Anexos

A.1 Especificaciones y dimensiones del láser utilizado

Tabla A.1. Características del láser utilizado VLM2 de la empresa Coherent

ESPECIFICACIONES	VALORES @ 25°C	
ÓPTICAS		
Modo	CW, Onda coherente	
Longitud de onda	670nm	
Potencia de salida	4.2mW ±5%	
Clase	IIIa	
Tamaño de la mancha	4.6mm x 1.3mm (elíptico)	
Divergencia del haz	0.2 x 0.7mrad	
Temperatura de operación	−10°C~40°C	
ELÉCTRICAS		
	Cable rojo: 6~10VDC, recomendado 6VDC	
Voltaje de operación	Cable blanco: Cable de control	
	Cable negro: Tierra	
Corriente de operación	190mA, típica	
Cornente de operación	260mA, máxima	
Cable de control	Modulación Directa	
Ancho de banda máximo	500KHz	
Danga linaal	Inicio 1.6~1.9V	
Rango lineal	Fin 3.0~3.5V	
Voltaje máximo	5V	
Resistencia de entrada	5.5ΚΩ	
Voltaje de entrada TTL	5V	
Tiempo de subida TTL	500ns	

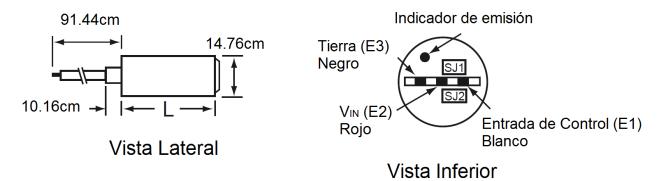


Figura A.1. Dimensiones de láser VLM2 de la empresa Coherent

Coherent Inc, Miniature Diode Láser Modules, VLM2 and VLM3 style packages, part number 0221-202-00 http://www.coherent.com/downloads/0221-202-00.pdf

A.2 Características de las fibras ópticas utilizadas

Tabla A.2. Características de las fibras ópticas utilizadas

Fibra óptica	FT-400-URT	FT-200-URT	FG-200-LCR
Tipo	Multimodo índice escalonado	Multimodo índice escalonado	Multimodo índice escalonado
Diámetro Núcleo (μm)	400 ± 2%	200 ± 2%	200 ± 2%
Diámetro Revestimiento (µm)	430 ± 2%	225 ± 5	240 ± 2%
Diámetro Buffer (μm)			260 ± 3%
Diámetro Recubrimiento (µm)	730 ± 5%	500 ± 5%	400 ± 5%
Apertura Numérica (AN)	0.48 ± 0.02	0.48 ± 0.03	0.22 ± 0.02
Ángulo de Aceptación (θ _a)	28.6°	28.6°	12.7°
Temperatura de operación	-40°C a 150°C	-40°C a 150°C	-40°C a 150°C
Concentración OH⁻	Alta	Alta	Baja

Thorlabs Inc., Multimode Fiber Step Index, FT-400-URT ó BFH48-400. http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=362&PN=BFH48-400, FG-200-LCR ó BFL22-200. http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=360&PN=BFL22-200

A.3 Parámetros del fotodiodo PIN FD-263

Tabla A.3. Parámetros del fotodiodo FD-263

Parámetro	Valor	Unidad
Área activa	3 x 3	mm^2
Temperatura de trabajo	20 ± 5	°C
Tensión de trabajo	0.2	V
Sensibilidad espectral	0.4 - 1.1	μm
Picos de sensibilidad espectral	0.8 - 0.9	μm
Corriente de oscuridad	5	nA
Sensibilidad @ $\lambda = 0.55 \mu m$	15	A/W
Resistencia de aislamiento	100	MΩ
Intensidad de fallas	2 x 10 ⁻⁸	h ⁻¹
Peso cuerpo metálico	3	g
Material ventana	Cristal	Cristal-149

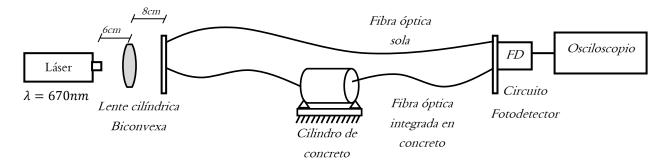
Quartz Inc., < http://www.quartz.cv.ua/products/product3.html>, Fotodiodo de silicio FD-263.

A.4 Resultados prueba de doblamiento de la fibra óptica

Tabla A.4. Resultados promedio obtenidos para la prueba de doblez de la fibra óptica

Desplazamiento	FT-400-URT		FG-200)-LCR
[mm]	Amplitud [V]	Pérdida [dB]	Amplitud [V]	Pérdida [dB]
0.000	3.298	0.000	2.948	0.000
0.318	3.298	0.000	2.948	0.000
0.635	3.298	0.000	2.948	0.000
0.953	3.296	0.003	2.948	0.000
1.270	3.293	0.013	2.946	0.004
1.588	3.290	0.020	2.944	0.011
1.905	3.284	0.036	2.940	0.022
2.223	3.276	0.056	2.936	0.033
2.540	3.269	0.076	2.926	0.063
2.858	3.258	0.106	2.919	0.085
3.175	3.246	0.136	2.914	0.100
3.493	0.328	27.410	2.905	0.126
3.810	0.135	27.757	0.107	28.832
4.128	0.072	33.246	0.094	29.953

A.5 Resultados prueba de tensión en la fibra óptica

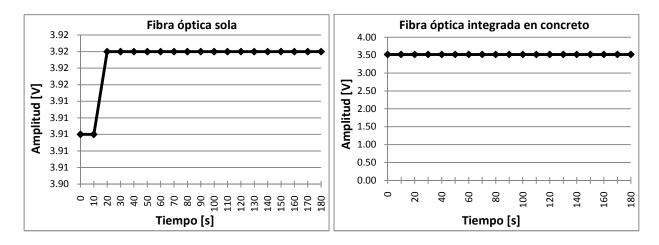

Tabla A.5. Resultados promedio obtenidos para la prueba de tensión en la fibra óptica

Desplazamiento	FT-400-URT		FG-200-LCR	
[mm]	Amplitud [V]	Pérdida [dB]	Amplitud [V]	Pérdida [dB]
0.000	2.820	0.003	2.855	0.000
0.318	2.815	0.015	2.855	0.000
0.635	2.815	0.015	2.855	0.000
0.953	2.815	0.015	2.850	0.015
1.270	2.810	0.031	2.845	0.030
1.588	2.785	0.108	2.840	0.046
1.905	2.795	0.077	2.830	0.076
2.223	2.785	0.108	2.825	0.092
2.540	2.800	0.062	2.825	0.092
2.858	2.775	0.140	2.810	0.138
3.175	2.770	0.155	2.815	0.123
3.493	2.765	0.171	2.825	0.092
3.810	2.760	0.187	2.805	0.153
4.128	2.765	0.171	2.815	0.123
4.445	2.775	0.140	2.810	0.138
4.763	2.760	0.187	2.815	0.123
5.080	2.770	0.155	2.810	0.138
5.398	2.765	0.171	2.820	0.107
5.715	2.765	0.171	2.815	0.123
6.033	2.750	0.218	2.810	0.138
6.350	2.760	0.187	2.815	0.123
6.668	2.745	0.234	2.815	0.123
6.985	2.745	0.234	2.800	0.169
7.303	2.740	0.250	2.810	0.138
7.620	2.745	0.234	2.795	0.184
7.938	2.740	0.250	2.805	0.153
8.255	2.745	0.234	2.800	0.169
8.573	2.755	0.203	2.810	0.138
8.890	2.755	0.203	2.795	0.184
9.208	2.745	0.234	2.805	0.153

A.6 Comprobación de la estabilidad de la fuente de poder

Esta prueba se realizo posteriormente de realizar las distintas pruebas presentadas en este trabajo de tesis y tuvo como objetivo principal descartar la posibilidad de que la inestabilidad de la fuente que alimentaba al láser VLM2 fuera la responsable de las oscilaciones presentes en los resultados mostrados en el capítulo 4.

El esquema de la prueba se muestra en la siguiente figura:



La prueba consistió en recabar los valores de la amplitud de la señal eléctrica en el osciloscopio en intervalos de tiempo de 10s. La prueba se realizo para una fibra óptica sola y otra integrada en el concreto. Los resultados se muestran en la siguiente tabla.

Fibra óptica Sola		Fibra Óptica inte	grada en concreto
Tiempo [s]	Amplitud [V]	Tiempo [s]	Amplitud [V]
0	3.91	0	3.52
10	3.91	10	3.52
20	3.92	20	3.52
30	3.92	30	3.52
40	3.92	40	3.52
50	3.92	50	3.52
60	3.92	60	3.52
70	3.92	70	3.52
80	3.92	80	3.52
90	3.92	90	3.52
100	3.92	100	3.52
110	3.92	110	3.52
120	3.92	120	3.52
130	3.92	130	3.52
140	3.92	140	3.52

150	3.92	150	3.52
160	3.92	160	3.52
170	3.92	170	3.52
180	3.92	180	3.52

Las graficas de las tablas se muestran a continuación:

Se observa de las graficas que la amplitud de la señal eléctrica en el osciloscopio se mantiene prácticamente constante, por lo que se puede concluir que la fuente de poder utilizada para alimentar el láser VLM2 no es la causante de las oscilaciones presentes en las graficas de los resultados obtenidos.