</td>
<td>NW</td>
<td>0.2</td>
<td>13</td>
<td>29</td>
<td>71</td>
<td>56</td>
<td>1770</td>
<td>echc</td>
<td>BM</td>
<td>A</td>
</tr>
</tbody>
</table>

pechim = Chicontepec Medio
pech = Chicontepec Inferior
echc = Chicontepec Canal
BM = Bombeo Mecánico
CP = Cavidades Progresivas
F = Fracturado
A = Aceite
A y G = Aceite y Gas
TABLA 5.1. CONTINUACIÓN……. PROPIEDADES PETROFÍSICAS Y DE LOS FLUIDOS, DE LOS POZOS ANALIZADOS EN EL SECTOR CENTRAL DEL CAMPO TAJÍN.

<table>
<thead>
<tr>
<th>Pozo</th>
<th>Ubicado en el sector</th>
<th>K (md)</th>
<th>Φ (%)</th>
<th>Sw(%)</th>
<th>So(%)</th>
<th>P (b/día)</th>
<th>Intervalo productor (m)</th>
<th>Formación</th>
<th>S.A.P.</th>
<th>Fluido</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFG37</td>
<td>NW</td>
<td>0.5</td>
<td>18</td>
<td>58</td>
<td>42</td>
<td>105</td>
<td>1830 - 1865</td>
<td>Pechi</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG38</td>
<td>NW</td>
<td>0.4</td>
<td>15</td>
<td>53</td>
<td>47</td>
<td>105</td>
<td>1845 - 1860</td>
<td>Pechm</td>
<td>x</td>
<td>A</td>
</tr>
<tr>
<td>NFG39</td>
<td>NW</td>
<td>0.4</td>
<td>15</td>
<td>63</td>
<td>37</td>
<td>105</td>
<td>1890 - 1925</td>
<td>echc</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG40</td>
<td>NE</td>
<td>8</td>
<td>48</td>
<td>52</td>
<td>63</td>
<td>1800</td>
<td>1840 - 1864</td>
<td>echc</td>
<td>BM</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG45</td>
<td>SW</td>
<td>0.3</td>
<td>11</td>
<td>42</td>
<td>58</td>
<td>56</td>
<td>1658 - 1684</td>
<td>Pechi</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG46</td>
<td>SW</td>
<td>12</td>
<td>58</td>
<td>42</td>
<td>56</td>
<td>1682</td>
<td>1750 - 1765</td>
<td>echc</td>
<td>BM</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG47</td>
<td>SW</td>
<td>15</td>
<td>58</td>
<td>42</td>
<td>168</td>
<td>1420</td>
<td>1460 - 1747</td>
<td>pechm</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG48</td>
<td>SW</td>
<td>10</td>
<td>54</td>
<td>46</td>
<td>70</td>
<td>1710</td>
<td>1747 - 1765</td>
<td>pechm</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG49</td>
<td>SW</td>
<td>14</td>
<td>51</td>
<td>49</td>
<td>35</td>
<td>1740</td>
<td>1765 - 1780</td>
<td>pechm</td>
<td>BM</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG50</td>
<td>SW</td>
<td>16</td>
<td>42</td>
<td>58</td>
<td>56</td>
<td>1678</td>
<td>1708 - 1780</td>
<td>echc</td>
<td>F</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG51</td>
<td>SE</td>
<td>0.8</td>
<td>7</td>
<td>59</td>
<td>41</td>
<td>14</td>
<td>1780 - 1807</td>
<td>pechm</td>
<td>BM</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG52</td>
<td>SE</td>
<td>18</td>
<td>63</td>
<td>37</td>
<td>56</td>
<td>1939</td>
<td>1969 - 1980</td>
<td>pech</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG53</td>
<td>SE</td>
<td>15</td>
<td>50</td>
<td>50</td>
<td>35</td>
<td>1720</td>
<td>1745 - 1762</td>
<td>pechm</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG54</td>
<td>SE</td>
<td>15</td>
<td>44</td>
<td>56</td>
<td>91</td>
<td>1729</td>
<td>1762 - 1807</td>
<td>pechm</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG55</td>
<td>SE</td>
<td>0.2</td>
<td>8</td>
<td>20</td>
<td>80</td>
<td>35</td>
<td>2010 - 2100</td>
<td>echc</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG56</td>
<td>SE</td>
<td>0.2</td>
<td>7.5</td>
<td>20</td>
<td>80</td>
<td>91</td>
<td>1955 - 1990</td>
<td>echc</td>
<td>CP</td>
<td>A</td>
</tr>
<tr>
<td>NFG59</td>
<td>SW</td>
<td>14</td>
<td>46</td>
<td>54</td>
<td>154</td>
<td>1830</td>
<td>1990 - 2010</td>
<td>pechm</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG60</td>
<td>SW</td>
<td>15</td>
<td>70</td>
<td>30</td>
<td>70</td>
<td>1810</td>
<td>1837 - 2010</td>
<td>pech</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG61</td>
<td>SW</td>
<td>15</td>
<td>43</td>
<td>57</td>
<td>84</td>
<td>2047</td>
<td>2055 - 2075</td>
<td>pech</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG62</td>
<td>SW</td>
<td>20</td>
<td>56</td>
<td>44</td>
<td>56</td>
<td>1607</td>
<td>1648 - 1749</td>
<td>echc</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG63</td>
<td>SW</td>
<td>16</td>
<td>70</td>
<td>30</td>
<td>42</td>
<td>1875</td>
<td>1905 - 1925</td>
<td>pech</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG64</td>
<td>SE</td>
<td>14</td>
<td>50</td>
<td>50</td>
<td>315</td>
<td>1935</td>
<td>1965 - 2010</td>
<td>pech</td>
<td>F</td>
<td>A</td>
</tr>
</tbody>
</table>
TABLA 5.1. CONTINUACIÓN…… PROPIEDADES PETROFÍSICAS Y DE LOS FLUIDOS, DE LOS POZOS ANALIZADOS EN EL SECTOR CENTRAL DEL CAMPO TAJÍN.

<table>
<thead>
<tr>
<th>Pozo</th>
<th>Ubicado en el sector</th>
<th>K(md)</th>
<th>Φ (%)</th>
<th>Sw(%)</th>
<th>So(%)</th>
<th>P (b/día)</th>
<th>Intervalo productor (m)</th>
<th>Formación</th>
<th>S.A.P.</th>
<th>Fluido</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFG65</td>
<td>SE</td>
<td>15</td>
<td>57</td>
<td>43</td>
<td>14</td>
<td>1827</td>
<td>1856</td>
<td>pechi</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG66</td>
<td>SE</td>
<td>4</td>
<td>10</td>
<td>97</td>
<td>3</td>
<td>70</td>
<td>1880</td>
<td>1905</td>
<td>pechi</td>
<td>F</td>
</tr>
<tr>
<td>NFG67</td>
<td>SE</td>
<td>18</td>
<td>46</td>
<td>54</td>
<td>42</td>
<td>1560</td>
<td>1590</td>
<td>pechm</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG68</td>
<td>SE</td>
<td>0.5</td>
<td>6</td>
<td>100</td>
<td>63</td>
<td>1980</td>
<td>2010</td>
<td>echc</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG69</td>
<td>SE</td>
<td>0.2</td>
<td>12</td>
<td>11</td>
<td>89</td>
<td>56</td>
<td>2005</td>
<td>2028</td>
<td>pechi</td>
<td>CP</td>
</tr>
<tr>
<td>NFG72</td>
<td>SE</td>
<td>13</td>
<td>46</td>
<td>54</td>
<td>70</td>
<td>2018</td>
<td>2043</td>
<td>pechi</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG73</td>
<td>SW</td>
<td>14</td>
<td>49</td>
<td>51</td>
<td>42</td>
<td>1951</td>
<td>1972</td>
<td>pechi</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG74</td>
<td>SW</td>
<td>16</td>
<td>34</td>
<td>66</td>
<td>175</td>
<td>2010</td>
<td>2030</td>
<td>pechi</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG75</td>
<td>SW</td>
<td>15</td>
<td>61</td>
<td>39</td>
<td>91</td>
<td>1880</td>
<td>1910</td>
<td>pechi</td>
<td>BM</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG76</td>
<td>SW</td>
<td>16</td>
<td>66</td>
<td>34</td>
<td>182</td>
<td>1830</td>
<td>1860</td>
<td>pechi</td>
<td>F</td>
<td>A y G</td>
</tr>
<tr>
<td>NFG77</td>
<td>SE</td>
<td>18</td>
<td>38</td>
<td>62</td>
<td>175</td>
<td>1910</td>
<td>1880</td>
<td>eechc</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG78</td>
<td>SE</td>
<td>2</td>
<td>14</td>
<td>43</td>
<td>57</td>
<td>91</td>
<td>1790</td>
<td>1815</td>
<td>eechc</td>
<td>F</td>
</tr>
<tr>
<td>NFG79</td>
<td>SE</td>
<td>14</td>
<td>40</td>
<td>60</td>
<td>35</td>
<td>1887</td>
<td>1918</td>
<td>pechi</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG80</td>
<td>SE</td>
<td>16</td>
<td>43</td>
<td>57</td>
<td>70</td>
<td>1995</td>
<td>2010</td>
<td>pechi</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG81</td>
<td>SW</td>
<td>16</td>
<td>30</td>
<td>70</td>
<td>280</td>
<td>1980</td>
<td>1950</td>
<td>pechi</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG82</td>
<td>SW</td>
<td>15</td>
<td>70</td>
<td>30</td>
<td>63</td>
<td>1986</td>
<td>2014</td>
<td>pechi</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG83</td>
<td>SW</td>
<td>12</td>
<td>64</td>
<td>36</td>
<td>112</td>
<td>190</td>
<td>1985</td>
<td>pechi</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG84</td>
<td>SW</td>
<td>15</td>
<td>69</td>
<td>31</td>
<td>91</td>
<td>1855</td>
<td>1895</td>
<td>eechc</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG85</td>
<td>SW</td>
<td>16</td>
<td>57</td>
<td>43</td>
<td>112</td>
<td>1720</td>
<td>1745</td>
<td>eechc</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG86</td>
<td>SE</td>
<td>15</td>
<td>68</td>
<td>32</td>
<td>105</td>
<td>1980</td>
<td>1920</td>
<td>pechi</td>
<td>F</td>
<td>A</td>
</tr>
</tbody>
</table>
Cabe destacar que todos los pozos mostrados presentan problemas de producción, por lo que fueron sometidos a intervenciones (reparaciones mayores y menores).

A continuación se enlistan algunos pozos y las reparaciones mayores a las que fueron sometidos.

Pozo NFG36.- Aislar el intervalo 1770 – 1800 de la formación Chicontepec Canal disparado por no fluir, y disparar el intervalo 1510 – 1540 de la misma formación. Estado del pozo: cerrado por no fluir.

Pozo NFG52.- Aislar el intervalo 1939 – 1969 m de la formación Chicontepec Canal por no fluir, y disparar el tramo 1893 1913 m de la misma formación. Estado actual del pozo: cerrado por no fluir.

Pozo NFG69.- Aislar el intervalo 1810 1837 m de la formación Chicontepec Inferior, por tener baja aportación de aceite y probar los intervalos 1640 1649 m de la formación Chicontepec Medio. Estado del pozo: cerrado.

Las reparaciones menores a las que fueron sometidos ciertos pozos se muestran a continuación:

Pozo NFG35.- Instalar el sistema de bombeo mecánico para acelerar la extracción de hidrocarburos de la formación Chicontepec Canal a través del intervalo 1887 – 1910. Estado del pozo: cerrado.

Pozo NFG19.- Reincorporar a producción el intervalo 1510 – 1590 aislado y convertir al Sistema Artificial de Producción de Bombeo Mecánico para continuar la explotación de hidrocarburos a través de dicho intervalo. El intervalo pertenece a la formación Chicontepec Canal.
ANÁLISIS DE DATOS DE PRODUCCIÓN DE POZOS UBICADOS EN EL SECTOR CENTRAL DEL CAMPO TAJÍN.

Pozo NFG1.- Explotar el intervalo 1827 – 1857 m de la formación Chicontepec Canal con el Sistema Artificial de Bombeo Mecánico. Estado del pozo: cerrado.

Pozo NFG50.- Convertir el pozo a Sistema Artificial de Bombeo Mecánico rotatorio y continuar con la explotación del intervalo 1425 – 1460 de la formación Chicontepec. Estado actual del pozo: Abierto, produciendo con aparejo sencillo fluyente.

La mayoría de los pozos del sector central del Campo Tajín, cuenta con fracturamiento y estimulación de las secciones disparadas y por etapas, para mejorar las condiciones y características del yacimiento para una mayor producción.

La producción que muestra cada uno de los pozos fue durante los primeros años, posteriormente están intervenidos, y más del 95% se les ha acondicionado un Sistema Artificial de Producción (SAP). El SAP más utilizado en el sector central del Campo Tajín fue el de Bombeo Mecánico, con un total del 54% de los pozos (34 pozos).

La producción de los pozos es muy variada y va de los 50 bpd a los 168 bpd. La producción de los hidrocarburos depende directamente de las propiedades petrofísicas, pero también es función de otros factores (presión, tipo de formación, distribución de fluidos, etc.), los cuales a veces actúan con mayor influencia en la producción.

Las propiedades petrofísicas de la roca almacén son también muy variadas, dependiendo del tipo de litología en las que se encuentran; compuesta en el caso
de Chicontepec, por conglomerados, areniscas, limolitas y lutitas de origen turbidítico, sin una distribución uniforme.

El valor de la permeabilidad (K) solo se obtuvo en el 17% de los pozos (20 pozos), y varía desde los 0.2 (md) hasta los 0.7 (md). La K en este campo no es constante y tiene mucha variación en cada pozo, obteniéndose en unos casos valores muy buenos, pero debido a las condiciones geológicas y sedimentarias del pozo no se favorece la producción de hidrocarburos.

La porosidad (Φ) se presenta en un intervalo del 7% al 22%, siendo más comunes las porosidades mayores a un 20%, por lo que puede inferirse que si bien la formación cuenta con un sistema poroso aceptable de interés petrolero, al igual que la permeabilidad, los valores favorables de porosidad en el campo, no son los únicos responsables de la producción, y de alguna manera existen factores como la presión y el tipo de formación (turbidítica) que hacen más difícil las condiciones de producción.

Los valores de saturación de aceite (So) son muy buenos, y van del orden de 30% a 90%; este dato revela que la roca almacén del yacimiento se encuentra saturado en su mayoría de aceite, resaltando su importancia para la explotación, pero como ya se ha indicado existe la problemática inherente a las características litológicas para su extracción.
5.2 PROFUNDIDAD Y ESPESOR DE LOS INTERVALOS PRODUCTORES

Los intervalos en los que se disparó y se obtuvo la producción de los pozos, se encuentran entre los 1400 y 2000 m, correspondientes a diferentes formaciones tales como: Chicontepec Canal (echc), Chicontepec Inferior (pechi), Chicontepec Medio (pechm) y Chicontepec Superior (pechs).

La Figura 5.3. muestra la ubicación de los pozos analizados en el sector central del Campo Tajín, así como dos líneas correspondientes a perfiles representativos (esquemáticos); perpendiculares entre sí (NW-SE, W–E); que pretende mostrar la continuidad y espesor de las formaciones presentes y de los intervalos productores (Tabla 5.2. y 5.3., Figura 5.4. y 5.5.).

Figura 5.3. Ubicación de las líneas de perfil representativos (NW-SE, W–E) en el sector central de campo Tajín, Chicontepec.
Tabla 5.2. Espesor (m) de las formaciones presentes en el sector central del campo Tajín, Chicontepec: Sección NW – SE.

<table>
<thead>
<tr>
<th>Formación</th>
<th>NFG1</th>
<th>NFG12</th>
<th>NFG25</th>
<th>NFG40</th>
<th>NFG53</th>
<th>NFG66</th>
<th>NFG79</th>
</tr>
</thead>
<tbody>
<tr>
<td>pechs</td>
<td>1021</td>
<td>1008</td>
<td>996</td>
<td>986</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pechm</td>
<td>1280</td>
<td>1266</td>
<td>1327</td>
<td>1145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pechi</td>
<td>1793</td>
<td>1801</td>
<td>1798</td>
<td>1626</td>
<td>1641</td>
<td>1636</td>
<td>1640</td>
</tr>
<tr>
<td>echc</td>
<td>1208</td>
<td>1219</td>
<td>1175</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 5.4. Perfil esquemático NW – SE, en el sector central del campo Tajín, Chicontepec.
Tabla 5.3. Espesor (m) de las formaciones presentes en el sector central del campo Tajín, Chicontepec: Sección W – E.

<table>
<thead>
<tr>
<th>Formación</th>
<th>NFG46</th>
<th>NFG47</th>
<th>NFG48</th>
<th>NFG49</th>
<th>NFG50</th>
<th>NFG51</th>
<th>NGF52</th>
<th>NFG53</th>
<th>NFG54</th>
<th>NFG55</th>
<th>NFG56</th>
</tr>
</thead>
<tbody>
<tr>
<td>pechs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1046</td>
<td>1027</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pechm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1333</td>
<td>1301</td>
<td>1266</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pechi</td>
<td>1730</td>
<td>1727</td>
<td>1735</td>
<td>1782</td>
<td>1763</td>
<td>1658</td>
<td>1641</td>
<td>1825</td>
<td>1830</td>
<td>1980</td>
<td></td>
</tr>
<tr>
<td>echc</td>
<td>1051</td>
<td>1081</td>
<td>1110</td>
<td>1152</td>
<td>1190</td>
<td></td>
<td></td>
<td>1040</td>
<td>1035</td>
<td>1145</td>
<td></td>
</tr>
</tbody>
</table>

Figura 5.5. Perfil esquemático W – E, en el sector central del campo Tajín, Chicontepec.
5.3 DATOS DE PRODUCCIÓN DE LOS POZOS ANALIZADOS POR SECTOR.

La Tabla 5.4 muestra la división del sector central del campo Tajín por intervalos productores, y en donde se observa el porcentaje de pozos produciendo en cada formación; Chicontepec canal (echc), Chicontepec Medio (pechm), Chicontepec Inferior (pechi); así como el promedio de la producción (bpd) por formación.

La Figura 5.6 nos permite visualizar el % de pozos que producen por formación productora, así como el % de la producción, y en donde puede observarse que es en las formaciones Chicontepec Inferior (pechi) y Chicontepec Canal (echc), en donde se encuentran produciendo el mayor número de pozos (25 pozos), siendo la Formación Chicontepec Inferior (pechi) la que presenta mayor producción (43.25%).

De acuerdo a la relación de % de pozos que producen vs. porcentaje de producción (%) (Figura 5.6), puede observarse que la Formación Chicontepec Inferior (pechi) es la que presenta el intervalo productor de mayor interés, seguida de la Formación Chicontepec Canal (echc), y finalmente por la Formación Chicontepec Medio (pechm).
Tabla 5.4. Intervalos productores y datos de producción del sector central del Campo Tajín.

<table>
<thead>
<tr>
<th>Formación</th>
<th>echc</th>
<th>pechi</th>
<th>pechm</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. pozos que producen</td>
<td>25</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>% pozos que producen</td>
<td>39.06</td>
<td>39.06</td>
<td>21.88</td>
</tr>
<tr>
<td>Producción (bpd)</td>
<td>2205</td>
<td>2513</td>
<td>1092</td>
</tr>
<tr>
<td>Porcentaje de producción (%)</td>
<td>37.95</td>
<td>43.25</td>
<td>18.80</td>
</tr>
</tbody>
</table>

Figura 5.6. Intervalos productores en el sector del Campo Tajín. Relación % de pozos que producen vs. porcentaje de producción (%): echc= 0.97%, pechi = 1.11, pechm 0.85.
5.4 RELACIÓN ENTRE LAS PROPIEDADES PETROFÍSICAS DE LA ROCA ALMACENADORA Y LA PRODUCCIÓN DE HIDROCARBUROS.

Respecto a la relación que guardan las propiedades petrofísicas de la roca almacen con la producción de pozo, del análisis de los valores de porosidad (Φ) y permeabilidad (k), reportados en la Tabla 5.1, se observa que no siempre existe una relación directa de dichas propiedades con la producción (Figura 5.7 y 5.8), y aunque en algunos casos existe la relación, no siempre se cumple la idea lógica; mientras más permeabilidad y/o porosidad más producción; y esto obedece, como ya se mencionó, a que no solamente se trata de un factor el que determina la producción, si no que depende de un conjunto de parámetros.

En el caso de la saturación de aceite (So), al igual que en el caso de la porosidad y la permeabilidad, no se muestra una relación directa con la producción reportada, salvo en algunos puntos donde los resultados se disparan (Figura 5.9), lo cual hace pensar que puede deberse a variaciones en la presión del yacimiento, el tipo de tubería empleado, características del fluido de perforación, así como los cambios litológicos presentes.
Figura 5.7. Relación entre la Porosidad y la Producción de pozos ubicados en el sector central del campo Tajín, Chicontepec.
Figura 5.8. Relación entre la Permeabilidad y la Producción de pozos ubicados en el sector central del campo Tajín, Chicontepec.
Figura 5.9. Relación entre la Saturación de aceite y la Producción de pozos ubicados en el sector central del campo Tajín, Chicontepec.
5.5 DATOS DE PRODUCCIÓN CON SISTEMA ARTIFICIAL DE PRODUCCIÓN

La producción de los pozos del Campo Tajín decae aproximadamente después de un par de meses de estar fluyendo, debido a causas como: decaimiento de la presión, el intervalo dejó de fluir, se llenó de arena el pozo, las tuberías se rompieron, se invadió de agua el intervalo, disminuyó la relación gas-aceite, etc.

Durante el transcurso de un par de años, todos y cada uno de los pozos dejó de producir, por lo que se implementaron nuevos procesos y métodos para que la producción del campo siguiera adelante. Todos los pozos fueron reparados y se les aplicó estimulaciones, así como también se instalaron sistemas artificiales de producción.

Como resultado de la reingeniería que se implementó, se logró reactivar la producción. La Tabla 5.5 y la Figura 5.10 muestran los resultados de los pozos a los que se tuvo acceso, y puede observarse que con las reparaciones realizadas, si bien no se incrementó la producción (bpd), ésta se mantuvo constante.

Los datos mostrados son utilizados para analizar la relación entre la productividad y las propiedades petrofísicas del yacimiento, y son inmediatos a la implementación del SAP. Hoy en día la producción de los pozos debe haber cambiado, ya que cabe mencionar, que los pozos son sometidos de manera permanente a diversas intervenciones, mediante el surgimiento de nuevos procesos y métodos que buscan mejorar la productividad de los pozos.
Tabla 5.5. Datos de Producción Inicial y Producción con Sistema Artificial (SAP) de pozos ubicados en el sector central del campo Tajín, Chicontepec.

<table>
<thead>
<tr>
<th>Pozo</th>
<th>Producción (bpd)</th>
<th>Intervalo</th>
<th>Formación</th>
<th>Producción (bpd)</th>
<th>Intervalo</th>
<th>Formación</th>
<th>Sector</th>
<th>SAP</th>
<th>Fluido</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFG1</td>
<td>56</td>
<td>1755</td>
<td>1780</td>
<td>77</td>
<td>1827</td>
<td>1857</td>
<td>NW</td>
<td>BM</td>
<td>A Y G</td>
</tr>
<tr>
<td>NFG5</td>
<td>119</td>
<td>1795</td>
<td>1830</td>
<td>91</td>
<td>1473</td>
<td>1485</td>
<td>NW</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG7</td>
<td>35</td>
<td>1695</td>
<td>1714</td>
<td>49</td>
<td>1500</td>
<td>1528</td>
<td>NW</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG8</td>
<td>105</td>
<td>1890</td>
<td>1915</td>
<td>140</td>
<td>1520</td>
<td>1560</td>
<td>NW</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG9</td>
<td>77</td>
<td>1528</td>
<td>1598</td>
<td>133</td>
<td>1705</td>
<td>1732</td>
<td>NW</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG18</td>
<td>154</td>
<td>1470</td>
<td>1502</td>
<td>49</td>
<td>1800</td>
<td>1830</td>
<td>NW</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>NFG19</td>
<td>245</td>
<td>1501</td>
<td>1519</td>
<td>175</td>
<td>1715</td>
<td>1750</td>
<td>NW</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG20</td>
<td>56</td>
<td>1700</td>
<td>1750</td>
<td>70</td>
<td>1777</td>
<td>1808</td>
<td>NW</td>
<td>BM</td>
<td>A Y G</td>
</tr>
<tr>
<td>NFG21</td>
<td>77</td>
<td>1806</td>
<td>1841</td>
<td>133</td>
<td>1525</td>
<td>155</td>
<td>NW</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG22</td>
<td>56</td>
<td>1746</td>
<td>1790</td>
<td>63</td>
<td>1626</td>
<td>1655</td>
<td>NW</td>
<td>BM</td>
<td>A Y G</td>
</tr>
<tr>
<td>NFG23</td>
<td>56</td>
<td>1810</td>
<td>1845</td>
<td>105</td>
<td>1800</td>
<td>1890</td>
<td>NW</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG24</td>
<td>28</td>
<td>1579</td>
<td>1611</td>
<td>56</td>
<td>1865</td>
<td>1895</td>
<td>NW</td>
<td>F</td>
<td>A Y G</td>
</tr>
<tr>
<td>NFG26</td>
<td>105</td>
<td>1575</td>
<td>1590</td>
<td>35</td>
<td>1895</td>
<td>1925</td>
<td>NE</td>
<td>BM</td>
<td>A Y G</td>
</tr>
<tr>
<td>NFG34</td>
<td>70</td>
<td>1663</td>
<td>1687</td>
<td>70</td>
<td>1835</td>
<td>1875</td>
<td>NW</td>
<td>BM</td>
<td>A Y G</td>
</tr>
<tr>
<td>NFG36</td>
<td>105</td>
<td>1770</td>
<td>1800</td>
<td>49</td>
<td>1713</td>
<td>1745</td>
<td>NW</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG37</td>
<td>70</td>
<td>1830</td>
<td>1865</td>
<td>441</td>
<td>1400</td>
<td>1425</td>
<td>NW</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG40</td>
<td>56</td>
<td>1800</td>
<td>1840</td>
<td>70</td>
<td>1500</td>
<td>1549</td>
<td>NE</td>
<td>BM</td>
<td>A Y G</td>
</tr>
<tr>
<td>NFG46</td>
<td>105</td>
<td>1682</td>
<td>1750</td>
<td>133</td>
<td>1805</td>
<td>1840</td>
<td>SW</td>
<td>BM</td>
<td>A Y G</td>
</tr>
<tr>
<td>NFG48</td>
<td>105</td>
<td>1710</td>
<td>1747</td>
<td>112</td>
<td>1565</td>
<td>1590</td>
<td>SW</td>
<td>BM</td>
<td>A</td>
</tr>
<tr>
<td>NFG49</td>
<td>56</td>
<td>1740</td>
<td>1765</td>
<td>133</td>
<td>1845</td>
<td>1870</td>
<td>SW</td>
<td>BM</td>
<td>A Y G</td>
</tr>
</tbody>
</table>

pechi = Chicontepec Inferior
pechm = Chicontepec Medio
echc = Chicontepec Canal
BM = Bombeo Mecánico
CP = Cavidades Progresivas
F = Fracturado
A = Aceite
A y G = Aceite y Gas
TABLA 5.5. CONTINUACIÓN... Datos de Producción Inicial y Producción con Sistema Artificial (SAP) de pozos ubicados en el sector central del campo Tajín, Chicontepec.

<table>
<thead>
<tr>
<th>Pozo</th>
<th>Producción (bpd)</th>
<th>Intervalo</th>
<th>Formación</th>
<th>Producción (bpd)</th>
<th>Intervalo</th>
<th>Formación</th>
<th>Sector</th>
<th>SAP</th>
<th>Fluido</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFG50</td>
<td>56</td>
<td>1678</td>
<td>1708</td>
<td>echc</td>
<td>56</td>
<td>1425</td>
<td>echc</td>
<td>SW</td>
<td>F</td>
</tr>
<tr>
<td>NFG51</td>
<td>70</td>
<td>1780</td>
<td>1807</td>
<td>pechm</td>
<td>70</td>
<td>1501</td>
<td>pechm</td>
<td>SE</td>
<td>BM</td>
</tr>
<tr>
<td>NFG52</td>
<td>56</td>
<td>1939</td>
<td>1969</td>
<td>pechi</td>
<td>133</td>
<td>1835</td>
<td>echc</td>
<td>SE</td>
<td>BM</td>
</tr>
<tr>
<td>NFG53</td>
<td>91</td>
<td>1720</td>
<td>1745</td>
<td>pechm</td>
<td>91</td>
<td>1837</td>
<td>echc</td>
<td>SE</td>
<td>BM</td>
</tr>
<tr>
<td>NFG55</td>
<td>91</td>
<td>2070</td>
<td>2100</td>
<td>echc</td>
<td>49</td>
<td>1756</td>
<td>1780</td>
<td>pechi</td>
<td>SE</td>
</tr>
<tr>
<td>NFG59</td>
<td>154</td>
<td>1830</td>
<td>1860</td>
<td>pechi</td>
<td>77</td>
<td>2003</td>
<td>2026</td>
<td>pechi</td>
<td>SE</td>
</tr>
<tr>
<td>NFG60</td>
<td>84</td>
<td>1810</td>
<td>1837</td>
<td>pechi</td>
<td>35</td>
<td>1718</td>
<td>1745</td>
<td>pechi</td>
<td>SW</td>
</tr>
<tr>
<td>NFG61</td>
<td>42</td>
<td>2047</td>
<td>2055</td>
<td>pechi</td>
<td>245</td>
<td>1689</td>
<td>1709</td>
<td>echc</td>
<td>SW</td>
</tr>
<tr>
<td>NFG63</td>
<td>14</td>
<td>1875</td>
<td>1905</td>
<td>pechi</td>
<td>105</td>
<td>1710</td>
<td>1875</td>
<td>pechm</td>
<td>SW</td>
</tr>
<tr>
<td>NFG64</td>
<td>70</td>
<td>1935</td>
<td>1965</td>
<td>pechi</td>
<td>56</td>
<td>1770</td>
<td>1802</td>
<td>pechm</td>
<td>SE</td>
</tr>
<tr>
<td>NFG69</td>
<td>42</td>
<td>2005</td>
<td>2028</td>
<td>pechi</td>
<td>35</td>
<td>1900</td>
<td>1940</td>
<td>pechi</td>
<td>SE</td>
</tr>
<tr>
<td>NFG73</td>
<td>63</td>
<td>1951</td>
<td>1972</td>
<td>pechi</td>
<td>119</td>
<td>1460</td>
<td>1485</td>
<td>pechm</td>
<td>SW</td>
</tr>
<tr>
<td>NFG74</td>
<td>56</td>
<td>2010</td>
<td>2030</td>
<td>pechi</td>
<td>56</td>
<td>2010</td>
<td>2035</td>
<td>pechi</td>
<td>SW</td>
</tr>
<tr>
<td>NFG75</td>
<td>42</td>
<td>1880</td>
<td>1910</td>
<td>pechi</td>
<td>42</td>
<td>1680</td>
<td>1697</td>
<td>pechm</td>
<td>SW</td>
</tr>
<tr>
<td>NFG76</td>
<td>175</td>
<td>1830</td>
<td>1860</td>
<td>pechi</td>
<td>35</td>
<td>1830</td>
<td>1860</td>
<td>echc</td>
<td>SW</td>
</tr>
<tr>
<td>NFG77</td>
<td>35</td>
<td>1880</td>
<td>1910</td>
<td>pechi</td>
<td>98</td>
<td>1760</td>
<td>1790</td>
<td>pechm</td>
<td>SE</td>
</tr>
<tr>
<td>NFG81</td>
<td>70</td>
<td>1980</td>
<td>1945</td>
<td>pechi</td>
<td>91</td>
<td>1850</td>
<td>1880</td>
<td>pechm</td>
<td>SW</td>
</tr>
<tr>
<td>NFG82</td>
<td>280</td>
<td>1986</td>
<td>2014</td>
<td>pechi</td>
<td>168</td>
<td>1720</td>
<td>1743</td>
<td>pechm</td>
<td>SW</td>
</tr>
<tr>
<td>NFG83</td>
<td>63</td>
<td>1960</td>
<td>1985</td>
<td>pechi</td>
<td>56</td>
<td>1665</td>
<td>1690</td>
<td>pechm</td>
<td>SW</td>
</tr>
<tr>
<td>NFG85</td>
<td>525</td>
<td>1720</td>
<td>1745</td>
<td>echc</td>
<td>112</td>
<td>1675</td>
<td>1695</td>
<td>pechm</td>
<td>SW</td>
</tr>
<tr>
<td>NFG86</td>
<td>112</td>
<td>1980</td>
<td>1920</td>
<td>pechi</td>
<td>91</td>
<td>1620</td>
<td>1645</td>
<td>pechm</td>
<td>SE</td>
</tr>
</tbody>
</table>
Figura 5.10. Producción Inicial vs. Producción con Sistema Artificial (SAP) de pozos ubicados en el sector central del campo Tajín, Chicontepec.
En la Tabla 5.6 se representan los valores promedio (por sector) de las propiedades petrofísicas (porosidad, permeabilidad y saturación de aceite) y de la producción inicial (bpd), así como los datos de producción (por sector) después de aplicado el Sistema Artificial de Producción, y se observa que únicamente los sectores SE y NW incrementaron su producción después de la reingeniería y la implementación de los sistemas artificiales y las reparaciones a las que fueron sometidos, en un 9.88 y 29.94% respectivamente, mientras que en los sectores NE y SW la producción decreció, en un 34.78 y 16.67% respectivamente, aún y cuando en este último sector se tienen los valores más altos de de porosidad, aunque no de permeabilidad; esto es posiblemente debido al decaimiento de la presión en algunos de los pozos.

Tabla 5.6. Análisis por sector de las propiedades petrofísicas medidas y datos de producción inicial y con sistema artificial.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Porosidad (%)</th>
<th>Permeabilidad (md)</th>
<th>% Saturación (So)</th>
<th>Producción Inicial (bpd)</th>
<th>Producción SAP (bpd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE</td>
<td>13.75</td>
<td>0.70</td>
<td>56.75</td>
<td>80.50</td>
<td>52.50</td>
</tr>
<tr>
<td>SE</td>
<td>13.08</td>
<td>0.36</td>
<td>58.06</td>
<td>70.88</td>
<td>77.88</td>
</tr>
<tr>
<td>SW</td>
<td>14.65</td>
<td>0.30</td>
<td>54.50</td>
<td>118.13</td>
<td>98.44</td>
</tr>
<tr>
<td>NW</td>
<td>14.14</td>
<td>0.42</td>
<td>51.09</td>
<td>87.27</td>
<td>113.40</td>
</tr>
</tbody>
</table>
CONCLUSIONES Y RECOMENDACIONES

- Las formaciones productoras en el sector central del campo Tajín son: Chicontepec Canal (echc) en donde producen el 39% de los pozos, aportando el 38% de la producción; Chicontepec Inferior (pechi) produciendo el 39% de los pozos y contribuyendo con el 43% de la producción total; y Chicontepec Medio (pechm) con el 22% de los pozos productores y sólo el 19% de la producción registrada en el sector. Siendo la Formación Chicontepec Inferior la que representa el intervalo productor de mayor interés, de acuerdo a la relación de % de pozos productores vs. porcentaje de producción.

- No existe una relación directa entre los valores de porosidad, permeabilidad y saturación de aceite, con la producción (bpd), de aquí que a valores altos de dichas propiedades petrofísicas, no necesariamente corresponden los valores más altos de producción, ya que existen otros factores que pueden afectarla (abatimiento de presión, invasión de agua, decaimiento de la energía de producción, invasión de arena, problemas mecánicos entre otros), siendo estos factores, en ciertos casos, determinantes.

- Únicamente los sectores SE y NW incrementaron su producción después de la aplicación de un Sistema Artificial de Producción (SAP) en un 9.88 y 29.94%, respectivamente, mientras que en los sectores NE y SW la
producción decreció en un 34.78 y 16.67%, respectivamente, aún y cuando en este último sector se tienen los valores más altos de porosidad; esto debido posiblemente al decaimiento de la presión en algunos de los pozos.

RECOMENDACIONES

- Contar con la información completa de las propiedades petrofísicas de los 86 pozos analizados en el sector central del campo Tajín, ya que muchas de las bitácoras de pozo no se encuentran completas e incluso algunos de los pozos carecen de información.

- Realizar un análisis sobre las características de los fluidos (factores de formación de aceite-gas-agua, relación de solubilidad (Rs), relación gas-aceite (RGA), viscosidad, densidad) presentes en el sector central del Campo Tajín, que involucre las presiones de pozo y que permita obtener un resultado más claro sobre la relación de las propiedades del sistema roca-fluido y la producción.
BIBLOGRAFÍA

- Arredondo, Néstor 2011. Curso administración integral de yacimientos, “capítulo 3 propiedades petrofísicas del sistema roca fluidos”.

- Bruhns Willy, 1864 “Petrografía” Pamdohor Paul, 1890 pp. 30 35.

• Halliburton, “Recopilación Técnica Ingeniería de Yacimientos ” 2010.

• Krumbein William Christian, Stratigraphy and sedimentation. San Francisco, W H Freeman, 1902.

• Miller, 1987 “Geología del Petróleo” pp. 30 – 50.

• Rodríguez Nieto Rafael, 2005. “Curso Comportamiento de yacimientos”.

• Sanders John “Primary Sedimentary Structures Formed By Turbidity Currents and Related Resedimentation Mechanisms” SEPM SPEC, pub no 12, 1965.

• Schlumberger, “Principios/ Aplicaciones De La Interpretación De Registros”, 1990.

• Society of economic paleontologist and mineralogists, special publication No. 12 “primary Sedimentary Structures And their hydrodynamic interpretation”, 1965.

• Sylvain J. Pirson “Ingeniería De Yacimientos De Petroleo”, ediciones Omega, Barcelona 1985.

• Udden JA. “Mechanical composition of clastic sediments”, boletín de la Sociedad Americana de Geología. 1914 pp. 1074 1106.

• Wentworth CK. “A scale of grade and class terms for clastic sediments” jornada de geología 1922. pp 377-392.

• http://www.geog.ucl.ac.uk/about-the-department/support-services/laboratory/laboratory-methods/particle-size-analysis/particle-size-analysis-for-soils-sediments”.