Contenido

	Agradec	imientos	i
	Índice d	e Tablas	vii
	Índice d	e Figuras	ix
	Resume	n	xiii
Índice		Página	
Capítulo I			1
I.1	Introduc	cción	1
1.2	Objetivo	95	2
Cap	pítulo II	Fundamentación	3
II.1	Energía		3
		Energías	3
	11.1.1	alternativas	-
		II.1.1.1 Energía solar	4
		II.1.1.2 Energía eólica	4
		II.1.1.3 Energía oceánica	5
		II.1.1.4 Energía geotérmica	5
		II.1.1.5 Energía de biomasa	5
	II.1.2	El problema energético	6
		II.1.2.1 Un problema mundial	7
		II.1.2.2 El problema en México	10
	II.1.3	Cambio climático y emisiones de CO2	16
11.2	Residuo	s sólidos urbanos (RSU)	20
	II.2.1	El problema en el mundo	20
		II.2.1.1 Impacto económico de los desechos	22
		II.2.1.2 Impacto social de los desechos	22
		II.2.1.3 Impacto ecológico de los desechos	23
		II.2.1.4 Impacto político	23
	11.2.2	México y los RSU	23
	II.2.3	El ciclo de los materiales en la sociedad	24
	11.2.4	Jerarquía en la administración sostenible de RSU	27
	II.2.5	Mitos entrelazados a la administración sostenible de RSU	28
II.3	Tecnolo	gías y procesos de conversión de energía a partir de RSU	29
	II.3.1	Térmicos	29
		II.3.1.1 Combustión directa	29
		II.3.1.2 Pirólisis	31
		II.3.1.3 Gasificación	32
	II.3.2	Biológicos	33
		II.3.2.1 Rellenos sanitarios	34

Índio	e		Página
		II.3.2.2 Reactores anaerobios	39
11.4	Diseño y	y construcción del reactor anaerobio	42
	II.4.1	Factores biológicos y biodegradabilidad	42
		II.4.1.1 Métodos de estimación de biodegradabilidad	42
		II.4.1.2 Bacterias anaerobias	44
	II.4.2	Factores físicos y químicos que afectan la degradación anaerobia	46
		II.4.2.1 Temperatura	46
		II.4.2.2 Potencial de hidrógeno	47
		II.4.2.3 Mezclado	48
		II.4.2.4 Sustancias asociadas a la inhibición metanógena	49
	II.4.3	Características del biogás	51
	11.4.4	Equivalencias y empleo de biogás	53
	II.4.5	Componentes del sistema	54
		II.4.5.1 Tipos de reactores en base a su alimentación	54
		II.4.5.1.1 Reactor batch	55
		II.4.5.1.2 Reactor de mezclado total a flujo continuo	56
		II.4.5.1.3 Reactor de contacto anaerobio	57
		II.4.5.1.4 Reactor de flujo concatenado	57
		II.4.5.1.5 Reactor de crecimiento anaerobio adjunto	59
		II.4.5.1.6 Reactor con flujo reciclado	59
		II.4.5.2 Materiales del reactor	59
		II.4.5.3 Inóculo	60
		II.4.5.4 Tanque de colecta de influentes	61
		II.4.5.5 Modelos de plantas de biogás	61
		II.4.5.5.1 Tambor flotante	62
		II.4.5.5.2 Planta de domo fijo	63
		II.4.5.5.3 Planta de globo	64
		II.4.5.5.4 Planta de foso de tierra	65
		II.4.5.5.5 Planta de ferrocemento	65
		II.4.5.5.6 Planta europea	66
		II.4.5.6 Tuberías de gas, válvulas y accesorios	67
		II.4.5.7 Sistemas de agitación y calentamiento	69
		II.4.5.8 Sistema de bombeo	71
		II.4.5.9 Subproductos (lodo digerido)	73
	II.4.6	Sistema comercial de biogás con aprovechamiento de composta adjunto	74
		II.4.6.1 Sistema DrAnCo	74
		II.4.6.2 Sistema Valorga	75
		II.4.6.3 Sistema Kompogas	77
	II.4.7	Substrato a digerir	77
	II.4.8	Dimensionamiento del reactor	79
	11.4.9	Estimación de producción de biogás	80

Índic	e			Página
	II.4.10	Dimensi	onamiento del almacén de biogás	81
	II.4.11	Pretrata	miento de biogás	82
II.5	Generad	ión eléctr	ica	83
	II.5.1	Ciclos ter	rmodinámicos	83
		II.5.1.1	Ciclo Stirling	83
		II.5.1.2	Ciclo Brayton	84
		II.5.1.3	Ciclo combinado	85
		II.5.1.4	Ciclo de Carnot	87
		II.5.1.5	Ciclo Rankine	88
			II.5.1.5.1 Ciclo con recalentamiento	91
			II.5.1.5.2 Ciclo regenerativo	92
	II.5.2	Tipos de	plantas de potencia	93
		II.5.2.1	Plantas termoeléctricas convencionales	93
		II.5.2.2	Plantas geotérmicas	94
		II.5.2.3	Plantas nucleares	95
		II.5.2.4	Planta de combustión interna	96
	II.5.3	Compon	entes de las plantas de potencia	97
		II.5.3.1	Caldera	97
		II.5.3.2	Quemador	101
		II.5.3.3	Turbina de vapor	101
		II.5.3.4	Condensador	104
		II.5.3.5	Sobrecalentadores	106
		II.5.3.6	Economizadores	106
		II.5.3.7	Precalentador	106
		II.5.3.8	Deairadores	107
		II.5.3.9	Torres de Enfriamiento	108
		II.5.3.10	Bombas	109
	II.5.4	Sistema	de generación eléctrica con biogás	109
		II.5.4.1	Sistemas con motor de combustión interna	109
		II.5.4.2	Sistemas con turbina de gas	115
		II.5.4.3	Sistema con turbina de vapor	116
		11.5.4.4	Sistema con celda de hidrógeno	118
	Capítulo	o III	Materiales y métodos	120
III.1	Modelo	experime	ntal	120
111.2	2 Reactor anaerobio		0	120
III.3	Gasómetro (medidor de gas)			121
111.4	Medido	r de CO2		123
III.5	Almacer	amiento	de biogás	123
III.6	Substrat	o a digeri	r e inóculo empleado	123
III.7	Operación del reactor anaerobio			124

Índio	e		Página
	III.7.1	Agitación	124
	III.7.2	Temperatura	124
	III.7.3	Medición de pH	125
	111.7.4	Medición de gas	125
	III.7.5	Carga del reactor	126
111.8	Mini-pla	inta de vapor	126
	III.8.1	Caracterización de la máquina de vapor	126
	III.8.2	Sistema de generación eléctrica	129
111.9	Acoplan	niento del reactor a la mini-planta de generación	130
Сар	ítulo IV	Resultados y discusión	131
IV.1	Reactor	anaerobio	131
	IV.1.1	рН	131
	IV.1.2	Temperatura	133
	IV.1.3	Producción diaria de biogás	135
	IV.1.4	Producción diaria específica de biogás	139
	IV.1.5	Cálculos para posible escalamiento del sistema	142
		IV.1.5.1 Substrato	142
		IV.1.5.2 Volumen del reactor anaerobio	143
		IV.1.5.3 Estimación de la estimación diaria del biogás	143
		IV.1.5.4 Estimación teórica de aprovechamiento de biogás	144
		IV.1.5.5 Potencial energético del biogás en generación eléctrica	145
		IV.1.5.6 Diseño térmico del sistema de generación	146
		IV.1.5.7 Determinación de la capacidad eléctrica del sistema	148
IV.2	Máquina	a de vapor	150
	IV.2.1	Potencia mecánica de la máquina de vapor	150
	IV.2.2	Potencial energético de biogás suministrado en la caldera	156
	IV.2.3	Generación eléctrica del sistema	157
IV.3	Resultad	dos globales del prototipo	158
	IV.3.1	Puesta en marcha del sistema completo (anaerobio-máquina de vapor- generador eléctrico)	158
	IV.3.2	Eficiencias obtenidas	159
Cap Refe	oítulo V rencias	Conclusiones	160

Glosario

Índice de Tablas	Página
Tabla II.1: Principales productores de petróleo en el mundo	13
Tabla II.2: Principales exportadores de petróleo a nivel mundial	13
Tabla II.3: Equivalencias de dióxido de carbono para varios compuestos	20
Tabla II.4: Generación de RSU en México	24
Tabla II.5: Plantas de selección y aprovechamiento de RSU	24
Tabla II.6: Elementos presentes en la combustión	30
Tabla II.7: Composición del aire	30
Tabla II.8: Variables primarias de la pirólisis	31
Tabla II.9: Productos originados de la pirólisis en % por unidad de peso a 500°C	32
Tabla II.10: Componentes típicos del gas sintético de un gasificador	33
Tabla II.11: Componentes típicos del gas de rellenos sanitarios	37
Tabla II.12: Comparativa entre sistemas de degradación aerobios y anaerobios	39
Tabla II.13: Estimaciones de SVB contenidos en varios sustratos en base a reactores de una carga a largo plazo	43
Tabla II.14: Contenido de lignina de algunos substratos orgánicos	44
Tabla II.15: Los cuatro grandes grupos bacteriales de la degradación anaerobia	44
Tabla II.16: Características morfológicas de las bacterias metanogénicas, tamaño en	
μm	45
Tabla II.17: Concentraciones de requerimientos nutricionales para una degradación anaerobia robusta	45
Tabla II.18: Ventajas y desventajas de reactores termofílicos y mesofílicos	47
Tabla II.19: Relaciones C/N para diversos desechos	50
Tabla II.20: Concentraciones límite de inhibidores de la biometanización	51
Tabla II.21: Composición del biogás	51
Tabla II.22: Características físicas de los componentes principales del biogás	52
Tabla II.23: Usos equivalente del biogás	53
Tabla II.24: Correspondencia de 1m ³ de biogás con otros combustibles	53
Tabla II.25: Ventajas y desventajas de las plantas de biogás tipo tambor flotante	62
Tabla II.26: Ventajas y desventajas de las plantas de domo fijo	64
Tabla II.27: Ventajas y desventajas de las plantas de biogás tipo globo	65
Tabla II.28: Ventajas y desventajas de las plantas de biogás de foso de tierra	65
Tabla II.29: Ventajas y desventajas de las plantas de ferrocemento	65
Tabla II.30: Diámetros de tubería recomendados para algunas distancias para mantener las pérdidas de presión menores a 5 mBar	68
Tabla II.31: Comparativa entre los tipos de bomba	72
Tabla II.32: Cantidad y composición anual de excremento producido por diversos	
animales de granja	78
Tabla II.33: Composición de los RSU en el D.F	79
Tabla II.34: Densidades de las mezclas y poder calorífico inferior	111
Tabla II.35. Resultados obtenidos para potencia empleando diferentes combustibles	112

Índice de Tablas	Página
Tabla II.36. Relación entre producción de emisiones a partir del carbono en el	
combustible	114
Tabla III.1: Estudio de laboratorio para determinar sólidos totales, volátiles y fijos.	124
Tabla III.2: Composición del substrato a digerir	124
Tabla III.3: Detalles de las mezclas de carga para el reactor	126
Tabla IV.1: Resultados tabulares de pH en la carga A	131
Tabla IV.2: Resultados tabulares de pH en la carga B	131
Tabla IV.3: Resultados tabulares de temperatura para la carga A.	133
Tabla IV.4: Resultados tabulares de temperatura para la carga B	134
Tabla IV.5: Resultados tabulares del biogás producido por la carga A	136
Tabla IV.6: Resultados tabulares del biogás producido por la carga B	137
Tabla IV.7: Comparación de resultados promedio para diversas cargas de operación	
de reactores anaerobios	141
Tabla IV.8: Mediciones de substrato disponible	142
Tabla IV.9: Fuerza de freno neta para el experimento 1	152
Tabla IV.10: Fuerza de freno neta para el experimento 2	154
Tabla IV.11: Fuerza de freno neta para el experimento 3	156
Tabla IV.12: Fuerza de freno neta para el experimento 4	156
Tabla IV.13: Comparación de resultados de potencia mecánica	156
Tabla IV.14: Volumen de combustible requerido	157
Tabla IV.15: Resultados de las pruebas de generación eléctrica	158
Tabla V.1: Equivalencias del biogás producido	161

Índice de Figuras	Pág.
Figura II.1: Total mundial de capacidad eólica instalada	4
Figura II.2: Clasificación de la biomasa	6
Figura II.3: Expansión de demanda energética 1980-2030	7
Figura II.4: Evolución de las fuentes primarias de energía de la OCDE	8
Figura II.5: Porcentajes de energía primaria total mundial	8
Figura II.6: Porcentajes de combustibles usados en la generación eléctrica 1997-2006	9
Figura II.7: Evolución de 1997 al 2006 del consumo mundial final de energía por fuente energética	9
Figura II.8: Porcentajes de fuentes energéticas de consumo final 1973 y 2006	10
Figura II.9: Porcentajes de fuentes de energía eléctrica 1973 a 2006	10
Figura II.10: Estructura de la producción de energía primaria, 2007 (10, 52.966 petajoules)	10
Figura II.11: Fuentes de energía eléctrica primaria en México	11
Figura II.12: Energía por sector en México	12
Figura II.13: Ingresos presupuestarios del sector público de México. 2007. 2.5 billones de	
pesos	12
Figura II.14: Consumo per cápita de gas L.P., 2006	14
Figura II.15: Histograma nacional de precios de crudo y gas L.P. 1990-2007	15
Figura II.16: Porcentajes de consumo por energía sector doméstico	15
Figura II.17: Emisiones de CO ₂ por combustible	16
Figura II.18: La energía del mundo y su sistema de radiación	17
Figura II.19: Esquema de los causantes antropológicos del cambio climático	18
Figura II.20: Emisiones de gases efecto invernadero según su fuente.	19
Figura II.21: Generación anual de desechos, kg per cápita. 2006.	21
Figura II.22: Regiones de la más alta densidad poblacional en 2005	21
Figura II.23: Ciclo de los materiales en la sociedad	25
Figura II.24: Jerarquía de las acciones en la administración sustentable de residuos sólidos urbanos	27
Figura II.25: Las tres principales formas de disposición de RSU en varios países	29
Figura II.26: Productos de la pirolisis en función de la temperatura máxima y el tiempo de	
residencia	32
Figura II.27: Componentes básicos para un relleno sanitario	35
Figura II.28: Proceso de degradación en un relleno sanitario	38
Figura II.29: Esquema básico de un reactor anaerobio con fines de recuperación energética	39
Figura II.30: Etapas de la degradación anaerobia	41
Figura II.31: Características típicas de un substrato orgánico	42
Figura II.32: Síntesis del efecto de los parámetros físico químicos sobre la producción de biogás	46
Figura II.33: Relación de pH, pOH y concentraciones H^{+} y OH ⁺	48
Figura II.34: Reactor tipo batch	55
Figura II.35: Reactor de mezclado total a flujo continuo	57
Figura II.36: Reactor de contacto anaerobio	58

Índice de Figuras	Pág.
Figuras II.37: Reactor de flujo concatenado vertical	58
Figuras II.38: Reactor de flujo concatenado horizontal	58
Figura II.39: Reactor de crecimiento anaerobio adjunto	59
Figura II.40: Planta de biogás de tambor flotante	62
Figura II.41: Planta de biogás de domo fijo	63
Figura II.42: Planta de biogás tipo globo	64
Figura II.43: Reactor de concreto con dos cámaras: Una con calefacción y otra sin ella a manera de almacén	66
Figura II 44: Reactor de concreto con un almacenador nlástico de gas integrado	66
Figura II 45: Reactor de reactor de acero con almacén de gas senarado	67
Figura II 46. Tinos de trampas de agua	69
Figura II 47: Tipos de agitación de reactores	70
Figura II 48: Sistemas de calentamiento indirectos	70
Figura II 49: Diagrama de fluio esquemático del proceso DrAnCo	75
Figura II.50: Diagrama de flujo esquemático del proceso Valorga	76
Figura II.51: Reactor anaerobio tipo Valorga	76
Figura II.52: Sistema Kompogas	77
Figura II.53: Diagramas PV v TS del ciclo Stirling	84
Figura II.54: Turbinas de gas que operan con el ciclo a) abierto y b) cerrado	84
Figura II.55. Diagramas característicos PV y TS del ciclo Bryton con aire normal	85
Figura II.56: Esquema de un ciclo combinado formado por un ciclo Rankine básico con vapor de agua	86
Figura II 57 [.] Esquema que muestra los intercambios de calor y trabajo en un ciclo combinado	
con una posible fuente externa de calor	87
Figura II.58: Diagrama TS y esquema del equipo de ciclo generador de potencia de Carnot con vapor a) y b)	88
Figura II.59. Esquema del diagrama TS de una planta de potencia sencilla de vapor de agua que trabajo con el ciclo Rankine	90
Figura II.60. Diagrama TS y esquema del ciclo del equipo para un ciclo Rankine con sobrecalentamiento	91
Figura II.61: Esquema del esquipo y diagrama TS de un ciclo ideal con vapor y con recalentamiento	92
Figura II.62: Esquema del equipo y diagrama TS de un ciclo ideal con vapor regenerativo con un calentador abierto del agua de alimentación	92
Figura II.63: Esquema de una central térmica con condensador	94
Figura II.64: Representación esquemática de aprovechamiento de una termoeléctrica	
convencional	94
Figura II.65: Sistema de un reactor de potencia	95
Figura II.66: Reacción en cadena Fisión	96
Figura II.67: Caldera Erie con tubos de retorno horizontales (HRT)	98
Figura II.68: Caldera Erie City acuopirotubular	98

Índice de Figuras	Pág.
Figura II.69: Caldera de tubos rectos con cilindro transversal B y W	99
Figura II.70. Efecto del condensador sobre un diagrama de trabajo teórico	110
Figura II.71: Potencia contra velocidad de giro del motor encendido con distribuidor para diversos combustibles considerados.	111
Figura II.72: Consumo de combustible frente a revoluciones para el motor encendido con	
distribuidor para gasolina y las diferentes mezclas de gas.	113
Figura II.73: Energía de entrada al motor de los diferentes combustibles	113
Figura II.74: Porcentaje de CO ₂	114
Figura II.75: Torque contra velocidad de giro del motor encendido con distribuidor	115
Figura II.76. Eficiencia térmica	115
Figura II.77. Proceso electroquímico del hidrógeno	119
Figura III.1a: Esquema del reactor empleado	121
Figura III.1b: Reactor real	121
Figura III.2a: Esquema de gasómetro	122
Figura III.2b: Gasómetro construido	122
Figura III.3a: Máquina de vapor Wilesco	127
Figura III.3b: Componentes de la máquina Wilesco D'21	127
Figura III.4: Diagrama de procesos termodinámicos	128
Figura III.5: Mecanismo de trabajo de translación de la máquina de vapor	128
Figura III.6: Conversión de movimiento translatorio a rotatorio	129
Figura III. 7: Generador eléctrico	129
Figura III.8: Acoplamiento del reactor a la mini planta de vapor	130
Figura IV.1: Representación del comportamiento del pH para la carga A	132
Figura IV.2: Representación del comportamiento del pH para la carga B	132
Figura IV.3:Representación de comportamiento de pH para la carga C	133
Figura IV.4: Representación del comportamiento de temperatura dentro del reactor para la carga A.	133
Figura IV.5: Representación del comportamiento de temperatura ambiente y del reactor	
para la carga B	134
Figura IV.6: Representación del comportamiento de temperatura ambiente y del reactor	125
Figura IV 7: Producción diría de biogás para la carga A	135
Figura IV. 8: Producción diaria de biográs para la carga B	135
Figure IV.O. Derémetres de medición para la carga A e la large del tierene de energeión del	150
reactor	138
Figura IV.10: Parámetros de medición para la carga B a lo largo del tiempo de operación del reactor	138
Figura IV.11: Parámetros de medición para la carga C a lo largo del tiempo de operación del reactor	139
Figura IV.12: Producción diaria específica de biogás para un substrato de las características de la carga A	140

Índice de Figuras	Pág.
Figura IV.13: Producción diaria específica de biogás para un substrato de las características de la carga B	140
Figura IV.14: Producción diaria específica de biogás para un substrato de las características de	-
la carga C	140
Figura IV 15: Diagrama TS del ciclo de trabajo del sistema de generación	147
Figura IV.16 Configuración experimental para la medición del par de torsión	151
Figura IV.17 Diagrama de fuerzas de fricción	151
Figura IV.18: Mediciones de velocidad angular para el experimento 1	152
Figura IV.19: Calentamiento mediante mechero Bunsen	153
Figura IV.20: Mediciones de velocidad angular para el experimento 2	154
Figura IV.21: Quemador de gas	154
Figura IV.22: Mediciones de velocidad angular para el experimento 3	155
Figura IV.23: Mediciones de velocidad angular para el experimento 4	156
Figura IV.24:Totalidad del sistema de generación eléctrica	158
Figura V.1: Curva de medición ajustada	160