“F V. A Q UACTION DEL

PERSONATL

DOCENTE

CURSO: INTRODUCCION AL LENGUAJE DE
ENSAMBLADOR PC MS-DOS

_FECHA: 4 AL 25 DE NOVIEMBRE DE 1992.
: LUNES, MIERCOLES Y VIERNES
DE 17 A 21 HRS.

_YW3L 130 OINIWOQ

SITYASIACIGNY SYANAY
30 0SN 73 NI VIINIIOILZ

(NOISIddX3 30 QvAITIOV “avaIN3WY
S3IN3LSISY SO7T NOJ NOIDYIINAWOD)
STYILNI T3C OLNIIWINIINVW

- QYOI TYALNAd

01G3W0Ydd

1.-] ING. SALVADOR MEDINA MORAN
|2+=] ING. FEDERICO MORALES FAVILA

3.=| ING. ANTONIO PEREZ AYALA

v EVALUACION. TOTAL

ESCALA. DE EVALUACION:xl;A 10

EVALUACION D

CURSO: INTRODUCCION AL LENGUAJE DE
ENSAMBLADOR PC MS-DOS

FECHA: 4 AL 25 DE NOVIEMBRE DE 1992,

LUNES, MIERCOLES Y VIERNES
DE 17 A 21 HRs.

LA ENSENANZA

2
c
=) -i
0 o —
o o) = —
™ — = = busd
= O oo o
— oD [p e I=
I~ o O s <
. I e = O
=l oo om e)
- Sm o = =
—o = = o
= MmO mo o =
— =X =4 — m
m =< o o — o
= m = m = o .,
=0 = ~r P o)
m = L
LW —\ 0 — o
I P71 oe—t m x= m
= =0 =0 e
=] I T Pl
(o] o o —
[gad = m
— =
o I

TEMA

1.-1 INTRODUCCION

2.~| EL MICROPROCESADOR 8086

3.~ [EL ENSAMBLADOR MACRO 86

4.-|EL SISTEMA OPERATIVO MS-DOS

5.-1LA COMPUTADORA "PC-COMPATIBLE"

6.—[OTRAS FACILIDADES

10.

11l.

. EVALUACION TOTAL

ESCALA DE EVALUACION: 1 A 10

EVALUACION DEL CURSO

t

| CONCE PTO R

1. | APLICACION INMEDIATA DE LOS CONCEPTOS E*PUESTQSI

2. | ICLARIDAD CON QUE SE EXPUSTERON LOS TEMAS

3. | GRADO DE'ACTUALIZACION LOGRADO EN EL.CURSd

4. cquLIMfENTd DE LOS OBJETIVOS DEL CURSO .

5. | CONTINUIDAD EN LOS TEMAS DEL CURSO

6. | CALIDAD DE LAS NOTAS DEL CURSO

7. | GRADO DE MOTIVACION LOGRADO EN EL CURSO D
T G Y

EVALUACION TOTAL

ESCALA DE EVALUACION. 1 A 10

™

Z0ué le parecid el ambiente en la Divisidn de Educacidn Continua?

MUY AGRADAELE

L)

AGRADABLE DESAGRADABLE

éQué cambios harifa en el programa para tratar de perfeccionar el curso?

- J
4 . w
2.- Medio de comunicacidn por el que se enterd del curso:
PERIOﬁICO EXCELSIOR PERIODICCO NOVEDADES
ANUNCIO TITULADO DI ANUNCIO TITULADO DI '
VISION DE EDUCACION VISION DE EDUCACION FOLLETO DEL CURSO
CONTINUA - CONTINUA P
CARTEL MENSUAL RADIO UNIVERSIDAD COMUNICACION CARTA, -
' TELEFONQO, VERBAL,
REVISTAS TECNICAS FOLLETO ANUAL CARTELERA UNAM “10S GACETA
_ : UNIVERSITARIOS HOY" UNAM
_ D (:j .j
4 ™
3.- Medio de transporte utilizado para venir al Palacio de Mineria:
AUTOMOVIL METRO OTRO MEDIO
TICULAR ° .
L C) C_J C_))
\
4.-

.

5.- iRecomendaria el curso a otras peréonas?C: sI - l

[Jw

5.a.¢Qué periddico lee con mayor frecuencia?”
! ;

AN

6.- éQué cursos le gustaria que .ofreciera la Divisién de Educacidn Continua?

A

(}.- La coordinacién acadéﬁiqa foé:
EXCELENTE o BUENA . REGULAR MALA
\. i,
' ~
8.~ Si estd interesado en tomar algfin curso INTENSIVO ¢Cudl es el horario mds

conveniente para usted? '
LUNES ‘A VIERNES "LUNES A LUNES- A MIERCOLES' MARTES Y JUEVES |
DE 9 a 13 H. ¥ VIERNES DE Y VIERNES DE "DE 18 A 21 H.

DE 14 A 18 H. 17 a 21 H. 18 A 21 H.
(CON COMIDAD) ’ :

VIERNES DE 17 A 21 H. " VIERNES DE 17 A 21 H. OTRO

. .'SABADOS DE 9 A 14 H. SABADOS DE 9 A 13 H.
o DE 14 A 18 H.

N/

‘ ,
9.~ éQué servicios adicionales desearia que tuviese la Divisién de Educacidn
Continua, para los asistentes?

AN

rﬁ** N
10.- Otras :sugerencias:
J

DIRECTORIO DE ASISTENTES AL CURSO: INTRODUCCION AL LENGUAJE DE ENSAMBLADOR PC-MSDOS
DEL 4 DE NOVIEMBRE AL 25 PE NOVIEMBRE DE 1992

1.-LUIS G. ECHANIZ HERNANDEZ CALZ. DE LOS TENORIOS NO. 150 E-C-104
COORDINADOR DE SISTEMAS RINCONADA COAPA TLALPAN

SECRETARIA DE LA REFORMA AGRARIA 14330 MEX1CO, D.F.
: TEL. 5941927

AV. H. ESC. NAVAL MILITAR NO. 710

POTE. EJIDALES

MEXICO, D.F.

TEL. 6954154

2.-HEL1ODORO GARCIA NUFO

§. C. 7.

5.-MIGUEL E. GONZALEZ CARDENAS

U.N.AM.
FACULT. ING. DIV. CIENCIAS BASICAS

CIUDAD UNIVERSITARIA

MEXICO, D.F.

4.-ODILON GONZALEZ HUERTA CALLE B7 NO. 43
PROF. ASOCIADO PUEBLA VENUSTIANG CARRANZA
U.N.A.M. 15020 MEXICO, D.F.

TEL. 55B2059
CANAL DE SAN JUAN S/N
AGRICOLA ORIENTAL I1Z2TACALCO
08500 MEXICO, D.F.
TEL. 5582059

5.-EVA LAGUNES CORDOVA) © SEC. 2 MZ-3

PROGRAMADOR ESPECIALIZADO ERMITA ZARAGOZA 1ZTAPALAPA
5. C. T. 09180 MEXICO, D.F.
© TEL. 7324821

ALTADENA NO. 23
NAPOLES BENITO JUAREZ
03810 MEXiCO, D.F.
TEL. 6876199

6.-JAIME LORETO JULIOD ' LAGO WETTER NO. 201

SUPERVISOR DE PROGRAMAS Y PROY. . - AGUA AzUL
s. C. T.) NEZAHUALCOYOTL, EDO. DE MEXICO
TEL. 7359421

VERTIZ NO. 800

NARVARTE BENITO JUAREZ

03020 MEXico, D.F.

TEL. 5902303 : -

7.-ROBERTO MARTINEZ DELGADILLO

s. C. T.

8,-MA. DOLORES SANDOVAL DORANTES

ANALISTA PROGRAMADOR
SECRETARIA DE SALUD

LIEJA NO. 8, 120. P.
JUAREZ CUAUHTEMOC
06600 MEXICO, D.F.
TEL. 5537497

§.-BERNARDO TIRADO JUAREZ

DOCENTE
U.N.A.M.

CIUDAD UNIVERSITARIA
MEXICO, D.F.

NUEZ NO. 3

SAN RAFAEL CHAMAPA
NAUCALPAN, EDO. DE MEXICO
TEL. 3001733

144 OTE NO. 39
MOCTEZUMA VENUSTIANC CARRANZA
15500 MEXICO, D.F.

\ DIVISION DE EDUCACION CONTINUA
FACULTAD DE INGENIERIA U.N.A.M.

INTRODUCCION AL LENGUAJE DE PROGRAMACION
ENSAMBLADOR PC-MSDOS

PRESENTACION

NOTAS PARA EL USO DEL SISTEMA OPERATIVO MS-DOS
NOTAS PARA EL USO DEL EDITOR DE PROGRAMAS
FIGURAS AUXILIARES PARA ENSAMBLADOR

NOVIEMBRE, 1992

de Mineria Calle ge Tacuba 5 primer piso Déleg. Cuauhtémoc 06000 Mexico, D.F. Tel.: 521-40-20 Apdo. Postal M-2285

i

uuuuuuuguznnnmmu
qmummawwqummaum

e " 8 & @

PRESENTACION « * 5 a
NOTAS PARA EL USD DEL SISTEMA DPERATIVD M8-DOS

2.1

+heabbdbhbhbddT

= JONTPRDIPUN -

o

GURAB AUXILARES PARA ENSAMBLADOR . .

ENCENDIDD DE LA COMPUTADORA . . + « « »
NOMBRES DE ARCHIVOS8 . . + « + &«
ARCHIVOS EN OTROS DIBCOS: + « « « &
COMANDDS BASICOS« . .
EDICION DE PROGRAMAS
COMPILACION Y EJECUCION DE PRDGRQHAB
FORMATED Y REVISION DE DISCOS«
AS PARA EL USO DEL EDITOR DE PROGRAMAS
ARRANRGUE DEL EPITOR . + « » « « « &
COMANDOS BASICOS .« « . » » - + &
MENU PRINCIPAL
COMANDOS DE MOVIMIENTO DEL CURSDR
COMANDDS DE ;EBERCIDN Y BDRRADO .

a

-
" aMNe e

-

COMANDOS DE EJO DEL BLOQUE . .
COMANDDS DE BUSGUEDA Y REEMPLAZIO
COMANDDOS YARIDS . . . “ . .
COMPATIBILIDAD CON WDRDBTAR . e .

'. ' - L] - [] - - []
® & & & » & ¥ & & & 4 & & = " W @
" & & % & & % ¥ L oS N K & = ° e o
S & & & & 8 & 8 & m 8 & & 5 A 8 4 " a2

- & 5 & & B 4 8.9 & 8 & & @& 8 ® & e N = B

EJEMPLD DE ARBUITECTURAS DE CALCULADDRAS
ARQUITECTURA DEL MICROPROCESADOR- INTEL 8086/6088
DESCRIPCION DE LOS REGISTROB BENERALES
UTILIZACION DE LOS REGISTROS BEGMENTD . .
INTERRELACION ENTRE EL PROBRAMA, MB-DOS Y BIOS
MODOS DE DIRECCIOMAMIENTO
COMBINACIONES DE MODOS DE DIRECCIDNAMIENTD . .
BENERACION DE ARCHIYOS EJECUTABLES -.EXE Y .COM
OPERACIONES DE MANEJO DE STRINBS . . .

USD DE MEMORIA POR EL PROGRAMA, MS8-DOS Y aros

lt.lltl.

~4 ® & & ® @& & ¥ & 8 8 @& "W & & & B 8 L E &4 B & § B W & ®W B ®

ONCARALNNN -

1 PRESENTACIPN

Bienvenidos al curso de ensamblador para la computadora P.C.
L . .

Este curso tiene como texto bhase el 1libreo. "IBM -PC ABSEMBLY
LANGUAGE" de Donna Tabler que s2 incluye con ®1 material del
Curso, adqmas de unas notas estandar para todos los cursos de
lenguajes ;de programacidn impartidos en la DECFl, las cuales
explican los fundamentos .de la utilizacidén del sistama,nparativqh
MS-DOS, asi como del editor de texto aue se -emploa para gl
desarrollo e los programas de practica que se veran a lo largo
del cursa. . :

También se incluyen algunas figuras explicativés sobrao aquullos
aspectos importantes dal lenguaje ensamblador que no _se tratan
con la suficiente profundidnd en el libro de texto. .

Fimalmente, y formando parte integrante del mataerial d. sste
. curso, @se proporcionardn varios programas fuente coapletos de
ejemplo en languaje ensamblador los cuales dﬂberi copiar cada
alumno a algdn, diskette de su propiedad que traiga en lx ditima
clase de sste cursoy sin embargo es muy importante’ mnn:ipnar que,
aparte de lo tndi:adn anteriormente,; .ningdn alusno d!b.ﬂl cupdqr
ningunoc de lus prograsas producto qus componen al lnlgpblldnr :
aus programas acompaffantes, como el ligador, dnhugq.r. ate. |

Esperamos s;n:e;amante que este curso les saa-da utilidad Y que
los conocimientos adquiridos en ¢1 los apliquen una y otra vez
para resolver sus problemas actuales y futuros.

7 NDTAS PARA EL USO DEL SISTEMA OPERATIVO MS-DOS
Z.1 ENCENDIDQ DE LA COMPUTADORA

“ara utilizar la computadora, siga los sigu;nntns pasos!

i

) Encienda el resgulador o la caja de contactos, s{ es que la

computadora cuenta con alguno de ellos. :
=} Encienda la pantalla de la computadora.
Inserte el disco del sistema operativo MS-DOS en la ranura
de arriba o del 1lado izquierdo de la computadora y NO

IERRE la mani ja. C
Enczenda la computadora.
Cierre suavemente la manija del disco que insertd y espara
unos momentos.
Cuando la computadora muestret

Current date i Tue 1-01-1980
Enter new dates » : .
Teclee la fecha actual, primero el mes, luego el dia y al.
final el afo separindolos por una diagonal (/) 6 un guion
(-). Siempre recuerde que al terminar cualquier
instruccion que se le dé a la computadora, es necesario
oprimir la tecla RETURN, marcada como <— a la derecha dal
teclado, para gque la computadora procese la instruccion.
g} Cuando la computadora muestre algo similar apr’
Current time is 0:01:12.34 '
Enter new time: '

Teclee la hora actual, : primero las horas (de O a 23) vy

luego los minutes, separandolos por un punto (.) 4% dos

puntos (:). ‘

| 1]

[N

“h
s

LLa computadora sstd ligta para operar, lo cual lo indica por
medio de: . ' : '

AY
Para apagar la computadora, abra lag mani jas de las unidades.
de digcos, -etire log discos y spague 2l equipo en el orden
inverso al descrito anteriormente, o sea, primero la

computadora, luego 1a pantalla y al final el regulador o la.
caja de contactos.

NMunca debe haber un disco insertado con la mani ja cerrada al
momento de encender o apagar la computadora.

2.2 MOMBRES DE ARCHIVOS

Toda 1a informacién gue maneja la computadora se almacena en
archivos en los discos que se insertan en ellaj) cada archivo
z@ identifica por una espscificacidn de archivo que consta de
doz partes separadas por un punto como =8 mupstra en seguidal

FILENAME.EXT

La parte indicada FILENAME es el nombre del arthivo. este

nombre se forma con un maximo de ocho caracteres que pugden
ser letras o namerns v que cada gquien define como desee, por
cjemplos

ARCH3B DATOB A PROGRAMA

La parte indicada EXT ©s l1a extensidon del nombre, la cual
debe separarse c=1 nombre por medio de un punto y podrid tener
un miximo de tres caracteres. La extensidén del nombre,
también llamada tipo de archivo, sirve para indicar el tipo
de informacién que ceontiene el archivo de acuerdo a la
siguiente convencidns, :

« ASM Programa &n ensamblador.

«BAS FPrograma en BASIC.

.COB Programa en COBOL.,

.FOR Proarama en FORTRAM.

« PAS Programa en Pascal.

«-DAT Comunment® s& usa para archivos de datos.
-TXT Comunmente se usa para archivos de texto.

« BAT Archivo pjecutable de tomandos de MB-D0S.
EXE. Archivo ejecutable de instruccionas objeto.
. COM Archivo ejecutable de instrucciones objeto.

Algunos ejemplos de especificacionss de archivoss

PROB1 . FOR LISTADO. TXT ~ 'BALDOS.DAT
TAREA7.PAS NOMINA.COB - JUESD.BAS
MOVE. ASM . EJEMPLO.EXE PROCESA.BAT

Puede haber varios archivos con el mismo nombre. psro con
diferentes extensiones o con diferentes nombres v la mioma
extension, pero no puede haber dos archivos con el mismo
nombre v 1a misma extensiodn. . ' ' :

En general, g=e atopstumbra llamar "nombre de archivo" a la
especificacion, o sea, al nombre con 1a extensidén y con otras
partes de la especificacien de archivo que veremos mas
adelante, combo seria el nombre.de la unidad de discos en- la‘
que se encuentra el dieco que contiene el archivo.

La ma?oria de 1los comandocs del sistema bperativp M8-D0S
requieren una especificacidén de archivo para _reconocer el
archivo zobre el cual van a operar. = - : ‘

En algunos de egos comandoa se puasde " colocar un asteriasco
tanto en el nopbre del archive como en la extensidn, con lo
cual se gstad indicando al comando que deben considerarge
todos 10s archivos cuyos nombres sean iguales a la parte dada
de la especificacidn de archivo, y que puedan ser diferentnl
en la parte donde ge cnﬂocd al asterisco.

Tomando como ejemplo el comando DIR,. @l cuiﬂ [muestra
informacidén sobre los _archivos que existan ~@n un disco,
tendriamos lo siguiente; :

LiX PRUEBA.COB
“uestra informacidn del archivo PRUEBA.COB.

DI

1

FROGt.BAB

wdestra informarion de todos lo= archivoe cuyos nombres
camis -:n con PROG y tengan una extensién .BAS, por ejemplos
#ROBL AB A PROB3A5.BAS PROG.BAS PROGXY.BAS PROBETC. BAS

DIR ¥.FOR

Muestra informacion de todos los programas FDRTRAN que haxa'
zn @i disco.

DIF - TAREA. ¥

Muestra informacidn de todos los archivos cuyos nombrns sE@an
TAREA Yy que tengan cualquier extensién. .

Al uso del asterisco de la manera antes indicada, para cubrir
una gama de caracteres, sea le llama WILD CARD {comodin).

2.3 ARCHIVOS EM OTROS D1SCOS

La :omputaddra puede tener dos o mids unidades de dimscos) cada
unidad de discos se identifica por una letra del al fabeto, ‘1a
primera es la unidad A4, la segunda 1a B, etc.

Siempre =& tiene acceso inmediato a los archives de .una
cierta unidad de discos llamada unidad de default,. la cual se
maestra en !ps caracteres que indican que el sigtema
ocperativo estd listo, por ejemplo: ' '

A>

Al aparecer loz caracteres anteriores, el sistema operativo -
nos informa que estd listo para recibir un comando, y que la
unpidad de discos que censidera la de default es la A, :

Fara cambiar la unidad de default, y tener acceso inmediato a
loe archivos de otro disco, teclee la letra de la unidad
deseada =seguida por dos puntos (1), por ejemplos '

A>El ' {(Teclee Bi, la computadora mostraris)
B> ' {Ahora, la unidad de default es la B)

8i desea regresar a la unidad A como unidad de default,
teclee A, C : . . S

Para referirze a archivos que estén en otra unidad de discos,
pero sin cambiar la unidad de default, coloque el nombre de
la unidad v 1los dos puntos antes del nombre del archivo,
por ejemplos ‘ : -

B:PINGPOMG.BAS _ (Archivo_en..el disco-dela “unidad B) ~

—C:RESUMEM.DAT (Archive en la unidad C)
REVISA.FOR (Archivo en la unidad de default)
B: ¥.PAS {Todos los programas Pascal que haya en

el disco de la unidad B)

Mp debe haber ninglin sspacio en blanco entre &l nombre de la
unidad- de discos y 91 nombre del ar:hivo.

2.4 COMAMDOS EBABICOSB
‘Muestra los archivos eﬁistenteslr DIR FILENAME.EXT
Copia un archivo: ‘ COPY EXISTE.EXT NUEVQ.EXT
'‘Muestra el contenide de un archivos TYPE FILEMAME.EXT
Borra un archivos . DEL FILENQME.EKT
Ejemploss |

DIR

Muestra i{nformacién de todos los archivos) este es @l dnico
comando que supone gue se desean -todos los archivos: cuando no

se pone ninguan nombre. ' Es equivalente as DIR LR
DIR Bi1ARCH.DAT

Muestra 1nformac16n del archivo ARCH. DAT del " disco de ia

DIR C:

Mue=stra informacidn de todos los archlvos. del .. dié:o de .la“

unidad C. En este caso nuevamente se supone que se desaan
todos los archivos. Es equivalente a: DIR Clt.t

DIR B:!.CDB

Muestra informacién de todos los programas COBOL del disco da .

la unidad B.
COPY DATO.DAT #ROTDATQ.DAT

Duplica el arechivo DATO.DAT en otro llamado PROTDATO.DAT,
Ambos archivos estardn en el disco de la unidad de default.

COPY ARCHIVA.COB Bi

Copia e! archivo ARCHIVA.COB del -disco “de la unidad de

default al disco de la unidad B con o] mismo nombre.

COPY - VIEJO. ¥ NUEVO.¥

R e ———

tuplica todos los archivos cuyos nombras gean VIEJO a otros

ruyo= nombres ceran NUEVD y la extensién serd la misma que
zpian los VIEJD. Todos los archivos estaran en la unidad de

”efault. ' o

COPY ¥.PAB Cs

Copia todos los programas Pascal al disco de la unidad c.
TYFE PROGRAMA.FOR

Muestra el contenido del archivo PROGRAMA.FOR. El1 comando
TYPE no permite el uszo del WILD CARD. .

DEL NMNDBIRVE.DAT

Borra el archivo NDBIRVE.DAT PPECAUCIDM: no h&y forma de .
recuperar un archivo una vez borrado.

DEL B3VIEJO.¥

Borra todos los archives cuyos nombres asean VIEJD del disco
ge la unidad B. Hay que tener cuidado al utilizar este
comando con un WILD CARD, pues se pueden borrar archivos que
no = deseaba.

DEL ¥.¥

Borra todos los archivos del disco de la unidad de default.
Dados los alcances de este comando, el sistema operativo
MS-DOS pedird confirmacién antes de proceder a borrarlos.

Cuando <=e deseen proteger los archivos de un disco flexible,
podra pegarse una etiqueta adecuada para ello sobre la ranura
que tiene el disco en la parte superior de su orilla derecha,
" con lo cual no podra borrarse ningun archivo de ese disco,
aunque tampoco podra copiarse ningdn nuevo archivo a él, es
decir, =1 disco =olamente podra usarse para consulta, o sea,
para ver los archives que contiene, ver el cnntanido de algdn
archivo & ejecutar un programa.

2.5 EDICIOM DE PROBRAMAS

La forma de crear un programa es por medic de un editor de
archivos que nos permita teclear lineas del programa,
corregir errores, etec. El editor que utilizaremos se llama
TURBO Editor ‘el cual es un editor de pantalla que nos permite
ver de inmediato el contenido del archivo que estamos
creando. De esta manera,. para colocar una cierta palabra
dentro de nuestro programa bastara con colecar sl cursor en
el punto de la pantalla que: deseemos y teclear la palabra.

Al terminar de crear nuestro pfograma guardafamos el archivo
que hemos editado por medio de una instruccion del editor,
terminaremos la ejecucidn del miemo y procederemos a compilar

+
A .

-~y - ejecutar—el—programa, - 51 -es -que-no-hubo-errores-en-la-

compilacidn,

En caso de haber errores tomareémos nota de ellos vy vol varemos
a utilizar al editor para corregirlos.

£l siguiente capitulo describe la ¥forma. de utilizar al
TURBO Editor y los comandos con que ‘cuenta para la edi:idn K-l
nuestroes programas.

2.6 COMPILACION Y EJECUCIOM DE PHOBRAMRS.

Una vez que hempe creado el archivo que contiene’ a nuestro
pregrama procedemos a compilarlo, o sea, a traducir el
archivo de instrucciones en lenguaje ensamblador,; FORTRAN,
COBOL o Pascal que hemos creado con el editor, a un archivo
de instrucciones de madquina equivalentes pero X que la
computadora puede ejecutar de inmediato. 3

‘Para compilar nuestro programa, baatari con teclear el nombre
del lenguaje que estamos utilizando seguido por el nombre del
. archivo que contiene nuestro programa.-sin la extensidén {la
-entensién debe sequir las reglas antes dadaa para nnmbras de
"archivos), por ejemplos .

ASMB COPYTREE ' Traduce el archivo CDPYTREE.ABN.

COBOL NOMIMA Traduce el archivo NOMINA.COB. .
FORTRAN SUMAMAT Traduce el archiveo -S8UMAMAT.FOR.

£l procedimiento péra compllar podra solicitar que se cambie
el disco de alguna unidad mediante instrucciones que
aparecerian en la pantalla en el momentpo oportuno.

51 nuestro programa tiene algdn error, apareceraé un menéaje-

informativo del mismo en la pantallaj en @ste caso tendremos
que identificar el error para posteriormente editar de nuevo
al programa a fin de corregir 1los errores y volverlo a
compilar, vy repetir estos pasos hasta que el programa eaté
correcto. o

gi el programa tieno huchos errorea vy éstos aparecen uno fras
otro de tal forma que no tenemos oportunidad da - obsaervarlos,

podremos detener por un mombnto el texto que aparece en la
pantalla oprimiendo la tecla Ctrl y, manteniéndola oprimida,

oprimiendo la tecla -8 (8top). Para continuar con 1la

compilacion, debe oprimirse cualquier tecla.

Cuando la compilacidén no marque errores bal ocbtendrd el
archivo de instrucciones de maquina correspondiente, 1llamado

archivo ejecutable, el cual tendrad el mismo nombre que 91"

archivo del programa peroc con nxtensidn «EXE.

Para pjecutar el programa bastara con ta:laar el nombre del
archivo ejecutable sin . la extenuién, por‘qjamplbl

PROBRAMA

L instruccion‘antefior ejecutaria el archivo PRDBRAMA.EXE
z2tenido por alguna compilacidn previaf : :

=+ 21 caso particular del lenguaje Pascal, los procedimientos
c.fa tompilar ¥y ejecutar un programa son diferentes a los
zates descritos: para compilar un programa, desde el mend -
arincipal del editor oprima la tecla €3 para ejecutar un
programa, desde el mend principal del editor oprima la tecla
R (ver: Mend principal mas adelante).

G fuera necesario cancelar la eje:uc:én de un programa que
no termine en forma normal debido a algun error, se puede
hacer oprimiendo la tecla Ctrl y, manteniéndola oprimida,
sprimir la técla €3 si esto no detuviera- al programa,
entoncez manteniendo oprimida la tecla Cirl debe oprimirse la
tecla Break.

Si las teclas anterioree no cancelaran al programa, serd
necesario volver a activar al sistema operativo MS5-D0O8. Esto
s0 logra manteniendo oprimidas las teclas Ctrl vy Alt
simul taneamente v oprimiendo la tecla Del, o bian,
presionando el botdn de REBET.

2.7 FORMATEDO Y REVISIOMN DE DIBSCOS

Antes de utilizar un disco nuevo para almacenar archivos, e
necesario formatearlo. La instruccidn para formatear un
disco es: ’ '

FORMAT B

La instruccién anterior formateard el disco ihsertado en la
unidad B. Para formatear discos en otras unidades, ponga el
nombre de la unidad dezeada adelante de la palabra FORMAT.

PRECAUCION: El1 formateo borra toda la informaci én que pudiera
tener un disco, por lo que hay aque. tener cuidado de no
formatear discos con informacidén Gtil, e

Hay pcasiones en que pueden presentarse algunos errores en la
informacidén que estid contenida en un disco, sobre todo. cuando
s# ha apagado o encendido la computadora con un disco
insertado con la manija cerrada, o cuando se ha interrumpido
@l suministro de anergia eléctrica. -

Por 1o anterior es convqniente revisar at‘diﬁcn'dé veaz én‘f
cuando, Y siempre despuds de una "intetrupcioh de
electricidad, por medio del comandos’ : - :

CHKDSK B: : (CHecK DiSK, revisa disco)

Comp siempre, Bt debe cambiarse por la unidad cuyo disco
desea revisarse, Bi el disco estd correcto, el comahdo

mostrard un mensaje similar al siguiente:

362495 bytes total disk space
921460 bytes in B user files
270334 bytes available on disk

655360 bytea total memory
629268 bytes free

81 existe algun error, apareceri un mensaje informativo antes

de los mensajes mostrados anteriormente. La mayoria de log
errorese ¢ pueden corregir ejecutando cheeck disk de esta
formas ' -

CHKDBK Bs /F

Para mayor informacién de édste y otros comandos disponibles,
consul te el manual del sistema operativo MB-D0DB.

3 NDTAS PARA EL USD DEL EDITOR DE PROBRAMAS

3.1 ARRAMOUE DEL EDITOR

Para utilizar el TURBO Editor bastara con teclears

EDITOR.

Una vez activo, el editor mostrard el mend principal, el cual
contiene una serie de opciones e indicard que estd listo
mostrando el caracter:

>

Para editar un programa, oprima la tecla E (Edit) y después
teclee el nombre del archivo por editar. Si el archivo no
exigte, en ese momento es creadoy =i el archivo va existe, se
toma para editarlo y se muestra el principio del mismo en la
pantall a. '

A partir de ese momento se puede editar el archive utilizando
los comandos descritos a continuacion, yva que &)1 editor sa
encuentra en el modo de edicidn.

Para‘ terminar el modo de edicidn Yy ragresar al menu
principal, oprima la tecla Fi10. .

Una vez en el mendy principal, oprime la tecla 8 (Bave) 'para
guardar el archivo ya aeditado on el disco.

Para terminar de utillzar al editor, oprima la tecla @
(Quit). ' '

3.2 COMANDOS BABICOS

Para crear un programa, simplemente teclee las lineas que
componen @l miemo terminando cada una con la tecla <!,

FPara corregir un caracter tecleado incorrectamente, oprima la
tecla <-— colocada arriba de la tecla <-J. En algunos
tecladoz la tecla <-—'estld marcada como Back 8pace, por lo
que si es el caso, toda mencién en estas notas. a la tecla
«— deberd referirse a la tecla Back SBpace.

FPara borrar algdn caracter errdneo del archivo, celoque el
curszor =sobre el caracter por borrar utilizando las teclas con
flechas colocadas a la derecha del teclado (flechas hacia la
izquierda, hacia la derecha, hacia arriba y hacia abajo) vy
borre los caracteres erréneos oprimiendo la tecla Del.

" FPara insertar algun caracter faltante en el archivo, cologue
el cursor en la posicién deseada por medio de las teclas con
flechas y teclee los caracteres faltantesg.

Para terminar la edicion, oprima la tecla F10,

-10'

Utilizando Gnicamente estos comandos se puede editar
cualquier archivo, sin embargo, !a edicidn de un archivo
grande puede resultar muy laboriosa y tardada.

£l TURBO Editor cuenta con otros comandog que facilitan la
edicion y que sera conveniente aprender una vez que se tenga
mayor familiaridad con los comandos basicos antas dea:ritos.

Puesto que estas notas son =4lo una breve descripcion de las
capacidades del editor, no se incluyen ejemplos de msstos
comandos, por lo que se recomienda que se lea la descripcidn
de los comandos al miemo tiempo que =e practica cada uno de
ellos, a fin de asegurar su correctc entendimiento.

Los siguientes seis puntos son una breve doscripecidon de todas
13z capacidades. de! TURBO Editor.

3.3 MENU PRIMCIPAL

Estando en el mena principal, se tiene acceso a - los
Jiguientes comandos: : :

(Logged drive) Cambia la unidad de default.

{Active directory) Cambia @]l directorio activeo.

{Work file) Carga un archivo para editarlo.

(Edit) Entra al modo de edicidn.

{Save) Buarda el archivo que esta editandose en dis:o.
{Dir) Muestra los archivos existentes en el disco.
(Quity Termina 1la ejecucidn del editor, regresando al
sistama operativo. ‘

AACOMmMzZ>rC

En el caszo particular del lenguaje Pascal, también se cuenta
con los siguientes tres cnmandos: . :

cC- {Compile} Compila el programa fuente Pascal.
R ({Run) Ejrcuta el programa Pascal. .
0 (Cptioneg) Modifica las opeciones. del compilador.

Eligiendo a su vez la opcién C, la compilacidn generara
un archive ejecutable .COM en disco en vez de sdlo
mantener en mamoria el archivo de instrucciones da
miaquina correspondiente. : :

Durants 1 modo de edicidén =e muesfra una linea de estatus. en
la parte gsuperior de la pantalla similar a la siguientes

Line 1 -Col 1 . Insert Indent B3iEJEMPLO.FAS
La linea de estatus muestra la siguiente informaciéns

Line 1 Nimero del renglén. del archivo que esta
editiAndose donde estd el cursor.

Col 1 Namero de la columna donde asfa'ei cCursor.

Ingert , Modo Insert activo: los caracteres que se
- tecleen se inpsertaran . sin afectar a los

caracteres qQue ya existan en .el archivo,

abriéndose espacio automaticamente para

alojar a 1lbos nuevos caracteres. La
contraparte e=s el modo Overwrite: los
caracteres =p sobreponen en los . vya

existentes reemplazandolos. Para cambiar
del modo Insert a Overwrite © viceversa,
oprima la tecla Ins.

Indent Modo Indent activo: cada vez que se oprima
la tecia < para terminar un renglén,
el cursor automaticamente avanzard hasta
la columna donde el renglen antes
insertado tenga su primera palabra. Para
apagar é activar nuevamente el modo,
‘oprima la tecla 1<{-.

B:EJEMFLO.PAS Nombre del archivo que esta'editahdose.

Todos los tomandos descritos a continuacidén operan en el modo
de edicidn, La tecla Esc indica OPRIMIR Y BOLTAR primero la
tecla Esc vy después oprimir la tecla que sigue. Las teclas
Cerl o Alt indicam oprimir la tecla Ctrl -6 Alt vy, SIN BOLTAR
ESA TECLA, oprimir la tecla que <igue.

3.4 COMANDOS DE MOYIMIEMTO DEL CURSOR

£ - Un caracter a la izquierda.

-> Un caracter a la derecha.

Ctrl <- Una palabra hacia la izquierda.
Ctrl =->» : Una palabra hacia la derecha.
Home Al principio del renglon,

End Al final del renglén.

{ Un rengloén hacia arriba.
i Un renglén hacia abajo.

Ctrl Home Al primer rengloéon de la pantalla.

Ctrl End Al daltimo renglén de la pantalla.

Fi - Mueve el texto un renglén hacia arriba.
o : Mueve el texto un rengldén hacia abajo.
FgUp Muestra la pagina anterior.

FgDn Mueatra la piagina siguiente.:

Ctrl FgUp Muestra la primera piagina del ar:hivo.
Ctrl PgDn . Muestra la dltima padgina del archivo.
Fgq El cur=zor pasa al principio del blogue.
FB El cursor pasa al final del bloque.

Fé El cursor pasa a su posicion 1nm-diata antarior.

3.5 COMANDOS DE INBERCION Y BORRADD

Ins . Cambia entre ﬁndos'insércibn'y-sobr&éa:rituri.

Del , Borra el caracter apuntado por &l cursor.

Lo Borra el caracter anterior al cursor.

I

- 12 -

-Ctrl ¢<— --—— Borra la-palabra-siguiente—al—cursor,—
Egc <— . Borra hasta el fin del renglén.
Eec Ctrl <— Borra el renglén completo.

3.6 COMANDOS DE MANEJO DEL BLOQUE

F3 Marca el printipio del bloque.

F7 Marca el final del blogue.

F3 Marca una palabra como bloque.

F2 Esconde/muestra donde esta el bloque.

Alt C {Copy) Copia ®] bloque a donde estéd el cursor.
Al M {Move) Mueve el bloque a donde eaté el cursor.
Alt D (Delete) Desaparece {(borraj sl bloqua.

Alt B (Save) Salva el bloque en un archivo en disco.
Alt I {Insert) Inserta un archivo marcandoleo bloque.

3.7 COMANDDS DE BUSGUEDA Y REEMPLAZO

1

Alt F (Find) Busea una secuencia de. caracteraea.
Alt R (Repl ace) Reemplaza una secuencia por otra.. N
Alt N (Next) Busca o reemplaza la siguiente secuencia -

que cumpla con el dltimo Find 6 Replace
ejecutado (repite &1 Wltimo Find ¢ Replace).

Los comandos Find Y Replacé cuentan cen las opciones:

B _ (Backwards) Busca de 1la posicibn actual del

cursor hacia el principio del archivo.

c] ’ _ (Blobal) Busca desde el principio del archive
sin importar la posicién del cursor,)

U (Upper=lower) Considera iguales a maydsculas y

- mindeculas . en la bdsqueda.)

b (Whole) Buaca palabras completas, no pedazos.

{un numero) En Finds busca la ocurrencia ndamero
de la secuencia. En Replace: reemplaza
ccurrencl as. :

M {(Not) Reemplaza sin esperar confirmacién en
cada ocurrencia de la secuencia. :

Y permiten editar la secuencia de bisqueda por medio des

<= Mueve el cursor ‘'un caracter a la izquierda.

-> Mueve el cursor un caracter a la derecha.

Ctrl <- Mueve el cursor una palabra hacia la izquierda.
ctrl -> Recupera la secuencia de bisqueda anterior,

Finalmente, el caracter Ctrl A insertado en una secuencia de

bisqueda (por medio de Ctrl \ Ctrl A) funciona como un WILD
CARD (ver WILD CARD en: Nombres de archivos).

- 13 -

3.8 COMANDOS VARIOS

->1 Avanza el cursor hasta la celumna donde .el
renglon antericr tenga el inicio de una
pal abra.

1= Apaga/activa el modo de identacion automitica.

Ctrl < Elimina los cambioe hechos a un renglén; opera

. mientras el cursor no salga de ese rengldn.

Ctrl A Fermite teclear un caracter de control en los
comandos (p.e.3 Ctrl A en Find y Replace).

Ctrl U (Undo) Cancela cualquier comando pendiente de

ejecucidény en un comando Replace que involucre
muchos reemplazos sin confirmaecidn, log

ejecuta mas- rapido al no mostrar cada
reemplazo en la pantalla.
Fl0 Bale del modo de edicién y pasa al mena
principal.

3.9 COMPATIBILIDAD CON WORDSTAR

Log comandos con que cuenta el TURBO Editor 8on un
subconjunto de 1los comandos del editor comercial WordStar.,
Todos los comandos del TURBO Editor tienen dos formas de
actlvarse: una es por medio de las teclas descritas
anteriormente; otra es por medio de las teclas equivalentes
del editor WordStar.

Dep e=ta forma, =i algun uzuario conepce el editor WordBtar
podrd manejar al TURBO Editor en forma idéntica. Por otro
lado, un usuario gque se inicie utilizando los comandos
descritos con anterioridad Y que deses utilizar
posteriormente al editor WordsStar, podrd hacerlo facilmente
con cdlo acostumbrarse a las diferentes teclas de los mismbs
comandos gque vyva conoce, pudiendo incluasive practicar egas
teclas can el TURBO Editor.

A continuacidn se muestran los nombres originales de 1los
comandos equivalentes de MWordStar, las teclas del comando del
TURRO Editor v al final las teclas equivalentes del comando
de bordStar.

- 14 -

NOMBRE DEL COMAMDO
Character left
Character rigth

kord left

Word rigth

To left on line

To rigth on line
Line up -

Line down

To top of page

To bottom of page
Scroll up

Scroll down

fage up

Page down

To top of file

To end of file

To beginning of block
To end of block

To last cursocr position

Insert mode on/of+f
Insert line

Delete character under
Pelete left character
Delete rigth word
Delete to end of line
Delete line

Mark block begin
Mark block end

Mark single word
Hide/display block
Copy block

Move block

Delete block

Write block to disk
Read block from disk

Find
Find and replace
Repeat last find

Tab

Auto tab on/off

Restore line

Contrel character prefix
Abort operation

Eng edit

15 -

Ctril-K

TURBD EDITOR WIORD STAR

{=- Ctri1-8

-> Ctril-d

Ctrl <- Ctrli-A

ctri -> Ctrli-F

Home Ctrl-Q Ctrl1-8
End Ctrl-Q Ctrl-b
| Ctri-gE

i Ctrl-X

Ctrl Home Ctri-Q Ctri-gE
Ctrl End Ctrl-@ Ctri-x
F1 Cerli-2z

Fo Ctrl-i

PgUp Ctrl-Rr

PgDn © Ctri-C
Ctrl PgUp Ctrl-0 Ctrl-R
Ctrl PgDn Ctri-t1 Ctrl1-C
F4 Ctrl-Q Ctrl-B
Fe Ctrl-0 Ctrl-K
Fé Ctrl1—-Q Ctril-p
Ins Ctri-y

Ctri-nN

Del Ceri1-6 _
§ e {— ({(Backspace)
Ctrl <— Ctri-T R
Esc {— Ctrl-Q Ctrl-vy
Esc Ctrl {— Ctrl-vy. '
F3 Ctrl-K Ctri-B
F7 - Ctrl-K Ctrl-K
FS Cerl-K Ctrl-T
F2 Ctri-K Ctrl-H
Alt C Ctrl-K Ctrl-C
Alt M Ctrl-K Ctri-v
Alt D Ctrli-K Ctrl-y
Alt 8 Ctri-K Ctrl-w
Alt I Ctrl-K.Ctrl-R
Alt F . Ctrli-Q Ctrl-F
Alt R Ctrl-G Ctrl-A
Alt N ‘Ceri-L -
->1 Ctrl-1 (Tab)

§ - Ctrl1-Q Ctri-1
Ctrl <-4 Ctrl-Q Ctrl-L
CcErl A\ - Ctrl-pP

ctrl U ctrli-t

Fi10 Ctrl-D

4 FIBURAS AUXILARES PARA ENSAMBLADCR
4,4 EJEMPLO DE ARQUITECTURAS DE CALCULADORAS
ARQUITECTURA DE UNA CALCULADORA SIMPLE

REGISTROS . : MEMORIA DE
DPERATIVOS QLMACENAﬂIENTO

DPERACIONES FOSIBLES
SUMA — RESTA - MULTIPLICACION - DIVISION
FORCENTAJE - RAIZI CUADRADA
ALMACENAMIENTO Y RECUPERACION DE LA MEMORIA
ARBUITECTURA DE UNA CALCULADORA DE B8TACK

REGIBTROS , , MEMORIA DE

OPERATIVOS | ALMACENAMIENTD
T o
2z 1
Y 2
X 3
4
LAST X 5
~ 6
7 |
. B
.

OPERACICNES POSIBLES

SUMA - RESTA — MULTIPLICACION - DIVISIDN - POTENCIACION °
RA1Z CUADRADA — INVERSD - PORCENTAJES - SUMATORIAS ‘
FUNMCIDNES LOBARITMICAS, TRIGONOMETRICAS E HIPERBOLICAS
ALMACENAMIENTO Y RECUPERACIOM DE LAS MEMORIAS

- 14 -

4.

2

QRQUITECTURQ DEL MICRDPROCESADOR TINTEL 808478088 T

REGISTRDS
OPERATIVOS

AX

bX

cx

DX

8P

BF

81

DI

Cs

Ds

88

ES

IP.

A

L5536
\
131072
262144
393218

524288

655360

1048576

MEMORIA DE
ALMACENAMIENTD

OPERACIONES POSIBLES

B4K

128K

256K

384K

S12K

640K

1024K

SUMA, REBTA, MULTIPLICAC!DN Y DIVISIDN DE EMNTEROS
COMPARACIONES - MOVIMIENTO DE BITS
ALMACENAMIENMTO Y RECUPERACION DE LA MEMORIA
ALBUNAS. INSTRUCCIDNES ESPECIALIZADAS

Za7 -

S DESCRIPCION DE L.DS REBISTRDS BGENERALES

FEBISTRDOS DE DATOB

AX 7 AH ol 7 AL o | AccuMuLATOR

BY | 7 BH o | 7 BL o | BASE

cx | 7 CH ol 7 oL o | counT

px | 7 DH o | 7 DL o | DATA

REGISTROS APUNTADDRES E INDICES
sP 15 o | STACK POINTER
8P | 1S 0 | BASE POINTER
= 15 o | SOURCE INDEX
DI 15 o | DEBTINATION INDEX
REGISTRDS DE ACCESO A SEGMENTOS

8 | 1S o | CODE BEGMENT .

D8 | 15 o | DATA BEBMENT

88 | 15 0 | BTACK SEBMENT

ES | 15 "o | EXTRA SEBMENT

DESCRIPCION DEL USD BENERAL DE CADA REGISTRO o

AY -~ OPERACIONES ARITMETICAS SOBRE PALABRAS, ENTRADA/SALIDA
AL - OFERACIONES ARITMETICAS SDBRE BYTES, ENTRADA/SALIDA
AH - OPERACIONES ARITMETICAS SOBRE BYTES | _ |
EX - TRAMSLACION DE CARACTERES, ACCESO INDIRECTD A- MEMORIA
CX - COMTADDR PARA ITERACIONES Y MOVIMIENTO DE BYTES O PALABRAS
CL - COMTADOR PARA ROTACIONES Y CORRIMIENTOS DE BITS
DX - DPERACIONES ARITMETICAS SOBRE PALABRAS, E/S INDIRECTA
SP - OPERACIONES SOBRE EL STACK
BP - ACCESC A PARAMETROS EN EL STACK
&I - 'ACCESO INDIRECTO A MEMORIA, APUNTADOR A STRING FUENTE
DI - ACCESD INDIRECTO A MEMORIA, APUNTADOR A STRING DE DESTIND
C8 - APUNTADDR AL SEGMENTO DEL COD1BO-OBJETO
DS - APUNTADOR AL. SEGMENTO DE DATOS
8 - APUNTADOR AL SEGMENTO DEL STACK

EX” -~ APUNTADDR A UN SEBMENTO EXTRA DE DA?OS

4.4 UTILIZACION DE LOS PEGIL. . .wo ouwiENTO.

El microprocesador B0lu.wwods divide la memoria en cuatro areas,
11lawavas segmentos, reservadas para contener el cédigo objeto del
Prag siay @1 Area de datos, l'a zona del stack vy otra drea
adicional para datos.

Cada uno de los cuatro regizstros segmento contiene la direccidén
inicial del segmento correspondiente, considerando solamente los
primeros 16 bits (4 digitos hexadecimales), o sea, lo= mas
significativos de la direccién, 1la cual se forma con un total de
20 bite (5 digitos hexadecimales). Los 4 bitas faltantes ee
obtienen combinando a su vez otra direccién de 16 bits,
proporcionada por cada instruccidn del programa, pero que ge
celoca en los 16 bits menos significativos, por 1o que toda
direccidn de memoria es la zuma de un registro seamento corrido 4
bits 2 la izquierda mas un desplazamiento dentro del segmentos lo
anterior =ze indica de la siguiente maneras REBG:DESP

De esta manera, manteniendo +fijo el contenido de un registro
segmento, una instruccidn puede accesar el rango de memoria que
pueda ser direccionado con 146 bits;, o sea 64K, 1b6 cual as el
tamafo del segmento. ' -

XX X O000Q0H 81 queremos accesar
- el dato cuyo despla-—

'J—> CODE 10000H zamiento es 71
] 1000 > :
X XX DB 18FFOQ
D8 18FF > desplazal 7
__“~*1—~—> 18FFCH : S me———
=15 5644 > . DATA . direcciéns 18FF7
' ' 1BFF7H <~ — —l
ES SABB > . _ . _
- _] - > STACK - | S5&5440H La direccion antes
, : dada puede eacri-
> EXTRA SABBOH birse como sigue:

I . DB10007

FFFFFH 18FF10007

POSIBLES COMBINACIONES DE REBISTROS PARA FORMAR DIRECCUIONES

- Segmento Seagmento Desplazamiento

Tipo de acceso a memoria: normal opcional . dado por
Lectura de instrucciones . - - IP
COperaciones sobre el stack 88 - . - &P
Datos {(excepto los siguientes) D8 = C8,E8,S8 Instruccion
String fuente Dg Cs8,ES, 68 _ B1
String de destino ES - : D1
Usando el regisiro base BP 8 .. €3,D8,ES Instruceidén

- 19 -

4,3 INTERRELACION ENTRE EL PROGRAMA, MS-DOS Y BIDS

Para describir la relacién existente entre un programa de un
uzuario, las rutinas componentes del POS y las del Bl10S, se hari
referencia a la labor primordial para la que fueron desarrolladas
za2da una de ellas. Por ejemplo, es obvio que los tres ejecutan
irztruccionese del CPU, <in embargo ¢é¢se no es el objetivo
zrincipal de las rutinas del DOS ni del BIOS.

Dezde este punto de vista podemoes decir que el objetivo principal
del programa del usuario es ejecutar instrucciones del CPU,
mientras que lags rutinas del BIOE tienen la misidén de accesar los
neriféricos externos conectados a 1a computadora) por dltime, las
*wtinas del DOS tienen por objeto servir de enlace entre ol
crograma del usuario y las rutinas del BIOS.

[~ — = —> | PROBRAMA DEL USUARIO
A EJECUTANDOSE EN ¢—> CPU.
T e ‘LA MEMORIA
I
| ,
| L RUTINAS DEL
- SISTEMA OPERATIVO:
| — . MB-DOS
o
| _ . _
| L—> | - RUTINAS DEL
- 'BIOB - g R —— TECLADD
— — = -> | ' RESBIDENTES EN.ROM |

> | “PANTALLA

}-> | 1MPRESORA

—> .| = DIBCOS

> OTROS

- 20 -

4.5 MODDS DE DIRECCIONAMIENTG = _ -
MODO LOCALIZACION DEL DATO O DE LA DIRECCION EJEMPLD
 IMMEDIATE DATO EN LA INSTRUCCION |
REBISTER DATO EN UM REBISTRO AX
DIRECT DIRECCION EN LA INSTRUCCION VARNAME
INDEXED DIRECCICN ES LA SUMA DE UN REBISTRO VECILSI]
INDICE MAS UN DESPLAZAMIENTO EM LA INSB.
HASED DIRECCION ES LA SUMA .DE UM REGISTRO RECELBX1
BASE MAS UN DESPLAZAMIENTO EN LA INS.
BASED AND | DIRECCION ES LA SUMA DE UN REGISTRO RECLBX1L(S8I]
INDEXED - INDICE MAE UN REGISTRD BAEE MABS UN
DESPLAZAMIENTO EN LA INSTRUCCION
MODO INDEXED: Para accesar los elementos de un ariéglu, al

desplazamiento apunta al principio del arreglo vy
indice selecciona el elemento deseado. _

'@l registro

- DESPLAZAMIENTO - - > VECTOR{O)
VECTOR (1)

- +81 > VECTOR(2)

: VECTOR (3)

MODD BABED: El registro base apunta a una estructura de elementos
de diferente tipo y el desplazamiento. aslecciona el elemento
deseado dentro de la estructura., FPara accesar una estructura
diferente, ba=stard con ajustar adecuadamente al registro base vy
2l desplazamiento seleccionard al mismp elemento pero de la otra
estructura, va que ambos estiAn en la misma posicidén relativa.

BX > NUM_EMPLEADO

' . EDAD _
+DESPLAZAMIENTO > . SUELDOD

BX = = &+ — =3 NUM_EMPLEADO

: T A 2 EDAD ‘
+DESPLAZAMIENTD L = —> . SUELDD

MOoDO BABED AND INDEXEDs Combinando ambos modos se pueden accesar
arreglos dentro de estructurasy el registro base apuntarda a 1a
estructura deseada, el desplazamiento seleccionara el principio
del arreglo y 21 registro i{ndice apuntars al eglemento decssado

Zentro del arreglo. '

MOTOR (2)
MOTOR (3)
BX P NUM_AVION
KILOMETROS
+DESPLAZAMIEMTO > : MOTDR(0)

: MOTOR (1)
© 481 > MOTOR (2)
MOTOR (3)
. 1 NUM_AVION
KILOMETROS
MOTOR{(0)

Aungue el registro BX se usa normalmente para accesar estructuras
de datos, se puede utilizar como un registro indice mids; de esta
manera eos posible manejar arreglos de does dimensiones apoyandose
en 2! modo de direccionamiento EASED+INDEXED manejando el primer
subindice en el registro base BX multiplicado por el numero de
elementos que tenga la otra dimensidén, vy el otro subindice en
cualquiera de los registros indice SI ¢ DI.

DESPLAZAMIENTO —> MATRIZ (0, 0)
MATRIZ (0, 1)

MATRIZ (0, 2)

o MATRIZ (D,3)

+BX > : MATRIZ(1,0)
. MATRIZ(1,1)

+31 > MATRIZ (1,2)
MATRIZ(1,3)

MATRIZ (2,0)

El registro base BP es un apuntador a un dato que esta en el
stack y- sirve para accesar parametros trasferidos entre
procedimientos sin necesidad de vaciar el stack para ello, aungue
al regreso del procedimientp g2 necesario . desalojar los
pariametros del stack, lo cual se hace en forma sencilla ya que en
la instruccidén RETURN me puede especificar el nimero de palabras
que seran desechadae del stack al momento de efectuar el regraso
del procedimiento. Estos dos temas no se verdn en este curso, por
1o que se recomienda no utilizar el registro BP hasta comprender
@n forma adecuada su funcionamiento,

- 22 o

N

- ---4,7- COMBINACIONES.DE MODDS DE DIRECCIONAMIENTD

OPERANDD OPERANDO EJEMPLG EN ~ EJEMPLD
DE DESTINO | FUENTE ENSAMBLADOR EN "Cv
REGISTER IMMEDIATE | MOY AX,1 REGAX=1j
+ | rREBISTER MOV AX, BX REGAX=REGBX
‘[pIRECT MOV AX,DATO REGAX=DATD;
INDEXED MOV AX,VECLSIJ REBAX=VECLSI 1}
BASED MOV AX,NUMLBX] REGAX=REC. NUM;
BASED+INDEX| MOV AX,VECLBXILSI1 | REBAX=REC.VECCSIIj
'DIRECT IMMEDIATE | MOV DATO,1 DATO=1;
REGISTER MOV DATO,AX DATO=REGAX
INDEYED IMMEDIATE | MOV VECLS13,1 VECLSI1=1¢
REGISTER MOV VECLSIY,AX - VECCBI I=REGAX
EABED IMMEDIATE | MOV MUMLBXI,1 REC. NUM=13}
REBISTER MOV NUMCBX1,AX REC. NUM=REGAX
BASED + IMMEDIATE | MOV VECCBXJIB811,1 | REC.VECCS8I)=1;
INDEXED ' ‘
REGISTER MOV VECIBX1LBIJ,AX | REC.VECLSII=REBAX;

En rezumen, los modos de direccionamiento IMMEDIATE y REGISTER
gon l1os dnicos Que NO accesan memoria, todos los demds (DIRECT,
INDEXED, BASED vy BABED+INDEXED) 4i{ la accesan. La restriccién
general en ensamblador, g2 gue no =se puede mover un dato de -
memoria A memoria en una sola instruccidn, siempre tendrad que
moverse un dato primero de memoria a un registro del CPU, vy de
ahi de regreso a memoria con otra instruccién.

A pesar de lo anterior, el microprocesador B0B4/8B088 tiene cinco
ingtrucciones dedicadas al manejo de strings por medio de las
cuales es poeible mover directamente un dato de memoria a
memoria; estas instrucciones se describiran mas adelante.

En el dodn BASED+INDEXED =2 puede combinar un registfo base (BX &

BF) con un regicstro indice (81 4 DI), pero no se pueden usar
juntos dos registros base 6 indice en la misma instruccidn.

- 23 -

3.8 BENERACICN DE ARCHIVOS EJECUTABLES .EXE Y .COM

Archivo fuente de
instrucciocnes an
ensamblador

Aarchivo intermedio
entre el archivo
fuente v el archivo
: gjecutable

Archivo ejecutable
con mas informacidn
que un archivo .COM

Archivo de menor
tamafio y carga mas
rapida que un
archivo .EXE

USUARID

EDITOR DE TEXTO

ARCHIVO
FUENTE

» ASM

ENSAMBLADOR

ARCHIVO
OBJETO

.0BJ

ARCHIVO
EJECUTABLE

.EXE

COMVERTIDOR

ARCHIVD
EJECUTABLE

. COM.

- 24 -

"EDITOR

MABM

‘LINK

EXE2BIN

— ASMB |

- --4.9" - “DPERACIONES -DE-MANEJO DE STRINSS- S

Las operaciones de manejo de strings comprimen ©n una sola
instrucciéon del CPU los diversos pasos que normalmente se
requieren para manejar secuencias de caracteres contidndose coni

MOVSE 6 MOVSW — Mueve B 6 146 bits de memoria a memoria

LODSB 6 LODSW — Carga B ¢ 16 bits de memoria al registro AL & AX
STOSB o STOSW - Guarda B8 & 16 bits del registro AL 6 AX a memoria
SCASE 6 SCASW - Compara el registro AL 6 AX contra memoria

CHMPSE o CMPBW —~ Compara 8 6 14 bits de memoria contra memoria

Estas instrucciones usan los siguientes registros del CPUs .

SI - Apunta a la localidad fuente (segmento base: cualquiera)
DI - Apunta a la localidad destino (segmento bases EB)

Todas 1las .instrucciones incrementan 1os registros {indice
involucrados en la instruccidon (81 4 DI 6 ambos). FPara
decrementar, eiecutes STD, para incremsntar otra vezs CLD.

Si so coloca antes de la instruccién el prefijo REP; entonces la

instrucecién se repetiréd en forma ciclica, docrnmentando el

registro CX cada vez, hasta que éste llegue a cero.

En las instrucciones BCAS vy CMPS el prefijo puede ser, ademis de
REP, cualgquiera de REPE 6 REPNE} en este caso, las repeticiones
terminardn cuando CX 1llegue a cero ¢ cuando se cumpla la

condicidn indicada por el prefijo (Equal ¢ NotEqual) entre las
localidades invelucradas en la inatruccioén. : .

Ejemplo: movimiento de un& string de !o“cara:tareé.
BASIC: A$ = BS | | |
Pascal: FOR 13=1 TO 10 DO ALI3s=BCIJ}

Ensambl ador: ' |

LEA 8I,A jdireccién de la string A

LEA DI1,B jdireccion de la . string B

MoV CX,10 jnumero de caracteraes a mover

con instrucciones directas:

MUEVE:
MoV AL, L811] |:arga un caracter -
MoV [DIJ AL jlo guarda en la otra ntring '
INC 81 jincrementa apuntador a la string fuente
ING. - DI o jincrementa. apuntador a string destino

‘LooP MUEVE jrepite el némero de veces dado en CX
con instrucciones de manejo de stringss |

- REP MOVEB -;imbqva la secuencia!

4,10 USO

" INT oo
INT O1H

INTERRUPT

VECTORS
INT 1CH

INT 21H

— A - - -

USER

FPROGRAM

ROUTINES

OCF7: 1080

ROUTINES

FOO0:FO&S

oy mm e o

DE MEMORIA FOR EL PROGRAMA, MS-DOS Y EIGS

FOO0: FOLD

QCF73: 1080

INT 21H

INT 10H

Cuandn un programa de un usuario
hace una llamada al Sistema
Operativo por medio de la INT 2iH
el CFPU consulta la direccidén
almacenada en el vector de
interrupcion correspondiente vy
transfiere el control a la
direccidon indicada en el vector.
(1)

81 la funcién correspondiente de
DOS requiere accesar un
dispositivo externo, cosa comdn
por lo demas, entonces requerira
invocar a una rutina del BIOS8,
por ejemplo la 10H, por medio de
una instruccién INT 10H, con lo
que nuevamente el CPU consulta
la direccién almacenada en el
vector correspondiente-y
transfiere ¢l control.

(2)

. Cuando la rutina correspondiente

a la INT 10h regresa el control
por medio de una instruccidén
IRET, &1 contrel regresa a la
instruccidn siguiente al INT que
sirvid para . invocarla.

{3)

De igual forma, cuando la rutina
de la INT 2fiH termina su labor,
ejecuta un IRET con lo cual el
control regresa a la siguiente

‘instruccion que la invocé,

dentro del programa del usuario.
(4)

- 26 -

FACULTAD DE INGENIERIA U.N.A.M.

INTRODUCCION AL LENGUAJE DE PROGRAMACION
ENSAMBLADOR PC-MSDOS

MATERIAL DIDACTICO

NOVIEMBRE, 1992

alaciode Mineria Callede Tacuba5 primerpiso Deleg. Cuauhtémoc 06000 México, D.F. Tei 521-40-20 Apdo. Postal M-2285

I

I ntrdduction

This chapter discusses which microcomputers can be programmed with
IBM's Macro Assembler language (MASM). It also presents an overview of
some concepts you should be familiar with before you begin to learn
MASM, such as: how the MASM assembler converts the program you
write to one that the microcomputer can understand, how the microcom-
puter is organized, and how it runs a program. These concepts are impor-
tant to understanding assembler languages because the assembler-
language program deals directly with the microcomputer and its operation.
This chapter also includes a general comparison of MASM with some other
languages.

The next chapter presents general information applicable to the IBM
PC. In the third chapter, you will begin to look at and write programs.

"Where Can You Use MASM?

The Macro Assembler language (MASM) by Microsoft was developed to
program the [BM PC, PC/XT, and PC/AT. Throughout this book, IBM PC
refers to this entire family of microcomputers. MASM is based on the
assembler language for 8086 and 8088 microprocessors {the PC and PC/XT
each uses an 8088 microprocessor]. As Figure 1.1indicates, an assembler is
& program thal translates assembler language into machine language,
which can be understood by a microprocessor. The MASM assembler
transiates MASM programs into 8088 machine language.

J o~

ABBEMBLER

. 0110110011110101
COMPUTER B Machine Language

Thf:oretically. the resulting machine-language programs should run on
any micrecomputer with an 8088 microprocessor. However, some instruc-
tions may, in fact, refer to memory locations that have special functions on
one type of computer or with a particular operating system. The programs,
}herefore. may not run correctly on other computers or with other operat-
ing systems. 1O (input and output} routines are especially liable to be
incompatible with other microcomputers or with other operating systems.
Unless otherwise indicated, the 1/O routines you leam in this book run
under version 1.1of the IBM PC Disk Operating System {DOS) by Microsoft
or subsequent versions.

- Other assembler languages exist for programming 8086/8088 micro-
processors. One of these, Microsoft's Small Assembler {ASM], is included
when you purchase MASM. {We'll discuss the differences between MASM
and ASM later in this chapter|. All 8086/8088 assembler languages use the
same set of instructions, which, in tum, are translated into the same
machine-language instructions.

An assembler has other functions than translation, however. Most
a.sst'amblera, for example, reserve and initialize data space and provide a
listing of the program and its translation. MASM, like other assembler
languages, directs the assembler to perform these functions using instruc-
tions known as assembler directives or pseudo-ops, which are not
translated into hachine language. The DB pseudo-op, for example, defines
data space, while the PAGE pseudo-op controls the page size of the listing
the assembler produces. MASM’s pseudo-ops include all of ASM's and
. more. Other B086/8088 assembler languages will have similar, but not
identical, sets of pseudo-ops. "

You can use the Macro Assembler Language taught in this book to write
programs that will be converted to machine language by the MASM
assembler. The machine-language programs will run on the IBM PC family

Figizre 1.3 The Role of the Assembier

Introduction 5

using DOS 1.1 or later versions; they may or may not also run on other
8086/8088 microprocessors or with other operating systems. The basic
concepts and the MASM instructions covered in this book will‘be useful,
but not complete, guides to other 8086/8088 assembler languages.

Review Questions

i. MASM is intended for use on which computers? Which micro-
processors? Which operating system?

What microprocessor does the IBM PC use?
From what type of language does an assembler translate?
Into what language does the MASM assembler translate programs?

A I

True or Palse? A pseudo-op directs the assembler in its functions; it is
not translated by the assembler.

6. True or False? All 8086/8088 assembler languages include the same
instructions and pseudo-ops.

Answers
1. IBM PC and family; 8086/8088; DOS 2. 8088 3. Assembler lan-
guage 4. 8088 machine language 5. True 6. False; they include the
same instructions, but not necessarily the same pseudo-ops.

The Programming Process

Figure 1.2 illustrates the programming process. We will talk about each
step, from writing the program to running it.

Where Does the Source Code Come From?

When you write a program, begin by deciding exactly what you want the
program to do. Often, this means planning screen layouts and print dia-
grams on chart paper that has numbered rows and columns. Then, plan the
program logic. The more time you spend planning in the beginning, the less
time you will need to spend revising later.

Once you know what your program will do in detail, write the program
in MASM Assembler language. The MASM language program is called the
source code. Writing a program is often called ceding, since it produces
source code. Most assembler programmers write their programs first on

- Introduction 7

&
b
a S
T o
PAPER

courrn)e— g2 |- o

PROGRAM

RESULTS

Figure 1.2 The Programming Process

paper, leaving plenty of room for changes. Next, the source code is entered
into the computer, using either an editor such as EDLIN or a word process-
ing program.

Notice the difference between MASM and BASIC. BASIC itself
includes an editor. When you start to run BASIC you automatically are in
the BASIC editor and can begin to enter your program. MASM, as well as

most other computer languages, does not include its own editor, MASM

programs must be entered using an independent editor or word processing
program, °. -

Where Does the Object Code Come From?

Once the source code is ready, it's time to call on the assernbler. An
assembler is a program. The source code is the input to the program.
Machine language, known as machine code or object code, is the main
output from the program. Usually, the assembler produces a listing and,
© . sometimes, it also produces cross-reference files for the programmer’s use
in debugging the program. But, its real job is to produce the object code.
An assembler translates source-code instructions to object-code
instructions on a one-to-one basis; that is, every 8086/8088 assembler-
language instruction is translated into a 8086/8088 machine-language

§
1

instruction. In addition, the assembler carries out the pseudo-op instruc-
tions by leaving room in the machine-language program for data area.s.and
by putting initial values in the data areas. Other pseudo-op instructions
may also affect the output from the assembler. For example, they may
change the number of lines per page in the listing, or tell the asseml?ler to
copy source code from another file into your program’s source code t‘:efore
Figure 1.3 shows part of a listing from the assembly of a MASM pro-
gram. The right-hand side of the page shows the source code, which
includes comments written by the programmer. The left-hand side of the
page shows the object code in hexadecimal. The object code is, in fa\lct, in
binary because it is the only form of data that a computer can understand.
But, when printed or displayed on a CRT, the code is always shown in
hexadecimal. (By the way, if you need to brush up on binary and hex-
adecimal, read Appendix A.] -

W2 W 16 HIE R TR T MOESS F BIWE RFFER _

3 0N - s |

A W ” K .

ny % e i

WA m)

" B owr

]

nn oove

na 5 o o

e 1 oK

uz 4 -

wx 9 LI

NF B L N, 0 35T CORNT FOR R

R W NIFR oL o

»E m» " NS MPOER W DR

w2 BNNAL L8 SEDNE Ve —

T ETLT LB DLW 10ESTONTIO

¥ FV M = s #IVE O Cx TRES

ML GO HIFAM U], X e 1S 8

» ¥ w N

no % o

ue » e

we 'y . J o

e O "

ue ~awe aer

1

This Is cbject code This is the 50urce These are commerits
in hexadecimal, code written by the included in the source
It's binary version programmer. It almost code by the programmer.
is meaningtul o looks lka it means Comments begin with
the computer. something in English. a semi-colon (7).

Figure 1.3 Pari of an Assembler Listing

8 -

What'’s A(ter Object Code?

The object-code program that results from assembly is a string of binary
digits which includes both machine-language instructions and data storage
areas. One more step, linking, is required to change the object-code
program into an executable program, alsc in machine language. The
linker program adds information that will be needed when your program
runs, such as the program size and where to load the program in memory.
The linker can also combine several object programs into one.

The individual object programs are often called object modules. The
finished, executable program may be referred to as a load module, since it
is ready to load intc memory. The software that comes with some com-
pilers includes libraries of object modules that must be combined via the
linker with every object program generated by the compiler.

When you run a program, it is the executable version, the lond module,
this is run. That's why the disk file where the program's load module is
stored is often called its run file. As you can see from Pigure 1.2, usually
the programming process is not finished when it is run for the first time.
The first few runs often produce incorrect results, and the programmer
must change the source code and repeat the assembly, link, and run cycle
until the program works as desired. This is called debugging the program.

Review Questions

Match each program type on the left with the phrases that describe it on the

right. Some descriptions may be used more than once; some may not be
used at all.

— = 1. Source code pro- A. Output from linking process.

gram
——— 2. Object code pro- B. Input by programmer through
gram editor or word processor
——— 3. Executable pro- C. Output from assembler
gram .
D. Inputtolinking process
. B. Machine language
F. Inputto assembler
G. Readytorun ’
Answers

LB,F 2.C.D.E 3. AEKG

Introduction G

The Microcomputer

Before you learn how the microcomputer runs your program, you need to
be aware of some of its parts. Figure 1.4 contains a generalized diagram of a
microcomputer; refer to it as you read the following discussion.

The Microprocessor

The heart of any microcomputer is its microprocessor, which contains the
Central Processing Unit [CPU). The CPU is the area where machine-
language instructions are interpreted and carried out. The microprocessor
also includes several, small memory areas celled registers. The CPU can
access the registers very quickly to store, manipulate, or retrieve data.

Flags Most microprocessors havea register that contains the flags. Each
flag is one bit, so it may have a value of zero or one. There are two types of
flags: status flags and control flags. A status flag records information
about the result of an instruction. Many microprocessors, for example,
maintain a zero status flag. The zero flag is set {turned on, or given a value
of 1) when an’ arithmetic result has a value of zero. The flag is cleared
{turned off, or given a value of 0) when the result is not 0. Control flags are
used to control the operation of the computer. For example, an interrupt
flag may control whether or not a program can be interrupted by outside
events, such as pressing a key on the keyboard. Such requests for service
are handled if the flag is set and are ignored if the flag is cleared.

MEMORY cPuU

Figure 1.4 Generakized Diagram of a Microcompules

10

The Instruction Set

- A microprocessor contains circuitry that enables the microprocessor to
_ carry out a certain set of instructions. An 8088 microprocessor is designed
to process about 90 instructions that make up the instruction set for both
8086 and 8088 microprocessors. Object and executable programs for any
microcomputer with an 8086 or 8088 microprocessor must use these
instructions and no others, since these are the only instructions the com-
puter can actually carry out.
Some microcomputers have more than one microprocessor and can
<arry out more than one set of instructions. An IBM PC may have an 8087
microprocessor installed in addition to its basic 8088 microprocessor. The

8087 processes high-speed, high-precision arithmetic instructions that are -

not available on the 8088. MASM originally did not include the assembly-
language equivalents of these instructions. The newest version of MASM
does have 8087 instructions, but they will not be covered in this book.

Memory

Another important aspect of the microcomputer is its memory. It's prob-
ably easiest to visualize memory as a large number of storage cells, like a
hpneyoomb. Bach cell can contain one byte of information—that is, eight
bits. Any ASCII character can be expressed in one byte, so you will
sometimes see the number of bytes of memory in a computer referred to as
the number of characters it can hold.

Bach cell or byte of memory has a unique address, starting at OH
{addresses usually are written in hexadecimal). The maximum memory
that can be addressed by the 8088 is 1,048,576 (1M or 1024K} bytes. That
means that 1024K is effectively the maximum memory size for a microcom-
puter using an 8088 microprocessor. Memory addresses for an 8088-based
microcomputer range from 0H to"OFFFFFH (0 to 1,048,575). The actual
memory size of your computer, however, will vary depending on the
number and size of memory chips installed in it. You must have at least
96K of memory to use the MASM assembler. However, you can assemble
an ASM program with a 64K memory.

Sometimes memory is referred to as if it were a vertical stack of boxes
with OH at the bottom and the highest possible address at the tap.

The memory installed in your computer is not all available for your
programs. Some of it is reserved for system programs or other purposes
over which you have no control. In the IBM PC, for example, the bottom
1024 bytes confain interrupt vectors, which are the addresses of pro-
grams that are executed when a special function needs to be handled by the
operating system. Examples are many /O functions, such as displaying a

Introduction 11

character on the screen. The top 16 bytes contain the system reset instruc-
tions that are executed when you turn on the computer. Additional mem-
ory is used when the operating system is loaded into other parts of
memaory, one of the first steps that occurs when the computer starts' up.

|
|
Review Questions I
|

|
1. Which part of the microcomputer determines what mst_ructxons the
microcomputer can carry out?

2. In which part of the microprocessor are instructions interprete ted and
carried out? : i

3. What are the small, rapid-access memory areas in the micro-
processor called?

4. What part of the microprocessor is used to record information about
the results of an instruction? ,

5. True or False? A unique address is assigned to every bit of memory,
starting with the address OH.

‘6. True or False? The maximum memory size for a computer with an
8088 microprocessor is 1024K bytes.

How much memory is required to use the MASM assembler?

True or False? A flag is cleared when its value is zero.

Answers
1. The microprocessor 2. The CPU (central processing unit) 3. Regis-
ters 4. The status flags 5. False; a unique address is assigned to every
byte of memory; a byte contains eight bits. 6. True 7. 96K bytes 8.
True : i

I
)
i
|
t

How a Program is Run

To illustrate how a program is run in a microcomputer, let's look at a
hypothetical computer, the TABLET, which uses an equally hypothetical
microprocessor, the EZ3. The EZ3 contains three registers for program use
and one flag, the zero status flag. :

12 P

The EZ3 Instructions

Figure 1.5 shows the rather limited instruction set of the EZ3. Bach instruc-
tion begins with a two-digit (hexadecimal] code that identifies the
instruction. This is the operation code or op-code for the instruction. To
make this discussion easler to read, a mnemonic has also been assigned
for each operation code. A mnemonic is an easy-to-remember code that
stands for an operation code in a discussion or in source code. MOV is the
mnemonic for 11H, the move operation code. SUB is the mnemonic for 12H,
the subtraction operation code. JNZ is the mnemonic for 13H, the jump-if-
not-zero operation code, and END is the mnemonic for 14H, the operation
code for the instruction that stops the program.

The EZ3 Instructinn Set

Hogmopic — Iastryctiop HMeaping

Moy 1iee)hh Move value from hhl) to
registar rr

suB - 12rr11hh Subtract value at hhll
from register re

JINZ 1311hh 14 2ero flag cleared,
next instruction is at
hhl}

&N ' 14 End progras] return to
. operating system

Addresses in operands
are stored with low-
The Instruction Format order byte first. The
address B120H is

g:do ﬂp:rmd‘ q"zuud @

ong | 9,1 |[0or 2 as an operand. '
brte} or 2 |bDrtes
.| brtes

Figura 1.5 The EZ3 instruction Set

- Introduction 13

All the instructions except END also contain operands. If you think of
the operation code as the verb of an instruction, the operands are the
objects of the verb. They specify the data or locations that are to be used
when the instruction is executed.

The MOV Instruction The first operand for MOV is one byte that
names a register into which a byte of data will be moved. Possible registers
arel, 2, and 3. The second operand is two bytes long; it names the memory
address from which the data byte will come. The EZ3 machine language
always puts addresses into “reverse notation”. That is, the low-order byte is
first, and the high-order last. An instruction to move a one-byte value from
address 1289H to register 03H would be written in EZ3 machine language
a5 11038912H. For easier reading, object code usually is printed in groups of
four hexidecimal digits with the H assumed, 50 the instruction would
actually be printed or displayed as 1103 8912.

Take note of two points about MOV. Although it is described as a move
instruction, in fact, it performs a copy. The source of the data is not
changed, but keeps its original value. Most computer languages use “move”
to mean “copy.” Also notice that the direction of the move is from the
second operand to the first operand. This is the usual direction of moves
and other processes in most assembler languages.

The SUB Instruction Look at the SUB instruction. It also names a
register in the first operand and an address in the second. The one-byte
value found at the address will be subtracted from the value found in the
register. The result will be left in the register. The source operand is left
unchanged. SUB will also set or clear the zero status flag to reflect the result
of the subtraction. If the result is zero, the flag is set; otherwise, it is
cleared.

4 .
The JNZ Instruction JNZ has one operand, & two-byte address that
points to the pext instruction to be executed if the zero flag is cleared. If the
zero flag is set, the next instruction executed will be the one following [NZ.
The address in a jump instruction is sometimes cailed the target of the
jump.

The END Instruction END has no operands. When END is executed,
it ends the program and returns control to the operating system. The OS
will immediately display a prompt [A >} and wait for a command to be
entered. : .

14

Loading the Program

When you tell the computer to run a program on the TABLET, the executa-
ble program is loaded into memory beginning at 0100H. {Addresses below
100H are used only by the operating system.) Figure 1.6 shows the contents
of 0100H through OLIFH with a program loaded. Each row in the figure
displays 16 bytes arranged in groups of four hexadecimal digits, or two
bytes per group. The leftmost column shows the beginning address for
eachrow. On the rightis the ASCII interpretation for each of the 16 bytes. If
a byte contains an ASCII code that doesn't represent a printable character,
it is shown as a dot. This is a standard way to display memory in a printout
Or On a screen.

Running the Program

The EZ3 CPU contains an area that holds a copy of the current instruction;
we'll call that area CURRIN. It also includes a special-purpose register
called the instruction pointer (IP} that usually contains the address of the
instruction following the one being executed. When the computer is
through with the instruction in CURRIN, it looks at IP to find the address of
the next instruction. The program-loading procedure ends by setting IP to
0100H, so0 the next instruction executed is the first instruction of the
program. Figure 1.7 shows the contents of IP, the zero status flag, and
register 3 before and after each instruction is executed.

When the program begins, IP points to 0100H; we don't know the
contents of register 3 or the value of the zero flag at this time. The CPU
copies the byte at 0100H to CURRIN. The CPU identifies the copied value
{11H) as an operation code for a four-byte instruction, so it also copies three
operand bytes from 0101H, 01012H, and 0103H into CURRIN. IP is now
changed to point to 0104H, the beginning of the next instruction. Then, the

O108: 1103 148 1203 1581 1304 8114 PPEI A782 cvecevranans

0110: FB82 0000 0201 FFOd N899 00C3 2020 FFFF 0vcvins ou

|

Introduction 15

Beginning Hexadecimal ASCII equivalents
address Display for A dot (.) represents
for row - memory an undisplayable

' characler.

Figure 1.6 A Program in Memory

il
Before aftec |
iero Regintsr CURRIN isre Register l
Elag 3 iP Ingtryction Elag 3 J.IIZ
1
? ? sies 1183 140l 2 [} a104
? | ¥4 2104 1203 13581 [] [}} .ITB
[] [1 ales 1304 @1 a [31 s104
' i
. (%1 o104 12¢3 1501 1 'Y 8108
1 '} 0198 1364 01 1 " s0e
1 1] 0166 14 i e 9925

'
END OF PROGRAM

Figure 1.7 The Program Runs

i

instruction in CURRIN is executed. The byte pointed to by the second
operand {address 014H) is copied to the register specified by the first
operand (03H). Now, register 3 contains the value 2; we still don't know the
value of the zero flag, since it is not affected by a MOV instruction.

MOV is finished. Now, IP provides the address of the next instruction,
0104H. When one instruction follows another sequentially in this way, we
say that program control falls through to the next instruction. In thl‘s case,
control falls through to another four-byte instruction, SUB. The SUB
instruction is copied into CURRIN, and IP is changed to point to OIOBH
Then, the value {01H} found at the address in the second operand {0115H] is
subtracted from register 3, leaving 1in the register. Since SUB's result is not
zero, the zero flag is cleared.

Again, the instruction at the address in IP (0108H) is brought into
CURRIN. This is a three-byte instruction, JNZ, so 1P becomes 010BH.
Execution of the instruction begins by checking the zero flag. The ﬂag is
clear, 30 the next instruction should be the one at 0104H, the address in
JNZ's aperand. This is specified by changing IP to 0104H. When a jump
instruction changes the value in IP so that the next instruction executed is
not the next in memory, we say that control is transferred to the target of
the jump.

. Since IP now points to 0104H, the SUB instruction at that address is
executed again. This time, the resuit of the subtraction is zero, so the zero
flag is set. The JNZ instruction is repeated. Again, IP is set to 010BH before
the instruction is executed. Since the zero flag is set this time, IP is not
changed by the JNZ instruction, and the instruction at 010BH is executed.

{

15

This is a one-byte instruction, so IP becomes 010CH. But, it doesn't
really matter, because 14H is the END. The END instruction sets IP to
0025H, a location that contains an operating-system instruction. The pro-
E‘;Tm has ended, and the operating system is back in control of the TAB-
The 8088, like the EZ3, uses machine-language instructions made up of
operation codes and operands. Mnemonics have been assigned for the
operation codes and are used in writing MASM programs. Addresses are
written in reverse notation in the object code.

The 8088 also uses a special-purpose register called the instruction
pointer (IP) to keep track of the next instruction to be executed. Like the
EZ3, the 8088 begins execution by bringing the byte pointed to by IP into
the CPU and interpreting that byte. Then, the CPU determines how many
more bytes make up the complete instruction. IP is updated to point to the
byte presumed to be the beginning of the next instruction. Then, the
curreat instruction is executed. Control transfers are made by changing the
address in IP.

On the other hand, 8088 programs are not always loaded at 0100H, and
control is not returned to 0025H when the program ends. The process of
transferring control from the operating system to your program and back
again is more complex in the 8088, but you won't need to worry about it. It
will be taken care of automatically when your programs are run. Also,
8088 operation codes and operands vary considerably in length. Again, you
don't really need to worry about this since you do not program directly in
machine language.

Review Questions

lflatch each word or phrase on the left with the most appropriate descrip-
tion from the column on the right. Not all the descriptions are used.

— 1. Operand A. Identifies the next instruction to be

— 2. Operation executed

—_ code B. Specifies data or location to be acted on

—~— 3. Instruction C. An easily remembered substitute for

_ pointer . numeric code

~— 4. Fallthrough D. Specifies action to be taken

— 5. Mnemonic E. Contains a copy of the instruction being -
executed

F. Pass control to the next instruction in
sequence

s

Introduction 17

Answers
LB 2.D 3.A 4.F 5.C{(Risnotused)

MASM and Other Langliages

Object code is the same no matter what language is used for the source code.
However, cbject code is produced differently by assembler languages. Inter-
preted languages (the most common of which is BASIC), and compiled
languages, (which include COBOL, C, many versions of PASCAL}, and ¥
many others. We'll look at some of these differences and then discuss the
major difference between MASM and ASM—the macro facility.

MASM vs. BASIC

The BASIC that comes with DOS is interpreted BASIC. BASIC, in fact, is
the most commonly used interpreted language. An interpreted language
translates one instruction at a time into object code, executing each one as
soon as it is translated. Generally, each source-code instruction produces a
sequence of several object-code instructions. Note that the interpreter does
not produce an object-code program and, therefore, does not provide
anything that can be used to create a run file.

When you issue the command BASIC or BASICA, the BASIC inter-
preter program is loaded into memory and run. Part of this program is an
editor, used to enter or change your BASIC program. When you RUN your
program, it is used as input data to the BASIC interpreter. The interpreter
first reads, and then converts, an instruction to object code if it can. If the
interpreter can't understand the instruction, or can't find all the informa-
tion it needs for conversion, it tells you that there's an error and stops
interpreting. If the instruction is converted to object code, it is carried out
immediately. Control then returns to the interpreter, which begins to
process the next instruction. When the interpreter reaches the end of your
program, it stops interpreting, puts the BASIC prompt {OK) on the screen,
and waits for an instruction. When you end the BASIC session by typing
SYSTEM, control returns to the operating system.

You can see that this is very different from the way MASM programs
are processed. For MASM, as well as other non-interpreted languages, the
source code is checked completely for syntax errors and converted to
abject code before any object code is executed. By execution time, when
the run file is loaded and processed, the assembler or compiler is out of the
picture; it has already done its work.

R

Another major difference between BASIC and MASM is the way that
data fields {called variables in BASIC) are handled. In BASIC, a variable
name is simply used in a program. Integer, sin; e-precxsnon double-preci-
sion, and string variables are identified by the names given to them. Bach
of the three types of numeric variables has a predefined size; a string
variable's size depends on its current value. The BASIC interpreter takes
care of storing variables in memory and keeping track of their addresses.

MASM, like most other computer hnguages requires data defini-
tions. Any name used to refer to a data field in an instruction must be
defined in a special section of the program. Data definitions not only
include the names and sizes of data fields, but also define their placement
within the data storage area. The first field defined in the section starts at
byte OH of the data storage area. If the first field is 10 bytes long, the second
field defined will start at byte OAH of the area. The programmer deter-
mines the layout of the storage area by the way he or she codes the data
definitions. A data definition can also assign an initial value to a field; this
will be the value contained in the memory locations assigned to that field
when the program is loaded.

Assembler vs. Compiler

A compiler shares some of the characteristics of an assembler and some of
an interpreter. Many high-level languages are compiled. The compiler, like
an assembler, translates an entire source-code program into object code,
vhich can then be used with the linker to create a run file. The compiler
.t-.:s not execute the program. Its job is done when the translation is made.

Bach compiler-language source-code instruction, like a BASIC instruc-
tion, is transiated into several object-code instructions. Compiled lan-
guages usually require data definition. Often, the definitions limit what
type of data can be used in the defined fields and how the fields can be
used. A field described as the equivalent of a BASIC string variable, for
example, cannot be used in arithmetic instructions in most compiler lan-
guages or in BASIC. Assembler languages are more flexible, but this
flexibility places more responsibility on the programmer to validate data
usage.

MASM vs. ASM

The major differences between the Small Assembler (ASM} and the Macro
Assembler (MASM] as shown by their names, are the sizes of the
assemblers and the macro capability of MASM. The differences are
related; ASM assembler is smaller primarily because it does not include the

Introduction 19

1

code needed to handle macroes. If you code a program that doesn't Iu.se any
macros, you can assemble it either with ASM or MASM.

What's a Macro Anyway? A macro is a predefined series of instruc-
tions that can be copied into a source-code program by using the macro s
name in place of an operation code. The macro definition usually includes
dummy names that are replaced when the macro is copied. You'll|learn a
lot more about macros, see many examples, and code your own macro
definitions later in this book.

When the MASM assembler encounters a macro name used as an
operation code, it copies the source code from the definition, replacing
dummy names as appropriate. Then, the assembler treats the resulting
source code as if it were coded there in the first place. In effect, this allows
you to code frequently used routines once and use them over and over with
different data fields. You'll really appreciate this facility when you see how
many instructions are required by MASM to perform some simple-sound-
ing functions, such as clearing the screen, positioning the cursor, or rnov-
ing a string of characters from one place to another.

. As you write more and more MASM programs, you will code more and
more macros and use them from program to program. Some of your
programs may eventually consist of long strings of macro calls. In a sense,
this lets you have some of the advantages of a compiler language The
macro name corresponds to a compiler language's mstructlon The
assembler produces several object-code instructions for each macro call,
just as the compiler produces several for each source-code mstruchon The
difference is that with MASM you can determine which macros wdl be
useful, what details are needed in them, when to call a macro, and when to
ignore it in favor of a one-time routine. With a compiler language, you must
use instructions that call routines precoded by the compiler’s dcs:gn'ers In
a well-designed compiler language these may be very efficient, but some-
times you would prefer to code your own variations.

Review Questions

f

Choose the best answer for each of the following questions. i
|
1. How does the MASM assembler know the length of a data field?

A. From the field’s current value

B. From the field's data definition

C. From the data type implied by the field’s name
D. None of the above

Which of these program types is run by executing each instruction as
so0n as it is converted to object code?

Interpreted-language program

Assembler-language program

Machine-language program

Compiler-language program

P aowp

In which type of program does each source-code instruction usually
produce only one object-code instruction?

A. Compiler-language program

B Assembler—lnngunée program

C. Interpreted program

D. BothAandC

What is & macro?

A. A subroutine executed from several places in a BASIC pro-
" gram g
B. A predefined series of assembler-language instructions
C. A utility program that speeds up assembly
Answers
1B 2.A 3.B 4.B

Key Points From Chapter 1

Chapter 1 has covered some general concepts that should help you under-
stand the material in the rest of the book.

Some of the main poinis covered in the chapter are:

@ MASM is a language intended for writing programs on an IBM PC
with at least 96K of memory and operating under DOS 1.1 or later.

Introduction 21

The MASM assembler translates MASM programs into 8088 machine
language. The translated programs are used by the linker 1o produce
executable programs. ’

MASM includes both instructions that are translated into machine
language and pseudo-ops that direct the assembler in its functions,
such as defining data fields and producing the assembler listing.

One of a microcomputer’s major components is the microprocessor,
which contains the CPU where machine-language instructions are
interpreted and carried cut.

The microprocessor also contains the registers, used for high-speed
manipulation of small amounts of data.

The flag register contains a number of one-bit areas called flags. Status
flags record information about the results of instructions, while con-
trol flags control the operation of the computer.

The B088 maintains a special-purpose register, the instruction pointer
{IP}, which always contains the address of the next instruction to be
executed. .

An 8088-based microcomputer may have up to 1024K {1M] bytes of
memory. Each byte has a unique address, ranging from OH at the
bottom of memory to OFFFFFH at the top.

When a program is run, its run file is loaded into memory and control
is transferred to its first instruction.

Each machine-language instruction begins with an operation code,
which tells the CPU what action to perform. It also may include
operands, which identify the data or locations to be acted on by the
instruction.

Control falls through from one instruction to the next unless it is
specifically transferred to an out-of-sequence instruction.

Data fields, which correspond to BASIC variables, must be named
and defined in a specific area of a MASM program.

MASM includes the capability to use macros, [predefined sequences
of instructions) by coding the macro name as an operation code. The
assembler will copy the predefined instructions into the source-code
program wherever the macro name is coded.

The macro capability is the major difference between the Macro
Assembler (MASM) and the Small Assembler {ASM).

This chapter's most important feature is the definition of many terms
that will be used throughout the book. The chapter review questions that
follow will help you to make sure that you understand the most important
of these terms.

Chapter Review Questions

Match each term on the left with the most applicable phrase from the list
on the right. Not all of the phrases will be used.

1

NENEN

LR

NEREN

w o=

10.

12.

13.
— 14,
— 15
— 16.
— 17,

ASM
Assembler
Cleared flag
Contro} flag
CPU

Data
definition
Data field
Fall through

language
Macro
MASM
Object code
Operand
Operation
code
Pseudo-op
Register
Run file
Set flag
Status flag
Target
Transfer
control

- A.
B.

C.

=

ZE2rRa =T Om

o

=0

Flag with value of 1

Predefined series of instructions copxed
into the source code by the assembler
Next instruction executed is the next one
in memory

Language understood by the
microproécssor

Program that translates assembler
language to machine language

Machine language code

Establishes name, size, initial value,and
location of field in data area

Directs assembler functions

Flag that controls computer

Identifies data or location to act on
One-bit area in special register

IBM’s Small Assembler

IBM's Macro Assembler

Next instruction to be executed not in
sequence

Executable program; ready to load and
run

Flag with value of 0

Address to which control is transferred
Register which contains address of next
instruction

Program used to enter source code into
computer

Introduction 23

.1
5.F 16.

T. Area where instructions are interpreted
and carried out i

U. Flag that records information abOut

instruction result \

A small fast-access memory area in the

microprocessor !

Equivalent to BASIC variable

Tells CPU what action to take

Program that converts object code to

program '

=<

<> E

Answers

5T 6G 7.W 8.C 9K 10.R 1LY 12.
] 17.X 18.H 19.V 20.0 21A 22

2

Background
for MASM

Background for MASM 25

In Chapter 1 you learned some basic terms and concepts that apply to most
or all microcomputers. This chapter presents information that is directly
applicable to computers using the B088 microprocessor. By the time you
finish this chapter, you will know how the 8088's instructions use registers,
the units in which the 8088 processes data, how it divides memory into
segments and cxpresses addresses as segment numbers and offsets, and the
names and uses of its 12 registers and four flags. This chapter will also
introduce you to the use of interrupts for HO in the IBM PC. Most of the
things that you learn in this chapter will be used in every MASM program
you write, even the beginning programs in Chapter 3.

The Register Set

The 8088 has 12 registers that are available for program use. Four of them
are general-purpose registers, two are index registers, two are pointer
registers, and four are segment registers. You'll learn about each type,
and indeed each register, after you learn about their general use.

Register Use

Registers are used in several ways in 8088 (and therefore MASM)| instruc-
tions. They can be named as operands. When a register is an operand, the
register contents are the data to be acted on or changed. In this instruction:

MOV AX,S

the first operand refers to the AX register; the instruction copies the value 5
into the register.

Some registers are also used to provide addresses indirectly in oper-
ands. A source-code operand may contain an address, one or two register
names in brackets, or both. The object code will indicate both the address
and the indirect registers. When the instruction is executed, the current
contents of these registers are added to the effective address, or EA. The
EA indicates the actual location of the data. In this instruction:

MOV 100(BX)|S 1], AX

the contents of registers BX and Sl are added to 100 to produce the EA and
the contents of AX are moved to the location pointed to by EA. If the
instruction is part of a loop, the loop may also change the contents of BX or
SI {or both) so that the BA is different each time the instruction is repeated.

Some instructions use specific registers by implication. Many instruc-
tions that cause repetitions, for example, use register CX to control the
number of repetitions. CX is not specified as an operand in the instruction,
but nevertheless it is used and changed when the instruction is executed.

The Size of a Register

Each of the 8088's registers is 16 bits long. You know that a bit is a single
binary digit and can contain a value of zero or one. You also know that a
byte is a string of eight bits and can contain a value between 0H and OFFH.
The value in a byte can be interpreted in the following ways: an unsigned
integer, a signed integer, part of a multibyte number, two BCD digits, or an
ASCII character. {If you don't understand this, see Appendix A.]

The 8088 processes data in units of one or two bytes. A two-byte unitis
a word. The size of a word is not standard as is the size of a byte. Different
processors use different word sizes, but the 8088 uses a two-byte, or 16-bit,
word that can contain values from OH to OFFFFH.

26

Review Questions

1. How many registers does the 8088 provide for program use?
2. Name the four types of registers provided by the 8088.
3. Which of the following statements are true?

A. Aregister may not be named as an operand.

B. Aregister may be used to modify an operand address.

C. The use of a specific register may be implied by an instruc-
tion.

D. The effective address of an operand is computed when the
instruction is assembled.

What is the size of a register (in bits)?

True or False? The 8088, and therefore MASM programs, handle
data only in byte-size units.

6. How long is an 8088 word {in bits}?

Answers
1.12 2. General-purpose, pointer, index, and segment registers 3. Band
C are true. Here's what's wrong with the others: A. A register may be
named as an operand. D. The effective address is computed when the
instruction is executed. 4. 16 bits. 5. False; the 8088, and therefore
MASM programs, can handle data in byte- or word-size units. 6. 16 bits

The General-Purpose Registers

The general-purpose registers, AX, BX, CX, and DX, can each be usedas a
one-word register or as two one-byte registers. The high-order, or most
significant, bytes of these registers are called AH, BH, CH, and DH, and the
low-order, or least significant, bytes are called AL, BL, CL, and DL. In
effect, then, the 8088 has cight one-byte or four one-word general-purpose
registers. Figure 2.1illustrates the general-purpose registers.

" Fgure 2.t TheGeneral-Purpose Registers

- Background for MASM 27

Many MASM instructions can refer eithertoa byte or a word. When a
general-purpose register is an operand in one of these instructions, the

register name determines the data unit. The instruction:

MOV 100[BX], AX

moves one word of data from register AX to the EA {contents of BX + 100,
while this instruction: |

MOV 100(BX], AH 1

moves one byte of data from register AH to the EA. i

MASM assumes that words in memory are stored in reverse orde!r. that
is, with the low-order byte first. When a word is moved from memory to a
register, the byte from the lower address, the EA, goes into the low-order
byte register. The next byte, from EA +1, goes into the high-order Byte
register. When a word is moved in the other direction, the process is
reversed. When the register is displayed, the high-order byte s first. If 1AH
is moved from EA to AL and 37H is moved from EA 4+ 1to AH, AX contains
As shown in Figure 2.1, the AX register is referred to as) the
accumulator; BX, the base register; CX, the count register; and DX, the
data register. To some extent these designations reflect specialized uses of
the registers. These designations are not totally accurate, however! they
are chosen partly to match the register names and partly to reflect the
historical use of similar registers in the 8088's ancestors. In many micro-
processors, for example, all arithmetic results are put into the A register,

(8 bitsiKe bits>
AxX AH AL accunulator
B . BH BL base register :
[CH cL count register ,
DX DH DL data register ‘

28 :) .

which is, therefore, logically called the accumuliior. In the 8088, any
register except a segment register can be used for addition and subtraction,
but AX isinvolved in all multiplication and division. BX is the only general-
purpose register that can be used for indirect addressing; an address in BX
is sometimes called a base address. With looping or repetitive instructions,
CX holds the count of the remaining repetitions. As you learn various
MASM instructions, you will learn about the specific ways in which they

use the general-purpose registers.
Review Questions

How many one-word, general-purpose registers does the 8088 have?
How much data does BL bold? CX? DH?

Which register holds the count for repetitions?

True or false? All arithmetic is done in the accumulator?

Name the word-size register referred to as:

A, Count

. B. Base
C. Accumulator
D. Data

o s W

Answers

1.4 2.1byte or 8 bits; 1 word or 16 bits or 2 bytes; 1 byte or 8 bits 3.C)é
4. False; addition and subtraction can be done in any of the general-
purposeregisters. 5.A.CX B.BX C.AX D.DX

Segments and Offsets

In Chapter 1, you learned that the 8088 can address locations up to
'OFFFFFH, a 20-bit address. The microprocessor itself, however, can only
handle 16 bits, or one word, at & time, How, then, does it manage a 20-bit
address? ~

The 8088 separates an address into two parts: a segment number and an
offset. A segment number represents an address divisible by 16 {10Hk
sometimes called a segment boundary, {IBM documentation, including the
MASM manual, refers to a segment boundary as a paragraph and to a
segment number as a paragraph number or frame number.] An offset

- feet.

Background for MASM 29

represents a number of bytes past a segment number. Figure 2.2 shows a
similar situation in another context: a jogging track with a marker every 10

The runner in the figure is 35 feet from the beginning of the track. His
position could also be described as being five feet past the third marker, 15
feet past the second marker, or 25 feet past the first marker. For conve-
nience, let's use the notation “marker:distance” to describe the runners
position. But, let's make a rule that we never use this form with a distance
of more than 20 feet. We'll call the position relative to the track’s beginning
the actual position.

The position of the runner in Figure 2.2, then, can be described as 3:5 or
2:15. We don't use negative distances, so we can't describe his position as a
distance from marker 4. We don't use distances larger than 20 feet, so we
also can't describe his position as a distance from marker 1. The runner's
actual position is 35 feet. We can compute the actual position from the
marker:distance form by multiplying the marker number by 10 and adding
distance to the result. Each marker can be used to describe positions in a
stretch of up to 20 feet. The marker stretches overlap; that is, marker 1
describes a stretch with actual positions from 10 to 30 feet; marker 2, a
stretch from 20 to 40 feet; and so on. You can see that the area for one
marker overlaps the next by 10 feet. Locations in this 10-foot overlap can be
described by referring to either marker.

Segment and Offset Addresses

A segment boundary occurs at every 16 {10H] bytes in memory. The
segment number is the boundary address divided by 16 (I0H). The offset is
the distance past the segment number. When we write an address in this
form, we use a colon {:} to separate the two parts and we assume that both
address parts are hexadecimal. The actual address is the sum of the seg-
ment number shifted one place to the left {that is, multiplied by 16} and the
offset. Both the segment number and the offset are expressed as four
hexadecimal digits, or 16 bits, and, thus, each can range from 0000H to

S T

35 Fesl
Figure 2.2 Marker-Distance

30 = C Lo

—_—_ - 'y

OFFFFH, 1234:0014, then, represents 12340H + 0014H, or address 12354H.
The same address can be expressed using different segment numbers.
1235:0004H is another way to represent 12354H.

Since an offset can range from OH to OFFFFH, the same segment
number can be used to refer to as many as 65,536 {64K] memory locations.
Therefore, a segment boundary occurs every 16 bytes in memory and can
be used to describe addresses stretching over 64K. This is another way of
saying that segments can overlap, as shown in Figure 2.3.

Now you can see how the 8088 can handle a 20-bit address: it breaks it
up into two 16-bit numbers, the first of which identifies a segment bound-
ary and the second of which identifies a specific byte relative to that

boundary.

The Segment Registers

How does this affect your MASM program? MASM operands usually
specify only the one-word offset portion of an address; the segment
number is taken from a segment register initialized when the program
begins running. The four segment registers, CS, 5, DS, and ES, contain the
segment numbers that mark the boundaries at which are loaded the code,
stack, data, and extra segments respectively {see Figure 2.4). We refer toan
address by its offset within one of these segments. 55:0008, for example,
refexs to byte 8 within the stack segment.

The Code Segment The code segment contains all the instructions for
your program. The first instruction starts at the boundary indicated by the
number in the CS register. The next instruction follows that, and so on.
When you code a control transfer instruction you usually specify the offset
of the target instruction: the segment number comes from the CS register.

140 12344 1248 1240 12350 123654

N 0 I O O O A A ¢
LZMA00 |m. 123420008 1T000C zﬁ:ﬁ” 1250004
&4 K pagment. . :

Figura 2.3 Segments in Memory

Background for MASM 31

Program in Memory

-

1dbits

cs 8 7 b 09008000 — i object code insirucilonsl
code segaent
|13 ¢ A 0 8
s 4 A 3 81—
1
ES A 3 0 |

end of instructions

8AS0 8000 —— o beginning of stack
stack segment
top of stack

"bottom of stack

L2 8A%0 10000————] dats fields
data segaent
extra segnant

shd of data

Figure 2.4 The Segmenl Registers

The Stack Segment As you will see when you begin to write pro-
grams, you will often need to save the current contents of aregister, use the
register with new data, and then restore the originzal contents. A program
can reserve a memory segment for saving register contents as well as othcr
data; the reserved area is called the stack. The SS or stack segment register -
contains the segment number that marks the beginning of the stack. |

The Data Segment The data segment contains the program's data
fields. When an operand refers to a data field it specifies the offset of the
field. The segment number comes from the DS or data segment regnster
You will learn that it is sometimes possible to override this assignment by
:iedc&ymg a different segment register to be used with a particular oper-

The Extra Segment The ES, or extra segment register can be used as
an alternate data segment. As you will learn, some instructions take la
segment number from the BS register for one of their operands and one

from DS for the other. The two registers can, however, contain the same
pumber and therefore refer to the same area of memory. Most of your
programs, in fact, will put the same segment number in both ES and DS.

Segmentation and Flexibility

When the aperating system loads your program for execution, it makes
sure that each of the four segments begins at a segment boundary, an
address divisible by 16. One of the first housekeeping requirements for the
program is to put the correct segment numbers into the segment registers
before executing any instructions that use coffsets from these registers.

Notice that the segment numbers could be different every time your
program runs; the loading operation usually has the flexibility to choose
the most appropriate location. Special programs that are supposed to stay
in memory while other pregrams run usually specify their own segment
addresses at locations which are not likely to be overlaid when new
programs are loaded. Most of your programs, however, will allow segment
numbers to be chosen by the operating system. Programs like this are said
to be relocatable, because the loading process does not have to put them
in a specific location.

Offsets are not affected by the location of the segment boundary Adata

area offset of 100 bytes refers to a location that is 100 bytes past the data

segment boundary, regardless of where that boundary is. An operand's
actual address is computed from the EA and the segment number when the
instruction is executed.

Review Questions

Background for MASM 33

1. What address is represented by 2314:0035? What is the segment
number? What is the offset?

2. Name each of the following program segments:

A. used to save register contents

B. analternate data area

C. the program's main data area

D. theinstructions for your program

3. Name the segment register associated with each of the program
segments from the previous question.

4. True or false? You must specify the address where each segment of
your program is to be loaded.

Answers

1. 23175H [23140H + 0035H]); 2314; 0035 2. A. stack segment B. extra
segment C. data segment D. code segment 3. A.SSB.ESC.DSD.CS 4.
False; you will usually allow the operating system to assign the addresses
for program segments.

Pointer and Index Registers

The pointer and index registers are shown in Figure 2.5. These registers
can be used in many of the same ways as the general-purpose registers, but
the pointer and index registers are often used to contain offsets for fields in
the stack or data area. An instruction that accesses the stack segment gets
the segment number from S5 and the offset from SP, {the stack pointer), or
from BP, [the base pointer}. Similarly, an instruction can access the data
area using the segment number from DS combined with a data area offset
from SI or DI, the source or destination indexes. You can override these
assignments, specifying, for example, a combination such as ES:BP.

S5:10088 |beginning of stack
shack
—=55.0812]top of stack

{146 Bits) segment
—= 55:0028| 72777
2 - le o 1 2| stacw pointer SE19108 bottom of stack
» ® 4 2 8] base polater
1] 6 4 0| source Indea
ol § & 8 8| destimation ingex ———

data and 310088 | baginning of data

T

extra

segueat

end of data

Figure 2.5 Pointer and index Regisiers

32

The Stack and the Stack Pointer

The stack is often compared to a pile of dishes. The dish most recently
placed on the pile is on the top and will be the next one removed from the
pile. The pile grows and shrinks as dishes are added and removed. The
height, or location, of the top varies with the number of dishes currently in
the pile. The first dish was placed at the bottom of the pile and will be the
last one removed.

The bottom of the stack is at the high-address end of the stack segment.
When the program begins, SP contains this maximum offset. An instruc-
tion that places data on the stack reduces SP by two and copies one word to
the new address indicated by 55:5P. We say the word is pushed on the
stack. The reverse operation is called popping data. A word is copied from
the address currently indicated by SS:SP, and SP is then increased by two.
The formerly used offset will now be available for the next word placed on
the stack.

Notice that stack operations always involve a word. The one-byte
registers, AH, AL, BH, BL, and so on, cannot be saved on the stack as such;
the entire one-word register must be pushed. Figure 2.6 illustrates this
process with a 16-byte stack.

You can see that when a program uses a stack, and most of them do, itis
important to maintain SP by the push and pop instructions. Though SP can
be used as an operand in some instructions, you should never change its
contents directly.

The Base Pointer

The Base Pointer, or BP, is one of the registers that can be used in indirect
addressing. Like SP, it is intended to point to locations within the stack. It is
not used by the special stack-accessing instructions, so it'’s not automati-
cally increased or decreased as is SP. BP is especially useful for accessing
items that are in the stack, but not at the top.

The Index Registers

Operations that involve strings require the use of the index registers S and
DI. SI specifies the offset of the source of the data, and DI specifies the
offset of the destination. SI and DI are also used as operands in other
instructions and in indirect addressing.

Background for MASM 35

a) Beginning of progran

'

SP |I g1e 55:00080 (beginning of stack) i
1
55:000F {botton/top of stack)
b) Push data
SPll BOE 5510000 {beginning of stack)
15
SSi080F | 37 |(bottom of stack)
c) Push data
SPpenC 55:0800 {beginning of stack)
[T]
iA
13
S5:0008F | 37 |{boltom of stack)
d) Pop data
SPll BB E 550800 (beginning of stack)
[1]
1A
13
851008F | 37 | (bottom of stack)
«) Push data
SPll ec 880000 (beginning of stack)
§2
83
15
881000F | 37 | {bottam of stack)

Figure 2.6 Using the Stack

Review Questions

1. If registers AX, BX, and CX are copied to the stack in that order,
which register's contents are at the bottom of the stack? At the top?
Pointed to by SF? Which register's contents will be the first removed
from the stack? Then, to which register's contents will SP point?

True or false? BP usually points to the top of the stack.

True or false? Both SI and DI are usually used to access the data
segment.

Answers

1. AX; CX; CX; CX; BX 2. False; SF usually points to the top of the stack.
BP may contain an offset pointing to any area in the stack, or BP can be
used to point to another scgment by specifying a segment register. 3.
True

Status and Control Flags

The 8088 provides six status and three control flags. The nine flags are
arranged in a 16-bit flag register as shown in Pigure 2.7. Remember: status
flags reflect the resuits of operations, while control flags control the opera-
tions. .

Flags are not used as operands in MASM instructions. They are, how-
ever, affected and tested by instructions. Special instructions are used to
set and clear some flags. These instructions don't need to use the flag name
as an operand since it is implied by the instruction. The CLC instruction,
for example, clears the Carry flag, while the CLI instruction clears the
Interrupt Enable flag.

The Trap and Parity flags [TF and PF) have specialized uses that will not
be covered in this book. The other status flags generally are set or cleared
by arithmetic and arithmetic-like instructions {comparison, shift and
rotate, and logical). We'll discuss each of these status flags and, then, the
other two control flags. As you follow this discussion, remember that a flag
is set when its value is 1 and cleared when its value is 0.

Background for MASM 37

orfoe| = []se] /ﬂ i Eiy

0F1 Overtdlon (S5tatus)
DF1 Direction (Control)
IF1 Interrupt Enabls (Control)
TF1 Trap . (Controk)
$F1 Sign {Statuwd
ZF1 Zero . (Status)
AF: Auaitiary Cerry (Staten)
PF1 Parlty tgtatus)
CFt Carry {Status) -

ANMARKED BITS TN THE FLAG REQISTER ARE NOT USED
THEY ALWAYS CONTAIN ZERD

Figure 2.7 The Flag Register

The Carry Flag

The Carry flag {CF) is a status flag that reflects the size of an operation
result. CF is set when the result field cannot hold the result, as when an add
operation produces a carry or a subtraction ends with a borrow. Other-
wise, CF is cleared. There are also specific instructions that set and clear
CF.

CF not only reflects operation results, it is also used in some operations,
If you are adding a two-byte number, for example, any possible carry from
the first byte sum must be included when adding the second set of bytes.
Special arithmetic instructions include CF's value in their operation.

CF can be tested by conditional jump instructions provided for that
purpose. One instruction causes a transfer of control if the carry flag is set;
another causes such a transfer only if CP is cleared.

The Auxiliary Carry Flag

APF, the Auxiliary Carry flag, is similar to CF, except it reflects the status
from the low-order half-byte of an operation. AF is used by instructions
that handle binary-coded decimal arithmetic since BCDs have one digit per
half-byte. There are no special instructions that set, clear, or test AF.

38 R

The Zero Flag

The Zero flag, ZF, isa status flag that is set when the result of an operation is
zero and, cleared when the result is not zero. Notice that this means ZF is 1
when the result is 0, but ZF is 0 when the qsu]t is nonzero. There are no
special instructions to set and clear ZF, but there are conditional jump
instructions that test its value.

~ The Sign Flag

‘The Sign flag, SF, is a status flag that is set when operations produce a
negative result and is cleared when the result is positive. (Remember that 0
is a positive number). In other words, SF always reflects the high-order bit
of the result of an operation; the flag is meaningful only if the operation
involves signed numbers. There are conditional jump instructions that test
SF, but no special instructions to set or clear it.)

The Overflow Flag

The Overflow flag, OF, is a status flag that identifies a result that does not
fit in a signed field. In general, if OF is set, it means that an operation result
overflowed into the sign bit. Like SF, the value of OF is not significant after
operations that do not involve signed numbers. There are jump instruc-
tions that test OF, but no special instructions to set or clear it.

The Interrupt Enable Flag

IF, the Interrupt Enable flag, is a control flag. It is set or cleared by special

instructions. When IF is set, the 8088 recognizes signals from external
devices such as the keyboard and the printer and handles requests for
service from these devices. Such requests are called external interrupts;
the operation of the currently running program must be interrupted to
service the request. When IF is cleared, the B0B8 ignores such requests.
This book does not deal with external interrupts in any detail. The begin-
ning programmer will do better to leave such matters to the operating
system’s preprogrammed routines.

The Direction Flag

The Direction flag, DF, is a control flag that determines the direction of
string operations. When DF is cleared, a string operation starts with the
lowest address and progresses to higher ones; in other words, the leftmost

Background for MASM 39 .

characters are processed first. If the entire string is not used, the characters :
on the far right are the ones that are left out. When DF is set, operations ‘
move in the opposite direction. The characters on the left are skipped if the |

full string is not handled. You will see an example of string operations in
the program in the next chapter.

Saving the Flags

The flag register is usually not accessed as a whole. There are, however,

two instructions that do handle the entire register. These instructions push
and pop the flag register. There is no way to save or restore individual flags

using the stack.

Review Questions

Match each flag name with applicable phrases from the list on the right. E
Some flags will match more than one phrase. Not all phrases are used. -

Some may be used more than once,

— 1. CF A. used only in BCD arithmetic

— 2. AF B. set when result is zero

_ 3. ZF C. controls direction of string

— 4. SF operation

- 5. OF D. cleared when subtraction doesn't

— 6. IF result in borrow

— 7. DF E. set when signed result is too large
F. ends program if result is too large
G. settoallow interrupts
H. set when carry results from addition

I. set when result is negative

Answers
1.D)H 2.AADH 3.B 4.1 5E 6.G 7.C(Fisnotused)

Using System I/O Routines

Input and output can be the most complicated part of assembly language
programming. Bach output device, such as a printer or CRT, is accessed
through a particular location known as its port. A character to be output is

40

written to the port and picked up from there by the output device. An input
device, such as a keyboard, has a similar port where it places a byte of data
to be read by the computer.

Printing a character may require several steps, such as checkmg a

status address to see if the printer is ready to receive output, moving the
character to be output into a register, and sending the contents of the
register to the correct port. To print a string of characters, this process must
be repeated for each one. Input from a keyboard requires similar pro-
cedures. Input and output to disk files can be extremely complicated.
Fortunately, the IBM PC operating systems have I/O routines already
programmed that can be used by the assembler programmer. To use an /O
device, code an interrupt {INT) instruction that transfers control to one of
these preprogrammed roulines. Your program looks at one of the system’s
special purpose memory areas and there finds the address of the pre-
" programmed routine to which it transfers control. These /O addresses in
the reserved area are called interrupt vectors. They are also used to
transfer control {o the proper instructions when an external interrupt
occurs.

BIOS and DOS

The IBM PC uses two operating system programs at once. One of these is
BICS, the Basic Input/Output System. BIOS is built into the computer and
cannot change. The interrupt vectors are part of BIOS. Many of them
transfer control to BIOS routines, which handle such basic operations as
putting one character on the screen, checking to see if the printer is ready
to receive data, and s0 on.

The second operating system is a program that is loaded, usually from
disk, when the computer is turned on. We will assume that you are using
some version of DOS for this purpose, but other operating systems are
available. DOS does not replace BIOS, but supplements it. Some of the
interrupt vectors point to locations that contain DOS I/O routines. These
may be more complex than the BIOS routines, performing functions that
would require several BIOS interrupts. One interrupt in DOS 2.0 (interrupt
21H} has 87 different functions. They include disk file handling and
printer, CRT, and keyboard functions. Some of these are duplicates of
functions available with non-DOS BIOS interrupts.

IBM recommends using the DOS functions rather than BIOS for your

. program’s /O. We will follow this recommendation when possible. How-
ever, there are some things that cannot be handled through DOS, but must
use BIOS routines.

Background for MASM 41

Review Questions

Which of the following are true?

Preprogrammed I/O routines are part of the 8088's instruction set.
An interrupt vector points to a preprogrammed routine.
DOS routines are available for disk /O only.

IBM recommends using DOS rather than BIOS routines when possi-
ble.

Eal o o

Answers
2. and 4. are true. Here's what's wrong with the others: 1. The pre-

programmed 1/O routines are part of the operating system. 3. DOS rou-
tines are available for disk, printer, CRT, and keyboard IYO.

Key Points From Chapter 2

Chapter 2 has presented information that will be used in every program
you write. Some of the main points covered in the chapter are:

B The 8088 has 12 16-bit registers.

B Instructions use registers as operands, for indirect addressing, and by
implication.

B The effective address (EA) for an operand is computed when the
instruction is executed by adding the current contents of the indirect
registers to the original operand address.

B The 5088 processes data in units of one byte (8 bits) or one word (16
bits).

M The general-purpose registers are AX {accumulator), BX {base regis-
ter}, CX [count register], and DX (data register].

M Each general-purpose register can algo be treated as two 8-bit regis-
ters. The high-order byte registers are AH, BH, CH, and DH; the low-
order byte registers are AL, BL, CL, and DL. Instructions can access
cach of the one-byte registers separately.

B A 20-bit address can be represented as a segment number and an
offset, using the form “segment:offset.” To compute an address from
this form, multiply the segment number by 10H and add the offset to
it.

42

A program may contain four segments. The code segment contains
the object-code instructions. The stack segment contains the stack, an
area in which register contents can bé saved. The data segment
contains the data fields for the program. The extra segment is an
alternate data area, but it usually coincides with the data segment.

The segment registers, GS, SS, DS, and ES, contain the segment
numbers of the code, stack, data, and extra segments, respectively.

The pointer registers, SP (stack pointer) and BP {base poixter], point to -

locations within the stack segment unless otherwise specified.

The stack's highest address is the bottom of the stack. The top of the
stack is the location to which the SP (stack-pointer register) currently
points. '

When a word is pushed on the stack, SP is decreased by two and the
word is copied to the resulting stack offset. When a word is popped
from the stack, the word pointed to by SP is copied to the destination,
and SP is then increased by two.

The index registers, SI {source index} and DI (dcstmahon index), point
to locations within the data segment, unless otherwise specified,

BX, BP, SI, and DI are the registers that can be used for indirect
addressing.

The 8088 provides six status and three control flags placed in & 16-bit
flag register.

The Carry, Auxiliary Carry, Sign, Zero, and Overflow flags reflect the
results of an arithmetic or arithmetic-like operation. These include
comparisons, shift and rotate instructions, and logical instructions.
The Carry flag (CF) reflects the size of an operation's result. CF is set

when the result doesn't fit the field provided, as when a carry or
borrow occurs and is cleared when the result does fit.

The Auxiliary Carry flag {AF} is similar to CF, but reflects the status at
the half bryte position of an arithmetic operation. It is meaningful only
in BCD arithmetic. .

The Zero flag (ZF) is set when the result of an operation is 0 and is
cleared when the result is not 0.

The Sign flag (SF) reflects the high-order bit of an operation’s result.
This is in signed arithmetic, where a set SF indicates a
negative result, and a cleared SF, a positive result.

Background for MASM 43 |

The Overflow flag {OF) is meaningful in signed arithmetic, where OF
is set if the result will not fit in the result field and is cleared if the
result does fit.

The Interrupt Enable flag (IF) is set to allow the processor to bandle
requests for service from external devices and is cleared when such
interrupts should be ignored.

The Direction flag {DF) is set to indicate that siring operations are to
proceed from right to left and is cleared to indicate the reverse.

A program can use the interrupt vectors to transfer control to pre-
programmed BIOS and DOS IO routines.

The chapter review questions that follow will help you to make sure

that you understand these points.

Chapter Review Questions

How many registers does the 8088 provide for program use? What
size is each register (in bits}?

Name three ways an instruction may use a register.

True or false? The effective address for an operand is computed by
the assembler.

How long {in bits) is an 8088 word?
Name the 16-bit general-purpose registers.

Name the high-crder byte of the accumulator: The low-order byte of
the count register: The one-word base register: The lugh-order byte
of the data register:

What address is represented by 3017:000A7 by 3015:002A? by
3010:017A7

What does the code segment contain? What register points to the
code segment?

Name two segment registers that often point to the same area.

!

a4

10. A stack segment begins at 1250:0000. Its last byte is at offset 0100H.
SP contains 0052H.

A.

Where is the top of the stack?

B. Where is the bottom of the stack?

C.

What segment number is in $5?

11. The value 3445H is placed on the stack described in the preceding
question. '

A. Where will the first byte |34] go? (Give the offset

within the stack segment.)

B. Where will the second byte {45} go?

C.

What value will SP contain after this operation?

12. To which segment is BP assumed to point? SI? DI?
13. Which of the following are true?

A
B.
C.

F.

G.

ZF is cleared when an operation results in zero.
CF is set when a subtraction requires a borrow.

AF i3 set when an addition produces a carry from the half-
byte position.

SF is set to indicate a zero result from signed arithmetic.
OF is cleared to indicate a positive result from signed arith-
metic.

DF is cleared when string operations are to move from left
to right.

IF i3 cleared to handle interruptions from external devices.

14. How does your program find the addresses of the operation systems
I/O routines?

Background for MASM 45

Answers

1.12; 16 bits 2, as an operand, for indirect addressing; by implication 3.
False; the EA is computed when the program is executed. 4. 16 bits 5.
AX,BX,CX,DX 6.AH;CL;BX;DH 7.3017AH; 3017AH; 3027AH 8.
the program’s object-code instructions; CS 9. DS, ES 10. A.1250:0052 B.
1250:0100 C.1250 11. A. 0050H B. 005iH C. 0050H 12.55;D5; DS 13.
B, C, and F are true. Here's what's wrong with the others: A. ZF is set when
an operation results in zero. D. SF is set to indicate a negative result in
signed arithmetic. E. OF is cleared to indicate that a signed arithmetic
result is not too large. F. IF is cleared to cause external-device interrupts to
be ignored. 14. Through an interrupt vector.

3

Beginning
to Program

This chapter presents a sample program in MASM. You'll examine the
program in detail. First, though, you'll learn the format of MASM source-
code lines. Then, youll learn instructions to define segments and sub-
routines, to end a program, and to define data areas.

As you look at the sample program, youll learn to move data in single
bytes and strings, call and return from subroutines, save and restore
register contents using the stack, and use interrupt routines for screen
displays and keyboard input. You'l also learn to program loops with a
definite number of repetitions. By the time you finish this chapter, you will
know many commonly used MASM instructions, as well as the structure of
MASM's programs and source-code lines, and you will be ready to write
your first program.

Before you begin, you should know that this book is not going to teach
you everything about each MASM instruction. It will explain instructions
as they are used in the programs, sometimes indicating possible variations.
Generally, it will prepare you to use the MASM manual to find out more

“about MASM and its instructions. Chapter 8 d& ls specifically with inter-
pretation of the MASM manual.

Beginning to Program 47

A BASIC Program
and a MASM Program

Figure 3.1 contains a BASIC program that prompts for a name and then
prints a message that includes the name five times. Not a very complicated
program, is it? Figure 3.12, at the end of this chapter, shows a MASM
program that does the same thing. (Just glance at it now; don't try to figure it
out.) You can see that the MASM program is a lot longer and seems more
complex than the BASIC program.

19 [NPUT *WHAT S YOUR NAME® ;#dMAMES

28 FORN~ L TO 3

3@ PRINT “HELLO " :ANAMES
48 NEXT

38 END

Figure 3.1 NAMEX in BASIC

- Computer Exercise

You can test the BASIC program: load BASIC and enter and run the
program from Figure 3.1. If you wish, you can also use an editor or word
processing program to type in the program in Figure 3.12 (NAMEX.ASM).
You will be able to test the program after you learn to assemble, link, and
run MASM programs.

Source-Code Line Format

Before we discuss the format of the whole program, let's look at the
individual lines. Figure 3.2 shows part of the NAMEX program. Line
numbers are provided for this discussion; they are not part of the program.
Three dots represent missing code. Lines 1, 5, and 8, for example, each
indicate one or more omitted lines.

The general format for a source-code line is:

name operation_code operands ;comment

1 cae

2 INBUF 08 233

3 INCOUNT > ;] *

a THNAME pe 253 DUPC” *)

3 - . es

.3 3 -

7 PROG.CODE SEGMENT 'CODE’

8 I

14 PUSH [123 1SAVE DATA ON STACK
L = HOV AX.0 & TO BE USEC FOR RETURN TO
11 PUSH AX [} SYSTEM WHEN PROGRAM ENDS
12 s

13 PRINTLOOP

14

jTHEN RETURN TO OPERATING SYSTEM

13 RET

Figure 3.2 SmCobu:.-Fm

The entr:les must be in the order shown and must be separated by at least
one blank or tab. The line does not have to begin in column 1, but it cannot
go past columan 132, The assembier will ignore anything in columns past
132. In this instruction:

I
MOVER MOVCL, INCOUNT ;SETOUTPUT CONTROL

the name is MOVER, the operation code is MOV, CL and INCOUNT are
the operands, and ;SET OUTPUT CONTROL is & comment. Let's look at
each field in more detail.

The Name Field

Name is usually optional. It may contain up to 31 characters seiected from
uppercase letters, numeric digits, and the five special characters? . @ _
and $. If you enter your program with lowercase letters, the assembler will
convert them to uppercase. This means that ENTRY, entry and EnTry

are all the same name in a MASM program.

A name must start with a letter or special character, not a digit. A period
that is included in a name must be the first character. Notice that a name
eannot include a space, a hyphen, or an internal period. An underscore is
frequently used to make compound names more readable (for example:
PROG__CODE in line 7). Lines 2, 3, 4, 7, and 13 include the names INBUF,
INCOUNT, INNAME, PROG__CODE, and PRINTLOOP, respectively.

The Operation Code

Beginning to Program 49

Later in the chapter, we'll discuss how names are used by the
assembler.

A

‘The operation code, or opcode, is a mnemonic representmg an 8088 opera-
tion code or an assembler-directing pseudo-op. Lines 2, 3, and 7 contain
pseudo-op opcodes {DB and SEGMENT). 8088 mnemonic opcodes include
PUSH in lines 9 and 11, MOV in line 10, and RET in line 15,

The Opet:ands

The requirements for the operand field depend on the opcode. Some
opcodes, such as RET in line 15, require no operands. Some, such as PUSH
in lines 9 and 1, require one operand. Others, such as MOV in line 10,
require two operands separated by a comma.

In the instruction set for our hypothetical machine TABLET, you saw
registers and addresses used as operands. In MASM, there is a third type of
operand called immediate data. Immediate data is a value coded directly
in the instruction. These two instructions both use immediate data as the

" second operand:
MOV AL,0
MOV BH,C’

The Frst instruction moves the value 0 to AL; the second moves 67, the
ASCII code value for C, into BH. The maximum immediate data value is
OFFFFH, the maximum for one word of data.

Pseudo-ops, such as DB or SEGMENT, use the operand field to furnish
additional or optional information used by the assembler in carrying out
the instruction. The operands specified with DB in line 4, for example, tell
the assembler to reserve 255 bytes initialized with blanks.

The Comment Field

The comment field is atways optional. If included, it must begm with a
semicolon (;). Comments, like remarks in a BASIC program, are used to
document the programmer’s intentions. Many comments have been
included in NAMEX. In Figure 3.2, comments appear in lines 9, 10, and 11.
Comments can be very helpful when you return to a program written some
time ago or when someone else reads your program. If you have been
programming in BASIC or any other language, you probably have already
learned the value of good remarks or comments.

0

Source Code and Machine Code

As you know, the assembler translates source code to machine-code
instructions that include operation codes and operands. Names are not
directly transiated into machine code. The assembler assigns a value to
. each name. In most cases, that value is the offset of the instruction that
includes the name in its name field. (Youll iearn an exception when you
learn the BQU pseudo-op in Chapter 6.] When a name occurs as an
operand, the assembler substitutes the assigned value for the name.

Comments are not translated into machine code at all. Neither are
pseudo-ops, although they may affect the machine code. The DB instruc-
tionsin lines 2 and 3 of Figure 3.2, for example, each reserve one byte in the
machine code’s data segment. The first of these bytes is initialized with the
value 255 {OFFH), the highest value that will fit into one byte.

Review Questions

Beginning to Program 51

1. Name the four parts of a source-code line in the order in which they
must appear.

2. True or False? The operand field for an 8088 instruction always
contains two operands.

3. Which of these names are valid?

A. NEWITEM

B. CUSTOMER__NAM
C. 2ND_LINE

D. LINE2

‘4. In this instruction

MOVDI ., 3

What are the operands? What type of operand is the first one? What *

type is the second?

5. What character identifies the beginning of a comment or a comment
line?

Answers

1. Name field, operation code, operand field, comment 2. False; the
operand field may contain zero, one, or two operands. The number of
operands required depends upon the instruction’s opcode. 3. B, D, A is
invalid because it includes a space; C, because it starts with a numeric
digit. 4.DIand 3; register; immediate data 5. A semicolon {;)

The Framework of a Program

The beginning and end of each program segment are defined by pseudo-
ops. The code segment is made up of one or more procedures, and the
beginning and end of each procedure are also defined by pseudo-ops,
Anocther pseudo-op identifies the end of the program. In Figure 3.3, these
pseudo-ops are numbered for the discussion that follows.

| PROG_STACK SEGMENT STACK ’STACK’
0B 64 DUP </STACK)
2 PROG_STACK ENDS

1
3 PROG_DATA SEGMENT ‘DATA

4 PROG_DATA ENDS
]

S PROG_CODE SEGMENT “CODE’
& MAIN_PROG PROC FAR .
ASSUME CS1PROG_CODE .08 1 PROG_DATA , S5 1 PROG_STACK ,ES1PROG_DATA
PUSH DS 1SAE DATA ON STACK
MOV AX,$ ' YO BE USED FOR RETURN TO
PUSH AX ' SYSTEM WHEN PROGRAM ENDS
MV AX,PROG-DATA 1 INITIALIZE DS
MOV D§,AX
MOV ES.AX 0 AND €S
CALL PROMPTER tPRUMPT FOR NAME
RET tTHEN RETURN TO OPERATING SYSTEM

7 MAINLPROG ENDP
8 PROMPTER PROC
% PROMPTER ENOP

18 PROG_CODE ENDS
END MAIN_PROG

Figure 3.3 Program Framework

52

" Identifying Segments

Every program includes a code segment; most programs also include a
stack segment and at least one data segment. The beginning and end of
each segment must be identified by specific instructions.

The Beginning of a Segment The SEGMENT pseudo-op (lines 1, 3,
and 5) identifies the beginning of a segment. Its format is:

segname SEGMENT |[combine-type] [align-type} ['class’]

Brackets indicate an optional entry. Note that the segment name is
required. In NAMEX, the stack, data, and code segments are named
PROG__STACK, PROG__DATA, and PROG__CODE, respectively.

The three optional entries pass instructions to the linker to help deter-
mine where and how the segment is loaded when the program is run.
Combine-type indicates how the segment is combined with segments from
other programs already in the system at run time. A stack segment requires
STACK for its combine-type (line 1). This segment will be combined with
other stack segments, such as the one used by the operating system when
" the run file is loaded. The data and code segments in NAMEX have no
combine-type; they will not be combined with segments from other pro-
grams.

Align-type indicates the type of boundary on which the segment should
begin. If no align-type is given, the segment will be aligned on a paragraph
boundary {an address divisible by 10H). In the programs in this book, all
segments are aligned on paragraph boundaries, so align-type is never
specified.

Class, enclosed in single quotes, identifies a segment type. When a run
file is made up of several object modules, segments of the same class are
grouped together by the linker. NAMEX includes segments of class
STACK, DATA, and CODE. We will not use multiple-module programs in
this book, so we use the class entry primarily for documentation. You may
omit the class entry in your segment definitions if you prefer.

The End of a Segment Bach segment must end with a BNDS pseudo-
op. The format is:

segname .ENDS

Beginning to Program 53

-

The segment name is required; it must match the name in the SEGMENT
instruction that begins the segment. There are no operands for this instruc-
tion. Lines 2, 4, and 10 in Figure 3.3 contain ENDS instructions for
NAMEX's stack, data, and code segments.

Identifying Procedures

A program's code segment is divided into blocks called procedures. Every
program includes at least one procedure. Usually, we code programs with
one main procedure and several secondary ones. Our main procedure is a
driver, a routine that may do very little except to start the program, call
subroutines, and end the program. This driver, then, can provide an
outline of the program. Each of the other procedures is called as a sub-
routine and carries out a specific function. If the procedure’s function is
lengthy or complicated, such as “print a report,” it may in turn call other

. procedures to carry out such subfunctions as “print a heading,” “move data
" toa print line,” or “convert a number to a printable format.” The “print the

report” procedure, then, may be considered a driver for the report-printing
function. Dividing a program into short procedures that perform easily
definable functions makes the program easier to code, debug, and modify.
It also makes it easier to build a new program using procedures copied
from existing programs.

Beginning a Procedure Each procedure must begin with a PROC
pseudo-op instruction, similar to those shown in lines 6 and 8 of Figure 3.3.
The format of the instruction is:

procname PROC [type]

A name is required for every PROC. The procedure type may be NEAR
or FAR; NEAR is the default if no type is specified [see line 8). NEAR
defines a procedure that can be called only from within its own code
segment. FAR defines a procedure that can be called fram other code
segments. The procedure containing the first instructions executed in a
program must be FAR, as in line 6, since it will be called from another
program's code segment. Usually, the other program is DOS. In most
programs ali procedures except the first one are NEAR.

Ending a Procedure Each procedure ends with an ENDP instruction,
as in lines 7 and 9 of Figure 3.3. The format of the instruction is:

procname ENDP

M

The namc must be the same as the one in the PROC pseudo-op that began
the procedure.

Ending the Program

Each program ends with an END pseudo-op (line Ul of Figure 3.3). The
format is:- ‘

END|expression]

where the optional expression gives the program’s starting address, the
location of the first instruction to be executed. This address is passed to the
linker and becomes a permanent part of the run file. Usually, the name of
the main procedure is the starting address in the END instruction.

What About Variations?

Most programs:in this book include three segments defined as they are in
NAMEX. Generally, the code segment is made up of several procedures;
however, it is possible to define a procedure to include several code
‘segments. When you are an experienced MASM programmer, you may
want to refer to the MASM manual to code programs with complex seg-
ment definitions.

Procedures need not be subroutines called from other procedures. You
can transfer control from one procedure to another with no intention of
returning to the original {as with a BASIC GOTO instead of GOSUB). You
can also use procedures to divide your source code into sequential blocks,
letting control fall through from one procedure to the next. In our pro-
grams, however, we always use procedures as subroutines. In fact, we
sometimes use the words interchangeably.

Review Questions

1. Match each opcode with its description. Not all the descriptions are

used.
— A. SEGMENT a. Endsa procedure
— B. ENDS b. Ends aprogram
— C. PROC ¢. Begins a program
—— D. ENDP d. Beginsasegment
— E. END e. Endsasegment
f. Beginsaprocedure ..

' _Beginning to Program 55

2. What is wrong with each of these instructions or combinations of
instructions? How can each be corrected?
A, STACK_ SEG SEGMENT ‘STACK'
B. DATA__SEG SEG
C. SEGMENT ‘CODE
D. MY__DATA SEGMENT DATA’

ENDS
E. MAIN__ PROC PROCFAR

END MAIN__PROC
MAIN_ PROC ENDP

Answers
1.A.dB.eC.fD.aE.b,cisnotused 2.A.A stack segment must indicate

combine-type; insert STACK between SEGMENT and ‘STACK' B. The |

pseudo-op should be SEGMENT, not SEG. C. A segment name is required;
add a name such as MY__CODE before SEGMENT D. The segment name
must be repeated on the ENDS instruction; add MY__DATA before ENDS

E. END must be the last instruction in the program. Move it to the last line

of the program.

Defining Data

Figure 3.4 shows another part of NAMEX with line numbers added. Lines
1, 2, 3, 4, and 5 illustrate the DB (Define Byte) instruction used to reserve
and initialize a data field. Line 6 shows a data field name used as an
operand.

Defining a Data Field

|
|
I
I
|
1
|
!
i

A data field is like a BASIC variable. In fact, it is often referred to as a :

variable in MASM as well. It is an area of memory reserved for data
storage; the area's contents can be changed during program execution.
Each data field must be defined before it is used. The definition tells the
assembler how much memory to reserve and any initial data to put into the
area. It may also assign 4 name to the beginning address of the data field.

IS"»

PROS_STACK .SEGMENT STACK ‘STA.CK'
1 oB 64 DUP (' STACK)
PROB_STACK EMDS

¥
PROG_DATA SEGMENT ‘DATA*
NAMEPROMPT DB 8AH B0H, "WHAT 15 YOUR NAME? * ,24H

LNBUF D8 03

INCOUNT op ?

INNAME D8 233 DUP(1)
PROG_DATA BNMNDS

waw N

é I‘W CL. INCOUNT

Figure 3.4 Data Deflinitions

Several instructions can be used to define data fields. They are all pseudo-
ops; they provide directions to the assembler, but they are not translated
into 8088 instructions. DB is most commonly used. Its format is:

[variable-name] DBexpression

The Data Field Name A name is optional for a data field or variable
definition. When one is provided, the assembler assigns it a value based on
the address {segment number and offset) of the variable's first byte. Look at
line 2 in Figure 3.4. The assembler will assign NAMEPROMPT a value of
DS:0000 {offset O in the data segment).

Look at line 4. For the rest of the program, INCOUNT stands for the
offset in the data segment of the field defined in line 4. In the actual
assembly of NAMEX, that offset was 011FH, or 287. When the assembler
translates line 6 into object code, it uses O11IFH, INCOUNT's ofiset, as the
second operand in the object instruction. When the instruction is executed
at run time, the data to be moved comes from the address represented by
DS:011F. Notice that the assembler uses the value of INCOUNT, which is
its address. At run time, we are more often concerned with the value in
INCOUNT, the data currently found at that address,

Initial Value Compare lines 3 and 4 in Figure 3.4. Bach reserves one
byte. In line 4, the question mark means that no initial value is desired;
INCOUNT S initial value at run time is whatever happens to be there when
the program is loaded. In line 3, the byte at INBUF is initialized with the
value 255, the largest unsigned value that can be contained in one byte.
The initial value could have been written in hexadecimal, as OFFH, or in
binary, as 111111B. All three forms represent the same value and produce
the same effect as far as the computer is concerned. It's up to you to decide
which form you prefer 10 use in the source code.

Beginning to Program 57

-
-

Look at line 2. The DB instruction in this line reserves and initializes 22
bytes. The initial value begins with two single-byte numbers (0AH and
ODH]}, which are followed by a string of 19 ASCII characters and, then, by
another single-byte number {24H|. We intend to use the string that starts at
NAMEPROMPT as a message displayed on the screen. 0AH and 0DH are
cursor control characters: line feed (LF} and carriage return {CR), respec-
tively. 24H is the ASCII representation for *$*. The screen display routine
we use in this program expects this character to mark the displayed string’s
end. For convenience, we may speak of NAMEPROMPT as a 22-byte field.
As an operand, however, NAMEPROMPT refers only to the byte at offset
0000, a byte that initially contains 0AH.

Figure 3.5 shows a portion of the data segment with its initial values.
Values are shown in hexadecimal; the actual values would be binary.
Where appropriate, the ASCII interpretation of the values are also shown.
No value is shown for INCOUNT. The definition does not include an initial
value, so there is no way to tell what value would be there when the
program begins.

NAMEPROMPT
OUTMESS

DS1A080 8ABD 35748 4134|2049 5320 I94F 3552 204E . .WHAT IS YOUR N
DR10010 414D AN3F 2024 MA0D 4845 4CAC 4F2C 2020 AME? *..HELLO,

DSiB119 2020 2020 2028 2020 2020 2028 2028 FF

[INBUF I
INCOUNT

8510008 5374 4143 4029 2020 5334 4143 4B20 2020 STACK STACK
SRs0018 5304 4143 4D20 2029 3334 4143 4820 2020 STACK STACK

S88101F8 3334 4143 1820 20280 3334 A143 4620 2029 STACK STACK

BOTTOM OF STACK
Flgure 3.5 initislized Data and Stack Segmenis

58

Note that line 2 in Figure 3.4 combines two methods of initializing
multiple bytes. When ASCII characters are used in an initial value, they
may be written as a string enclosed in either single or double quotes. Both
ASCII characters and numeric values can also be written as a series of
individual values separated by commas. The number of bytes reserved and
initialized by one DB definition is limited only by the fact that the entire
instruction must fit in a 132-character line. Line 2 could be written like this:

NAMEPROMPT DB OAH,ODH,'WHAT *,’1S*,'YOUR ', "NAME? * , 24H
or like this:
NAMEPROMPT DB 10,13, 'WHAT IS ’, 'YOURNAME? ', '3’

or in many other ways. Initializing with numbers is not quite as flexible as
with ASCII characters. To initialize a field with numbers from I to 10, you

must separate the values:

ONE_TO_TEN DB 1,2,3,4,5,6,7,8,9,10

Duplication In line 5, unlike line 2, 255 does not represent an initial

value. Instead, it represents a number of duplications as indicated by DUP.

The expression in parentheses following DUP is the initial value to be
duplicated. A question mark in the parentheses means that no specific
initial value is required. Line 5, then, reserves 255 bytes of memeory, each
byte initiatized with a blank. When used as an address operand, INNAME
refers to the first of these bytes.

Look at line 1. This instruction repeats an eight-byte initial value 64
times, reserving a total of 512 bytes. Notice that this area is a reserved area
in the stack segment, not the data segment. It's not necessary to put an
initial value in the stack, but later you will see that it can be useful for
debugging. Figure 3.5 shows part of the initialized stack area also. It's
difficult to predict exactly how much stack space a program needs, but 512
bytes is adequate for the programs in this book.

Duplications can be nested if necessary. This definition:

- DATATABLEDB 100 DUP (20 DUP(’ *) ,10 DUP(0))

reserves 3,000 bytes. The first 20 bytes are initialized with blanks and the
next 10 with zeros. This 30-byte pattern is repeated a total of 100 times to
reserve and intialize the entire 3,000 bytes.

Beginning to Program 59

_Other Data Field Definitions

Other data—deﬁnmon pseudo-ops reserve and initialize data in words(DW),

doublewords[{DD), quadruple words{DQ), or groups of ten bytes{DT}. You
will learn about the DW pseudo-op in Chapter 8 of this book.

Review Questions

.1. Which statements are true?
A. The DB pseudo-op can reserve more than one byte of stor-
age.

B. When a data field name is used as an operand, the
assembler replaces the name with the initial value of the
field.

C. The instruction DB 100 D'UP[‘X'] reserves 100 bytes, ini-

1
|
{

tializing the first one with 'X'. No initial value is defined for .

the other 99 bytes.

D. The instruction DB ? rese1ves one byte, but does not define
an initial value for it.

2. Write an instruction to reserve seven bytes of uninitialized storage.
Call the first byte SEVENTH.,

3. Write an instruction to reserve a six-byte field initialized with the
first six letters of the alphabet. Call the field BEGIN.

4. Write an instruction to reserve 150 bytes of storage initialized with
spaces. Assign the name SPACES to the first byte.

5. Define a data field calied EMESS containing the message "ERROR -
TRY AGAIN * to be displayed on a CRT. Be sure that the message will
be displayed at the beginning of a new line. (Don't forget the *$* to
mark the end of the message.)

Answers

1. A and D. Here's what's wrong with the others: B. The assembler
repiaces the name with the data field's offset within the data segment. C,
All 100 bytes are initialized with *X.* 2. SEVENTH DB 7 DUP(?} 3.
BEGIN DB '‘ABCDEF or BEGIN DB "ABCDEF" or BEGIN DB
‘AVECDEF. You could have used several different combinations to
code the initial string. 4. SPACES DB 150 DUP[' '] 5. EMESS
0AH,0DH, ERROR - TRY AGAIN °,24H. You could have coded the num-

&0 _

bers as decimals, or the end-of-text mark as'$’. You could have used double
quotes instead of single. You could have broken the message string up in
various ways.

Other Pseudo-Ops

You have leamed pseudo-ops that define the beginning and ending of
program segments and procedures and the end of the program, as well as
ones that define data fields and constants. The NAMEX program also
includes two other pseudo-ops, PAGE and ASSUME. Figure 3.6 illustrates
how these instructions are used in NAMEX.

The PAGE Pseudo-Op

The PAGE pseudo-op sets the assembler listing’s page length and width. Its
format is: : g

PAGE |l ines)[,width]

Lines must be a number from 10 to 255; it indicates the number of lines
per page for the printer on which the listing will be printed. The default
value is 66. When the assembler produces the listing, it allows appropriate

top and bottom margins within the ines-per-page indicated. In Line 1, we

have allowed the lines-per-page for the NAMEX listing to default to 66.

Width indicates the number of characters per line. This may be a value
between 60 and 132. The default value is 80. In Line 1, we have set the page
width at 132 characters. The assembler listing includes both the generated
object code and the source code for each instruction, so each line may be
considerably longer than the corresponding sourcecode line. Setting the
maximum page prints the listing without broken lines--if your printer can
printal132-character line. Note that the width is preceded by a comma even
though the lines are not shown. If the comma was omitted, the assembler
would give us a page with 132 lines and 80 celumns.

\ PAGE 132

2’ ASSUME C8/PROG_CODE D8 1PROG..DATA, 88 sPROG_STACK . ES 1 PROG_DATA

Figure 3.8 Other Pesude-Ops

Beginning to Program 61

PAGE tells the assembler how to format pages; it does not send any
command to the printer to set its width or change its type-face. Before
printing the listing for NAMEX, we may need to set the printer to use
compressed print, We may also need to use the DO5 command MODE to
set the printer width to 132 characters.

If you don't plan to print an assembler listing, you need not include
PAGE in your source code, since PAGE affects only the assembler listing.
PAGRE has no effect on a listing of your source code file by a DOS command
such as TYPE or PRINT, or by a word-processing or editor instruction.

The ASSUME Pseudo-Op

The ASSUME pseudo-op is required in every program. It must appear
before the first instruction that will generate object code. In Figure 3.6, you
can see that ASSUME (line 2) appears as the first instruction in the code
segment; this is its usual position in our programs. In fact, it could be
moved to precede the first PROC instruction.

ASSUME tells the assembler which segment’s address will be in each
segment register at run time. The assembler needs this information to
generate addresses correctly. You might think that the assembler would
assume that CS should contain the address of the program’s only code
segment along with DS, the data segment, and 58, the stack segment. But it
cannot. [have not seen any fully satisfactory explanation of this require-’
ment, but it is a requirement. You must include an ASSUME statement in
the code segment of every program you write,

The format of the pseudo-op is:

ASSUME seg-reg:seg-name|, seg-reg:seg-name. . .|

where seg-reg may be CS, DS, ES, or $S. In line 2 of Figure 3.6, we tell the
assembler that CS will contain the segment address of PROG__CODE;
both DS and BS, the segment address of PROG__DATA; and §S, the
segment address of PROG__STACK. Note that ASSUME does not place
these addresses into the registers; that will be done at run time. It simply
tells the assembler to generate object code based on the assumption that
these addresses will be in the registers.

62

Review Questions

1. Match words with phrases. More than one description may apply.
Some descriptions may be used more than once; some may not be

used.

— A. PAGE a. Required instruction
__ B. ASSUME b. CS,DS,BS,orsSS
—— C. Segreg c. Optional instruction
—_ D. Lines d. 0through 100
— E. Width e. 10through 255

f. 60through 132

g- default value 80

h. default value 66

2. Write an instruction to format a listing with 55 lines per page and 96

characters per line.

3. Write an instruction to format a listing using the default value for
lines per page and 64 characters per kine.

4. The stack, data, and code segments in a program are named
MY__STACK, MY_ DATA, and MY__CODE respectively. The
extra segment will be the same as the data segment. Write the
ASSUME instruction for the program.

Answers
1.A.cB.aC.bD.e,hE.f, g;disnotused 2.PAGES596 3.PAGE .64
{Did you include the comma?)
4. ASSUME SSMY__ STACK.CSMY__CODE.DS:MY__DATAESMY_DATA
You could have named the registers in another order, such as
ASSUME CSSMY__CODE,SS:MY__STACK.ESMY__DATA DSMY__DATA

The Main Procedure

Now let's look at the real action in NAMEX —those instructions that will be
translated into 8088 object code and carried out when the program is
executed. We'll go through each of the five procedures. I'll explain each
new instruction as we come to it and show you how instructions go
together to make up the routines that carry out the program's functions.

Beginning to Programn 63

Figure 3.7 shows part of NAMEX with the instructions in the main
procedure, or the program driver, numbered for this discussion. The first
part, lines 1through 3, saves information needed to get back to the calling
program {usually DOS}. The next part, lines 4 through 6, puts appropriate
addresses in the data and segment registers. These six lines must be
included at the beginning of every program. The next part of the driver,
lines 7 through 13, calls subroutines to carry out program functions. The
final instruction, in line 14, returns control to the calling program.

Saving the Return Parameters

Now let's go back and look at each part of this procedure. Two words must
be pushed onto the stack at the start of the program. These words contain
information, or parameters, passed by the calling program, Together they
point to the address where instructions can be found to return to that
program. The first word must be the current contents of the DS register;
the second must be a value of zero. When the program ends, the two top
waords on the stack are expected to contain these values. How do you put
them on the stack? By using two PUSH instructions [lines 1 and 3) and one
MOV (line 2). '

The PUSH Instruction PUSH points the stack pointer [SP} to a new

top-of-stack location and then copies a one-word value to that location.
PUSH requires one operand. The format of the instruction is:

PUSH source

PUSH, like any other 8088 instruction, may be preceded by a name or
followed by a comment. We won't show these optional fields in formats.

L PUSH os . 1SAUE DATA ON STACK

2 HOV AX .8 [TO BE USED FOR RETURN TO
3 PUSH AX 1 SYSTEM WHEN PROGRAM ENDS
4 MOV AX , PROG_DATA VINITIALIZE DS

3 HOV 0S,AX

é MOV ES,.AX AND ES

4 CALL PROMPTER IPRG"IPT FOR NAME

8 CALL GETNAME $GET HNAME INPUT

14 CALL HOUENAME SMOVE NAME TO OUTPUT L INE
10 MOV cx,3 . tLOAD COUNTER FOR PRINTLOOP

13} PRINTLOOP

12 CALL PRINTHNAME :PRINT NAME MESSAGE
13 LOOP PRINTLOOP AND REPEAT CX TIMES

;THEN RETURN YO OPERATING SYSTEM

t4q RET

Figure 3.7 The NAMEX Oriver

g

|

Any 16-bit register {AX, BX, CX, DX, 81, DI, BP, SP, CS, DS, ES, or 55}
can be the source of the data to be placed on the stack. An address operand
can also be a source; but, in NAMEX, only register contents are PUSHed.
(lmmediate data cannot be a source for PUSH; that's why it takes two steps
to put the zero on the stack.) Saving register values is the most common use
of PUSH. Later in the program we will run across the POP instruction,
which is the converse of PUSH.

. The MOV Instruction MOV is a two-operand instruction. Its format is:

MOV destination,source

Data is copied from the location named in the second operand to the
location named in the first operand. The source may be any of the three
types of operand that can be used in 8088 instructions: register, address, or
immediate data. The destination may be a register or an address. A few
restrictions apply: data cannot be moved directly from one memory
address to another; immmediate data cannot be moved to any segment
register; and CS cannot be the destination of a move, though it may be the
source. The MOV in line 2 copies immediate data to a register: well discuss
other types of MOVs as we encounter them.

MOY handles either a single byte or a single word. When immediate
data is moved to a register, the size of the move depends on the destination.
In line 2, the destination is a one-word register, 50 even though the
immediate data value (0] can fit in one byte (8 bits] it is extended to 16 bits
by the agsembler. A similar instruction could be used to move a one-byte
value to a one-byte register, as in:

MOV AH, 125
Howévcr. this instruction:
MOV AH , 300

would cause an error; 300 is too large for one byte. The immediate data
value can be expressed in decimal, hexadecimal, or binary, or as an ASCIl
character.

Beginning to Program 65

Each of these instructions generates the same object code:

MOV AH, 36

MOV AH, 24H

MOV AH, 001001008
MOV AH, '$*

It's up to you to code the immediate value in the way that will best remind
you of the instruction's purpose.

The Return Parameters Now let's look at what lines 1 through 3
accomplish. Your program begins running as a FAR procedure. When a
FAR procedure ends, two words are taken from the stack to find the next
instruction address. The first is used as an offset, the second as a segment
number. When your program is called from another program and loaded
into the computer, a special area called the Program Segment Prefix is built
by the system and kept in memory as well. This prefix contains a series of
instructions that restores the conditions needed for the calling program to
resume operation properly. The segment number of the prefix's address is
put into DS. Putting DS and zero onto the stack allows your program to end
by transferring control to the beginning of the Program Segment Prefix.

Why not just put DS on the stack and assume the zero? Because the
instruction that ends a program is the same as that which ends any FAR
procedure. When ending a procedure that's not a program, the offset will
not always be zero. S0, both a segment number and an offset are always
taken from the stack when a FAR procedure ends.

Setting the Segment Registers

The next three lines (4, 5, and 6) load the data and extra segment registers
with the segment portion of the data segment’s address for the current
execution of the program. It's not necessary to load the code or stack
segment registers; these are set properly when the program is loaded. You
must, however, load DS at the beginning of every program. You must also
load ES if your program uses the extra segment. Usually, you will want ES
and DS to contain the same segment number.

MOVing to Segment Registers Inline 4, asegmentnameisusedasa
source for MOV. When you do this, the segment number is the value that's
moved. Thus, line 4 loads AX with the data segment's segment number. In
line 5, the contents of AX are moved to DS, and in line 6, to ES. Why not
save a line of code and just move PROG__DATA directly to DS? Because a

6 _

segment name is considered immediate data. Remember that immediate
data cannot be moved to a segment register. Don't worry about this step too
mauch. Just include it in each program.

Outlining the Program

Lines 7 through 14 control the execution of NAMEX's functions. Each
CALL instruction, like a BASIC GOSUB, transfers controi to another
procedure, which ends by returning control to the instruction following
the CALL. Line 7 CALLs PROMPTER. When PROMPTER ends, it trans-
fers control toline 8. Line 8 CALLs GRTNAME, When GETNAME ends, it
transfers control toline 9, and 50 on. Lines 10 through 13 initialize and carry
out a loop that is repeated five times, so that PRINTNAME is CALLed five
times. Then line 14 ends the program.

CALL and RET As we have said, CALL is equivalent to BASIC's
GOSUB. Its format is: -

CALL target

where target identifies the address to which control is to be transferred. In
its simplest form, as used throughout NAMEX, the target is the name of a
NEAR procedure. The address of the next instruction is copied from IP to
the stack. Then, IP is loaded with the target procedure’s offset so that the
next instruction executed is the first instruction of the target procedure.
This is a direct CALL to a NEAR procedure. Indirect CALLs and CALLs to
FAR procedures are advanced technigues that you will probably not use
until you have much more MASM experience. ’ ,
Look again at Figure 3.12 at the end of the chapter. Now, look at the four
procedures called from the driver, Notice that each one ends with RET.
This is equivalent to BASICs subroutine RETURN. When RET is executed
from a NRAR procedure, the top word from the stack is copied to IP. This
should be the offset placed on the top of the stack by the CALL that started
the procedure. Any other data placed on the stack during the procedure
must be removed so that the return offset will be at the top when RET is
executed. The segment number for the return address is found in CS; a
'NEAR procedure is always called from and returns to the current code
segment. _

RET froma FAR Procedure. ‘The RET that ends the program in line 14 is
a little different from the RETs just discussed, although it looks the same.

Beginning to Program 67

This is a RETumn from a FAR procedure. As you know, it takes two words
for the top of the stack, the words PUSHed in lines 1 and 3. Any other data
PUSHed onto the stack during the course of the program must be removed

‘before this FAR RETum is executed. You can learn more about FAR

RETurns as well as other RET options in the MASM manual. For practical
purposes, however, just remember to use:

RET

to end the execution of every procedure, NEAR or FAR.

A Simple Loop

Lines 10 through 13 constitute a simple loop. The number of repetitions is
controlled by the value in CX. MOV in line 10 and CALL in line 12 are
similar to instructions already discussed. Lines 11 and 13 present new
concepts that we will discuss in more detail below.

Names Used as Labels You have already learned that toth data
definitions and other instructions may be assigned names. A name
assigned to an instruction in the code segment is called a label.
MAIN__PROG, PRINTLOOP, GETNAME, MOVENAME, PRINTNAME,
and PROMPTER are labels in NAMEX. INBUF, INCOUNT, QUTMESS,
and other data names are not labels, but variable names.

Every label has a type, either NEAR or FAR. You have learned how to
specify the type of a label used as a procedure name. Other labels, such as
PRINTLOOP in line 11, are identified as NEAR by a colon (i} following the
label definition. If a label is not a procedure name and is not followed by a
colon, it is a FAR label and can be accessed from external code segments.
When a FAR label is used as an operand, the assembler must include in the
object code information about the code segment to which it belongs. When
a NEAR label is used as an operand, no such information is necessary; the
segment boundary for the operand is assumed to be the one in CS at the
time the instruction is executed. Note in line 13 that the colon is not

_included when the label is used as an operand. Most of the labels you use

will be NBAR labels.
Notice that PRINTLOOP is defined on a line by itself. It could have
been defined as a name of the instruction on line 12, like this:

PRINTLOOP: CALL PRINTNAME

-

We prefer to define labels on separate lines for two reasons: it is easier

to change, add, or remove the instruction following the label, and it is

" easier to line up operation codes on the page for legibility. Data names,
segment names, and procedure names cannot be handled in this way; they
must be included.in the pseudo-op definition of the variable, segment, or
procedure.

Some programmers stress the use of informative names for labels. This
can be overdone. Use good descriptive names for data fields, segments,
and procedures, and possibly for labels in the program driver. If you need

_to code a label within a procedure, you may find it simpler to use some
logical coding scheme such as GET1, GET2, GET3, ...GETN for labelsin a
procedure called GETNAME. Use comments rather than names to docu-
ment the purpose of the instructions. Logically coded rather than descrip-
tive labels are easier to locate when you are changing or debugging a
program. -

The LOOP Instruction LOQP has the format:

LOOP target

where target specifies a label to which control may be transferred. When
LOOP is executed, the value in CXis decremented (decreased by 1). Then,
control transfers to the target if CX does not equal zero. If CX does equal
zero, control falls through to the next instruction. -

Note that CX is always used to control the number of repetitions of the
loop. Also, the instructions within the loop are always executed at least
once, and CX is decremented, before any test of CX is made. This means
that CX must contain a value of 1 or more before the loop begins. If CX
contains 0 or less when the loop begins, it will never reach 0 and an endless
loop will result.

The instructions within the loop should not change the value of CX. If
you need to code a loop that may end before the defined number of
repetitions, you can use one of the variations of LOOP that you will learn in
later chapters. An example would be a loop that aliows you to enter 20
names, but ends if you enter "END” as one of the names.

The target for the LOOP instruction must be NBAR. Furthermore, it
must be within a range of —128 to +127 bytes of the LOOP instruction in
the object code. Many control-transfer instructions require a label within
this range, a short-label, for their target. How can you tell if the desired
target is within the required range? There's no simple way since MASM

Beginning 1o Program 69

instructions vary considerably- in length. If the target is within 20-25
instructions of LOOP, it will probably be a short-label. If it isn’t a short-
label, the assembler will let you know. You can avoid the problem by
employing the following technique used in lines 11 through 13: put the
detailed instructions in a separate procedure so that only the CALL instruc-
tion separates LOOP from its target.

Review Questions

1. The driver for a .program called SAMPLE contains four general
functions. Number the functions in the order in which they should
occur in the driver.

A. Return control to the calling program.

B. Save DSand a value of 0 on the stack.

C. Call the procedures that carry out the program functions.

D. Initialize DS and ES with the segment number for the pro-
gram's data section.

2. Hereare the first six instructions in SAMPLE's driver. What changes,
if any, must be made to these instructions? ({Assume that segment
and data names are correct).

MOV AX,0

PUSH AX

MOV AX , SAMPLE_DATA
MOV AX ES

MOV AX,DS

3. Which MOV instructions are valid for moving inmediate data to a

register?
A. MOVBH, #’
B. MOVCL,S50
C. MOVDH,0100B
D. MOV AH,110H
E. MOV AX,0FFFFH

70

4. Which instructions will affect the stack pointer?

A. CALLNEW_PRO
B. RET

C. PUSHDX

D. MOV AX,25H

E. MOV SP,0200H

5. What does this routine do?

MOV CX,10
DC1L:

CALL DISPLAYER

LOOP DO1

6. Matcheach instruction with the appropnate description. Some of the
descriptions may not be used.

— A MOVXY 8. Return control to the calling procedure.
— B. MOVY)X b. Copy the contents of DX to the top of the
— C. CALLAI stack.

— D. LOOPAIL c. CopydatafromXtoY.

— E. PUSHDX d. Copy the word at the top of the stack to
— F. RET DX.

e. CopydatafromYtoX.

f. Save the instruction address on the stack
and transfer controi ta Al.

8. Subtract 1 from CX; if CX is not zero,
transfer control to Al.

7. Identify the type of each label (NEAR or FAR).

A. HI_TIME MOV AX,5
B. LO__TIME: MOV BX,10
C. EVERY__TIME:

D: PRINTIT PROC

1]

8. Trueor Palse? A shortlabel is a NEAR label that occurs within — 128
to + 127 bytes of the instruction for which it is a target.

Beginning to Program 71

Answers

1.A.4B.1C.3D. 2. PUSH DS must be moved so that it is the first
instruction, not the third one. The operands are in the wrong order in the
fifth and sixth instructions; they should be changed to ES,AX and DS,AX,
respectively. 3. A, B, C, and E. D is invalid becuase 110H is too large a
value for AH, a one-byte register. 4. A, B, C, and E. 5. It causes the
procedure DISPLAYER to be called 10times. 6.A.eB.cC.fD.gE.bF.a;
disnotused 7.A.FARB.NEARC.NEARD.NEAR 8.True

Displaying a PROMPT

Figure 3.8 shows the instructions related to the PROMPTER procedure.
This is the first procedure called by the driver. The purpose of PROMPTER
is to display on the screen the message found in NAMEPROMPT. It uses
DOS interrupt 21H to perform the screen display. We'll discuss the use of
this interrupt, as well as other features of PROMPTER, in more detail.

PUSH and POP

PROMPTER uses DX and AX {in lines 5 and 6). When a called procedure
affects a register’s value, it is usually a good idea to save the original
contents of the register first and restore them before leaving the procedure.
That's because you have relatively few registers with which to work. The
calling and called procedures must use the same registers; the calling
procedure may have put data into these registers and be expecting to use
that data after the called procedure finishes. Looking back at the NAMEX
driver in Figure 3.7, you see that CX is being used to control a loop when
PRINTNAME is called. What if PRINTNAME changed the value in CX?
The loop would not work right if this happened. You may argue that
registers AX and DX are not being used by the driver when PROMPTER is

NAMEPROMPT DB 0AH,8DH, ‘WHAT 15 YOUR MAME? *,24H

-

PROMPTER PROC

PUSH AX
PUSH DX

LEA DX ,NAMEPROMPT
HOV AH, PH

tADDRESS OF PROMPT STRING
$tDISPLAY STRING FUNCTION

INT 21H 1008
POP DX
POP AX

GO NCABWN

RET
PROMPTER ENDP

-

Rgure 3.3 Displaying a Prompt

72

called, so why save them? On general principles. As your programs get
more elaborate, you will call the same procedures from different placesin
your program. You will also want to copy procedures from one program to
another. It's good practice to always preserve the registers.

One exception: sometimes you use a register to return a value from a
procedure. Suppose, for example, that you call a procedure to read a record
from a disk and use DX to indicate if the read was sucessful (set DX to @ if
ok, otherwise put an error code in DX). In this case you want to change DX
so you don't save and restore its original value. Most of the time, though,
you must preserve register values. Many runtime errors are eventually
found to be caused by failure to preserve the registers.

In lines 3 and 4, PUSH is used to save the contents of AX and DX. Lines
8 and 9 use POP to restore the original values to DX and AX. POP is a one-
operand instruction. Like PUSH, its operand may be a memory address,
but more commanly it is a 16-bit register. The operand names the destina-
tion of the data to be taken from the top of the stack. After the data is
moved, SP is changed so that it points to the next item in the stack. Note
that our routine POPs the data in the reverse order of the way it is PUSHed.
Afterlines 3 and 4, the top of the stack contains the original contents of DX.
The POP in line 8 restores these contents and then points to the next item
on the stack, which contains the original contents of AX. Think of PUSH
and POP as left and right parentheses within a expression. You must pair
PUSHes and POPs in a procedure, just as you do the parentheses. The
innermost PUSH and POP are a pair, then, the next innermost, and so on,
until the outermost pair is matched.

Displaying a String

In line 7, we call on interrupt 21H, a DOS interrupt with many functions.
The actual transfer of control to the interrupt address is done with an INT
instruction that simply specifies which interrupt to use. The format is:

INT inum

where inum is the interrupt number. Since the manuals that describe the
interrupts use hexadecimal numbering, we usually write inum in hex-
adecimal; we could use decimal. The assembler would translate INT 33 the
same as INT 21H. The interrupt routine uses certain information from the
registers; that information must be loaded before the interrupt is called. To
use an interrupt, you must know what information it expects, what infor-
matijon it will return, and which registers it uses. Registers that do not

Beginning to Program 73

contain returned information are not changed by the interrupt routine.
You can find detailed information about all the DOS 2iH interrupt func-
tions in the DOS manual. In this book we will describe several of these
functions, as well as several useful BIOS interrupts.

Interrupt 21H requires a number in AH to tell it which function is
desired; function 9 displays a string on the scree.. Line 6 loads AH with the
correct function number. Punction 9 expects the string's starting address to
be in DX. The end of the string must be indicated by *$” {24H). Note {in line
1) that the string being displayed by PROMPTER begins with a line feed
and carriage return followed by the actual message seen on the screen.

The beginning address of the string is moved into DX in_line 5, using
LEA {Load Effective Address). The format of this instruction is:

LEA16-reg,address

The first operand, the destination, may be any 16-bit non-segment 'rggister
{AX,BX,CX, DX, SI, DI, 5P, or BP). The source, the second operand, isany
address operand. In line 9, the address operand is a simple off§el repre-
sented by NAMEPROMPT. LEA's source can also be express..ed in a more
complex way using a base {BX or BP} or an index (Sl or DI} register, or both,
as well as expressions that the assembler can evaluate as offsets or dis-
placements. In later programs, you will see these more complex addresses
and leamn how to code them. The effective address is computed when the
instruction is executed and the offset is then loaded into the specified
register. So, line 5 moves the address of NAMEPROMPT into DX. .
‘Function number and string address are the only parameters required
for the string display function of interrupt 21H. No data is returne_d; the
interrupt routine leaves all registers with their original values. The display
begins at the current cursor position on the screen. The cursor is advanced
so that it follows the last character displayed. ‘

Review Questions

1. A procedure begins with these PUSH instructions: '
PUSH AX
PUSH BX
PUSH CX’

Write the series of instructions needed to restore the registers before
the end of the procedure.

74 IBMPC "~ " b anigea,

2. Adata segment includes this definition:

QUESTIONDB '"WHAT IS THE DATE?S’

A. Write a routine to display QUESTION on the CRT.

B. How many characters (including spaces) will be displayed
on the screen?

Answers

1.POPCX
POP BX
POP AX .
2. A. LEA DX, QUESTION
MOV AH,9H
INT 21H
{The order of the first two instructions could be reversed.)
B. 17)

Handling the Response

The other three procedures in NAMEX read the user's response to the
prompt (GETNAME), move the answer to a location where it can be used
as part of an output message {MOVENAME)|, and then print the output
message on the CRT (PRINTNAME). We will discuss these routines briefly
since you already know many of the instructions involved.

Getting Input from the Keyboard

Figure 3.9 shows GETNAME and some relevant data definitions. GET-
" NAME begins and ends with the usual PUSH and POP instructions to
preserve the registers. Interrupt 21H is called again (line 9. This time,
function 10 (0AH), the buffered keyboard input routine, is used.

Function OAH of interrupt 21H waits for the user to type a string of
characters from the keyboard. The characters are echoed on the screen as
they are typed. [Pressing a key does not automatically produce a character
on the screen unless the input function has been programmed to include an
echo. Interrupt 2IH has several input functions that do not produce an
echo.) With function 0AH, the cursor moveson the screen as the characters
are echoed.

Beginning to Program 75

1 INBUF [o]:] 255

2 [NCOUNT 0B ?

3 INNAME DB 253 DUP(*)

4 GETNAME PROC

3 PUSH AX

é PUSH (929

7 nov AH,0AH :GET STRING FROM KEYBOARD/ECHO
e LEA DX, INBUF 1ADDRESS OF INPUT BUFFER
? INT 2iH tD0S

te . POP OX

13 POP AxX
12 RET

13 GETNAME ENDP

Figure 3.9 Getting Input from the Keyboard

The typed characters are saved in a buffer area within the calling
program. Input ends when <Enter> is pressed. The usual editing keys,
such as < Backspace>> and , can be used. You can see that function
OAH resembles BASIC's INPUT.

Function 0AH requires an input buffer address in DX. In line 8, DX is
loaded with INBUF's address. The first byte of the buffer must specify the
maximum number of input characters, including < Enter >. The buffered
input routine will place the count of characters actually. received in the
second byte of the buffer (INCOUNT). This count does not include
< Enter >; at most, it can be one less than the maximum value in INBUF.
The actual input character area begins in the third byte; we have named
that area INNAME and given it a length of 255 bytes intialized to spaces. If
the user types DONNA <Enter>, INCOUNT will be 5, but six characters
will be saved in the input buffer. The last one will be 0DH, representing
<Enter>. ’

We have aliowed 255 characters to be input—or, more precisely, 254
and < Enter>. This is the maximum number of characters you can specify
for any use of function OAH, simply because 255 is the largest value that
can be contained in the one-byte maximum-character field. Once 254
characters are in the input buffer, any key except < Enter > will produce a
beep and be rejected. We have used this size for compatibility with the
BASIC version of NAMEX; BASIC always allows up to 255 characters with
string INPUT. Normaily, 30 characters is a generous allowance for a name.

We could have defined our input buffer all at once, using only one data
name, like this:

INBUF DB 255,0,2550UP(" ')

76

Then we could have referred to the input count as INBUF +1and the actual
input data as INBUF + 2 through INBUF +256. Note that we allow 255
input characters for a 254 character name; we must include <Enter>,
which is stored in the input buffer as ODH.

Moving Input to Qutput

After the input string is read, it is moved to another area where it will be
part of an output string. This move is accomplished by MOVENAME.
Figure 3.10 shows MOVENAME and the data definitions relevant to its
instructions.

The procedure begins and ends by saving and restoring four registers,
in lines 7 through 10 and 18 through 21. Lines 11, 12, 14, 15, and 16 make up
the routine that sctually moves the data from the input buffer (INNAME)
to the output area (OUTNAME). Why don't we just output the name from
the input buffer? We could, but we want to make it part of a longer message
for output. Liues 13 and 17 are used to move “$* to mark the end of the
output string. Why don't we just put “$" permanently at the end of QUT-
NAME? Because then we would always output the maximum characters
for the name. The technique used in MOVENAME lets us end the output
name at the same length as the input name. We'll look.at each of lines 11
through 17 in detail so you can see how these routines work.

1 OUTHESS ©OR BAH, #DH . ° HELLO,

2 OUTNAME DB 25% DUP(” ‘)

3- INBUF o8 253

4 INCOUNT DB ?

-] INNAME -] 233 DUPC’)

s MOVENAME PROC

7 PUSH CX

8 PUSH BX

9 PUSH Sl

10 PUSH DI

1 MOV CH.OW 1SET COUNT FOR MOVE
12 MOV CL,INCOUNT

13 MOV BX,CX 18X HAS NUMBER OF CHAR
14 LEA 81, INNAHE 1 SOURCE

13 LEA DI ,QUTNAME 1DESTINATION

16 REP MOVSB IMOVE CHAR OX TIMES
17 MOV OUTNAMELBX], 24H INEXT CHAR 15 8

18 POP DI

19 POP &I

20 POP BX

21 POP CX

22 RET

23 MOVENAME ENOP

Fgure 3.10 Maving an input String to Output

Beginning to Program 77

Lines 11 and 12 are used to move the input buffer's character count
{INCOUNT} to CX, which will control the number of characters moved.
Since INCOUNT is defined by DB, the assembler considers it to be a byte-
sized field. A move between memory and a register, or between two
registers, must use the same type of data (byte or word) in both operands.
For this reason, we can move data from INCOUNT to CL, as in line 12, but
not directly to CX. Later in the routine, however, we will need to have CX
set to the value in INCOUNT. Line 11 clears the high-order byte of CX by
moving zero into it. The total effect of lines 11 and 12 is the same as if we
moved one word containing INCOUNT's value to CX. In line 13, we move
data from one register to another; you will see later that we need to have
INCOUNT's value in BX as well asin CX. '

Lines 14 and 15 load the offsets for INNAME and OUTNAME into SI
and Dl respectively, where they are needed for line 16, Line 16 contains two
instructions, REP and MOVSB. We'll consider MOVSB first. MOV3SB
{MOVe String Bytes) is the string move instruction that-is most often
used. Two things happen when MOVSB is executed. First, one byte of dala
is moved from the address pointed to by DI to the address pointed to by SI.
In string operations such as MOVSB, DI always points to an address in the
extra segment. That is why it is usually convenient to have the extra
segment boundary be the same as the data segment boundary, so the same
fields can be addressed in either segment. The address pointed to by SI, like
most other data addresses, is assumed to be within the data segment. You
will learn ways to override this assumption. However, DI in a string
operation must always point to an offset in the extra segment; no override
is allowed.

The second thing that happens when MOVSB is executed is that both SI
and DI are changed. If the direction flag is cleared, both are incremented
(increased by 1). If DF is set, both are decremented. We assume in NAMEX
that DF is cleared, since that is its usual status when the system is turned
on. [Later you will learn to set or clear DF so that you can be sure of its
status every time your program is run.}

Well, then, one byte of data is moved from the address pointed to by SI
to the address pointed to by DI, and S and DI are then incremented. That's
all that MOVSB does. Then the other part of line 16, REP, comes into
operaticn. REP [REPeat) is a prefix that can be used only with string
operations such as MOVSB. Like LOOP, REP decrements CX. Then, if CX
is 0, control falls through to the next instruction. If CX is not 0, both
MOVSB and REP are repeated. In effect, this means that when CX is
initialized to n, n bytes will be moved from MOVSB's souzce to its destina-
tion, where SI and DI point to the initial addresses of the source and
destination. If a 30-byte name was input by GETNAME, INNAME through
INNAME + 29 will be moved to OUTNAME through OUTNAME +29.

Notice that when this routine ends, CX contains 0. BX, however, still
contains the original value from INCOUNT because we put it there in line
13, In line 17, a one-byte immediate value is moved to the EA which is
computed at run time as the surn of OUTNAME's offset and the value in
BX. If INCOUNT is 30, line 17 will move "$* to OUTNAME + 30, the byte
following the last byte of the name. This is a one-byte move because
QUTNAME is defined by DB; the size of an immediate-to-memory move is
decided by the type (byte or word) of the destination.

Displaying Another Message

After the name has been input and moved to an output area, NAMEX calls
the PRINTNAME procedure five times. Figure 3.11 shows PRINTNAME
and its relevant data fields. The string display function of interrupt 21H is
used again to display the message. You should be able to follow this entire
procedure without any problems. Take special note of the following point:
the output display begins with OUTMESS (see line 7}, but does not end
there. The display continues displaying each byte in the data segment until
it reaches the *$” following the name in OUTNAME.

The Whole Program

We have gone over every part of NAMEX. Now, you should have no
trouble following the whole program as shown in Figure 3.12. You might be
.curious about one thing: why aren't the procedures arranged in the order in
which they are called? They could be; in fact, many programmers would
arrange them that way. (This can be difficult to follow if a procedure is
called from several places in the same program.) Other programmers place
the most important procedures first, followed by subordinate procedures
called from within the major anes. I have found when reading long pro-

|} OUTHESS D8 SAH,BDH. "HELLOD, ~°
2 OUTNAME Dé 233 DLPC” 7))
3 PRINTNAME PROC

4 PUSH aAXx
3 PUSH DX
6 MOV AHLPH 1DISPLAY STRING FUNCTION
? LEA DX, QUTHESS 1ADDRESS OF STRING
8 INT 21K sD0s
? POP DX
19 POP AX
11 RET

12 PRINTHAME ENDP

Figure 3.11 Displaying the Namo Message

Beginning to Program 79

PAGE
PROG_STACK
PROG_STACK

H
PROG_DATA
NAMEPROMPT

OUTHMESS
DUTNAME
INBUF
INCOUNT
TNNAME

PROG._DATA
1

PROG.CODE SEGMENT “CODE~

MAINL_PROG PROC

FAR

.132
SEGMENT STACK *STACK”
;] 44 DUP (/STACK ‘)
ENDS
SEGMENT " DATA" ’
ve BAH,BDH, “WHAT 1S YOUR NAME? *,23H
o8 BAH, ODH. *HELLD, -
0B 255 DUP(’)
] 255
DB ?
1] 255 puP(” ‘)
ENDS

ASSUME CS3iPROG_CODE.DS:PROG_DATA, $8: PROG_STACK, ES: PROG. DATA

PUSH
MOV AX .8
PUSH AX
MOV AL PROG_DATA
MOV DS.AX
i V) ES.AX
CALL PROMPTER
CAtL GETNAME
CALL MOVENAME
MoV Cx.3
PRINTLOOP:
CALL FPRINTNAME
LaoP PRINYLOOP
RET)
MAIN_PROS ENDP
3
GETNAME PRODC
PUSH Ax
PUSH DX
MoV AH, BAH
LEA DX, INBUF
INT ZIH
POP . ox
POP AX
RET
GETMNAME ENDP
MOVEMNAME PROC
PUSH [
PUSH 8x
PUSH Si
PUSH DI
HOV CH,8H
MOV CL, INCOUNT
Moy BX . CX
LEA S1, INNAME
LEA D1 . OUTNAME
REP MOVSHE
MoV DUTNAMEL BX1 ,24H
rOP D1
POP -1
POop BX
POP cx
RET

MOVENAME EMDP
L

;SAVE DATA OMN STACK

H T0 BE USED FOR RETURN TO
¥ SYSTEH WHEN PROGRAM ENDS
iINITIALLIZE DS

H AND ES

;PROMPT FOR NAME

1GET NAME INPUT

MOVE NAME TO OUTPUT LINE
iLOAD COUNTER FOR PRINTLOOP

tPRINT NAME MESSAGE
H AND REPEAT CX TIMES
tTHEN RETURN TO OPERATING SYSTEM

1GET STRING FROM KEYBOARD/ECHD
1ADDRESS QF INPUT BUFFER
1DOS

1SET COUNT FOR MOVE

1BX HAS NUMBER OF CHAR
1SOURCE

iIDESTINATION

JMOVE CHAR CX TIMES
INEXT CHAR IS 8

PRINTNAME PROC

PUSH AX
PUSH [
HOV AH PH DISPLAY STRING FUNCTION
LEA DX, OUTHESS FADDRESS OF STRING
INT 21H 1008
POP 0x
POP AX
RET
PRINTNAME ENDP
1
PROMPTER PROC
PUSH AX
PUSH ox)
LEA 0X ,HAMEPROHPT 1ADDRESS OF PROMPT STRING
MOV AH, M 1DISPLAY STRING FI.NCTIW
INT 21 . 1008
PoP DX
POP ax
RET

PROMPTER ENDP

]
PROG_CODE ENDS
END MAIN.PROG

grams that it is easier to locate the procedures if they are simply arranged
alphabetically. So, I make a practice of arranging all my programs that
way. You may arrange your code segmcnt any way you want as long as you
begin with the driver.

Review QQuestions

1, Which of the following apply to the operation of function OAH of
interrupt 21H?

A. A string of characters typed at the keyboard are saved in a
buffer arca defined within the program.

Characters are echoed on the screen as typed.

The end of the input text is marked by typing "$".

The screen cursor moves as characters are typed.

The number of characters that can be input is determined
by the size of the defined buffer arca.

The input routine puts the actual number of characters
typed (not including the end-of-text character] into the sec-
ond byte of the input buffer.

G. The end-of-text character is not saved in the input buffer.

= U 0w

=

Beginning to Program 81

2. Lookat this program routine:

MOV CX, 10
LEASI FIRST.
LEA DI, SECOND
REP MOVSB
A. What does this routine do?
B. Which is executed first, REP or MOVSB?
C. What happens the first time that MOVSB is executed?
D. What happens the first time that REP is executed?

Answers

1. A, B, Dand F; Here's what's wrong with the others: C. The last character
typed must be <Enter>. E. The maximum input size is specified in the
first byte of the buffer area. G. The end-of-text character is included in the
input buffer. 2. A. Moves FIRST through FIRST +9 to SECOND through
SECOND+9. B. MOVSB C. One byte is moved from FIRST to SECOND;
then, SI and DI are both increased by 1. D. CX is decreased to 9; then,
MOVSH and REP are repeated.

Key Points From Chapter 3

In this chapter you have examined a sample program in detail. You have
learned about the structure of a MASM program, how to code source code
lines, how to define segments and procedures and end the program, and
one way to define data fields. You have learned some of the most com-
monly used instructions and 1/O routines. Some of the main points pre-
sented in this chapter were:

B The general format for a source code line allows up to four entries.
The possible entries are name, operation code, operand field, and
comments in that order. Entries must be separated by at least one
blank or tab character. A line does not have to begin in column 1, but it
cannot go past column 132,

B A pame is from 1 to 31 characters long. It can contain uppercase
letters, digits, and any of these five special characters: ?. @ - §. It
cannot start with a digit. If a period is included, it must be the first

82

character. Names are required for some pseudo-ops, such as SEG-
MENT, ENDS, PROC, and ENDP. Otherwise, a name is optional for
any instruction.

The assembler assigns 2 name a value based on the offset of the
instruction that defines the name. Operand references to the name are
replaced by that offset.

A variable-name is a data field name. A label is a name defined by an
instruction in the code segment. A label may be coded as the only
entry in a source-code line.

Labels are of type NEAR or FAR. FAR labels may be referenced frorm
external code segments. NEAR labels may be referenced only from
the same code segment. A labeil used as a procedure name has a type
defined by the PROC instruction. NEAR is the default. Other labels
are identified as NEAR if they are followed by a colon when defined;
otherwise they are FAR. .

Comments are identified by an initial semi-colon. They are always
optional. A comment may be the only entry in a source-code line.

Operation codes, or opcodes, are 8088 mnemonics or MASM pseudo-
ops.

The operand field requirements depend on the opcode. When more
than one operand is required they are separated by commas.

The SEGMENT pseudo-op defines the beginning of a segment. Ia its
simplest form it consists of a segment name followed by SEGMENT.
A stack segment definition must also include the combine-type
STACK. If desired, a class name may be included in single quotes for
each SEGMENT pseudo-op.

The ENDS pseudo-op must end a segment. 1t consists of the segment
pame followed by ENDS.

A procedure is a block of code. Usually, a code segment contains a
main procedure, or driver, and several other procedures that function
as subroutines called from the driver or from each other.

The beginning of a procedure is defined by a PROC pseudo-op. A
name is required, followed by PROC. If the procedure will be called
from an external code segment, PROC must be followed by FAR. The
first procedure executed in any program must be defined as FAR. All
others are usually NEAR.

Beginning to Program 83

The ENDP pseudo-op must end a procedure. It consists of the pro-
cedure name followed by ENDP.

The END pseudo-op must be the last source-code instructiu:. in the
program. It consists of END, optionally followed by the address of the
first instruction to be executed in the program. This is usually the
name of the main procedure.

Data fields can be defined using DB. A variable-name can be assigned
to a DB instruction. The initial value may be defined, or left undefined
by coding a question mark in the operand field. Multiple bytes can be
defined by initial values separated by commas or by a character
string. Multiple bytes can also be defined by including a duplication
factor in the operand, like this:

nDUP ex”

where n specifies the number of duplications of the initial values in
ex. Duplication factors can be nested.

The PAGE pseudo-op sets the assembler listing's page length and
width.

The ASSUME pseudo-op tells the assembler which segments’
addresses will be in the segment registers at run time.

To communicate properly with the calling program, each program
must begin by putting two words of data on the stack. The first word
contains the contents of DS, the second a value of 0. The program
must end with a RET instruction, which will use the two words at the
top of the stack to find the address to which control should be trans-
ferred. Any other data put on the stack during the program must be
removed before the program ends.

The second step in each program must be to put the data segment’s
address into DS. Usually this address is also put into ES.

PUSH r1 copies the contents of a 16-bit register [r1) to the top of the
stack. POP rl copies the word at the top of the stack to a 16-bit
register [r1). Both PUSH and POP use SP to find the current top of the
stack and adjust SP to point to the new top.

CALL p1 transfers control to the beginning of procedure pl. RET
ends the execution of a procedure by transferring control to an
address found at the top of the stack. The return address is placed on

1%

the top of the stack by CALL. Any data placed on the stack during
execution of a procedure must be removed before RET so that the
correct return address will be found by RET.

MOV x.y copies data from y [source) to x {destination). The source
may be a register, address, or immediate data operand. The destina-
tion may be a register or address operand. Data cannot be moved
directly from one address to another, an immediate data value cannot
be moved to any segment register, and CS cannot be the destination
for any move.

MOV can be used to move one byte or ane word of data. When the
source is immediate data, the destination determines the size of the
move. In other cases, the source and destination must be the same size
(byte or word). .

LOOP short-label is used to repeat a routine a preset number of
times. The number of desired repetitions must be loaded into CX.
When LOOP is executed, CX is decremented. If CX has become zero,
control falls through to the next instruction. Otherwise, control is
transferred to the location identified by short-label. Short1abel must
be a NEAR label within ~ 12816 + 127 bytes of the LOOP instruction.

LEA r1,x loads the effective address computed from x into the 16-bit
register r1. R1 cannot represent a segment register.

INT inum calls the specified interrupt routine.

Interrupt 21H calls a DOS routine for V0. A function sumber must be
loaded into AH before interrupt 21H is called.

Function 9 of int 21H is used to display a character string on the
screen. The beginning address of the string must be loaded into DX
before the interrupt is called. The end of the string must be marked by
"$" (24H). The string will be displayed starting at the current cursor

* position. The cursor will be moved by the display and will end in the

position following the last character displayed. The end-of-text mark,
$. is not part of the display.
Function 0AH (10) of int 21H is used to get buffered keyboard input

. ended by <Enter >, The input is echoed on the screen and the cursor

position is updated as the characters are echoed. DX must be loaded
with the address of a buffer area before the interrupt is called. The
first byte of the buffer must be initialized with the maximum inpat-
string size. The number must include the end-of-text character

Beginning to Program 85

<Enter>. The second byte of the buffer will be set by the input

routine to the actual number of characters input. This count will not
include < Enter>. The characters entered will be stored in the buffer
beginning at the third byte. <Enter> will be stored as 0ODH.

MOVSB copies one byte from the address pointed to by Si to the
address pointed to by DI. DI always points to an offset in the extra
segment. After the move, both SI and DI are changed to point to the -
next byte to be moved. The direction of the change depends on the

Direction Flag.
REP is a prefix used with MOVSB that is executed after MOVSB. REP

causes CX to be decremented. If CX is still not zero MOVSB is

repeated; when CX becomes zero control falls through to the nenxt
instruction. .

Chapter Review Questions

Name the parts of this source code line:

STARTLOOP: MOV AX .0 ; INITIALIZE AXFOR TOTAL

A. STARTLOOP:

B. MOV

C. AX.0

D. ;INITIALIZE AX FOR :I‘OTAL
Which of these names are valid?

A. MOV6TO7

B. BEGIN__LOOP

C. 3MORE

D. CUSTOMER.NAME

Match the name being defined with the phrase from the right that
best describes it. Phrases may be used more than once.

lS‘%

———— A. NOT_IF LEA a. FARIlabel

DI,OUTNAME b. . NEAR label

B. OUTNAME DB ¢. variable-name

25DUP(’ '}

. C. MAYBE:LEASI,

INNAME

D. PRINT__ PROG

PROCFAR

——— E. DISPLAY PROC,

4. Which of these are true?

A. A source-code line can contain a label as its only entry.
B. A source-code line can contain a comment as its only entry.

C. Asource-code line can contam an operation code as its only
entry.

D. Any source-code line that contains an operation code must
contain two operands in the operand field.
Write the simplest possible instructions to begin and end a data
segment called THE__ DATA.

Write the simplest possible instructions to begin and end a stack
segment called MORE__ STACK.

A code segment called CODE__SEG contains a main procedure
called BEGINNING and one other procedure called PRINTIT. Write
instructions in the proper order to define the beginning and ending of
the segment, procedures, and program.

Define data fields as described.

A. An uninitialized one-byte field named OUTCOUNT.

B. Twenty-five uninitialized bytes named MAJOR.

C. Three hundred bytes called SAVIT initialized with spaces.
b

Ten bytes named DIGITS initialized with the hexadecimal
digits from OAH to OPH.

Beginning to Program 87

10.

11.

e D. PUSHAX

—

—— B. MOV AX,

. C. LEA

— E

E. Anoutput message named QUTMESS. The message should

' begin with line feed and carriage return and end with the

correct end-of-text character. The message text is “WEL-
'COME TO THE TERMINAL".

Write an instructioﬁ to set the assembler listing’s page length and
width to 50 lines and 92 characters, respectively.

A program’s segments are NEW__CODE, NEW__STACK, and
NEW__DATA {for the code, stack, and data segments, respectively}.

A. Write the ASSUME instruction for the program, usmg
NEW__DATA for the extra segment also.

B. Write the first six instructions [not pseudo ops] for
NEW__CODE.

Match each of these instructions with the best description of its
purpose. Some descriptions are not used.

A. MOV AX0 a. Copies AX to the top of stack
Copies zero to AX

Copies offset of DFIELD to AX
Copies top of stack to AX
Copies AX to DFIELD

Copies DFIELD to AX

DFIELD

AX,DFIELD

- e a0 o

POP AX

12. Match each type of control transfer with the most suitable instruc-

tion. Not all the instructions are used.

—— A. Transfertoapro- a. LOOP
cedure b. MOVSB
B. Go to address ¢, CALL
found at top of 4 gREp
c frmckf t e RO
__— C. Transfer to sys-
tem /O routine f. INT
—_ D. Repeataseriesof
- instructions
E. Repeat a string -

operation

l%

14.

15.

16.

3

A program displays the message "WHAT IS THE DATE?". Code the
data description and instructions necessary to display this message
on a new line on the screen. .

A program reads a date typed from the keyboard. The date has a

maximum of eight characters. Code the necessary input fields and
I/O routine [using buffered input). '

Code a routine to move an eight-byte field from INDATE to PRINT-
DATE.

Code a routine to call a procedure called BLANKER 24 times.

Answers

L. A. name B. operation code or opcode C. operands D.comment 2. Aand
B; Cis invalid because it starts with a digit; D is invalid because it includes
aninternal peried. 3.A.aB.cC.bD.aB.b 4.A,B,and C.Disfalse;an
instruction may have zero, one, or two operands dependmg on the opcode.

5.

6.

7.

THE__DATA SEGMENT
THE__DATA ENDS
MORE__STACK SEGMENT STACK
MORE__STACK ENDS

CODE__SEG SEGMENT
BEGINNING PROCFAR
BEGINNING ENDP
PRINTIT _ PROC
PRINTIT ENDP
CODE__SEG ENDS
- END BEGINNING

PRINTIT PROC
PRINTIT ENDP
CODE__SEG END$S

END BEGINNING

Note that BEGINNING is optional in the END instruction.
A.OUTCOUNTDB?

B. MAJOR DB 25 DUP{}

C.SAVIT DB 300 DUP|" *} “

Beginning to Program 89

10.

11.
12.
13.

14.

D. DIGITS DB CAH,0BH,0CH,00H,0EH,0FH or
DIGITS DB 10,11,12,13,14,15

E. OUTMESS DB 0AH,0DH,'WELCOME TO THE TERMI
NAL’,24H

PAGE 50,92 _
A. ASSUMEB CS:NEW__CODE,SS:NEW'_STACK,DS:

‘NEW_DATA ES:NEW__DATA

B. PUSH DS
MOV AX,0
PUSH AX
MOV AX NEW__DATA
MOV DS,AX
MOV ES AX
A.bB.fC.cD.aE. d; eis notused
A.cB.eC.fD.aE.d; bis not used]
MESSAGE DB 0AH,0DH,"WHAT IS THE DATE?$"
MOV AH,9
MESSAGELEA
MESSAGEDX,MESSAGE
MESSAGEINT 21H

You could have coded the “$° as a separate entry; you probably used a
different name for the data field. The MOV and LEA instructions
could be in reverse order. You could have coded the function
number as 9H.

INBUF DB8
INCOUNT DB?

INDATE DB8DUP()
MOV AH,0AH
LEA DX,INBUF
INT 21H

0

Many variations are possible. You could, for example, have coded
the buffer in one instruction, like this:

INBUFDB10DUP™ 7"

and initialized the first byte as part of the routine, like this:

MOV INBUF .8

You could have coded the function number as 10.

15. MOV cX,8
LEA - SLINDATE
LERA DIPRINTDATE
REP MOVSB

Not too many possible variatiox;;s for this routine. You must use CX, SI, and
DI as shown. The MOV and two LEA instructions could be in a different
order; they must all precede REP MOVSB.

16. MOV CX 24
LOOPER:
CALL BLANKER
LOOP LOOPER

You probably used a different label where we used LOOPER. Did you
remember the colon? You could have coded the label on the same line as
the CALL instruction; but you must have loaded CX before the beginning
of the loop.

Computer Exercise

Now it's your turn to try some programming. Write a program that will ask
first for a name, then for an eight-character telephone number. Display the
two fields (name and number) on one line. (HINT: Put the number in the
first eight positions followed by several spaces; then the name followed by
“$“.} Repeat the entire process three times. Call the program PHONER.
You'll assemble and run this program in the next chapter, and then modify
it in later chapters, so save your source code. If you need some help, our
version of PHONER is on the next page.

Beginning to Program 91

PAGE
i
PROG_STACK
PROG.STACK

i

PROG_DATA
NAMEPROMPT
PHONEPROMPT
OUTL [NE
OUTPHONE
QUTSPACE

INBUF
INCOUNT
INDATA
PROG..DATA

]
PROG_CODE
HA [N_PROG

MATNLOOP ¢

MAIN_PROG

,132 JTHIS 1S PHONE NUMBER
PROGRAM FOR CHAPTER 3

SEGMENT STACK *STACK”

DB 44 DUP (* STACK ‘3

ENDS

SEGHMENT ‘' DATA*

DB GAH,BDH, "NAME: “,29H

[} 6AH,80MH, "PHONE NUMBER: “,24H

DB BAH,8DH

0] 8 burcr)

D8 3 DUPC” ‘)

2] 31 bupi’)

08 3

o8B 2

08 3t DUPLY ‘)

ENDS

SEGMENT ‘CODE”
PROC FAR

ASSUME CS:PROG_CODE,DS:PROG..DATA, SS1PROG_STACK ,ES:PROG-DATA
[5-]

PUSH

OV Lot

PUSH AX

MO AX, PROG_DATA
MOV DS AX

HOV ES.ax

"o Cx,3

CAaLL PROMPTHAME
CaLL GETNAME
CAaLL HOVENAME
caLt PROMPTPHONE
CALL GETPHONE
Call MOVEPHONE
calL PRINTL[NE
LOOF Ma INLOOP
RET

enpP
PROC

PUSH X

PUSH DX

MOV AH.0AH
LEA DX, INBUF
rOv INBUF .31
INT 21K

POP ox

POP A

RET

ENDP

PROC

PUSH AX

PUSH DX

HOV AH ,9AH
LEA. DX, INBUF
HoY INBUF , ¥
INT n

POP ox

PP ax

RET

BoP

PROC

PugH O

PUSH

PUBH I

1SWE DATA ON STACK

H TO BE USED FOR RETURN TO
] SYSTEM WHEN PROGRAM ENDS
1INITIALIZE BS

1 AND ES

iPROMPT FOR tAME

TOET NAME INPUT

HOVE NAME TO OUTPUT LINE
sPROMPT FOR PHONE

tGET PHONE INPUT

IMOVE PHONE TO OUTPUT LINE
sOISPLAY LINE

1 AND REPEAT PROCESS

$THEN RETURN TO OPERATING SYSTEM

sTHIS PROCEDURE GETS NAME
i INPUT FROM KEYBOARD

JOET STRING FROM KEYBOARD/ECHOD
sADDRESS OF INPUT BUFFER

sMAX NAME 15 38 CHaR

1008

1THIS PROCEDURE GETS
t PHONE NUMBER FROM KEYBOARD

tGET STRING FROM KEYBOARD/ECHO
1ADDRESS OF INPUT BUFFER

$SET INPUT S12E FOR PHONE

100S

1THIS PROCEDURE MOVES NAME
3 TO OUTPUT AaND ENDS
3 QUTPUT STRING WITH

92

L]
PRINTLINE

PRINTLINE
]
PROMPTNAHE

PROMPTNAME

PROMPT PHONE

Hov CL, INCOUNT
HOV B, CX

LEA 81,INDATA
LEA DI, OUTHAME
REP MOS8

nov OUTNAMELEDC) , 24H
POP i3]

POP 81

POP ax

PO® [= 9

RET

eNoP

PROC

PUSH X

PUSH o

PUSH 8

PUSH ol

now CH,8H

MOy CcL.8

LEA S1,INDATA
LEA DI, QUTPHOMNE
REP MOVSB

POP ol

POP 1]

POP Bx

POP o

RET

ENOP

PROC

PUSH AX

PUSH bXx

MOV AH, PR

LEA DX, OUTLINE
INT 218

POP [0

POP AN

RET

ENDP

PROC

PUSH AX

PUSH ox

LEA DX ,NAMEPROMPT
HoU . AH,

INY 21M

P,OP DX

PoP 3

RET

ENDP

PROC

Push AX

PUSH px

LEA 0X , PHONEPROMPT
v AH, PH

1INt 21k

roP bx

roP AX

RET

BNor

ENDS

END HAIN_PROG

4SET COUNT FOR MOVE

1BOURCE
SDESTINATION

IMOVE CHAR ©X TIMES
INIXT CHAR I8

ITHIS PROCEDURE MOVES PHONE

T 1 NUMBER TO OUTPUT LINE

$8ET COUNT FOR HOVE

3 PHOME ALWAYS 8 CHAR
1S0URCE

sDEBTINAT 10N

IMOVE CHAR @ TIMES

1THIS PROCEDURE DISPLAYS
v THE OUTPUT LINE

IDIBPLAY STRING FUNCTION
JAOORESS OF STAING
1008

1THIS PROCEDURE PROMPTS THE
3 USER FOR A NaME

1ADDRESS OF PROMPT STRINO

10ISPLAY STRING FUNCTION
008

1THIS PROCEDURE PROMPTE THE
| USER FOR A PHOME NUMBER

IADDRESS OF PROMPT STRING
1DISPLAY STRING FUNCTION
1008

Assemble,

Link, and Run

Now that you have written a program, it's time to assemble, lmk and run it.
This chapter will teach you the simplest methods of performing these three
steps. When you have finished the chapter, you will be able to assemble
any MASM program, to link a simple single module program, and to run a
pregram with or without the DPEBUG utility.

Getting a Disk Ready

Before you begin to work on line with MASM, you should create a disk
holding the programs you need. The disk that came with MASM has a great
many files that you will not need to use the programs in this book. On the
other hand, if you include some DOS programs on thc.dmk, you won't need
to swap disks all the time. On a single-sided drive, using DOS 2.0, I found
the following procedure useful:

B format the disk as a system disk, which will include COM-
MAND.COM and the hidden system files

" B from the DOS disks, copy DEBUG.COM, EDLIN.COM, LINK.EXE,
and MODE.COM

M from the MASM disk, copy MASM.EXE

The disk will be almost full at this point.] used EDLIN because it is
small and convenient for making minor corrections to a source file after an

assembly; my word processing program wouldn't fit on this disk. You may -

have some other small editor or word processor that you prefer to use. 1
include MODE because assembler listings are best printed at 132 charac-
* ters per line, and you can' print them that way without using MODE. You
may also need to send a character to the printer to change its setting. I have
a very small program written in MASM that does just that, so itis also on
my disk. I used the disk space that was left for PRINT.COM because I
prefer PRINT to TYPE. When | converted to double-sided disk drives, 1
was able to combine all of this with my word-processing program. My
MASM programs, source code, object code, run files, and listings, are all
kept on a second disk. You can set up your disks any way that suits you;
this is just a way that I have found convenient. If you are working with a
fixed disk, of course, you will not need to worry about creating a working
disk for MASM.

Assembling a Program
The Macro Assembler uses up to four files when assemhling a program:
B the source code file

the object code file
the assembler listing file

a cross-reference information file

The first file, the source code file, is required for any assembly. This file
provides the input to the assembler. The other three files are output files
created by the assembler; they are always optional. You may not want to
produce an object-code file, for example, when you are using the

assembler to find errors. Error messages from MASM are displayed on the’

screen as well as printed in the listing; you may not want to produce a
listing until these errors have been corrected. The cross-reference informa-
tion file is used as input to another program, CREF, to produce a cross-
reference listing. This cross-reference listing lists.every variable in the
program and the line numbers where the variable occurs. The line num-
bers are those from the assembler listing, not the source code. We will not
use CREF in this book, so we will never create a cross-reference file.

You must tell the assembler the filenames to be used. You don't need to
specify the extensions. The source file is assumed to have an extension of.

Assemble, Link, and Run 95

.ASM, the object file {.OB]), the listing file {.LST), and the cross-reference
file {.CRF). When you tell the assembler to assemble NAMEX, it will look
for NAMEX .ASM to use for the source-code file.

" The assembler assumes that the object- and source-code filenames will
match [except for the extension). If you are assembling NAMEX ASM, an
object-code file named NAMEX. OB} is produced unless you specify other-
wise. If you don't want an object-code file, tell the assembler that the object
code’s filename is NUL or NUL.OBJ. Any file named NUL is nonexistent.

- Running the Assembler

To start the assembler and tell it which files to use you must first be sure
that the disk with MASM is in drive A, unless you have a fixed disk. Your
program will probably be on another disk that can go in drive B. We make
B the default drive so that MASM will look for its input and place its output
on B. We also set a search path, PATH A: \ ;B:\ ;, so that the system will
look on A and B to find commands and run files. That way we can use
MASM on drive A and our programs on B without specifying drivenames.

The simplest way tostart the assembler is to enter the command MASM
jor ASM if you want to use the small assembler). The assembler will then
ask for the filenames it needs; it shows you the default extensions or
filenames for each file as it asks. To use the default name for an output file,
just press < Enter>. The default names for the listing and cross-reference
files are NUL.LST and NUL.CRF, respectively. A NUL file does not exist,
so neither of these files will be produced unless you specify another name
for one or both of them. To specify another name for an output file, type the
name. You will be wise, however, not to specify any extension; let the
system supply the default extensions. To send the listing directly to the
printer, give it a filename of LPTL: or PRN:.

In Figure 4.1, we type the command MASM and the assembler responds
with a two-line message. Then it asks for the source filename. We respond
NAMEX, letting MASM add the default extension, .ASM. Next we are

BHASH
The 104 Personal Conputer MACRD Assembler
Version 1.0 (C)Copyright 184 Corp 1981

Source filename [.ASHIT NAMEX
Dbject €iloname [NAMEX.0DJY:
Sourca listimg IMUL.LST):
Cross reterence [MURL.CRFIt

Warning Severs
Errors €rrecs
]]

»
Flgure 4.9 A Sample Assembly Session

asked for an object filename. The default, NAMEX.OB], is shown in
brackets. Since we want the default, we just press <Enter>. We also
choose the defaults shown for the listing and cross-reference files. MASM
assembles the program, creating the object file, and displays a final mes-
sage showing the count of warnings and severe errors found.

A Quicker Way

A quicker way to provide the necessary information is to type the file-
names as part of the MASM command. Separate the names by commas.
Dan't use extensions. If you don't type a name, but still provide the
separating comma that follows it, you will get an output file with the

source-code name and default extension. Notice that for the listing and .

cross-reference file thisis not the same as with the long form. There, if you
omit a name, you get a NUL file. This command, for example, will assem-
ble NAMEX.ASM with object file NAMEX.OBJ, listing file NAMEX,LST,
and cross-reference file NAMEX.CRF: ' -

MASM NAMEX , , ,

If you want to enter only one, two, or three filenames and let the rest be
the long form defaults ([NUL for listing and cross reference) put a semicolon
after the last one you enter; then you don't need any 'more commas. If you
forget the semicolon, the assembler will prompt you for any missing
filenames. To assemble NAMEX.ASM producing (by default) object file
NAMEX.OBJ and no listing or cross-reference, you can simply type:

MASM B : NAMEX ;

To assemble NAMEX.ASM with no object file or cross-reference file,
but with a listing file called SAVE.LST, you can type:

- MASHN B: NAMEX ,NUL, SAVE;

To assemble NAMEX.ASM with object file NAMEX.OBJ and listing file
NAMEX_.LST but 00 cross-reference file, you can type:

MASM B : NAMEX , , ;

Assembie, Link, and Run 97

Note the difference between:

MASM B : NAMEX, , ,

which creates object, listing, and cross-reference files called NAMEX.OB]J,
NAMEX.LST, and NAMEX.CRF, and:

MASM B : NAMEX ;

which creates only the object file. Remember that a file named NUL ext is
not created and that a file named LPT1: or PRN: will be sent directly to the
printer. '

Assembler Errors

As the assembler processes your program, it displays on the screen any
syntax errors that it identifies. It displays the line where the error was
found and a numeric error code. If you are using the Macre Assembler, an
error message will also be displayed. If you are producing a listing, the
error code and message will be included on the line following the error, If
you are using the Small Assembler, only the numeric code will be dis-
played and listed, not the error message.

Appendix A of the MASM manual contains a complete list of error
messages, error codes, and possible reasons for the errors. The reasons
given are not always the real reasons for your errors, however. According
to the manual the reason for a code 9 error, for example, is that “a symbol is
used that has no definition.” You may think you have provided a definition,
but closer examination shows that you spelled a name differently in a data
definition than when you used it in an operand. Or, an error in the data
definition instruction itself may have caused the assembler to be unable to
recognize the name when it is used later. Or, a typing error made the first
character a semicolon, which caused the entire data definition to be inter-
preted as a comment. The error messages and reasons simply provide
guidelines to the probable error causes. You must examine the actual
program closely to track down all the problems.

Figure 4.2 shows a sample of errors displayed when an early version of
NAMEX was assembled. Both errors shown had the same type of cause:
INBUF and INCOUNT were not recognized because as operands, they
were not spelled the same, as they were when the fields were defined. The

BIMASH NAHES ;
The 18M Persoaal Computsr MACRO Asiembler
Version LM (C)Coprright 1 Corp 1983

oiz2 8D 14 s000 U LEA DX , KNI JADDRESS
OF INPUT BUFFER :

Errar --- ?:Symbol not deflasd

4831 8A GE IR L MOV CL, INCOUNT

Erroe --~ ?:Symbol aot defined

. Warning Severs
Errors Errors
L]

ar

Figure 4.2 An Assembly with Erors

sample was printed by turning on the sirnultaneous print option [Ctrl-P and
Ctrl-PrtSc both turn on simultaneous print). For the first few assemblies of
a program, when many error messages may appear, you will find it helpful
to print the error messages in this way.
: Use your text editor or word processing program to find and correct
errors; then run the assembler again. Repeat the process until all the Syntax
errors are out of the program. Then, you will be ready to go to the next step,
linking the program. If you didn't get an assembler listing, however, you
should assemble the program once more to get a listing to use in debugging.

Review Questions

1. What source code file will be assembled by this command;
MASM MYPROG;

How many output files will be produced? What will the name(s) of
the output file(s) be?

2. Write the single command needed to assemble a source file called
NEWPROG.ASM, producing an object code file called NEW-
PROG.OBJ, a listing file called NEWPROG LST, and no cross-refer-
ence file. :

3. Write the single command needed to assemble a source file called
XYZ.ASM, producing a listing on the printer but no other output.

Answers

1. MYPROG .ASM; 1 output file; MYPROG.OB]J (object) 2. MASM NEW-
PROG,.; 3.MASM XYZNUL,PRN: or MASM XYZ NUL,LPTI:

Assemble, Link, and Run 99

Computer Exercise

Assemble NAMEX.ASM. When you assemble the program, produce an
object file named NAMEX.OBJ and a printed listing. Save the listing; you
will need it later in the chapter. Correct any errors; keep trying until you
get no emmors.

Linking a Program

As you know, the linker creates an executable file, called a run file, from
one or more object modules. The object modules may have been produced
by an assembler, a compiler, or both. The linker can be used to combine
assembled subroutines with compiled object modules. When you buy a
compiler, you often also receive an object-module library with routines
produced either by the compiler or by an assembler. After you compile a
program, use the linker to combine these library routines with your com-
piled object module. Even a one-module program, however, like NAMEX,
must be linked, since the linker puts information needed to load and run
the program into the run file.

The Simplest Link

To link your program, you must have available both LINK.COM and the
object module produced by MASM. The simplest way to start the linker is
by typing LINK. LINK will prompt you for four file names. The files are:

M the input object-code file, with the default extension .OB]J. Several
object files may be named and combined into one run file, but pro-
grams in this book contain only one object module.

"M the output run file, with extension .EXE. If you specify another

extension, the linker ignores it and uses .EXE as the extension. The
default run-filename is the object-code file's name. The run file is your
program, ready to run.

@ the output list [or map} file, with default extension .MAP. The list file
can be sent directly to a printer by using the name LPT1: or PRN:. If
you don't specify a list file, none is created. The linker list file shows
offsets of the segments within the run file. This can be useful for
debugging programs that contain several object modules.

B one or more input library files, with extension .LIB. If no library file is
specified, none wiil be used. Library files are used with programs
writlen in compiler languages. They are supplied with the compiler
and contain routines used by the compiled programs. No libraries are
needed with MASM programs.

Figure 4.3 shows a sample link session, linking NAMEX by this method
and producing a run file but no listing.

A Faster Link

The necessary filenames can be included on the LINK command line.

- Commas and semicolons serve the same function as in the MASM com-
mand line. If a comma but no name is included for the list file, a list file will
be produced with the same name as the object module and extension MAP.
The command:

L I NK NAMEX ;

has the same effect as the longer version shown in Figure 4.3. It uses
NAMEX.OBJ for input and produces NAMEX.EXE as output. No library
files are used and no listing is produced. The command:

L INK NAMEX ,NUL ,LPT1: ;

also uses NAMEX_.OB] for input and no libraries. It does not produce a run
file, but it does print a map.

You will seldom see any errors in a simple link except from mistyped
file names. Linker error messages and their meanings can be found in the
MESSAGES section of the DOS manual.

lnghI

il Persomal Computer Linker ’

Version 2.10 (C)Copyright IBM Corp 1781,)982, 178
Object Nodules [.00J): NAMEX

Rua File [NAMEX.DXE]¢

List File [NUL.MAPY)

Libraries [,LIDN

.}

Figurs 4.3 A Sample Link Session

Assemble, Link, and Run 101

Review Questions

1. What outpul files will be generated by this command?

L INK NEWPROG ;

2. Write a single command to link an object file called SUMMER.OB],
creating a run file called SUMMER.EXE and a listing on the printer.
No libraries are necessary.

Answers
1. A run file named NEWPRCG.EXE 2. LINK SUMMER, LPT1:;

Running the Program

Once the program is linked, you can run it by simply typing the filename as
though it were a DOS command. Don't include the extension. To run
NAMEX.EXE, just type:

NAMEX

Computer Exercise

Link the NAMEX.OB] module you created in the preceding exercise and
create a printed listing. Compare the map in the listing with the final page
of the assembler listing. Observe that with a simple one-module program
the linker listing does not really provide any new information.

Run the resuiting program. If the program doesn't run correctly, go
back over the source code and make sure there are no typing errors.

Running Under DEBUG

Often the first execution of a program doesn't provide any clues to what
went wrong. It's quite common for the cursor to disappear and nothing else
to happen. The only way out is to reboot the system. In such circum-
stances, as well as many other times, you will find it very helpful to run
your program using the DEBUG utility provided with DOS.

102

You can find a description of DEBUG in the DOS manual. It is weil
worth your time to learn this or a similar utility and to explore a few
assembler programs. Teaching you DEBUG is outside the scope of this
book, but we will run through a sample session illustrating some com-
monly used commands and pointing out some items of interest. Keep your
assembly listing of NAMEX at hand for reference.

To run NAMEX under DEBUG, enter the command:

DEBUG NAMEX.EXE.

Notice that you do need the file extension. DEBUG will load and will load
NAMEX_EXE also. Then it will prompt you for a command. The DEBUG
prompt is a dash |[-).

Unassembly The U command “unassembles” object code, translating
it back into assembly language instructions. Bach U unassembles about 15
instructions, displaying the address, object code, and assembler-language
code for each instruction on the screen. When a program is first loaded, U
will unassemble the first 15 instructions in the code segment. A second U
will unassemble the next 15, and so on. I you don't want to start at the
beginning and go on consecutively, you can name an instruction where
unassembly should begin; just specify the offset. You must know the
offset, however. You can't just give a number in the likely range. Disassem-
bly must start at the beginning of an instruction, not somewhers in the
middle of one. Qur assembly listing tells us that the GETNAME procedure
starts at 001E. U 00IE would disassemble the first 15 instructions from
GETNAME; another U (without an offset] would take up at the 16th
instruction of GETNAME.

Figure 4.4 shows the CRT display for two U commands starting at the
beginning of NAMEX's code segment. The far Jeft of each line shows the
segment number and offset for each instruction. If you DEBUG NAMEX,
your segment numbers will probably be different, but the offsets should be
the same.

Let's compare these first 30 instructions with the assembly listing.
Notice that none of the pseudo-ops are included in the unassembly,
Remember that these are not part of the object code. Allthe numbers in the
DEBUG display are hexadecimal, shown with two digits for a one-byte
field and four for a one-word field. All the variable names have been
replaced by offsets, of course, since DEBUG would not find names in the
object code. When DEBUG displays an address operand it always encloses
it in brackets to distinguish it from an immediate data operand. You see
several of these in Figure 4.4 and you will sec more examples in other
displays in this sample session. Look at offset 001D in Figure 4 4. There is

Assemble, Link, and Run

103

SAAE10000 1E PUSH OS
SAAEINNS BEINRE noy AX, 8048
PAAE: 0004 30 PUSH AX

SAAE 19903 BEEINA MOV AX, 8403
MAE1000 BEDS "oy DS, AX -
SARE18084 BECE oV £5,AX
AL 1RO EBATS CAaLL "
MAEIS00F E00CH ALl #ME
SARE:1 8012 ES1 440 CALL W28
MAAL18013 BPOSNR nov o, 0003
SAAE 8918 ESISNN CALL 804D -
SAAE:IN18 EXFB Loge eeig
SAAE: 8810 CB RETF

SAAEINNIE 50 PUSH AX
SAAEIIIIF 32 PUSH DX

-

BARE1 0820 B4A “ov PN TY
SAAL:10022 BD14IENT LEA ox,(01 1ED
WAEI 8924 [021 INT 21
MRE14028 %A ror &
BAAE:10029 38 POP Ax

BAAE 1R824 (3 RET

SAAE0028 5) PUSH DX
SAAE1832C 53 PUSH BX
SAAE:IN20 54 PuUSH SI
BAAEISRZE 57 PUSH DI

BAAE 1R02F B340 o CH, 08
SFAEINIT] BAREIFRL MoV PINTIT S
SAAE 18833 3809 MOV &, 0
WAL 10037 B0IE2081 LEA s1,(n2)
SAAE 10030 EDIEIFND LEA D1,{084F}
MAE 1N F3 REP?

SAAE 10948 A4 HoUse

Figure 4.4 Unassembly

an instruction (RETF) that was not in NAMEX: NAMEX has RET. The
instruction was assembled as a far return, so DEBUG unassembles it as
RETF. You will see other examples where the output from DEBUG is
slightly different from the input to MASM. If you have your assembly
listing, this won't matter. The main reason for using U is to find the offsets
of instructions so you can use them with other commands. When you can
identify these offsets from the assembly listing, you don't need to unassem-
ble the code. '

Go Let's execute the part of the program that sets up the return address
and segment registers 50 that we can see where our segments will begin.
The G command, used with a specified offset, executes the program up to
{but not including) the instruction at that offset. Specifying an offset where
execution should stop is called setting a breakpoint. Again, you must
specify an offset that is the beginning of an instruction. Both the assembly
listing and Figure 4.4 tell us that the location we are interested in is offset
000C, 30 we enter G 000C. Figure 4.5 shows the result.

When you enter a G command, the program runs from its current
instruction to the specified breakpoint. In this example, it starts at the

AN

beginning and goes to 000C. Then, DEBUG displays the current contents
of the registers, including IP, and the current status of the flags. It then
shows the address, chject ende, and unassembled eode for the seut et opn.
; T U B e o e e g
a4 addedress uperand, the current vadus ot that sddress is dispiayed ou the
right.

Look at the display in Figure 4.5. We can see the segment numbers iy,
DS, KS, 85, and CS. T+ neve iz A IR NS agavea e
The value of AXis OAB, v idci, .« ., oo o, ‘ '
instruction at 0005. SP tells usthat the wiyg:..”4, 0
segment; we'll use that information a Little 1aiar. 2vur Pprogras st used
the other registers yet, so their values are meaningless to us. The two-letter
codes following IP indicate the status of OF, DF, IF, SF, ZF, AF, PF,and CF
in that order. You can find the meanings of the codes in the DOS manual's

DEBUG chapter under the Register command; we're not going to use the
flags in this sample session.)

-~

Display Before we continue executing NAMEX, let's look at the stack
and data segments. You know that we start using the stack at the bottom, or
end, and the assembly listing tells us that the end is offset 0200 of the
segment. Let's look at the last 32 bytes, starting at O1E0. The command D,
with an address, displays eight rows of 16 bytes each, with the beginning
address for each row on the left and the ASCH translation on the right.
Figure 4.6 shows the result of entering the command D $S:01E0.
Remember that SP currently points to 01FC—that's the fourth byte from
the right in the second row. We find two bytes, or one word, of zeros at that
spot. Remember the zero pushed on the stack for the return address offset?
Following that, at the bottom of the stack, we find 9E and 0A; this should be
the return address segment number pushed from D5 at the beginning of the
program. Remember that words are written with the low-order byte first,

Let's also look at the beginning of the data segment. Figure 4.7 shows
the result of D DS:0000 and then another D without an address. The
unaddressed D takes up where the last display left off: in this case, at
DS5:0080. The data segment does not contain much of interest at this point;
we’l]lookbackatitaliulehtainthep '

-4 o8C

AX=0ART DX=IES Oi=049¢ Dmeegs SP=4IFC BPegats S1sa88 Ol1sgee
OE=SADS E5=8A2Y SI=0AD7 COANE [Pegier N UF DI PL N2 NA PO NC
SAAE 0L EBATES oL H3s

Figure 4.5 Go

Assemble, Link, and Run 105

-b 5S:81E0

BADZIOIES 93 54 41 43 4B 20 20 29-33 34 41 I B H ¥ D :I#:f: STACK

SADTIOIFS 33 34 4] 43 48 28 8C #0-AE WA 70 47 00 48 i W "ul h"FM,
D7 #2808 C8 24 L3 74 $I ES 38 08-A0 74 44 BACP 73 24 A0 -E“. l.tn .A"F
RADTB258 T4 02 AR LA BN X1 T4 X5-L5 20 0¢ 82 £ a2 J__'\ :.s k.. 9;! '?“:"‘-F
[Tt AL T A § B AR v . v_ :‘- : :Eﬁ ;:h—li'ﬁ -‘.;. F
% W& T8 B Mg D= . L T . <F7 £ - ‘
;’z;::gz ?; l:: ré T S2 di or Ld L dd A 83 OF 34 2% w0 0NLERG. ;::
SADTIHZ38 B0 £ 33 80 IE BY 43 3A-87 T3 42 BA 47 38 C) EB JL£5..9C3.8.. .

Figure 4.8 Displaying the Stack

e TV Pegister Command, R, servos several »wioses. When R

-1 alone, it sumply repeats the display 4f current .cgisters, ﬂz-_:gs, a:}d

+ " instruction. The beginning of Figure 4.8 shows the result using R in
«his way. Later, you will see R used to change a register's contents.

After recreating the current display, use G to continue to 0064, t}_xe
instruction that returns from PROMPTER. Notice the name prompt dis-
played as PROMPTER is executed. Next, execute just one instruction,
RET. To do this, use the Trace command.

Trace The Trace command, T, executes the current instruction and
then presents the current information and next instruction display. Yqu
can use T to execute a series of instructions; just include the number, as in

" T3 orTS5. The end of Figure 4.8 shows the result of executing the single

instruction RET with T. Executing RET returns the program to the main
driver, where it is now waitir:- © .ury out the next CALL.

WARNING: DO NOT L... . I'O EXECUTE AN INT. A trace com-
mand will take you into the interrupt routine itself. N ot_only will you have
no guide to what is happening, but the routine itse{f will often fail and go
into an endless loop. VO routines involve exact timing. The delays caused

-0 DE10008
D 57 48 41 34 20 49-33 20 57 AF 35 32 20 4E ..WHAT 15 YOUR N

m::::: :::::srnuuw-astsu:mqszcun AHE? +..HELLD,

WS 00 auanaazno-naunznnu:

A3 04 0 nuannuaz--z‘aanuaa“_

P ™ aaaannan-nauanm:”

ARSI NN NNDNN-NAINN 2N »

WIS NN NN DN NN

MBI 2N I 2020 W2 NN

-0 -
200N 222028220

:'-Z"i::: :ununuznl-aunnnng::

SATS 10940 nuauaunnmnauga"u

MESIHN HRANADANN-A2NN N 2

ARSI 9 M ZE NN NN NN 2N

SARS L 0EDR nnnaanun-zununzlnu:

SARS 190E8 aa»annnn-nnunz-uuu

IS N DN ANNA-NBNANND

Figure 4.7 Displaying the Data Segment

106

AXSBABY EX«8880 OX=0490 DXx=0008 SP=9IFC BP=GIN8 Si=00de DI=tdM
D5=0AD3 ES~BAB3 SS=8AD7 CH=BANE [P=080C W UP 01 PL NI NA PO NC
SAAL 1880 EBOYNR [~ 18 038

-G 0044

WHAT 15 YOUR MAME?
A=4ADT Ei=sbie Di=8479 DX=0080 SP=gIFA BP=008) S5i«i080 0)=0002
DE=SARS E9=MASS S9=8AD7 CO~SMAE [P=g8é4 N UP DI PL NI MA PO NC

AXaSABS (=P80 CX=84%0 [DX=0008 G5P=QIFL BP=0dSE Si=0000 DI~000
DS=p83S E=MABS S9=0AD7 C9=BAAE 1P=gB8F N2 UP DI PL NI MA PO NC
SANE LABIF ERDCRE tALL [H

Figure 4.8 Rogister and Trace

by stepping through with T can cause such routines to fail. When the next
instruction is INT, always choose a breakpoint address and use a G com-
mand to go there.

Continuing with the Program At this point, use G 0015 to allow the
program to execute the GETNAME and MOVENAMER procedures without
stopping. Notice the input {DONNA N. TABLER} in the beginning of
Figure 4.9 as the program reaches the place where the keyboard input
routine is executed. Next, as in the figure, display the beginning of the data
segment again; this time, you can see the cutput message moved into place.
Then, another R and T take us to the point where the printloop begins.
Here, try making a change: use the register command to make a change in
the count register so that the loop will repeat seven times instead of five.
The sequence of events is shown in Figure 4.10.

-4 13
OONNA N. TABLER

AdnbaBS E-0R0F ClgATD OSN30 GPegIFC BP-HIDS 140000 D1=0DM
OP0AB3 EP=4AES $3=0ADT C(Pednal 1P=i813 WV UP DI PL NI NA FO NC

WAL 18013 PR3N L X, 8003

- DS

SARSI0000 04 B0 37 40 41 34 20 4933 20 3P 4F ST N2 2 4E L .WHAT IS YRR N
SABRSO810 4L 4D 45 I 20 2 BA SD-48 43 4C 4C 4F X 20 44 MY 4. .HELOD, O
SABSIO0I0 4F 4K 4E 41 20 @ 26 2034 41 A2 4L A2 M OMA N, TARLED
MEEIN B ANNN-INDIDINDDDN

WELHN AN HN-DRNIN NN

SN IR N-BNNRRDDDN

MRS BN NN BN

RSP NN M NI INDIDIDN

Figure 4.9 A Second Look sf the Data

Assemble, Link, and Run

107

-R
A=BABS Ei=0 00l
DE=8ARI ES=0ABY

BARE:MI1S BTSN
-1

SAAErI D018 E03000
-& OF

[~ 1
111 F

-k
Ax=gA83 EX=0080
DS=#AR3 ES=#A83

BAAE 91D EBNNN
-8

HELLO, DONNA N
KELLD, DONA N.°
HELLD, DONNMA N.
RELLD, DOMNA N.
HELLO, DONNA N.
HELLD, DOMNA N.

HELLO, COMA N,

Ex=p4%8 Dx=8008 SP=dIFC
5528407 CS=8AAE 1P=8013
L X, 0003

Cx=psdS DX=0848 SP=8IFC
5SagAb? CO=BAnL LP=E010
CALL "nag

éx-un Ox=4088 SP=#IFC
5508aD7 CS=8ARE 1P=8010
CALL 4B

TABLER
TABLER
TABLER
TASLER
TABLER
TABLER

TABLER

Progras Lsrmiskied sormallr

-8

Figure 4.10 Changing a Register
First, we enter R CX. DEBUG displays the current contents of CX and

~

EP=0000 Si=0e0d Cl=0002
NY P 81 PL N2 NA PO NC

EP=0idd S1=0B08 DI=800R
N P DI PL NZ NA PO NC

BP=sotl Si=0898 Di=iidd
W UP D1 PL NI NA PO NC

givesus a special prompt, a colon (). After the prompt, enter the new value.
You can't change just AH or AL with this command; the new value must be
a whole 16-bit value. Next, as shown in Figure 4.10, use R again to check
that the change has been made. Finally, use G with no breakpoint addres's;
this let the program continue until it ends. You can see that the message is
displayed seven times, not five. After the program ends, we get out of
DEBUG by using Q, for Quit.

Computer Exercise

Run NAMEX under DEBUG. First duplicate the session just discussed.
Notice that while offsets are the same in your session, the nuxgbers in the
segment registers may be different because your program 1s probably

108

loaded at different addresses. Explore some more with DEBUG. Try
_ changing the contents of some data fields. For example, change INBUF to
20 and see what happens when you enter more than 19 characters.

Key Points From Chapter 4

In this chapter you have learned to assemble, link, and run a MASM
program. Key points covered in this chapter include;

B The simplest way to assemble a MASM program is to type:
MASM
and let the assembler prompt you for the names of the source-code,

object-code, listing, and cross-reference files. The extensions for these
names should default to ASM, OB]J, LST, and CRF, respectively.

B The quickest way to assemble a MASM program is to type the desired
filenames on the MASM command line. To assemble a program from
source code file PROG.ASM type: :

MASM PROG ;

B which will produce an object file PROG.OBYJ, but no listing or cross
reference. Or else, type:

MASM PROG, ,LPT1:;

to produce both the object file and a printed listing.
M The easiest way to link a MASM program is to type:

L INK

‘and let the linker prompt you for the desired filenames.

Assemble, Link, and Run 109

B The quickest way to link an object program called PROG.OBJ is to
type:

L INK PROG;

which will produce a run file name PROG.EXE and no listing.

B To run a program, type the run file name without the extension. To
run PROG .EXE, type:

PROG

B Use DEBUG to trace your program's execution and find out what is
happening during a run.

Chapter Review Questions

1. What command would you use to assemble NEWPROG with an
object file but no listing or cross-reference file?

2. What command would you use to link NEWPROG without produc-
ing a list file?

3. What command would you use to assemble SAMPLER with a
printed listing, b:xt no object file?

4. You have assemibled and linked NEWPROG, producing a run file
named NEWPROG.EXE. What command would you use to run
NEWPROG?

" Answers .
1. MASM NEWPROG; 2. LINK NEWPROG; 3. MASM
SAMPLER, LPTL;; 4.NEWPROG

Computer Exercise

Assemble, link, and run PHONER, the program you wrote at the e_:nd of
Chapter 3. Run PHONER under DEBUG, looking at the changes in the
stack and data areas as the program runs. Try some changes, such as
repeating the main part of the program five times instead of three. Explore.
Enjoy. You can't hurt the computer; at worst, you may have to turn it off
and restart it.

5
Defining and
Using Macros

Now that you know something about writing, assembling, and running a
MASM program, you are ready to learn to use macros in your programs.
You will find several advantages to using macros: you can write programs
faster, you can be sure that similar situations are handled uniformly, and
you can reduce both assembler and run time errors. In this chapter you will
leamn to define macros and their parameters, to call macros, to pass values
to them, and to build a macro library to use in your programs. Some of the
most useful macros handle /O interrupts. So far you have learned only two
interrupt functions; in this chapter you will iearn several that will serve as
examples of macros.

Defining Macros

Most MASM programs include many repeated sequences of instructions.
Every time a message is displayed on the screen, for example, the address
of the message must be moved to DX, AH must be set to function 9, and

110

Defining and Using Macros 111

then interrupt 21H must be called. A program that interacts with a user
repeats these instructions many times. We can code this function in a
general way like this:

LEA DX, MESSAGE
MOV AH, 9
INT 21H

To make this general series of instructions into a macro, we must begin
and end the definition with special pseudo-ops.

Beginning and Ending the Macro Definition
Every macro definition begins with a MACRO pseudo-op. The format is:

- name MACRO |dummy | i st)

Name is required. The macro name is used to call the macro in the rest
of the program. We'll name our sample macro DISPLAY.

Dummylist is a list of the macro’s parameters (separated by commas).
The list is optional; not all macros have parameters. You will see examples
of macros with and without parameters in this chapter. The parameters
from the dummylist are used within the macro definition; they are called
dummy parameters. When the macro is called, the durnmy parameters
are replaced by names or values specified by the calling instruction.

DISPLAY needs one dummy parameter, MESSAGE, to identify the
beginning offset of the message being displayed. The MACRO pseudo-op
for DISPLAY, then, will be:

DISPLAY MACRO MESSAGE

The macro body contains the series of instructions that will be copied
into the program {with appropriate replacement values] when the macro is
called. We have already defined three instructions (LEA, MOV, and INT
21H) that will be the body of the macro DISPLAY.

112

Rach macro definition must end with an ENDM pseuda-op. This
pseudo-op cannot have a name or operand. It's just the operation code,
ENDM. The definition of DISPLAY, then, could look like this:

DISPLAY MACRO MESSAGE
LEA DX, MESSAGE

MOV AH,9
i NT 21H
ENDN

Later in this chapter, well discuss how macros are called and used.
Now, though, let’s review what you have learned by coding another simple
macro definition, this ane without parameters.

Clearing the Screen

A program that uses screen displays often needs to clear the screen. In
BASIC, you do this with the CLS command; in MASM, you must use a
function of interrupt 10H. This is a BIOS interrupt that has 15 different
functions, all of them concerned with video /O. We will discuss several of
these functions in this book. You will find the information needed to use all
of them in Chapter 12 along with a discussion of some other useful BIOS
interrupts.

We will use function 6, upward scroll, o clear the screen. (We could
just as well use function 7, downward scroll.] The scrolling action takes
place within a window. The window’s upper left and lower right positions
must be defined before the function is called. The number of lines to be
scrolied must also be defined. If n lines are scrolled, the top n lines of the
window disappear. The remaining lines in the window move up n lines,
and n blank lines appear at the bottom of the window. Usually, the
scrolling action takes place too rapidly for your eyes to follow; the new
screen just appears. To scroll the entire window, scroll 0 lines. To clear the
entire screen, define a window that starts at row 0, column 0 and ends at
row 24, column 79 and scroll the entire window.

You must also specify an attribute value for the blank lines scrolled in.
Bach character on the screen has an attribute. The attribute assigned for
the line will be atiached to any character later written on that line.

Defining and Using Macros 113

Attribute values for black and white display are:

7 - white on black, normal intensity {normal display}
112 - black on white, normal intensity {reverse video)
0 - black on black, normal intensity {no display)
119 - white on white, normal intensity {no display)

Add 8 to any value to produce high intensity. Add 128 to produce
blinking characters. An attribute of 248, then, will produce high-intensity
reverse video with blinking characters. When clearing the screen, you
ususlly assign blank lines an attribute value of 7. (See the IBM Technical
Reference Manual for color-display attribute values.}

The registers used for this function, and their appropriate settings
when clearing the screen, are:

AH - function number - 6
AL - number of lines - 0

CH - upper left row -0

CL - upper left column - 0
DH - lower right row - 24
DL - lower right column - 79
BH - attribute value -7

Lét‘s name the macro CLS, since we are duplicating the CLS command
from BASIC. The macro definition will be:

CLS MACRO
MOV AH,6
MoV AL.0
wov CH.0
MOV CL.0
MOV DH, 24
MoV oL, 79
Hov BH.7
INT 10H .
ENDM

This macro uses no dummy parameters; all the parameters are fixed.

na

The HOVE Hacra

MOVE MACRO TOD,FROM,CHAR

LEA S1 ,FROM
LEA 01,70
MOV ©x ,CHAR
REP HOVSB

ENOM

Figure 5.1 The MOVE Macro

One More Sample

Figure 5.1shows a definition for a macro named MOVE that handles string
moves. It has three dummy parameters: the locations between which data
is to be moved and the number of characters to be moved. To be consistent
with the general pattern of MASM instructions, we have coded the param-
eters using the destination as the first parameter and the source as the
second. The number of characters is the third parameter.

Review Questions

Defining and Using Macros 115

1. For each of these statements, specify whether it is true of the
MACRO pseudo-op, the ENDM pseudo-op, both, or neither.

Required in every macro definition
Requires a name

Name is optional

Name is not permitted

Requires parameter list in operand field
Parameter list is optional

No parameter list is permitted

QEmOOow>

2. Function 2 of Interrupt 10H sets the cursor position. DH must
contain the row, and DL the column, for the position. BH must
‘contain the number of the page for which the cursor position is set.
We will always use the first page, page 0, in this book. Look at this

, definition of a macro intended to duplicate BASIC's LOCATE func-
tion: '

LOCATE MACRO ROW,COL
) MOV AH,2
MOV DH,ROW
MOV DL.COL
MOV ' BH,O
INT 10H

What is the name of this macro?
~ How many lines are in the body of the macro?
How inan\} dummy parameters are used in this macro? -

What are the dummy parameters?

m Y 0w p

What is missing from this macro definition?

3. Function 1 of interrupt 10H can be used to turn the cursor on by
_setting both CH and CL to 7, or to turn it off by setting CH to 39 and
CL to 7. (These values assume that you have a Color Graphics
Adaptor. For the Monochrome Adaptor, use 31 as the value in CH
and CL to turn the cursor on; use 63 and 31, respectively, to turn it

off.)
A. Code a definition for macro CURSORON to turn the cursor
on. ')
B. Code adefinition for macro CURSQROFF to turn the cursor
off. :

Answers

1. A. Both B. MACRQ C. Neither D. ENDM E. Neither F. MACRO G.

ENDM 2. A.LOCATEB.5C. 2 D. ROW and COL E. There should be an
ENDM pseudo-op at the end of the macro definition.
3. A. CURSORON MACRO
MOV AH|]1
MOV CH,7
MCV CL7
INT 10H
ENDM
B. CURSOROFF MACRO
MOV AH]1
MOV CH,39
MOV - CL,7 -
INT ' 10H .
ENDM

116

= f

Using Macros

Defining a macrois like providing a new operation code for MASM. To call
{use) the macro, code its name as the opcode of an instruction. In the
operand field, code a list of actual parameters corresponding to
MACRO's list of durnmy parameters. .

To use DISPLAY to display NAMEPROMPT, MESSAGE must be
replaced by NAMEPROMPT. To display ERROR__MESSAGE, MESSAGE
must be replaced by ERROR__MESSAGE. To display ENDMESS, MES-
SAGE must be replaced by ENDMESS. To display these three messages,
one after another, you could code this series of instructions:

D1SPLAY NAMEPROMPT
DISPLAY ERROR__MESSAGE
D SPLAY ENDMESS

The CLS macro has no parameters; calling it is simply a matter of
coding CLS as an operation code. The MOVE macre, on the other hand,
requires three actual parameters in every call. You could call it with:

MOVE OUTMESSAGE, | NMESSAGE , 20
or:

MOVE PRINTMESS , ERRMESS , COUNT

Expanding the Macro

Remember that the MASM assembler makes two passes through the
program. One of its jobs on the first pass is to expand each macro call.
Expanding a macro means copying each line of the macro body into the
source program and replacing dummy parameters by actual parameters.
Replacement values are assigned on the basis of position. That means that
the dummy parameter list in the MACRO instruction is compared to the

~r

Defining and Using Macros 117

actual parame(er list in the operand field of the macro call. The first actual
parameter replaces the first dummy parameter and so on. On the second
pass, the macro expansion is translated into machine code.

When a program that uses DISPLAY is assembled, each DISPLAY
instruction is replaced by the macro body with appropriate substitutions
for parameters. DISPLAY NAMEPROMPT, for example, is replaced by:

LEA DX,NAMEPROMPT
MOV AH,9
INT 21H

These three instructi_dns are translated into object code by the
assembler; DISPLAY NAMEPROMPT is not translated. If you unassemble

your program under DEBUG, you never see a DISPLAY instruction.
Instead, you see a series of three instructions:

v

LEA DX,]....]
MOV AH,09

INT 21
wherever you coded DISPLAY in your program.

Looking at Macro Expansions

Figure 5.2 shows part of an assembler listing that includes several calls to
the MOVE macro. Notice the segment offsets that are printed on the left for
each assembled instruction. Look at the procedure named MESS{\GES,
starting at offset 0010H in the code segment. The MOVE macro is first
called to move 20 characters from INPUT__MESSAGE to OUT-
PUT MESSAGE. [Notice that no offset or object code is generated for the
MOVE instruction; the instruction is not part of the object code.) The next
four lines contain the actual source code translated by the assembler. The
* 4" between the object code and the source code indicates that the line is
generated by a macro call. .

Compare those lines [offsets 0010H through CO1BH) with those gener-
ated by the second call to MOVE (offsets 00IDH through 0028!-1}.' Notice
that all the source and count parameters have been replaced by different
names or immediate values.)

118

"y HESSAGES PROC

HOVE OUTPUT.MESSAGE, INPUT_MESSAGE , 30
819 89 ABIE ' HY X,
13 8D 34 MU R . LEA S, INPUT_HESSAGE
W7 8O IE MR ' LEA DI,DUTPUT_HESSADE
Wi FX M . REP MOVSS
HOVE QUTPUT_MESSAGE ,ERRORHESSAGE , 15
1D BF NOF . Y X,38
NI e s WM R . LEA S, EAROR_MESSAGE
2024 50 3E WA R + LEA DI, DUTPUT_NEESAGE
028 Fu A ' #EP HOUSD
MOVE OUTPUTMESSAGE , INPUT_MESSAGE , COUNT
02 09 IE HICH & ' noy Of,COUNT
0 80 3 W R . LEA 5], INPUTMESSASE
2032 80 I WK R . LEA DI,OUTPUT_MESSAGE
WM OFL oAl . REP.MOUSE

HpniéMumEmm&m
MOUE DUTPUT.MESSAGE , ERRORL MESSAGE

030 8% AR08 + L o,
38 B0 35 O R . LEA 31, ERROR_MESSASE
$F 8D 3 MM X . LEA 01 ,OUTPUT_MESSABE
e FIS M + REP MOUSSE

HOVE OUTPUT_MESBAGE , , COUNT
9043 g0 SE J0Ce 0 . | O, CouNY
(L NI + LEA 81,
Erroe —- SéNo immediate wode
940 B0 I WM R [LEA 01, 0UTPUT_NESSAGE
sl FI/ A4 . REP MOVSE

Figure 5.3 Missing Parameaisrs

Look at the third call to MOVE {following offset 0028H). This time the
*number of characters® parameter narnes a data field instead of an immedi-
ate value. When the parameter is used {offset 002AH), it still produces a
legitimate instruction since MOV can move data from an address to a
register as well as from an immediate value,

Omitting Parameters

What happens if you leave out an actual parameter in the call? Figure 5.3
shows two expansions of the MOVE macro. In the first one, the third
parameter has been omitted. In the second, following offset 0043H, the
source-field parameter has been skipped. In both cases, the appropriate
dummy parameter has been replaced by a nul (00) immediate value. The
instruction generated at offset 0038H is a valid instruction, since MOV can

use an immediate value in the second operand. But, it will cause invalid’

results and possibly an endless loop at execution time. The instruction
generated at offset 0049H causes an assembler error, since you can't use an
immediate value with LEA.

Defining and Using Macros 119

Review Questions

1. Which statements are true?

A. Tocall amacro, code the macro name as an operation code.

B. Actual parameters are those in the body of the macro defini-
tion.

C. Allmacro calls require a parameter list.
D. Ifanactual parameteris omitted in a macro cail, a null value
will be supplied in the macro expansion.
2. Using macros defined in this chapter and the preceding set of ques-
tions, code instructions to:
A. Turn the cursor on.
B. Turn the cursor off.
C. Move the cursor lo position 0,0.
D

Move the cursor to the lower left corner of the screen [row
24, column 79).
Answers

1. A and D are true. Here's what's wrong with the others: B. Actual
parameters are those found in the macro call. D. A parameter list is
required in a macro call only if the macro definition includes param-
eters. 2. A. CURSORON B. CURSOROFF C. LOCATE 0,0 D. LOCATE
2479

Improving Macros

Let's write a more flexible macro to display messages, one that can display
a message a number of times. We'll call this new macro MULTDISP. Part of
its definition could go like this:

MULTDISP MACRO MESSAGE,COUNT
MOV CX,COUNT

REPEAT: ‘
LEA DX, MESSAGE
Mov AH,9
INT 2]1H

LOOP REPEAT
LR \
ENDM

120

If MULTDISP is called first using QUTMESS and 5 as replacement

values, the first expansion of the macro includes:

MOV CX,5
REPEAT :

LEA DX, CUTMESS

MOV AH.9

INT 21H

LOOP REPEAT

A second expansion, using ERRMESS and 3 as replacement values,
produce these lines:

Mov CX.3
REPEAT :

LEA OX, ERRMESS

MOV AH.9

INT 21K

LOOP REPEAT

The label REPEAT now occurs twice in the program. This causes an
assembiler error. Bach label in the code segment must be unique. How can
you manage that and still be able to use labels within macros? By using the
LOCAL pseudo-op. '

The LOCAL Pseudo-op

The LOCAL pseudo-op lists all the labels used within a macro. Each time
the macro is expanded, the assembler creates a unique symbol for each
label listed and substitutes that symbol for the label used in the macro
definition. The format of the pseudo-op is:

LOCAL dummylist

where dummylist is a list of labels separated by commas. LOCAL must be
the first instruction after MACRO; not even comments can come between
MACRO and LOCAL.

Defining and Using Macros 121

When we add LOCAL to MULTDISP, it looks like this:

MULTDISP MACRO MESSAGE, COUNT
LOCAL REPEAT

MOV CX,COUNT

REPEAT :
LEA DX, MESSAGE
MOV AH,9
INT 21H

LOOP- REPEAT
ENDM

When the macro is expanded, the assembler replaces REPEAT by a
unique symbol made up of two question marks {??) followed by a four-digit -
hexadecimal number. If a program’s macro expansions include several
local labels, the first one used will be replaced by 770000, the second by
770001, and s0 on. Suppos. !..:i MULTDISP is the first macro expanded ina
program [or at least the first one that includes a local label]. The expansion
includes these lines:

210000
LOOP 170000

If MULTDISP is also the second expanded macro, the second expansion
will include these lines: ' .

)

770001:
LOOP 170001

Caution: Don't try to use this capability to define data fields within a -
macro. Remember that data fields are expected to be in a data segment,
while macros generally are used within a code segment. Data for macros is
generally either passed by parameters or by placing values in registers. If a
macro must use a data field that cannot be a parameter, define the field in
the data segment of each program that calls the macro.

122

Nesting Macros

Macros can be nested. This means that a macro definition can call another
previously defined macro. We could have defined MULTDISP like this:

MULTDISP MACRO MESSAGE,COUNT
LOCAL REPEAT
MOV CX, COUNT

D1 SPLAY MESSAGE
LOOP REPEAT
ENDM

REPEAT :

as long as the definition of DISPLAY occwrred in the source code belore
MULTDISP.

Preserving Register Values

You have learned that it is wise to preserve the original values of registers
when using subroutines (except when a changed register value is specifi-
cally expected as a result of the subroutine). The same principle applies to
the use of registers in macros. When you code a macro definition, youdon't
know what the situation will be when the macro is called. The MULTDISP
macro, for example, could be called on as part of a routine that is using AX,
CX, or DX for its own purposes. I's good practice, then, to preserve the
original values of registers in a macro as well as in a subroutine. Qur full
MULTDISP macro should look like this:

MULTDISP MACRO MESSAGE,COUNT
LOCAL REPEAT

PUSH AX
PUSH CX
PUSH DX

MOV CX,COUNT

REPEAT :
LEA DX, MESSAGE
Mov AH,9
INT 21H
LOOP REPEAT
POP DX
POP 1994
POP AX
ENDM

Defining and Using Macros 123

Sample Macros

=% MACRD . MOVE MACRO TO,FROM,CHAR

PUSH ax . PUSH St

PUSH BX PUSH D1

PUSH cx PUSH cx

PUSH 0x LEA S1,FRoM

MOV AH, 6 LEA 01,70

MOV AL, o MOV CX,CHAR

HOV CH,@ REP HMOVSB

Hov cL.e POP €x

MOV DH,24 - POP o1

MOV . DL,7% PoP 81

MOV 8H,7 ENDM

INT 18K i

POP px STARTER MACRO

POP [PUSH DS

POP ax HOV ax, 8

POP ax . PUSH ax

ENOH MOV AX,PROG_DATA
) MOV DS ,AX
DISPLAY MACRO MESSAGE MoV £5,AX

PUSH AX) ENDM

PUSH DX

LEA DX ,MESSAGE

MOV AN, P

INT 21H

POF DX

POP X

ENOH

¥
LOCATE MACRG ROW,COL
AX

PUSH

PUSH ax
PUSH ox
MOV AHL2
a1 DH,ROW
HoY DL,COL
MOV BH,0
INT 19H
POP X

Pop Bx

POP AX
END#t

Figure 5.4 Sample Macros

Similar PUSH and POP instructions should be added to the other
sample macros from this chapter. Figure 5.4 shows complete definitions
for all these macros.

Learning More About Macros

You have learned enough to code many simple and useful macros. Four
other pseudo-ops are used in macros: EXITM, IRP, IRPC, and REPT, One
of them, PURGE, deletes a macro definition when it is no longer needed in
a program [to save program space}. Additionally, there are four symbols

~

used for special purposes within macros (& %, !, ;). As you become an
experienced MASM programmer you may want to learn about these from
the MASM manual 50 you can write more complex macros.

Review Questions

1. Here is part of the definition of CMAC:
CMAC MACRO
ALABEL:
' LOOP ALABEL
Exou -
A. Codean instruction that will ensure that no duplicate labels

are generated by calling CMAC.,
B. Where should the instruction go?

2. Revise the definitions of CURSORON and CURSOROFF to preserve
register values. -

3. Define a macro called CENTER that will clear the screen and display
a message at position 12,30. The message will vary each time the
macro is called. (Using already defined macros you should be able to
code this macro in five lines.)

Answers

1. A. LOCAL ALABEL B. Immediately following MACRO

2. CURSORON MACRO

PUSH AX
PUSH cx
MoV AH, 1
MOV CH,7
Mov CL,7
INT 10h
POP CcX
POP AX
ENDM

CURSOROFF MACRO

Defining and Using Macros 125

PUSH AX
PUSH cx
MOV AH, 1
MOV CH,39
MOV cL,7
INT 10H
POP X
POP AX
ENDM
3.

CENTER MACRO MESSAGE
cLs -
LOCATE 12,30
DISPLAY MESSAGE
ENDM .

Placing the Definition

A macro definition must precede the first use of the macro. Usually, weput
all the macro definitions at the beginning of the program, but this is not
required as long as each definition comes before the first use of the macro.

You will probably want to use the same macro definitions in many
programs. Macros such as CLS and MOVE, for example, may be useful in
every program you write. You can use your editor or word processing
program to create a file containing commonly used macro definitions; such
a file is called a macro library. A macro library (or any other file} can be
copied into a program by using the INCLUDE psuedo-op.

The INCLUDE Pseudo-Op
The format of the INCLUDE pseudo-op is simply:

INCLUDE f i lename

The filename should include any necessary drive or path designations as
well as the full filename, Valid INCLUDE statements might be:

INCLUDEB:MYLIB.LIB
INCLUDE A:VIDMACOL. ASM
INCLUDE DEF INES.LIB

126

When the assembler encounters INCLUDE, it looks for the specified
file and copies it into the program being assembled. The copied source code
isassembled as if it were part of the original program. The assembler listing
shows a "C* in column 30 of each line copied from an INCLUDE file.

INCLUDE can occur at any point in a program. You can use INCLUDE
at the beginning to copy a file of macro definitions. You might INCLUDE a
file with a list of data definitions within the data segment. You might build
a library file with commeoenly used PROCs and INCLUDBE it within a code
segment. Bach INCLUDE causes the specified file to be copied into the
program at the place where the INCLUDE occurs; then, the copied lines
are treated as part of the original source code. The only restriction is that
the INCLUDE file cannot itself contain an INCLUDE pseudo-op.

Multiple Macro Libraries

Youl can use several macro libraries in the same program. You might build
one library containing only macros invoelving video routines, another with
string-handling macros, and a third with printer routines. You could then
INCLUDE one, two, or all of these libraries in a program, depending on
which sets of macros would be useful in that program. A program can have
a combination of macro definitions from one or more libraries as well as
macros coded directly in the source code.

What happens if you include two macro libraries that happen to con-
tain macros with the same name? No error message is generated and the
most recent definition is used to expand macro calls. Look at this sequence
of instructions (numbers are provided for referencey:

1 ANAC - MACROQ
;macrodefinitionl
ENDM

2 AMAC

3 ‘

4 ANAC MACRO
“macrodefinition2

. ENDM .
5

The first two calls to AMAC {2 and 3} use the first macro definition {1).
Then, the new definition (4] replaces the original one, and the next call (5) is
expanded according to the new definition. |

" Defining and Using Macros 127

NAMEX with

PAGE 132
¥

{NCLUDE FIRSTLIB.LIB

3 . .
ACK SEGMENTY STACK STACK ,
PROC-ST DB &4 DUP (’STACK]

PROG-STACK ENDS

‘ ’
TA SEGMENT ‘DATA .
m:‘ﬁm DS BAH.BDH,WHAT [5 YOUR NAME? 7, 24H

QUTHESS DB BAH. 0DH, ‘HELLOD. *
OUTHNAME DB © 25% DUPC)
[NBUF o8 355

OUNT DB ? ,
ll:lfWE oB 25% DUP(” 72X ,
ENDMESS DB rEND OF PROGRAM’ ,Z4H

PROG_DATA ENDS -

H .
PROG_CODE SEGMENT ~CODE

MlN—Pﬂogsgf::g 'ég‘:PRDG_CODE .DS:PROG.-DATA ,S5: PROG_STACK .ES1PROG.DATA

R : PROMPT FOR NAME
TER i
Py ::m‘rﬂ:ﬂg ;GET NAME INPUT
o ENAM tMOVE NAME TO DUTPUT L INE
CS:;L :g)ﬁ ¢ tLOAD COUNTER FOR PRINTLOOP
o .
PRINTLOO;:SPLAY OUTMESS . 1PRINT MAME MESSAGE

DOP PRINTLOOP H AND REPEAT CX TIMES
L

P FinaL ;THEN RETURN TO DPERATING SYSTEM
RET
MAJN_PROG ENDP

;Im{. PROC
LOCATE 24.90
CURSOROFF
DISPLAY ENODMESS
RET

F INAL ENDP

i
GETNAME PROC

pusH X
PUSH . NGO FROH KEYBOARD/ECHO
JGET STRI
Hrisd ;:':::ur JADORESS OF INPUT BUFFER
iNT -21H 100S
soP DX
POP AX
RET
GETMANE ENDP
1]
MOVENAME PROC
':lcﬁﬂ g:.ou |SET COUNT FOR MOVE
HOVY BL.INCOLI:T £.ax
nwwe GUTNAMEL BX 1, 24H SNEXT CHAR 15 ¢
POP 8x
RET

128

MOVENAME ENDP

i
PROMPTER PROC
cLs
CURSORON
LOCATE 18,8
DISPLAY NAMEPROMPT
RET :
PROMPTER ENOP

PROG.CODE ENOS
END MAIN_PROG

Flgure 5.5 NANEX with Macros

It's not a good idea to use different definitions for the same macro; your
- program will be easier to read and follow if each macro has one and only
one definition. If your program uses several macro libraries or includes
both macro libraries and separately coded macro definitions, be sure that
you don't unintentionally use the same macro name for two different
definitions. On the other hand, if you have the same macro definition in
two (or more) libraries, you don't need 1o worry about errors arising from
the inclusion of both libraries in the same program.

Computer Exercise

Enter the macro definitions from Figure 5.4 and the review questions as
FIRSTLIB.LIB. Your library should include at least CLS, CURSORON,
CURSOROFF, STARTER, LOCATE, DISPLAY, and MOVE. Then, enter
NAME2.ASM, the program shown in Figure 5.5.
Now assemble NAME2, printing the assembly listing. Notice the cop-
ied lines {marked by “C") and the lines generated by the macro expansions
" {marked by *+"). Link and run NAME2. You can use the macros from
FIRSTLIB.LIB as the basis of your own macro library.

Macros and Subroutines

Both macros and subroutines are used to reduce the number of lines coded
by a programmer, thus reducing the possibility of errors. Even though a
macro is coded only once, however, each of its lines is included in the
program each time the macro is called. No program space is saved by using

Defining and Using Macros 129

a macro. Subroutine lines, on the other hand, are included in the program
only once, no matter how many times the subroutine is called. A long or
frequently called routine may be better coded as a subroutine than as a
macro. :

The use of parameters makes a macro much more flexible than a
subroutine. If you are going to use the same general routine with different
data items, you will probably want to code it as a macro.

In many cases, the choice of coding a routine as a macro or a subroutine
depends on the programmer's preference. Most programmers seem to
prefer to use macros for routines that are used in many programs or that
will be used in only one program, but with different data items. In turn,
they often prefer to use subroutines for those routines used within a single
program and to which data can easily be passed through registers or data
fields.

Key Points From Chapter 5

B A macro definition must begin with a MACRO pseudo-op. The
pseudo-op must include a name. The operand field may contain a list
of dummy parameters, separated by commas.

B A macrodefinition must end with an ENDM pseudo-op. This pseudo-
op has no name or operands; it consists solely of the operation code
ENDM.

B The macro body contains the instructions to be copied into the pro-
' gram at the points where the macro is called.

B If the macro body includes one or more labels, the second statement
in the definition must be a LOCAL pseudo-op that lists {in the operand
field} all such labels, separated by commas.

B Tocall a macro, code its name as an operation code. The operand field

must contain a list of actual parameters corresponding to the dummy
parameters in the definition's MACRO pseudo-op.

130

B On the first pass through the source code, the assembler expands any
macros called. It replaces each calling instruction by the instructions
copied from the appropriate macro body, with actual parameters
replacing the dummy parameters in the body. Labels defined as local
are also replaced by unique labels.

M A macro definition must precede the first use of the macro in the
source program. .

8 A macro definition may include a calt to a previously defined macro.

8 A source-code library that contains macro definitions (or any other
source code) can be copied into a program during assembly by coding
an INCLUDE pseudo-op which specifies the file to be copied.

Chapter Review Questions

1. Match each pseudo-op with the description that best fits it. Not all
descriptions are used.

‘Causes assembler to generate

— A. MACRO a.
- B. ENDM unique labels
—— C. LOCAL b. Causes macro expansion
— D. INCLUDE c. Begins a macrodefinition
d. Endsa macro definition
e. Causes assembler to copy a

source code file
2. Which statements are true?

A. Bvery macro definition must end with an ENDM pseudo-
op.

B. Bvery macro definition inust include at least one dummy
parameter. .

C. The assembler matches actual parameters to dummy
parameters by position in the parameter list.

D. The LOCAL pseudo-op tells the assembler that a macro
definition is to be used in one program only.

Defining and Using Macros 131

3. Look at this macro definition:

SWAPBYTE MACRO ONE,TWO
PUSH AX
MOV AH , ONE
MOV AL, TWO
MOV ONE, AL
MOV TWO, AH
POP AX
ENDM

A. What is the name of this macro?

B. Code an instruction that will call on this macro to swap two
one-byte fields named HIGH and LOW.

Answers

1. A.¢cB.dC.aD.e;bisnotused. 2. AandC.Bisfalse chause amacro
may have any number of parameters, or no p'arémeters. Dis false_: because
the LOCAL pseudo-op identifies labels wath!n a macro that must be
replaced by unique symbols when the macro is expanded. 3. A. SWAP-
BYTE B. SWAPBYTE HIGH,LOW or SWAPBYTE LOW HIGH

Computer Exercise

Revise the PHONER program so that it clears the screen, turns on the
cursor, and begins prompting somewhere near the middle of the screen. E
End the program by displaying the message *GOODBYE" on lhc.a bottom

line of the screen and turn off the cursor. Use macros from your library as
much as possible. Assemble, link, and run your revised program. If you

have problems, look at our version of the program which follows.

PAGE 132 sTHIS [S THE SECOND

3 1 VERSION OF THE PHONE
INCLUDE FIRSTLIB.LIB ¥ NUMBER PROGRAM

H

GETDATA MACRO INBUF.COUNT
PUSH AX
:ﬁ“ ::.OAH 1GET STRING FROM KEYBOARD-/ECHO
LEA OX , INBUF 1APDRESS OF INPUT BUFFER
O INBUF ,COUNT LGET ENPUT S1ZE FOR NAME
INT 218 1005
£OP oxX
rap AX
ENDH

132

PROG_STALK SEGHENT STACK -STACK®

o8 44 DUP (*STACK
PROG_STACK ENDS

]
PROG_DATA SEQGMENT *DATA’

NAMEPROMPT DB SAH, ODH, ‘NAME; -, 24K
PHONEPROWFPT DO 8AH,0DH, ' PHOMNE NUMSBER)

EMDHESSAGE DB BODOBYE‘ ,24H

OUTLINE DB BAMH, 0DH
OUTPHONE DB 8 DUk -
OUTSPACE DB _ 3 pUP(C ‘)
OUTNAME DB 31 DUPC”)
INBUF ;] 3

INCOUNT DB bl

INDATA DB N DU >

PROG_DATA ENDS

]
PROG_CCDE SEGMENT “CODE-
MAIN_PROG PROC FAR

" 240

ASSUME CS1PROG_CODE, DS PROG-DATA, S8 PROG_STACK, ES; PROG_.DATA

STARTER

CLs

CURSORON

LOCATE L1¢.,0

MOV cx,3
HAINLOOP s
cALL GETNAME
CALL GETPHONE
DISPLAY QUTLINE
LOOP MAINLOOP
CALL FINAL

RET
HMAINLPROG ENDP

i
FINAL PROC
LOCATE 23,10
01 SPLAY ENDMESSAGE

CURSOROFF
RET

FINAL BNDP

1

BETHNAME PROC
PUSH BX

PISPLAY NAMEPROMPT
GETDATA INBUF,3)
MOV BH.8H

MOy BL, INCOuNT

Hov OUTNAME(() , 244
POP ax
RET

BETHAME ENDP

[}

GETPHONE PROC
DISPLAY PHONEPROMPT
GETDATA INBUEF P
HMOVE OUTPHONE , INDATA 8

RET
GETPHONE ENOP

1
PROG_CODE ENOS
ENC MAIN.PROO

iPROMPT, INPUT. AND MOVE NAME
IPROMPT AND [NPUT PHONE -
iDISPLAY LINE _

i AND REPEAT PROCESS

iTHEN RETURN TO OPERATING SYSTEM

tPROMPT FOR NAME
10ET NAME IN BUFFER

© vSET UP NAME COUNT

sHMOVE NAME TO PRINT
INEXT CHAR 18 &

1PROMPT FOR PHONE
s0ET PHONE IN BUFFER
IMOJE PHONE TO PRINT

Coding Operands

You have used the three operand types {registers, addresses, and immedi-
ate data) in their simplest forms. This chapter shows you how to code
address operands with displacements and modifying registers. You will
also learn to replace constants, such as those used in immediate operands,
with symbolic names, which are more legible and easier to change. Fur-
thermore, you will learn to use special operators to designate and change a
variable field's attributes.

So far you don't have very many instructions in which to use these
operands; most of the examples in this chapter involve MOV. You'll
expand your instruction set in the next few chapters. If you learn a wide
range of possible operands now, you will be able to make full use of new
instructions as you encounter them.

Address Operands

Remember that an address operand specifies the location in which data

will be found or placed during an operation. So far in this book, we have

written address operands using the variable names (names of fields,
defined in the data segment, such as NAMEPROMPT) and variable names

modified by the contents of a register (QUTNAME(BX]). The assembler

replaces source-code variables by their offsets. The contents of modifying

registers are added to the offset at run time to calculate the effective

address. In most cases, the EA is assumed to be an offset within the data

segment. We will discuss exceptions to this rule later in this chapter.

13:

134

Using Registers to Modify Addresses

An address can be modified by a base register (BX or BP}, an index register

{SI or Di), or a combination of one base and one index register. These four
combinations are legal:

NAMEPROMPTIBX)[S]
NAMEPROMPT(BXIIDI)
NAMEPROMPT(BPJ(SI)
NAMEPROMPT(BPY[D})

There are several ways to specify a combination. The combination of
BX and SI, for example, can be written as [BX)[SI], [SI|{BX], {SI+ BX], or
{BX +SIl.

Why use registers to modify addresses? You saw one reason in NAMEX
{(NAMEX is printed in Figure 3.12}: a situation in which we needed to move
an end-of-text marker {$) to an address that was unknown at the time we
coded the program. The exact displacement of *$” from the beginning of

« OUTNAME couldn't be known until a name was input during program
execution.

Later in this book, you will see programs in which modified addresses
are used within loops so that each repetition affects a different address.

Here’s an example, part of a routine to move spaces to a 132-character
printline:

MOV CX,132
NOV BX.0
CLEARIT:

MOV PRINTLINE|BX], " *
INC BX

;ADDS 1 TOCONTENTS OF BX
LOOP CLEARIT

You haven't learned INC yet; don't worry about it now. It simply
increases the value in BX by 1. You can see that each time the loop is
repeated, a space is moved to the byte following the byte affected by the
previous repetition. BX is often used to move through a data field in this
way. _

- When would you use two registers in an operand? Most often in nested

loops, such as in routines that are repeated for every occurrence of a two-
dimensional array.

Coding Operands 135

How do you decide whether to use BX, BP, 51 or DI lohmochf){ ag
address? Sometimes one of these registers already contains the ;eq\::fe
value. Por example, you know that DI points to the destination ? t; 5 bmg
move [MOVSB). At the end of the move, DI holds the offset (:4. A e t};“i
following the last one to which data was moved. If you need to acdress tha

-next byte (to move “s* into it, for example}, it makes sense lo use DI as the

i i her purposes, you

ifyl ter. If you are using SI, DI, and BP f_or of !

:‘?l?gngﬁff;our adydrcss operand. Most of the time it's not so clearcut;
i tween BX, BP, SI, and DI is arbitrary. o

the ;l:loall;iil::ss operand can consist of a register (or twoj in brackets, but

without a variable name. The register(s} will previously_have btfen loaded

with an address, and that address will be the EA. These instructions,

LEA BX,ONECHAR
MOV AL,IBXj

result in moving the contents of the byte at ONECHAR to AL. Notice the
difference between this and:

MOV AX ,BX
which copies the one-word contents of BX into AX.

Displacements in Address Operands

i ific displacement. You can code
dress can also be modified by a specific disp
?hzzdddress of the fourth byte following NAMEPROMPT,_ fo'r example, as
NAMEPROMPT + 4. You can also put the displacement within brackets or
combine it with a modifying register, like this:

NAMEPROMPT [4]
NAMEPROMPT{41{BX]
NAMEPROMPTIBX + 4]
NAMEPROMPT +4[BX]

The last three of these efamples are interchangeable; they all produce the
same EA.

136

Various arithmetic operations can also be used in specifying a displace-
ment, as in:

NAMEPROMPT[28/7|

Generally, however, we recommend that you stick to the simplest possible

methods of indicating displacements. We usually code address operands
using the following format:

variable+displacement|basellindex|

You can't use a displacement alone as an address, even in brackets. An
operand like 4 or |[4] will be treated as immediate data rather than as an
address. A displacement can, however, be combined with a modifying
register. These three operands:

4[BX]
18X114)
1BX +4|

are each treated as an address operand, resulting in an EA computed by
adding 4 to the contents of BX.

Segment Overrides

One more thing: in most cases an address operand isassumed to pointtoan -

offset in the data segment. There are exceptions, however. Here are the
rules:

1. If a variable name is included, the segment is the one in which the
variable is defined (that's usually the data or the extra segment).

2. If no variable name is included, and BP is one of the registers
involved, the offset is assumed to be in the stack segment.

3. If no variable name is included, and BP is not oné of the registers
involved, the offset is assumed to be in the data segment.

Rules 2 and 3 can be overriden by specifying a segment within the
operand. Look at Figure 6.1. Here we have defined variables in both the
data and extra segments. In the code segment, operands such as [DI},

Coding Operands 137

THE_DATA SEGMEMT ‘DATA”
TEST! 0B 1,2,3,4,3
TEST2 DB 6,7,0,7,19
THE.ONTA ENDS

1'-u5_.exrm SEGMENT “XTRA®
TEST3 D8 11,12,13,14,13
TEST4 DB 14,17,208,19,20
THE_EXTRA ENDS

Figure §.1 Defining Data in Two Segments

TEST1, TEST2[BP], IBXIISI. DS:|BP], and DS:4[BP] are interpreted as
offsets within the data segment, while operands sth_ as TEST3,
TEST4|BP}, ES:(BX}, and ES:4[BP|(SI] point 1o offsets within the extra
segment. Operands such as |BP), {BP|ISII, 4[BPjIS]) and SS:[BX] represent
offsets within the stack segment. ' _ ,

What happens if you try to override a segment with a variable operand?
The operand ES:TEST1 shows up in the object code generated by the
assembler as an offset of O within the extra segment. But, the .lmker
produces an error message indicating that the object _code contains an
impossible address. Don't try to override segment assignments of vari-
ables. _

There's one more thing to watch about segment assignments. As you
have learned, the destination of a string operation must be within 'the extra
segment. You cannot use a segment override to change_ that assignment.
That's why we usually put the same segment nurpbe.:r in DS and ES; we
want the same fields to occur at the same offsets within both segments.

A Matter of Terminology

sist simply of a data or variable name are called simple
:dngir:;i:‘;;:::::s. Thoss tylvmt include modifiers in Prackets are callefi-
indexed variable operands. An indexed variable using two registers is
called a double indexed variable operand. If you are familiar with other
microcomputer assembler languages, you have seen references to address-
ing modes such as *direct’, “indirect”, “indirect indexed”, and so on, Such
terms are not really very useful in MASM. All you really need to remember

. is that an address can consist of combinations of these four elements:

Variable name
Displacement
Base register
Index register

W b=

138

The displacement can be specified in various complex forms, but the
assembler always computes it and adds it to the offset specified by the
variable name. The contents of the base and index registers are added into
the effective address at run time.

Review Questions

Coding Operands 139

Refer to these definitions to answer the review questions:

THE_DATA SEGMENT

‘DATA’
EMPNAME DB 30 DUP("*)
EMPADDR D8 50 DUP(* ')
EMPPHONE DB B DUP(" ")

THE_DATA ENDS

In questions 1-5, code each operand to meet the specifications in the
simplest possible form.
1. Anoperand referring to the first byte of the employee address.
An operand referring to the last byte of the employee phone number.

An operand using the contents of a base register to modify the
address from question 1.

4. An operand using the contents of an index register to modify the
address from question 2.

5. An operand using the contents of an index register to modify the
address from question 3.

6. Some of these operands are incorrect. Which are incorrect and why?

A. ES:VARY

B. VARY[BXISI)
C. VARY[AX]
D. VARY[BX]IBP|
E. (BX]

Answers

1.EMPADDR 2.EMPHONE+7 3.EMPADDR|BX]or
EMPADDRI|BP} 4. EMPHONE + 7|51l or EMPHONE +7|D1] 5.
EMPADDRIBXI[SI} or EMPADDR[BX]IDI] or EMPADDRIBP}IS]| or
EMPADDRIBP|[DI])

You could have rearranged the parts involved in these answers in many
ways; the answer to question 4, for example, could be EN!PHONE[SI +7).
Throughout the book, however, we will code operands in the preferred
format: .

variable+displacement|baselli nqexl

6. A. Don't override a segment with a variable operand. C. A)_(cannot be
used as a modifying register. D. You can't use two base registers in an
operand. B and E are correct.

Symbolic Names for Constants

A variable has a value that may change during the course of the program’s
execution. A constant has a value known at the time the program is
assembled: it does not change when the program is executed. Constantsare
used in many waysin MASM source code. in each of these instructions, for
example, 4 is a constant:

MOV AL.4
MOV Al ,OUTNAME +4

MOV AX,4{BX]
Immediate data operands are always constants. This instruction:
MOV OUTMESS+32,24H

moves an immediate data value to an address in storage. In this instruction
24H is a constant. It is coded directly in the source code and never changes
and is included in the object code instruction created by the assembler.

A symbolic name or label can be assigned to a constant by using the
EQU pseudo-op. This pseudo-op has the format:

name EQUexpression

where expression is the value assigned to the name. This is not the same as
defining a variable; no space is reserved and the value assigned to the name
cannot be changed. The assembler keeps track of names and values
assigned by EQU instructions. When it encounters such a name in the rest
of the program, it replaces the name by the assigned expression. In con-
trast, when the assembler encounters a variable name jone defined by DB,
DW, and so on), the assembler replaces the name by the variable's offset
within its segment.

24H, the ASCII code for *$", is frequently used as an end-of-text mark;
let's assign it to the name EOT:

EOT EQU 24H .EOT is$

In the source code, the EQU must occur before the first use of EOT. When
the assembler encounters the instruction: ’

MOV QUTMESS+32,EOT

it replaces EOT by 24H and assembles the instruction as though it were
written:

MOV OUTMESS+32.24H '

Suppose we include this EQU for EOT in our NAME2 {see Figure 5.5)
program and use EQT in the source code like this:

NAMEPROMPT DB OAH,ODH, ‘WHAT IS YOUR NAME? * , EOT
MOV OUTNAME[BX], EOT

Coding Operands 141

When the program is assembled, the assembler handles these instructions
as in the original program:

NAMEPROMPT DB OAH,ODH, "WHAT 1S YOURNAME? *, 24H
MOV OUTNAME[BX), 24H

i ‘s’ instead of 24H; the
: hout this example, we could have used '$' ins

Irl::utltteir'lrgh:)(l);jl.eg(:lo:ode 1wc\uh::l ge the same. The assembler a_lways rePlacels
ASCII code characters, indicated by single quotes, by their numeric val-

ues.|

Why Use EQU!)
EQUSs are never necessary. Why bother w:nth them, t.hen? BecFuS:o ::; :
easier to code, read, and change programs using symbolic names tcor some

f the constants. With most CRTs and printers, two common cons ;n the,
:hose used to end a line and start a new one. We often assign these
names CR and LF:

DLINE)
ODH : CARR 1 AGE RETURN (EN
(I:.Flg Egllj OAH : L INE FEED (NEWL NE)

‘ i the beginning of
H usually moves the cursor or carnage !o ing |
ig: our?e:tt. l?nl: wulfi.le OYAH moves it down one line without changing its
h ricz‘;ntal posit‘ion in the line. On input, ODH generally'mdlcates that th(ej
"r?:tum' or “enter” key was pressed, while OAH has no universally accepte

meavl\lfflt]}gl'}these EQUs at the beginning of a program, you can use the
symb;lic names throughout the source code. It's much easier to remember

the purpose of the first two characters in:
NAMEPROMPTDBLF . CR,
than in:

NAMEPROMPT DB OAH,0CH,

142

You are also less likely to make errors in the source code when you use
names that are meaningful to you instead of numeric values.

Another benefit of using EQU becomes evident when a constant must
be changed. Consider a program that prints a report using the small (elite or
compressed) typeface available on many printers. To turn on the desired
typeface, you usually need to send a special code to the printer. For one
commonly used printer, the code is 1CH. For another, the code is OFH.
Codes for setting and using tabstops, vertical formatting, underscoring,
and other functions also vary considerably between printers. If you write
your program initially to use one of these printers, you may want to change
it later to use another. It is much simpler to change the values in a series of
EQUS than to search through the entire program for every place that you
may have used printer codes. You will still need to reassemble and relink
the program, of course, so that the new values are incorporated in the run
file.

An EQU Library

An EQU pseudo-op can be anywhere in the source code as long as it
precedes the first use of the name being defined. Since the EQU itself does
not become part of the object code or reserve any space, it does not have to
be included within a segment.

You will find that you use the same EQUSs over and over, especially
those that define CRT and printer control codes. You can write these EQUs
in a file and use INCLUDE to copy them into your programs in the same
way that you copy the macro library file. This INCLUDE usually is best
placed at the beginning of the program, before any macro definitions. That
makes it possible to use common EQU names within the macros. Figure
6.2 shows a list of EQUs that should be useful for most programs.

Computer Exercise

Enter the BQUSs from Figure 6.2 into your computer now. Use the filename
BQULIB.LIB. Check your CRT and printer manuals to see if you need to
change any of the EQUSs to use them with your equipment. '

Coding Qperands 143

87H }BEEP OR BELL
ggEP Eg'd @DH s CARRIAGE RETURN
EQT EQu 244 ;END OF OUTPUT TEXT
ESC EQU 18H ;BEGINS ESCAPE SEQUENCE
HOME EOU 8BH sCURSQR TO HOME
LF £Qu 8AH 1LINE FEED "
MEW._PAGE EQU -~ @CH ;FORM FEED FOR MOST PRINTE
phh
:Eﬂcmn :gﬂ o9H sHORTZONTAL TAB
YES) ye

Figure 6.2 A Library of Common EQUs

Advanced Uses for EQU

TMESS + 32 are also con-
In MOY OUTMESS+32,EOT, both 32 and OU '
srtlants. We could code EQUs for either or both of these constants. Let's
replace 32by MESSAGE__END:

MESSAGE__END EQU 32
MOV OUTMESS +MESSAGE_END,EOT

Can we also define a name for OUTMESS + 327 Yes, here's one way todoit:

. EQU 32 -
tﬁg? GcErEEND Egu OUTMESS +MESSAGE _END

H

MOV LAST_CHAR,EOT

i iti her one.

ice that we used one constant in the definition ?f the ot :
Thal:: :::eas long as MESSAGE__BND is defined before it's used. In addi-
tion, OUTMESS must be defined in the program before LAST__CHAR; the
assembler won't go looking through the program to find the value of

hen it's trying to evaluate LAST__CHAR.
OU\TVhlfaEtS:: w: [;ain by ussing LAST__CHAR instead of OUTMESS +32 or

ing. d this example to
ESS+MESSAGE__END? Probably nothing I use
sohlizw;ou that it can be done, but there’s no good reason to replace one

variable name by another.

Another thing to notice in the example just discussed is that in this
instance the name QUTMESS refers to OUTMESS's offset. In a code-
segment instruction, such as:

MOV AL ,CUTMESS

the value moved would be the contents at offset QUTMESS. In a data
definition or an EQU, however, a reference to a variable name always
refers to the offset of the variable. Suppose OUTMESS is at offset 0002H.
The definition:

SECOND__BYTE EQUOUTMESS +1
assigns the name SECOND__BYTE to the value 0003H. The definition:
SECOND__BYTE__ADD DW OUTMESS +1

reserves a one-word field and initializes it with the value 0003H.

So far, our EQU examples have assigned a numeric value of some kind
to a name. Most of them have been 8-bit {one byte) values such as ODH or
24H. BEQU can‘ assign a number larger than 16 bits, a maximum of
OFFFFH.

BQU can, however, be used to assign new mnemonics for instructions
{COPY EQU MOV) or symbolic names to signify complex address oper-
ands or parts of such operands (NEXT__ELEMENT EQU (BX + 8}}, and so
on. When you are ready for more advanced programming you can find
information in the MASM manual about the uses of EQU. '

Review Questions
1. Which statements are true of DB and which of EQU?

Reserves memory space for use during program execution.

—_— A

——— B. Value cannot change during program execution.
— C. Assigns a name toa variable,

—— D. Assigns apame to a consiant.

Coding Operands 145

2. A program uses a slash [/} as a separator in a date field. The program
includes these instructions [CMP is a comparison):

TEXT_DATE DB 8DUP(’’)

MOV TEXT_DATE+3, '/
MOV TEXT_DATE+5, '/’

CMP TEXT_DATEIBX|, /" ; DOES CHARACTER = /7

A. Code an instruction to assign the name “DATESEP* to /.
Where should this instruction be inserted in the program?

B. Rewrite the two MOVs and the CMP instructions above to
use the symbolic name for the separator. -

C. You decide to change the separator character to ', Assum-
ing that the changes in A and B have been made, how many
instructions must be changed? Code the revised instruc-
tion(s).

Answers

1. A. DBB.EQUC.DBD.EQU
2. A. DATESEPEQU ‘/* ;anywhere before the first use of DATESEP
B. MOV TEXT _DATR +3,DATESEP -
MOV TEXT_DATE +5,DATESEP
CMP TEXT__DATE{BX],DATESEP
C. 1; DATESEP EQU *-*

Variable Attributes:

Rach variable defined in a MASM program has three attributes: a segment,
an offset, and a type. You have already learned about the segment and
offset attributes. The segment attribute identifies the beginning paragraph

146

number of the segment within which the variable has been defined. The
offset attribute identifies the location within the segment where the vari-
able begins. The type attribute identifies the units which make up the
variable, as determined by the variable’s definition. A variable defined by
DB will be of type “byte”. One defined by DW (Define Word) will be of type
“‘word®. One defined by DD [Define Doubleword) will be of type "dou-
bleword" and s0 on. All the variables you have used so far are of type “byte”.

Remember that a variable name is the name of a data field. A label is a
name assigned to a location in the code segment. A label also has segment,
offset, and type attributes; a label's type, however, is either NEAR or FAR.
{You may need to review the material about NEAR and FAR labels in
Chapter 3.) .

MASM provides five value-returning operators that can be used to
code immediate operands with values that depend on a variable’s attribute.
One of these, OFFSET, we will discuss in detail MASM also provides
attribute-override operators that allow you to change an attribute in an
instruction; you have already learned to use a segment-override operator
{tke ES is ES:[BX], for example]. We will discuss one other attribute-
override operator, PTR. You can find the other value-returning and over-
ride operators in the MASM manual when you are ready to use them in
more advanced programming.

The OFFSET Operator

The OFFSET operator returns the offset of a variable or label. Look at this
instruction:

uov AX,OFFSET NAMEPROMPT

The second operand is evaluated by the assembler as the offset of the
variable NAMEPROMPT. If NAMEPROMPT starts at 00A2H, the
assembler processes this instruction as:

MOV AX,00A2H

Notice that OFFSET is evalusted by the assembler. OFFSET is a value
known at assembly time that cannot be changed, therefore, it is immediate
data. The format for the OFFSET operator is:

OFFSET variable (or label)

Coding Operands 147

The variable cannot be modified in any way. These instructions:

LEA AX , NAMEPROMPT
MOV AX ,OFFSET NAMEPROMPT

have the same effect during program execution. But, if you want to use a
modified address, as in:)

LEA AX , NAMEPROMPT{BX]

you cannot code an equivalent MOV using OFFSET NAMEPROMPTIBX]
-— you'll get an error message.

Where will you use OFFSET, then? For one thing, LEA must have a
register destinatioh, while MOV can use either a register or memory.
There's no way to do this:

MOV SAVE__ADDRESS , OFFSET CURRENT

in one instruction using LEA. You can use OFFSET anywhere youcan use a
word of immediate data.’ You haven't learned ADD yet, but this instruc-
tion: : :

ADD AX,OFFSET CURRENT

does just what you might expect; it adds the offset of current to the value in
AX.

The PTR Operator
The PTR {PoinTeR} operator overrides a variable's type. Its format is:
type PTR expression

Type can be BYTE, WORD, DOUBLEWORD; expression is an identifier
whaose attribute is being overriden. Let's look at some examples. Consider a

148

variable that has been defined with DW and therefore is of type *word". If
you want to access just the first byte of this variable, an instruction like
this:

MoV VARY AL

will produce an assembler error message because you can't.mix types in
MOV. You can, however, override the type, like this:

MOV BYTE PTRVARY , AL

. Similarly, a variable of type "byte” can be treated as a word if you want to
access two bytes of it at once:

- MOV AX ,WORD PTR VBYTE

PTR can be very useful in identifying the type of an address without a
vanabie. This instruction:

MOV BX].5

will produce an assembler error because the assembler can't tell if you are
moving a byte or a word. Using PTR, asin:

MOV BYTE PTR[BX], 5

will avoid the error. When you run a program under DEBUG, you will
often see unassembled instructions with the PTR operator. That's because
the variable name you originally coded isn't in the object code, just the
offset. Unless a register is one of the operands, DEBUG can only tell you
whether a byte or a word is involved by using the PTR form for unassem-
bly.

Coding Operands 149

Computing Field Length
Using the Location Counter

Sometimes we need to use the length of a field as an immediate oper-
and—most often to initialize CX for a string operation. So far, we have just
counted up the number of characters in the string, but we can make the
assembler do the counting. This not only keeps us from making mistakes,
but also makes sure that the count is changed if we change the message.
Let's use this string for an example:

MESSAGE D8 ‘THIS IS AN ERROR MESSAGE’

During assembly, a location counter keeps track of the offset assigned
to the next byte to be included in the object code. Suppose that MESSAGE
starts at offset 0010H. When the assembler is ready to process the next
instruction, the location counter is set at 0028H since MESSAGE took up 24
{0018H] bytes.

In the source code, the symbol $ can be used to refer to the current
value of the location counter. (Notice that this is not the same as the end-of-
text mark — that’s a character enclosed in single quotes, ‘$' or 24H}. We can
get the assembler to compute the length of MESSAGE and save it like this:

MESSAGE DB "THIS IS AN ERROR MESSAGE "
MESS__LEN EQU $-MESSAGE

Notice that we subtract the offset of MESSAGE from the current offset
(5). Since EQU immediately follows MESSAGE in the source code, the
location counter, and therefore §, has the value 0028H at the time the
assembler begins processing MESS__LEN, and MESS__LEN is computed
as a value 0028H - 0010H = 0018H or 24. By the way, since an EQU
pseudo-op does not reserve any space in the object code, the location
counter value is not changed; the next instruction to be assembled still
begins at 0028H.

150

We can use MESS__ LEN throughout the program whenever we need to
refer to the length of MESSAGE. Then, if we revise MESSAGE, we don't
need to change all the places we have coded the length. When we reassem-
ble the program, the assembler will recompute the length and make the
substitutions for us. That's why we do it this way instead of simply defining
MESS _ LEN as 24,

Review Questions

1. Which statements are true?
A. Both variables and labels have three atiributes: segment,
offset, and type.
B. PTRchanges a variable's type for one instruction.
OFFSET changes a variable's offset.
D. The type of a varisble identifies the units of which it is
composed, '

E. The type of a label depends on whether it names a called
procedure or the target of a transfer of control.

o

F. Avalue-returning operator is evaluated at execution time; it
may produce a different value every time the program is
rua.

2. Your program contains these definitions:

LAST_NAME OB 30DUP(’ ‘)
ADDRESS 0B 30DUP(’ ‘)
CITY DB 15DUP(’ "}
CODE_LIST D8 1,7,8,3,2

A. Code an instruction that will place the offset of
LAST__NAME into AX {using MOV).

B. Code an instruction that will place the first two bytes of
CODE__LIST into S1.

4

Coding Opcrands 151

C. Code a pseudo-op or an instruction that will assign the actual
length of CODE_LIST to the name CODE__
LENGTH.

Where should this instruction be placed in the program?

Code an instruction using CODE__LENGTH to move the
length of CODE__LIST into AX.

What value will this instruction place into AX?

Answers

1. A, B, and D are true; here’s what's wrong with the others: C. OFFSET
returns (is replaced by} the value of a variable's offset. E. The type of a
label depends on whether it is defined in the source code as NEAR or FAR.
F. A value-returning operator produces a value that is known at assembly
time and does not change during program execution. It is assembled as a
constant. 2. A. MOV AX OFFSET LAST__NAME B. MOV SLWORD PTR
CODE__LIST C. CODE__LENGTH EQU $-CODE_LIST ; immediately
followi:g the definition of CODE_ LIST; MOV AX,CODE_ LENGTH ;

AX=5

Key Points From Chapter 6

In this chapter you bave learned to use displacements and modifying
registers to code more flexible address operands and to use symbolic
pames as constants in immediate and address operands. You have also
learned to use the value-returning operator OFFSET, the attribute operator
PTR, and the location counter symbeol. Some of the most important points

from this chapter are:

B An aﬁdress operand can include modifying registers. The contents of
the modifying registers are added into the EA at execution time. The
address operand may point to a different address each time the

instruction is executed. °
B Each address operand may be modified by a base register (BX or BP),
an index register {Sl or DI}, or a combination of one base and one index

register.

152

A modifying register is coded within brackets in the address operand.
Two modifying registers can be written in any order.

An address can be modified by a specific displacement represented by
a constant. The displacement is usually wrilten as a value attached to
a variable name by “+".

There are many potential arrangements for coding the four possible
parts of an address. We recommend this format:

variable+disp|base]|index}

Each of the four parts can be omitted if necessary. Also, each of them,
except the displacement, can stand alone as an address operand if
necessary.

A symbolic name can be assigned to a constant by using the EQU
pseudo-op. After processing an EQU, the assembler replaces the

symbolic name by the constant anywhere the name is encountered in
the source code.

The EQU pseudo-op has this format:

name EQU expression

where expression can be evaluated as a constant value to be assigned
tothe name. : ')

A source-code file of commonly used EQUSs can be treated as a library
and included in a source-code program using the INCLUDE pseudo-
op.

If a variable name is part of an address operand, the address is
assumed to represent an offset in the segment in which the variable is
defined {usually the data or the extra segment). If no variable name is
included, and BP is used in the operand, the offset is assumed to be in

the stack segment. Otherwise, the offset is assumed to be in the data
segment.

Coding Operands 153

i identify the segment of an

ent-override operator can be used toiden
:dsjrg::s operand, overriding the default segment for the operax_1d. Tge
override operator should be used only in operands that do not include

avarnable name. ‘ .
Each variable and label defined in a program has three attributes:
segment, offset, and type-

i i i i ber of bytes per unit
type attribute of a variable 1dent1fies.t!1e num .
}:lrethe variable as indicated by the definition: 1 for a variable defined

by DB, 2 for DW, and soon.
The type attribute of a labelis NEAR or FAR, dependiflg on the label's
definition in the source code.

Attribute-override operators, including the segment-c_werride oper-
ator, can be used to change a variable or label's attributes for one

instruction.

Value-relumihg operators can be used to obtain the values of a vari-
able or label's attributes; the values returned are treated by the
assembler as constants.

The OFFSET value-returning operator’s format is:

OFFSET variable

The variable cannot be modified by displacements or index or pointer

_ registers.

The PTR attribute-override operators format is:

type PTRexpression

i d expression
BYTE, WORD, or DOUBLEYVORD an

Wtfel;: ttggedal:a field. The PTR operator overrides tl.le _deﬁned _type of
fh?:nﬁeld (if known); during the execution of this instruction the
operand's type will be the one specified:

B The symbol $ can be used to refer to the current value of the location
counter during assembly; this is the offset to which the next byte of
object code will be assigned. The location counter symbol can be used
to compute the length of a data field and assign that value to a
symbolic name.

The review questions that follow will help you to be sure that you
understand these key points. :

Chapter Review Questions

Coding Operands 155

Refer to these definitions to answer the questions:

THE_DATA SEGMENT ‘DATA’
FULL__NAME DB 30DUP(")
TELEPHONE DB 8DUP(-")
CODE__L1IST DB 1,1,5,0,0

1. Code operands referring to:

A. The first character of the telephone number.
B. The fourth character of the telephone number.

C. The character of the name pointed to by the contents of an
index register. ,
D. The fifth code in the code list.

E. The contents of BF and DI added to the second character of
the name. .

2. Code instructions to assign the names CR, LF, and EOT to their usual
values. For each instruction, include a comment indicating the
meaning of the pame.

3. Use the names defined in question 2 to define a prompting message
- agking for the telephone number. [Call the message TELEPROMPT}.

4. Code an instruction defining TP__LENGTH as the length of TELE-
PROMPT ([refer to question 3}.
Where should this instruction occur in the program?

5. Cede an instruction to move TELEPROMPT to OUTPROMPT. {Use
the MOVE macro defined in Chapter 5.)’

6. Code a MOV instruction to place the offset of FULL__NAME into

7. Code an instruction to place the offset of CODE__LIST into
SAVE_ LIST.

8. Code an instruction to place the EA computed from the offset of
" CODE LIST and the contents of BX into AX.

9. Code one instruction to place the first two bytes of CODE__LIST into
AY.
10. Code an instruction to place the value 53 into the byte whose address
is contained in BX.

Answers

L__NAME(S]] or
. A. TELEPHONE 8. TELEPHONE+3 C. FULL_
ll"'U:L NAME(DI] D. CODE__LIST +4 E. FULL__NAME +2[BP|{S]|

. E)
E ODH :CARRIAGERETURN (ENDOFLIN
% El'z 583 0AH :LINE FEED (NEWLINE)

EOT EQU 24H ;ENDOF TEXT MARKER (“$7)

i ly. You may have
Y bably worded your comments differently. °
u:e‘:i‘:Ir:cimn}'values {13, 10, and 36, respectively) instead of hex-
adecimal, or the ASCII value '§' instead of 24H.

3. TELEPROMPTDBLF.CR, *ENTER TELEPHONE NUMBER ‘' ,EOT
‘fou probably used a different message.

4. TP_LENGTHEQU $-TELEPROMPT
immediately following the definition of TELEPROMPT

5. MOVE OUTPROMPT,TELEPROMPT,TP__LENGTH

156

10.

MOV AX.OFFSET PULL__NAME or LEA AX, FULL__NAME
MOV SAVE__LIST,OFFSET CODE__LIST
LEA AX,CODE__LIST[BX|

Did you remember that you could not use OFFSET with a modified
address?

MOV AX,WORD PTR CODB__LIST
MOV BYTE PTR [BX],53

Decisions
and Repetitions

The design of any program can be described in terms of three types of
logical structure. Figure 7.1 illustrates the logic involved in each of the
three. The first and most obviousis a sequential structure—do a, then b,
then¢, then d, and so on. Sequential structures are not necessarily coded in
a straight line. A CALL instruction, for example, may cause a branch to
another part of the program. The order of execution, however, is always
the same: first a, then b, then c, and so on.

The second logical structure is the decision structure. Based on a test
of a current value, the program chooses one of two alternate paths to
follow. {If x = y, do a; eise do b.] Every time this part of the program is
executed, one of the paths is followed and the other is skipped. One path
may be “empty”, that is, not involve any action. (If x = y, do a; other.wise
don't do a.) We may call the test [x = y} a condition and say that a decision
structure evaluates a condition and branches accordingly (if condition is
true, do a; else do b.]

The third structure is the repetition structure, {often called a loop). In
a repetition structure, a series of instructions is executed repeatedly until a
condition is true. {Repeat a until count = 0). Sometimes, the repetition
structure is described as being repeated while a condition is true (repeat a
while count not = 0). For programming purposes, a repetition structure
can be thought of as a special case of a decision structure; one path repeats
the loop. (If condition is true, go on to b; else go back to a.)

158 .
A. Sequential
—a{ A B C b
B. Decision vEs
) A
Is
condilion
true?
M |a
C. Rapoiition

Figure 7.1 Logical suuq.u..

The design of any program can be broken down into combi
these three structures. The paths carried out by decisions andlf::eotlil;;):
Structures are largely made up of step-by-step or sequential structures
Comp[ex combinations are not uncommon, such as using decisions within
repetitions, decisions within decisions, repetitions within repetitions, and
80 on. If you have been writing BASIC programs, you have been 1‘ming
thess structures whether you realize it or not. Decision structures are
:Js;al;i mﬁ um using IF..THEN..ELSE. Repetition structures cag
wane ' THEN..ELSE as well as with FOR..NEXT and

Most of the coding you have done in MASM bas involved sequential
%c;um although you have learned two instructions for regeﬁtion:

¢ and REP, In this chapter, you will learn other instructions from
which you can bwld both decision and repetition structures. You will also
le.?m some variations on' LOOP and REP. By the time you have finished
!t,lus chapter, you wiil be ubler to implement the logical structures for any

Decisions and Repetitions 159

Making a Decision
When you plan a program, you often find situations where the current
value of a variable or a register determines the next action to be taken. One
example: in a checkbook program, if an entry is coded “D” add the amount
to the balance; otherwise, subtract it. Another example: if a loop counter is
not zero, go back to the beginning of the loop; otherwise, continue to the
next part of the program. A third: if the user inputs END when asked for a
name, branch to the program-ending routine; otherwise, do the regular
input name processing. The LOOP and REP instructions both include a test
of the current value of CX, the count register. When the value in CX is zero
the loop or the string operation is not repeated; otherwise, it is repeated.
The decision making instructions in MASM, other than LOOP and REP
and their variations, are conditional jump instructions such as JE {Jump
if Equal), JA Jump.if Above}, and so on. These instructions all have the
following general format:

cond jump target

where condjump is an instruction mnemonic and target is a label that
identifies the next instruction to be executed if the condition is true. If the
condition is not true, control falls through to the instruction following the
conditional jump. .

There are many conditional jump instructions, but at this point we will

use only JE and JA as exarples in our discussion of how conditional jumps

work.

What's the Condition?

Consider the checkbook program mentioned above. We want to imple-
ment a decision structure as shown in Figure 7.2. If the transaction code is
"Dr, transfer control to a deposit routine; otherwise, perform a withdrawal
routine. The decision uses JE. If the deposit routine begins at DEPOSIT, the

conditionnl branch instruction is:
JEDEPOSIT

But where is the condition? The only operand in the jump instruction is the
target; how do you specify which fields are to be tested?

i
_
1
|

YES
DEPOSIT

NO | WITHDRAWAL

Figurs 7.2 Checkbook Transaction Decision

The fact is that conditional jumps are always based on the status flags.
{You may need to review the material on status flags in Chapter 2.} JE
causes a jump if ZF =1; if ZF =0, control falls through to the next instruc-
tion. Similarly, JA tests the settings of CF and ZF. If both flags are set the
jump is taken. If either is cleared (equal to zero) there is no jump. Other
conditional jump instructions test other status flag combinations, but you
don't really need to learn the combinations. As you will see, the instruction
mnemonics reflect the effect of the instructions, so that you can use them
without thinking about the flags used in the actual testing process.

How do the status flags get set {or cleared) before the jump? When
‘certain MASM instructions are executed the status flags are always used to
reflect the result. None of the instructions you have learned so far affects
the flags. Generally speaking the results of arithmetic, bit manipulation,
and comparison instructions are recorded in the flags. In this chapter we

will concentrate on comparisons; in later chapters, you will learn about
arithmetic and bit manipulation.

Comparing Two Operands
CMP {CoMPare) compares two operands. Its format is:

CMPdest,source

Notice the similarity to MOV's format. The first operand, dest, may be a
register or an address. The second, source, may be a register, address, or
immediate data. As with MOV, you cannot use addresses in both operands;
the cther five possibilities are all legitimate. If you need to compare data
from two memory addresses, you will need to move the data from one
address into a register to make the comparison. Also, as with MOV, both
operands must be of the same size, either one byte or one word. If an

Decisions and Repetitions 161

i i ‘bt register or variable, the
immediate data byte is ‘compared to a 16-bi ror
hnm:c(:li:{e datais ﬁtended to 16 bits before the comparison 15 made.

A comparison s, in fact, a subtraction; the source is subtract}ed ff;om ﬁe

' ' PF, SF, and ZF) reflect the
:nation and the status flags {AF, CF, QF, PF, F,

(rl::\t:lltm 'lt}l(;: subtraction takes placeina work area; neither oper‘and actually
chang.es. The only reason for using a comparison in a program is to prepare
the flags for a decision.

The Two-Part Decision

i isi i instructions: a comparison
ction decision, then, requires two insiru
S:dr atrzon:calitionaljump. Assuming that all of the variables and labels have
been defined, we could code the decision like this:

cup TCODE, ‘D’
JE - DEPOSIT

We compare the transaction code to *D". If it matches, we jump {or branch})
to a routine to handle deposits; otherwise, we continue on to handle a non-

it transaction code.) |
depgtsxgp:.\se the program allows a transaction code of A, B, C, or D? Acode

above D is an error. We can edit the input transaction code like this:

CMP TCODE, D’
JA CODE_ ERROR

j , in, but this time if the
mpare the transaction code to “D" again, but ’
:—.{oﬁ: 'isv;:e:t)eri:an D" |'E" orabove} we go to an error routine. If the code is
i i ction.
, we continue on to the next instru

b oMakr le.::isure you know the order in which the operands are com?areg. If
scond” is a conditional term such as ("equal to”, "above”, “less than®, and so
on,) a two-instruction decision:

cupP dest,source
Jcond target

eans i i " Its i to keep this
t if dest is cond source”. It's important _

::r i ? ui:spti::)gtfagg fa above b” produces different results than testing for

b :E:re a*. Remember, the resultsalways reflect “dest cond source”.

162

Where Can You Go with a Jump?

A conditional jump's target must always be within 128 bytes of the jump
instruction in the object code. A target in this range is known as a short
label. It's hard to judge this distance exactly in the source code; anything
less than 30 instructions from the jump is usually safe. If the target is not
close enough, you'll get an error message from the assembler.

Notice that in the source code the “condition not true path from a
decision must follow the decision. The source code for the checkbook
transaction is arranged like this:

CMP TCODE, ‘D’

JE DEPOSIT
WITHDRAW: . .
; WITHDRAWAL PROCESSING GOES HERE
DEPOSIT:
. ; DEPOS T PROCESS I NG GOESHERE
CONT INUE:

; NEXT STEP AFTER TRANSACT | ON

If the withdrawal processing routine is too long, the JE instruction pro-
duces an assembler error; DEPOSIT won't be a short label. Probably the
best way to avoid this problem is to code each process as a CALLed
procedure. Then the conditional jump needs to go only to a CALL instruc-
tion, like this:

CMP TCODE, ‘D’
JE DEPOSIT

WITHDRAW:

CALL WITHORAW__ROUT INE
DEPOSIT:

CALL DEPOSIT_ROUTINE
CONT INUE ;

There's still one problem. When a withdrawal is processed, the with-
draw routine returns control to the instruction following CALL. Then,
control falls through to DEPOSIT, and the transaction is processed again,
this time as a deposit. To avoid this, we need to include an instruction that

Decisions and Repetitions 163

always transfers control to CONTINUE after the withdrawal routine is
through. An unconditional jump, JMP, is the answer. This instruction,
like BASIC's GOTO, always transfers control to its target. The format is:

-~

JMP target

The target of an unconditional jump can be anywht_ar}e in the program:; it
doesn’t have to be a short label. Our complete decision structure, then,

looks like this:

CMP TCODE, D’
JE DEPOSIT

Wi THDRAW:
CALL W|THDRAW_ROUTINE
JMP CONT INUE
DEPOSIT:
¢ N CALL DEPOSIT_ROUTINE
CONT INUE:

The unconditional jump is not only used to branch_around an altema:ue
path. Since it does not require a short label it is sometimes combined with-
unconditional jumps instead of using called procedures. The example
above could be rewritten as:

CMP TCODE, ‘D’
JE DEPOSIT
JMP WITHDRAW

IT: . .
DEPOS ... ‘“i{hedeposit routinegoeshere
JMP CONTINUE
w: . -
WITHDRA *thewithdrawal routine goes here
- CONTINUE:

You will find other uses for JMP as you continue to write programs.

T GET
——a] TRANSACTION PROCESS TRANSACTION
CODE TRANSACTION COOE
1S

NO TION
GODE
ey
YES
{continue
program

Figure 7.3 Checkbook Transaction Loop Structurs

i

Deciding to Repeat

The same combination of instructions (CMP and a conditional jump) can
be used to build a repetition structure. Figure 7.3 shows the logic for a
repetition structure that includes our checkbook transaction processing.
Transactions are processed until a transaction code of "X" is entered. Notice
that the first transaction code is input before the loop begins. After the
transaction is processed, a new transaction code is input and a decision is
made either to repeat the loop or to continue to the next part of the
program. Figure 7.4 shows the appropriate source code. The decision
routine uses CMP, JE, and JMP. JE causes control to transfer out of the loop
when the transaction code is “X"; otherwise, control falls through to JMP,
which then repeats the loop. Another conditional jump, JNE (Jump if Not
Equal) could be used in place of the combination of JE and JMP. JNR does
require a short label, 30 it doesn't work if the loop being repeated is more
than 128 bytes long.

;.‘;il..l. GET..CODE

WHAT_TRANS
ov TCDDE. D’
JE DEPOSIT
W THDRAM ¢
CalL WiTHORAAL .ROUT INE
e CONTINUE
DEPOSIT:
Call DEPOBIT_ROUTINE
CONT INUE
CALL BET_CODE
o TCODE, 'X*
JE TRANBACT IONS_DONE
JHP WHAT _TRANS
TRANSACT 1 ONS..DONE 1 .

Figure 7.4 Sowce Code for Chetikbook Tranaaction Loop

Decisions and Repetitions 165

GEY NO | PROCESS ,
TRANSACTION o TRARSACTID
CODE RA N

{conlinua program)

Figure 7.5 Logic and Souwrce Code for Test al Beginning of Loop

Figure 7.5 shows the logic and source code for another way to handle
the same situation. In this method, the loop begins by prompting for a
transaction code and then testing the code. When the code is X", control is
transferred outside the loop. Otherwise, the transaction is processed and
an unconditional jump gets back to the loop's beginning. Some program-
mers prefer to code repetition structures in this way, with the test at the
beginning. Others prefer to test at the end, as in Figures 7.3 and 7.4. We
usually use the end-of-loop test except when the first transaction may
possibly be an end marker and therefore, should not be processed as a |
transaction; then, the beginning-of-locp test is safer. The repetition instruc-
tions you have learned, LOOP and REP, both test the loop count in CX at
the end of their repetition cycles.

Review Questions

1. Which statements are true?
A. A conditional jurp transfers control to its target only if the
condition is true.

B. An unconditional jurap always transfers control to its tar-
get.

C. The target of either a conditional or unconditional jump
must be within 128 bytes of the jump instruction.

D. A conditional jump instruction compares its two operands
to determine whether the condition is true.

166

B

2. Which comparisons are valid? (Assume that OP1 and OP2 have each
beea defined by DB pseudo-ops.)

CMP AX BX

CMP AXS5

CMP 158X

CMP OP1,0P2

CMP OP1,25

CMP AL,OP2

G. CMP OP2,BH

"D 0=

3. A. Codea decision that will branch to ALLDONE if TESTER isequal
to AH.

B. Code a decision that will branch to TOOHIGH if TESTER is
above DL. .

C. Code a decision that will branch to ALARGE if AX is above
TESTER.

D. Code a routine that will call procedure ALLSAME if TESTONE
equals TESTTWO, but will call procedure NOTSAME otherwise.
Assume that TESTONE and TESTTWO have both been defined
by DB pseudo-ops. {Be sure only one of the two procedures is
called each time. Also, be sure that you use a valid pair of
operands in your CMP instruction.

Answers

1. A and B. Here's what's wrong with the others: C. The target of a
conditional jump must be within 128 bytes of the jump instruction, but an
unconditiomal jump's target can be anywhere within the program. 2. A,
B, B, F, G. Here's what's wrong with the others: C. The destination {first
operand| can be an address or a register, but not immediate data. D. Either
operand can be an address, but not both.

3. A. CMP TESTER,AH
' B ALLDONE

Note: the comparison could just as well have been the other way
arcund this time.

e ———————

Decisions and Repetitions 167

B. CMP TESTER,DL
- JA “ TOOHIGH
{Did you code the CMP operands in the right order?}
C. CMP AX,TBSTER
JA ALARGE
D. MOV AL TESTONE
CMP AL TESTWO

B CALLSAME
CALL NOTSAME
JMP CONTINX

CALLSAME:
CALL ALLSAME

CONTINX:

Note: Did you remember that you can't compare TESTONE and
TRSTTWO directly? .

Other Jumps

Figure ‘7.6 shows the most useful conditional-jump instructions. The first
column shows a mnemonic and its meaning; the second column shows an

. alternate mnemonic and its meaning. Both mnemonics represent the same

instructi uce the same translation into object code. It's
:21.3: choicecvt:z?cha?:)ep ;gs use. Generally, I use the simpler versions from
the first column. In the last group, 1 usually use JE and JNE .after com-
parisons and JZ and JNZ after arithmetic instructions because it seems to
make more sense when reading the code [ifa = b ... for comparisons and if

i rithmetic).

mn'll‘lil‘:m::;om ine:ig,ure 7.6 are divided into thrge groups. Thg first
group {JA, JB, JNA, and JNB| are used after operations involving uns!gn::
numbers. The second group (JG, JL, JNG, JNL} are used after s::g:;
pumber operations. The third group (JE and JNEj can be used after either

signed or unsigned operations.

Signed and Unsigned .

i
Let's review signed and unsigned numbers quickly. Remember that the !

igh-order bit of a signed number is used to identify the_e number as posin:ve ;
?ry;egnﬁvzla: hi:h?zrdn bit with a value of zero indicates a positive

168 .

Groyp Inatruction Alternute Yergion
Tt Unsigned JA (Jump if Aboue) JNBE (Jump if Not Balow or Equal?
’ JB (Jump i+ Below) WNAE (Jump if Not Above or Equal)

JNA (Jump if Not Above} JBE (Junp L Below or Equal)

JNB (Jump ¢ Not Below) JAE (Jump if Above or Equal)

tl: Signed J6 (Jump i Grester) JNLE (Jump if Not Less.or Equal)
JL (Jump if Less) JNGE (Jump if Not Greater or Equal)
MG (Jump if NOt Grester) JLE (Jump i4 Less or Equal)

JNL (Jump if Nat Lesed JGE (Jump if Greater or Equal)

11l Any JE (Jump i¥ Equal) JZ CJump if Zeror

JNE {(Jump if Not Equal} JNZ (Jump if Not Zero)

Figure 7.8 Conditiona! Jump Instructions

number, while a value of one indicates a negative number written in twos-
complement format. One-byte {8-bit) signed numbers can range from — 128
{80H] to +127 (7FH). OFFH represents — 1, so OFFH is less than OH when
comparing signed numbers.

In unsigned numbers, all bits are used to represent magnitude (size or
absolute value). Unsigned one-byte numbers can range from 0 [00H] to 255
(OFFH), so OFFH is greater than OH when comparing unsigned numbers.

How do you know whether you are dealing with signed or unsigned
numbers? And how do you compare nonnumerics such as ASCII charac-
ters? Remember that ASCTI code assigns a pumeric value to each character,
(Appendix A contains more information about ASCII character codes.)"A",
for example, has a value of 65 (41H), while “a"is 97 (61H}, and *$"is 36 {24H).
This means that "a*is above “A*, while "$* is below “A*. Since IBM uses a full
eight-bit ASCII code, the high-order bit is not a sign bit; you can compare
ASCII coded characters as unsigned numbers. Because of the way that
code values are assigned, you get the right results when you compare
decimal digits to each other, or uppercase letters 1o uppercase letters, or
lowercase to lowercase. It's not so simple to compare strings containing
uppercase to lowercase, or letters to numbers, or special symbols. Even in
these cases, however, it's casy to see whether or not two characters are the
same; comparisons for "equal” or “not equal® work perfectly well.

Numbers stored in binary format can be signed or unsigned. If you
know that a value is always positive, you can treat it as unsigned; if it might

Decisions and Repetitions 169

be negative, assume that you are dealing with a signec'l number. Handlix_)g
numbers larger than 16 bits requires advanced techniques; we won't dis-
cuss them in this book.) .

Why do you need two sets of conditional jumps? What happens if you
code the wrong one? CMP, like most other flag-setting instructions, affects
all six of the status flags. You learned earlier, however, that SF and OF h_ave
meaning only when they reflect the result of a signed number operation,
while CF has meaning only when it reflects the result of unsngned opera-
tions. (ZF is significant after both signed and unsigned operations. PF and
AP are not relevant for this discussion.] JA, JB, JNA, and JNB test CF when
deciding whether to branch.]G, JL, JNG, and]_NL test §F and OF. If you
code an inappropriate conditional jump there is no obvious error, but at
execution time the wrong flags are tested and the wrong decision may be
made. Look at this code:

CuMFP AX,OFEH
JA AHIGH

As an unsigned number, OFEH is 254 (in IBM/PC ASCII code this is a
special graphics character). If AX centains 0 the jump is not la}ien {0 is not
greater than 254). If]G is used instead of JA, hovt:ever, the testis b.ased ona
signed comparision. Asa signed number, 0OFEH is — 2. If AX conta'ms 0, the
jump is taken (0 > - 2}. If you are testing a program and it doesn’t seem to
be branching correctly, make sure you are using the right conditional

jumps.

Review Questions

1. Indicate whether each conditional jump is appropriate following
operations on signed or unsigned numbers. .

A JA
—— B JNL
—_C JZ
—_DJG
——E JB

F. JNA

170

2. Codearoutine that will call procedure NOCAPSif an input character
(INCHAR) is above “Z° and, otherwise, will call procedure CAPS.

3. Codearoutine that will call procedure TOOLOW if the value in AL is
less than 3 {note: the value in AL can range from — 128 to 127).

Answers

1. A. Unsigned B. Signed C. Both signed and unsigned D. Signed E.
Unsigned F. Unsigned

2. CMP INCHAR, 2’
' JA INCHAR__OVER__Z
CALL CAPS
JMP CONTINUE
INCHAR__ OVER_Z:
. CALL NOCAPS
CONTINUE: .
3. CMP AL3
JL '~ UNDER3
: JMP CONTINUE
UNDERS3:

CALL TOOLOW
CONTINUE:

Notice the empty path when AL is not less than 3.

Comparing Strings

A special set of instructions is used to compare multi-byte strings justasa
similar set is used to move such strings. [You may need to review the
material on MOVSB and REP in Chapter 3.) The comparison instruction,
Ch_APSB. has no operands. It compares the byte pointed to by DI to that
pointed to by SI (thereby affecting the status flags, but not changing either
byte) and then changes the contents of DI and SI by one. DI must pointtoa
byte in the extra segment. This is similar to MOVSB, but with one major
difference. For MOVSB, SI points to the source and DI to the destination of

. Decisions and Repetitions 171

I. Compare brtes pointed to by Ssi and DI
2. Set flaas according to result of comparison

1# DF=8, incrament SI and DI

w

1§ DF=1, decrement Sl and D1
ODecrement X

(4 ZF = 8 ao to step 8

4
3
&, 1§ X =08 Qo to step O
7 6o to step 1

8

Comparison operation has ended; continue with pragram
Figure 7.7 Execution of REPE CMPSB

the move. For CMPSB, the roles of S1 and DI are reversed. This 15 import_am
when you consider how to interpret the result of CMPSB. This combina-

tion: -

CNPSE)
Jcond target

to the target if dest cond source,” but dest is pointed to by Sl and
:ﬁlu:rpbl. Why t%us reversal? 1 don't know; T only know that that’s how
it works. _ i

As with other string operations, a prefixis used tocause the operationto
repeat. The comparison should be repeated until unmatched bytes are
found or until the maximum pumber of bytes have been compared. CX is
used as a repetition counter. The maximum number of bytes to be exam-
ined is loaded into CX before the string comparison begins. After each
comparison [and change to SI and DI}, CX is decremented; when CX
reaches zero the comparison ends.

In order to cause the comparison 1o end when u:}cqual bytes are
compared, we use & variation of REP. REPE (REPeat v_whxle Equa}] checks
ZF, which reflects the result of the most recent comparison. 1f ZF is set, the
bytes just compared are equal and the comparison continues unless the
last byte has been compared). If ZF is clear, the comparison ends. Figure
7.7 shows the steps in the execution of:

REPE CMPSB

172

PAGE

»132

INCLUDE FIRSTLIB.LIB

i
PROG_STACK SEGMENT STACK ‘STACK’

1]
PROG_STACK ENDS

&4 DUP (“BTACK ‘)

§
PROGL.DATA SEGMENT “DATA’
SAH,0DH, “WHAT 15 YOUR NAME? 7 24M

NAMEPROMPT DB
OUTMESS DB

ENDINPUT DB

PROG_OATA ENDS

8AH,B0M, ' KELLO, -
233 DUPC >

259

P

253 puP(” *»

“END OF PROGRAM-, 24H
IEND L4

PROG_CODE SEGMENT -CODE’
MAINLPROG PROC FAR

- ASSWME C8:PROGLCODE,DS

STARTER

CALL PROMPTER

CALL GETNAME
NAME_ROUT INE s -

CALL MOVENAME

MOV cx,5
PRINTLOOP :

PISPLAY DUTHESS

LOOP PRINTLOOP

CALL PROMPTER

CALL GETNAME

LEA SI, INNAME

LEA 01 ,END INPUT.

MOV €X, 4

REPE CMPSB

JE ENDPROO

JP NAME.ROUT INE
ENOPRCO:

CaLL FINAL

RE

- T
MAIN_FROG BNOP

¥
1]
FINAL PROC

LOCATE 24,8
" CURSORCFF
DISPLAY ENOMESS
RET
FINaL ENOP
3
GETNGHE PRODC
PUSH AX
PUSH DX
MOV AH, 8aH
LEA DX, INBUF
INT 21H
POP bX
PoP pe
RET
GETNAME ENDP

3 PRDG..DATA +881PROG_STACK ,ES 1 PROG_DATA

tPROMPT FOR FIRST NAME
IGET NAME INPUT

IHOVE NAME TO OUTPUT LINE
ILOAD COUNTER FOR PRINTLOGP

IPRINT NAME MESSAGE
1 AND REPEAT CX TIMES
$PROMPT FOR NEXT NaME -

1TEST FOR END OF INPUT

ITHEN RETURN TO OPERATING SYSTEM

1GET STRING FROM KEYBMRD/ECHO

IADORESS OF INPUT BUFFER
jDo8 -

Decisions and Repetitions 173

MOVENAME PROC
PUSH BX
g 1Y BH,0H §SET COUNT FOR HMOQVE
HOV 1., INCOUNT
MOVE OUTNAME , INNAME . 8X
Mo OUTHAMEL BX], 24H NEXT CHAR 1S 9
PoOP BX
RET

MOVENAME ENDP

'
PROMPTER PROC
CLS
CURSORON
LOCATE 10,8
D1SPLAY NN'tEPRﬂ‘IPT
RET
PROMPTER ENDP

P
PROG_CODE ENDS
END MAINLPROG

Figure 7.0 NAMEX Repeated until Ended by User

When this instruction is used in a program, the instruction should be
followed by one or more conditional jumps to determine the circumstances
under which the comparison ended. If the comparison ends with ZF set,
the compared strings are identical. If ZF is clear, they are not identical.
Other tests can be made if you need to determine which string was above
or below the other. SI or DI can be used to identify which bytes don‘t
match. But, remember that both index registers have been changed and
now point to the next pair of bytes, the ones which would have been
compared next.

String comparisons can be used for a routine to recognize a predefined
end message typed by a user in response to a prompt. Figure 7.8 shows
NAMEX modified to use such a routine. The program will continue to
prompt for names until you respond with “END *,

Figure 7.9 shows part of a sort routine. Two strings are compared; if
they are out of order, an exchange procedure is called.

s s

LEA 51 ,CURR_STRING
" LEA D1 ,NEXT_STRING
MOV CX , STRING_LENGTH
R‘:;E g‘::?uus t1F CURR NOT ABOVE MEXT SKIP SwWAP
CALL SWAP_STRINGS
CONTINUE 1

Figure 7.9 String Comparison for Sot Routine

174 ‘Decisions and Repetitions 175
Review Questions 64 DUP (*STACK)
PROG__STACK .
‘ ENDS
1. Using the MOVE macro from your ibrary as a guide, define a macro PROG_DATA
. wye 3. M ‘BT TA’
that can be used to compare strings. The definition should start with: SEGNAFENET s DB OAH,ODH, ‘NAME: *,24H
' PHONEPROMPT DB OAR,ODH, -PHONE NUMBER: ', 24H
COMPARE MACRO F | RST , SECOND, COUNT ENDMESSAGE DB 'GOODBYE’,24H
OUTL INE DB OAH,0DH
. OUTPHONE D8 8DUP(' *)
Remember to initialize SI, DI, and CX before making the compari- %m‘éﬁ gg g{’gz;(,)
sion. Include this macro in your macro library. | NBUF DB 31
. . . T 0B ?
2. Revise PHONER to continue prempting for names and telephone :ﬁ%’:\' DB 31DUP(* ')
numbers until a predefined message is input. In our version, as PROG__DATA ENDS
gw; .m the answer to this question, the predefined message is 'ALL PROG__CODE SEGMENT co?-'EAR
o " :Asé:?e CS: PROG_CODE , DS: PROG_DATA, $5: PROG_STACK, ES: PROG_DATA
R
Answers : : . ,;S;IQRTE
: CURSORON
LOCATE 10,0
MOV cx,3
_ 1. COMPARE MACRO FIRST.SECOND, COUNT WA INLOOP -
‘ PUSH S| CALL GETNAME PROMPT , INPUT , AND MOVE RAME
& CALL GETPHONE : PROMPT AND | NPUT PHONE
PUSH cX DISPLAY OUTLINE :DISPLAY LINE
LEA D1, SECOND ‘LOOP MA { NLOOP . ANDREPEAT PROCESS
% $!1,FIRST CALL FINAL : THEN RETURN TO OPERAT ING SYSTEM
. ' RET
REPE CMPSB
REP - _ MAIN_PROG ENDP
POP ol . .
FINAL PROC
poP st LOCATE 23,10
: ENDM DISPLAY ENDMESSAGE
2. PAGE .132 CURSOROFF
; INCLUDEFIRSTLIB.LIB RET
" GETDATA MACRO INBUF,COUNT. . FInAL ENDP
PUSH AX GET PROC
PUSH ox GETRANE PUSH BX
MOV AH, OAH :GET STRING FROM KEYBOARIVECHO DISPLAY NAMEPROWPT
LEA DX, 1NBUF s ADDRESS OF INPUT BUFFER GETDATA INBUF 31 : PROMPT FOR NAME
NOV INBUF, COUNT :SET INPUT S) ZE FOR NAME NOV BH, OH iGET NAME |NBUFFER
INT 214 ;008 :
POP DX
POP AX
ENDM
PROG__STACK
SEGMENT STACK *STACK'
|

176
MoV BL, INCOUNT « SET UP NAME COUNT
MOVE OUTNAME , | KDATA , BX : MOVE NAME TOPRINT
PHO,: OUTNAMEIBX], 24H {NEXTCHAR IS S
BX

RET
GETNAME ENDP

GETPHONE PROC
DISPLAY PHONEPROMPT : PROMPT FOR PHONE
GETDATA INBUF .9 +GET PHONE | NBUFFER
gE OUTPHONE , INDATA,8 ;MOVE PHONE TO PRINT
GETPHONE ENDP

PROG__CODE ENDS
END MA |N_PROG

Computer Exercise

Assemble, link, and test the new version of PHONER that you wrote in the
answer to the preceding review question.

Other Variations for Repetition

REP has three other variations. The first, REPZ (REPeat while Zero)isan
alternative mnemonic for REPE; it produces the same object code and is
really the same instruction. REPNE [REPeat while Not Equal} can be used
to find the first matching byte in two strings; it tests ZF and continues to
repeat if ZF is cleared. Its alternative mnemonic is REPNZ {REPeat while
Not Zero).

LOOP also has four variations: LOOPE, LOOPZ, LOOPNE, and
LOOPNZ. These, like REP's variations, test both ZF and CX. LOOPE
(LOOP while Equal) and its alternate LOOPZ {LOOP while Zero} end the
hopwhenCXismouwhenaninstmctionwithinthe loop clears ZF,
LOOPNE (LOOP while Not Bqual] and LOOPNZ {LOOP while Not Zero)
also are alternates; they end the loop when CX is zero or when ZF is set.

Decisions and Repetitions 177

HOV Cx. 99

. CALL GET_CQDE
WHAT_TRANS;
cHP TCODE. D’
JE DEPOSIT
WITHDRA
CALL WITHORAWAL - ROUT [NE
JHP CONT INUE

DEPOSIT:
caLl DEPOSIT_ROUTINE
CONT INUE :
’ CALL GET_CODE
P TCODE, “X*
LOODPNE WHAT_TRANS
TRANSACT I ONS_DONE 3

Figure 7.10 Checkbook Transactions with LOOPNE

Figure 7.10 shows the routine from Figure 7.4 rewritten_us'mg LOOFNHI.E.
The checkbook routine now ends either when a transaction code of *X" is
entered or when 99 transactions have been processed.

Key Points From Chapter 7

In this chapter you have learned to use comparisons, cor}c!itiqnal j umps,
and the unconditional jump instruction to implem_ent decnsnoxll and repeti-
tion structures, You have also learned to code string comparisons and to
use variations of the repetition instructions REP and LOOP. Now you
should be able to code the logical structure for any program. Some of the

main points in this chapter are:

B The status flags are set (or cleared] to reflect t.he result of a com-
parison, arithmetic, or bit manipulation instruction. A comparison is
actually an implied subtraction of the second ogerand (source} from
the first [destination] and affects the flags accordingly.

B A conditional jump instruction tests the status flags. If the flag s'e'ttin.gs
imply that the result of a previous operation ma.tched the condition in
the jump instruction mnemonic, the condition is true and t:he jump is
made. Otherwise, control falls through to the next instruction.

B The instructions JA, JB, JNA and JNB and tllleir alternate form.s test
CP, they are used after flag-setting instructions involving unsigned
data such as ASCII characters.

178

8 The instructions JG, JL, JNG, and JNL and their alternate forms test
SF and OF; they are used after flag-setting instructions involving
signed numbers.

B The instructions JE, JNE, JZ and JNZ test ZF; they are used after any
flag-setting instructions.

8 The target of a conditional jump must be a short label. A short label
identifies an address within 128 bytes of the jump instruction in the
assembled object code.

B A decision requires the selection of one of two alternate paths based
on the current value of a variable or register. One of the paths may be
empty. .

B In MASM source code a decision requires two instructions; one sets
the status flags based on a current value and the other is a conditional
jump that tests the flags. When the condition is true, control is trans-
ferred to one of the alternate paths. When it is not true, control falls
through to the other path.

B An unconditional jump, JMP, transfers control every time it is
executed. Such a jump can be used to avoid falling through from one
alternate path to another. .

B A repetition structure can be coded as a special case of a decision
structure. One alternate path isarepetition of the loop. The other path
falls through to the instructions following the loop. Two special
instructions, REP and LOOP with their variations, are used only for
coding repetitions. '

B A multi-byte string can be compared using CMPSB. The beginning

. address of the source must be loaded into DI and that of the destina-
tion into SI before the comparison is made. The maximum number of
bytes to be compared must also be loaded into CX.

8 One of the variations of REP must be coded as a prefix for the CMPSB
instruction. The combination instruction will compare bytes until CX
is O or until ZF is set (for REPNE and REPNZ} or cleared (for REPE and
REPZ)]. The next instructions must test to see why the repetition
ended.

B LOOP also has variations similar to those for REP. They can be used to
code loops that will end either after a given number of repetitions or
when a specified condition is met.

Decisions and Repetitions 179

Chapter Review Questions

1.

3, Code the approp

Match each type of instruction to the appropriate phrases. Notall the
phrases are used; some are used more than once.

A. Conditional a. Affects flag settings
jump b. Testflag settings . o
B. Comparison ¢c. Transfers control if condition is met
C. Unconditional d. Always transfers control
' jump ~e. Twooperands
f. Oneoperand
g Target mustbe within 128 bytes
h. Target may be anywhere in program
i. Always follows a comparison
Would JA or JG more likely be the correct instruction to follow CMP
AX,-5?

To follow CMP FIRST__CHAR,'Z?

riate routines for each of the situations below.

Assume that all variables used in the decisions have been defined

with DB pseudo-ops.
A. Branch to OVERM if INCODE is above [or greater than)
M. -
. B. Branch to TOOLOW if BALANCE is less than {or below}
zero.

C. Call YES procedure if INCODE is *Y*; otherwise call NO.
D. Repeat a procedure that calls SETTOT until TOT equals
seven. .
i DE and
ine to compare two 3-byte strings, C-)LD-_CO |
. CN%dV‘:Ia gg]t;ge D(:m't ugear the COMPARE macro in this routine. If

OLD_CODBE is above NEW__CODE, perform procedure

inui i
’ LESS before continuing to the rest of the pr?gram (
gg-CODE is equal to or below NEW__CODE, don't perform

NEW__ LESS, just continue with the program.}

180

Answers

1. A.b,c.f.gB.a,eC.d, £, h;iisnot used

2

3.

- JGJA

A. CMP
JA

. B. CMP
JL

C. CMP
JE

INCODE, M’
OVERM

BALANCE,0
TOOLOW .
INCODE, Y’
CODE_NO

CALL YBS

JMP
CODE_ NO:

CONTINUE

CALL NO

CONTINUE:

You undoubtedly used different names where I used CODE__NO
and CONTINUE.

D.

MAINLOOP:-
CALL
CMP
JNE
LEA
LEA
MOV
REPE
JA

CONTINUE:

SETTOT

TOT,7
MAINLOOP
SLOLD__CODE
DILNEW__CODE
CX5

CMPSB

NEW_ LRSS

—

8

Using
the Manual

ed instructions to provide the framework and structure of a
mshn;v;i::m, to transfer control both conditionally and uncondi-
tionally within the program, to use the stack, s:md to move ancil compare
data. In Chapters 9 and 10 you will learn some arithmetic, II_)lt testing and bit
manipulation instructions. With all that, however, you still wnll.nc'at know
all of the MASM instructions. Even some you do know have vanatfons we
are not covering. After Chapter 10, we will not present any new instruc-
tions. Instead, we will concentrate on presenting information and sample
routines needed for functions, such as numeric conversxo:‘xs R otht?r types of
L/O, especially disk I/O; and how to inlerface MASM routines with BASIC
pmﬂ:ﬁsa.re you going to learn the rest of the MASM 'u_lstructicms and their
variations? That's the point of this chapter. You wﬂl learn a t:ew new
instructions, but most importantly, you will learn to interpret the mff)nm}-
tion in the MASM manual 50 that you can learn material not covered in thls

book.

182

A Look at the Manual

Let's look at what the MASM manual contains. We won' try to furnish page
or chapter numbers. You may have a different version of MASM than we
do, and the numbering may not correspond to ours. Your version may also
include features not discussed in this chapter. But, you should still be able
to find all the things that we mention.

Look at the table of contents. The manual contains chapters on formats,
pseudo operations, and instruction mnemonics {among others). There isan
appendix about messages, one that summarizes the instruction set, and one
that summarizes the pseudo-ops. These six divisions (three chapters and
three appendices) contain most of the information you need for MASM
programming, so we'll look at each of them.

Assembler Language Format

Look in the table of contents at the headings under the Assembler Lan-
guage Format chapter. You should recognize most them: Constants,
Variables, Labels, Flag Registers, Operands, and so on. A quick glance
through the chapter shows that it contains much that you already know,
but there is some additional advanced material. Look at the section titled
Value Returning Operators, for example. You will find the OFFSET oper-
ator, which you know, but you will also find others (SEG, TYPE, LENGTH,
and SIZE) that you bave not yet learned. Another section, Record Specific
Operators, is all new to you; it describes operators that are to be used with
data forms defined by the RECORD pseudo-op. We don't cover RECORD
or record specific operators in this book. You may want to skim the entire
chapter to make yourself familiar with terms used in the rest of the
manual. :

Pseudo-Operations

This chapter describes all of the MASM pseudo-ops. As you can see from
the table of contents, these pseudo-ops are presented alphabetically within
groups.

The first group, data pseudo-ops, includes those pseudo-ops used to
define and handle data fields, names, and structures. You already know
some of these: ASSUME, DB, END, EQU, INCLUDE, PROC {and ENDP},
and SEGMENT (and ENDSJ. You can see that others not yet covered. Let's

look at one that we have mentioned, but not covered in detail: DW [Define
Word).

Using the Manual 183

The DW Pseudo-Op ‘

- Turn to the description of DW. At the head of the page you will see th

mnemonic and its meaning. Next, there is a short statement of the purpose
of the pseudo-op. You can see that DW serves the same purpose as DB,
except that DW allocates one word [two bytes) instead c?f one byte. Follow-
ing the statement on purpose, you will find a generalized format for the
pseudo-op. The format given for DWis:

variable-name DWexpression

The format is followed by remarks that clarify the purpose, f0@at, and use
of the pseudo-op. In this case, the remarks begin by telling you that
variable-name is optional. When DW is used without a name, it sunply
reserves and possibly initializes memory space. V_Ihen used with a name, it
defines that name as a variable with the type attribute WORD.

The remarks also define possible ways to code the expression part of
DW. The last part of the description contains source-code examples. You
will find it easier to understand some of the rema:ks_xf you refer.to the
examples; the formal language used in the remarks section may be difficult
to follow. Some pseudo-op deﬁnit:ons don't include examples. Usually,

simpler or less variable formats.

mesgoh:;;?are tlf:: remarks and examples for DW to those for DB. You wiil
see that DW can be initialized as an address expression although DB
cannot. {An address won't fit into one byte.I_Dl? can be initialized w1.th a
character string {“ABCDE"), DW cannot. DB is limited to constants with a
value of 255 or less, DW is not. Since you already knov_v how to use DB, the
information given for DW {and the contrasts to the information for DB)
should enable you to use DW in your programs. .

Other Pseudo-Ops .

in this chapter include conditional, macro, listing, and false
ﬁgﬁg;g:lp;sl:umps. lE‘Jonditional and false conditional pseudo-ops are
beyond the scope of this book. You have lcam.ed three macro psuedo-ops:
MACRO, LOCAL, and ENDM. When you gain more MASM experience,
'you may find some of the other macro pseudo-ops useful in defining
complex macros. The listing pseudo-ops control the assembler listing. You
aiready know one of these: PAGE. Most of the others include or exclude
portions of the program from the listing, print a heading on each page, and
* o\te'll skip over the instruction mnemenics chapter right now and come
back to it after we discuss the three appendices.

184

Messages -

This appendix begins by describing the messages that are printed by the
assembler. Notice that if you use ASM, only error codes are displayed and
printed; therefore, you will have to look up the codes in this appendix.
With MASM, both error messages and codes are inserted in the listing and
displayed on the screen.

For each error code, the appendix shows the message printed by MASM
for that code and an amplified explanation of the error. In some instances,
the explanation is not much different from the message, and, in uny case,
the message says it all. Look at code 9, for example. The error message is
“Symbol not defined®. The explanation is “A symbol is used that has no
definition.” [n other cases, the explanation is a little more complete or
provides an example. Look at Code 58. The message is “Byte register is
illegal". The explanation provides an example, “PUSH AL‘. PUSH works
only with 16-bit registers; the 8-bit registers [AL, AH, and so on) are illegal
with this instruction. :

The next section of the appendix deals with I/O handler messages.
These are runtime errors. When one of these errors occurs in a program
assembled with MASM, an error code, message and filename are dis-
played. With ASM, only the filename and code are displayed; you will need
to lock up the corresponding message in this appendix.

The last section of the appendix lists other runtime errors. These have
no code numbers, they rarely occur, and you may never see them.

Instruction Set Summary

This appendix lists all of the MASM instructions. At the beginning of the
appendix, you will find an explanation of the codes used in the summary.
The instructions are arranged in alphabetical order by mnemonic. The first
line for each instruction shows the mnemonic, followed by the operard
field format, and then the meaning of the mnemonic. This is followed by a
table showing possible operand combinations. For each combination, the
table shows the number of bytes of object code generated by the instruc-
tion and an example of the instruction using this combination of operands.
The final column in the table shows which, if any, of the status flags are
affected by the instruction. This column is not related to the operand
combinations. The same flags are affected regardless of the operands used.

When would you use this summary? When you're not sure of an
instruction mnemonic, when you want to find out quickly whether an
instruction exists that does what you want to do, when you want to see if a

Using the Manual 185

particular combination of operands is legal with a certain instruction, and
when you want to know if an instruction affects the status fla_gs. For more
detail about the purpose, coding, and operation of an instruction, goto the
instruction mnemonic chapter.

Pseudo-Operations Summary

This; appendix lists the pseudo-ops in groups just as thg pseud(?-operations
chapter does. It doesn’t tell you much about them; it simply gives you the
format for each one. For more detail, go tothé pseudo-operations chapter.

Instruction Mnemonics

The chapter on instruction mnemonics contains descr'iptions c_)f each
MASM instruction. It starts, however, with t.wo general' mformaho'n sec-
tions that explain the symbols and codes used in tl‘ne_descr.lptmns._Let s look
at these sections briefly before we look at the mtfhvndunl instructions.

Symbols and Notation

i i lains the abbreviations and symbols used in the descrip-
El;:s.s;ztl;?: oef?;\c symbols are self-evident. By now you can recognize the
meanings of AX, AH, AL, and so on. Some symbols are easy to u_nderstan.d
once you look at the definition. REGS, _Ior emple. stands for any 8-bit
register while REG16 stands for any 16-bit register. "

Some of the symbols may not mean much to you even after youread the
description. Look at r/m. The explanation says that r/mreferstobits 2,1, 0
of the MODRM byte and that, combined with the .mode .and w.ﬁeld_s, r/m
defines EA. This will make more sense after the discussion of instruction

fields, below.

Instruction Fields

i dividual instruction description there is an entry labeled “encod-
Iul:ge"ac '?hl?sdle‘?:tlry describes the object-code instruction created _by the
assembler. The MASM programmer does not usually care about.tlus mfo-r-
mation; after all, the purpose of using the _nsse::nbler language is to avoid
having to deal with or interpret object-code du_cct]y. If you‘do want to
interpret the encoding entry, however, you will need Ehe mformauo_n
about formats and codes found in the instruction field section. Welllook it
over quickly and we'll see some examples in individual instructions.

186 .

An object-code instruction contains one to six bytes. They are, in order,
an operation-code-byte, an optional addressing-mode-byte, an optional
ane- or two-byte displacement, and an optional one- or two-byte immedi-
ate data value.

The operation-code-byte corresponds to the specific 8088 instruction to
be carried out. The operation-code-byte for JMP, for example, is OFFH; for
JE or JZ. OE4H. The addressing-mode-byte describes the operands. The
remaining bytes contain the address for an address operand and the imme-
diate data for an immediate-data operand. -

Both the operation-code-byte and the addressing-mode-byte can
include subfields containing specific codes affecting the interpretation of
the object code. The most common subfield in the operation-code-byte is
the word field {w). When present, this field is usually in the low-order bit.

When w is 0, the instruction invalves 8-bit {one byte] operands; when wis

1, it involves 16-bit {one word) operands. For example: the operation-code-
byte format for the instruction that moves immediate data to memory is
1100011w. This means that' when a word is moved, the operation-code-byte
is 1100CLIB [0C7H); when a byte is moved the operation-code-byte is
1000UOB {0C6H). The encoding entries for some instructions show other
subfields such as *d” or "reg” in the operation-code-byte. You can find the
subfield's meaning in the symbols and notations sectien.

The second instruction byte, the addressing-mode-byte, is entirely built
from subfields—usuaily mode, reg, and r/m. [The symbols and notation

section contains definitions in which this byte is called the MODRM byte.)

The mode field is the two high-order bits of the addressing-mode-byte.
The primary use of the mode field is to specify whether the instruction
includes one, two, or no displacement bytes, and whether the displace-
ment represents an address or immediate data. The three low-order bits of
the addressing-mode-byte often contain a three-bit code called the register-

/memory field, or r/m. {If the mode field is 11, then a three-bit register code-

is in this position instead.) The r/m code field identifies which combination

_of registers is used to modify the displacement when calculating EA. In
many instructions, the three middie bits of the address-encoding-byte are
not used; they contain zeros. Some instructions, however, require both a
register and an r/m code. In these, the three middle bits contain the register
code. This section of the manual lists both the register codes and the r/m
codes. Register code O11, for example, refers to BX. R/m code 011 specifies
that BA is calculated by adding the contents of BP and DI to the displace-
ment.

Using the Manual 187

‘We'll look at some specific instructions, including their encoding
entries, after some review questions.

Review Questions

1. Where would you look for each of these items? Choose your answers
from this list:

Assembler language format chapter

Pseudo operations chapter

Messages appendix

Instruction summary appendix

PO - S O -

Pseudo operations summary appendix

An explanation of an error code from the assembly listing
The format of PAGE

A description of value returning operators

The flags affected by CMP -

The meaning of a runtime error code

The mnemonic for a conditional jump instruction

A description of the use of PAGE

Om@mpdOE>

s

2. Which statements are true of DW and which of DB? [Some may be
true of both DW and DB, some of neither.} '
A. Reserves and optionally initializes memory
Can be initialized as an address expression
Can be initialized with a character string
Can be initialized with values over 255
Can define a variable name

w0 0w

188

3. Match each phrase with its function. Same phrases may not be used.

— A, Describes oper- a. Operation-code-byte
—_ ands b. Symbols and notations
—— B. Describessizeof ¢, Addressing-mode-byte
- operation d. Mode field
—-— C. Defines instruc- e. Word feld
—— tion f. Register field
—— D. Indicatesregister g. R/m field
——— E. Indicate EA

computation : -
—— F. Indicates pres-

ence of dis-

placement bytes

Answers

1. A.¢c;Bbore,C.a;D.d;B.¢;F.d;G.b
2. A.both;B.DW ;C.DB;D. DW :E. both
3. AcB.e;C.a;D.f;E.g:F.d;bisnotused

Instruction Descriptions

The instruction mnemonic descriptions, like the pseudo-op descriptions,
include purpose, format, and remarks entries. The descriptions also
include the encoding entry and a flag entry, which lists the flags affected by
the instruction’s execution. Most descriptions also include source-code
examples and a logic entry, which describes the steps taken in executing
the instruction. Let's look at the descriptions of some instructions you have
already learned. '

A Description of LEA

Find the description of LEA. Look at the heading, purpose, format, and
remarks entries. These serve the same function as similar entries in the
pseudo-operations chapter. The logic entry reads *|REG)=EA". Tuming
back to the symbols and notation section, you will see that the parentheses
indicate that the instruction is concerned with the contents of a register.

Using the Manual 189

The logic entry, then, says that this instruction sets the contents of a
register equal to an effective address. From the previous entries you will
see that the register is specified in the first operand, while EA comes from
the second operand.

The flags entry tells you that no flags are affected by LEA. The encoding
entry shows two bytes for LEA's object code. The first, the operation-code-
byte, is 10001101B (8DH). The second byte contains a mode field, a register
field, and an r/m field in that order. Mode is always two bits and r/m three
bits; this leaves three bits for the intervening register field. The addressing-
mode-byte code for this instruction,

LEABX,ADDER

would be 0001110: 'i‘he instruction fields section of this chapter tells you
that:

1. thecombination of mode 00 andr/m 110 means that EA comes froma
" two-byte displacement field and

2. 011 stands for register BX.

In the object code, the two-byte displacement field has the low-order
byte first, and the high-order second. On the assembler list§n3 the displacg_:—
ment is printed high-order first and is followed by R to remind you that this
is a reversal of the actual object code. If ADDER is at offset 0123, then, the
object code for our sample instruction is 8D 1B 23 01; the assembiler listing
shows it as 8D 1E 0123 R. The encoding entry mentions that the mode field
for LEA should never be 11. The only way it could get set at 1l would be if
you used DEBUG or a similar utility to play around with Lht? object code.

The final entry for LEA contains several examples of val_id source code
using the instruction. Most instruction descriptions contain such exam-
ples. Some even include source code routines showing how the instruction
can be used (see LOOP, for example].

Describing PUSH

Look at the description for PUSH. You have learned to use PUSH to place
the contents of a register on the stack. It can also be used to place a word
from me mory on the stack. The purpose entry for PUSH says that there are
three PUSH instructions. From a programmer’s point of view, writing
source code, there is only one PUSH instruction with a choice of two types
of operand. The manual, however, locking at PUSH from the object-code

190

standpoint, sees three separate instructions: one with a non-segment regis-
ter operand, one with a segment register operand, and one with a memory
jaddress} operand.

The purpose entry, the remarks entry, and the logic entry all tell you
that execution consists of subtracting 2 from the stack pointer and then
copying the contents of the source {the only operand) to the new location
pointed to by SP. No flags are affected.

There are separate encoding and example entries for each of the three
types of PUSH. Each of the examples includes the generated object code in
the comments column. For the third type, only the first two bytes are
shown; the actual object code would also include two displacement bytes.

Describing MOV

MOV is one of the first instructions you learned, and it may be the most
often used instruction in MASM. Itis not difficult to understand, tocode, or
to use correctly, yet its description is one of the longest in the manual. This
is because MOV, like PUSH, is more complicated in object code than it isin
source code,

For source-code purposes, MOV is one instruction with five possible
operand combinations. As ils purpose entry states, however, from an
object-code standpoint there are seven different types of MOV, each with
several possible variations. The remarks entry indicates that some of these
MOV instructions may include a 1-bit destination subfield (d} (which is one
if the destination is a register, and zero otherwise| as well as the word (w)
subfield, previously discussed. Both subfields occur in the operation-code-
byte.

Look at the seven types of MOV. Notice that moves involving the
segment registers are different instructions than those involving other
registers. Also, moves between memory and the accumulator (AX or AL)
are different than moves between memory and other non-segment regis-
ters. On the other hand, the following moves are the same: moves from ane
register to another that do not involve segment registers; moves between a
non-segment, non-accumnlator register and memory; and moves between
the accumlator and memory when the address does not include a variable
name.

Look at the examples for these two instruction types: move to a register
from immediate data, and move to memory-or-register from immediate
data. In my copy of the manual, MOV BX,84 is an example in the second
category. Why? Why isn't this an example of a move to a register? To try to
understand it, 1 wrote a little program to see how the object code actually
looks using this instruction as well as some moves of immediate data to

Using the Manual 191

rv. The relevant part of the assembler listing for the program is in
gxr?: g.l. Naotice that tlﬁeaoperatmn-code-byte for MOV BX 84 is BB. If this
is compared to the encoding formulas, we see that MOV BX 84 is actually
interpreted as a move to a register, not to a memog-or—reglster operand.
The example in my manual is wrong. When you t_hmk you Elnderstand an
entry in the manual fairly well, but one part of it just doesn't make sense,
try out the instruction and operands in a shor.t program to see how the
assembler handles it. In this case, of course, it was sn-m[.ﬂy a mfitter of
curiosity. As long as we know that MOV BX 84 isa yahd instruction, we
don't care too much about how it is translated into object code.

Learning New Instructions

Let's use the manual to learn some new instructions. You .really should
know several more before you do much more programming. The new
instructions include two string operations, STOSRB (STOre String Byte} and
SCASB (SCAn String Byte), and four instructions that affect flags: CLD
{CLear Direction flag), STD {SeT Direction flag), CL1 [CLear Interrupt}, and

ST1{SeT Interrupt}.

Storing a String

i ion in this chapter; instead, itis
You won't find STOSB as a separate instruction in this chapter; .
o:: of three instructions in the description headed STOS. The purpose
entry tells you that these instructions [STOS, STOSB, and STOSW) copy

GMENT *DATA’
"ne THE_DATA 5E Do

]
we 7 ONEBYTE DB
T QNEMCRD DU ?
oot THE.DATA ENDS
1]
GMENT CODE”
nn ""'c""‘..fm 5 THE STACK , CS 1 THE_CODE ,08 s THE_DATA ES s THE_CODE

MAIN_PROC PROC Faft
[T I PUSH

1001 B8 MRS :?su Q::.l

:::; :: - R N AX, THE_DATA
e 8E 08 m ::.::

T : i

:unu TEST CODE BEGINS HERE sasswasiuas
v

S8C C7 B4 #8010 R WIF4 m:.:l_
8012 Cé 04 S0B8 R 22 L O oe .
W17 B M :CENT '
a8 o

(131] MAIN_PROC ENI

FRgurs &1 Partol s Test Program

1

192

CLEAR MACRQ CHAR_FIELD ,COUNT
0]

PUSH
PUSH AX

PUSH cx

HOU €X, COUNT
MOV AL <
LEA DI,CHAR_FIELD
REP 57080
POP cx

POP Ax

POP ot

ENOM

Figure 8.2 The CLEAR Macro

,data from the accumulator to a destination indicated by DI and then
change the setting in DI. The format tells you that only STOS requires an

is always indicateg by DI. Neither STOSB nor STOSW require operands;
information about the unit of data copied is included in the mnemgnic,

Look at the descriptions for MOVSB and CMPSB. You will find that
they follow the same pattern. They are a group of three instructions, one
with operands (MOVS and CMPS), one specifying a byte-size operation
{(MOVSB and CMPSB), and one specifying a word-size operation (MOVSW
and CMPSW). In each case, the notes at the end of the description tell you
that the forms without operands are preferred.

Note the difference between string stores and string moves. In a move,
both the source and destination are in memory and both DI and SI change
when the instruction in vepeated. In a store, only the destination is in
memory and only DI changes; the source is always in the accumlator,

The string storing operations, like the string moves, are generally used
with the repeat prefix {REP). STOSB is especially useful for filling a field

MOV CX, 80
LEA DI, PRINTLINE
MOV AL,* "’
REP STOSB

The macroin Figure 8.2 canbe used to fillany field with spaces. This or

a similar macro should become part of your macro library.

Scanning a String

SCASB is a variation of SCAS; let's look at that now., The manusl saysin the
purpose statement that it “subtracts the destingtion byte or word from AL

Using the Manual 193

or AX and affects the flags but does not agect the result.” In other words, it
ination to the accumulator.

wn’limlf;:rli:; g:::xlzia::l;:]:era?ions have the same relationship to tlr}e §tring
comparisons that string stores have to string moves. The sourc:: is u; thI:
accumulator, the destination is pointed to by DI, and a repea pn: el:;

used, either REPE or REPNE. If REPE is used, the operation is repea t:s
long as the destination matches the source; if REPNE is used, a; long 8as ¢ ;
destination does not match the source. The operation also ftl:an stwf‘eg X
= 0, so the instructions following the scan must check the flags to find o

Wh)lf y ef?:cidihen we use SCAS and its variations to search for a part%culia{
byter::r wor'd] in the destination. Here’s a routine that looks for the first *

in TELEPHONE, an eight-byte field:

cX.8 .
oV D), TELEPHONE
MOV AL,
REPNE SCASB
JE FOUND_DASH
NO_DASH: ...

Controlling the Direction

All the string operations increment DI {and sometimes SI) when thc? direlc—
tion flag, DF, is 0, but decrement the same regl,sterls! when DF is 1: n
effect when bF is 0 the operation moves from left to right; when DF is 1,
ight to left. . . .

fml'lll'hr;g?nstrucﬁon CLD clears the direction ﬂng.; loqk it up. It h'as‘no
operands. Its only effect is to move zero to the direction flag. A similar
i ion, STD, sets DF. . ‘

mstlt)“lf?so:sually zero when the computer is turned on. If nothing happens
to change it, it will stay at zero. However, sometimes you may want to
rce,versc the s'tring operation. Here's a routine that searches for the last non-

space character in an 30-byte NAME field: :

vV CX.30
{'& DL, NAME +29
MoV AL,"’
STD
REPE SCASB ,
CLD.
JE NAME__BLANK

FOUND__LAST :

194

For safety, any program that changes DF using STD should include
CLD before the program ends. If one program ends leaving DF set and
assumes that DF is 0, the next program may not execute its string opera-
tions properly. It's not a good practice to make such an assumption; you
should include CLD at the start of every program just in case it runs
following a program that left DF set. It's best to CLD again at the end of any
routine that sets DF, as we did in the above example.

Controlling the Interrupt Flag

The interrupt flag, IF, also affects the operation of your program. When IF
= (0, external interrupts are disabled. This means that signals coming into
the computer from the keyboard, printer, and so on may be ignored. When
IF = |, these interrupts are enabled; the system will pay attention to signals
requesting service from outside sources. Many of the /O interrupt rou-
tines, themselves, disable external interrupts and then enable them again
before returning control to your program. As you learn more about system
requirements and timing you will want to specifically enable and disable
interrupts in your programs. For now, since you can't always be sure how
the previous program left IF, enable interrupts at the beginning of a
program, especially if it is one that uses the printer or keyboard. Looking
through the instruction summary, you will find that you use CLI to clear
{disable} interrupts and STI to set (enable) them. Neither instruction has
operands. You can look up the details in the instruction mnemonics chap-
ter, but neither requires much more explanation.

Review Questions

1. Answer these questions about CMP by looking at its description in
the manual.
A. Which entry or entries describes the operation of CMP?
B. Which flags are affected by CMP?
C. How many types of CMP instructions are listed?
D. Which type is CMP AL, 177
What is its operation-code-byte?

Using the Manual 195

2. Look up the description of XCHG and answer these questions.

A. Whatdoes XCHG do?

B. Which operand is copied first?

To where?

How many types of XCHG are there?

o

D. Which of these instructions are valid?
a. XCHG AX,DX
b. XCHG DS,ES
c. XCHG NEW__FIELD,BX
d. XCHG NEW__FIELD,OLD__FIELD

For questions 3-10, assume your program has defined these fields:

EMPLOYEE __NAME DB 30DUP(?)
EMPLOYEE_SSN DB 9DUP(?)
PRINT_LINE 08 132DUP(T)

and code an appropriate instruction or routine:

3. To clear PRINT _LINE |use the CLEAR macro defined in this chap- |

ter).

To find the first *-* in EMPLOYEE__SSN.

To find the last -’ in EMPLOYEE__SSN.

To fill EMPLOYEE__NAME with asterisks.

To enable interrupis. .
To disable interrupts.

w @ Noeo R

is all spaces.

10. To move EMPLOYEE__NAME to the first 30 characters of
PRINT__LINE and EMPLOYEE__SSN to the last 11 characters.

To fill EMPLOYEE_ NAME with asterisks if EMPLOYEE__NAME

19 Using the Manual 197
Answers 6. MOV CX,30°
MOV AL , rér
1. A purpose, remarks, and logic B. AF, CF, OF, DF, SF, ZF C. 3 D. LEA DI ,EMPLOYEE__NAME
immediate operand with accumulator; 0011 1100 or 3AH REP STOSB
2. A.exchanges the source and destination operands B. destination; to _ . to load CX, D], and AL?
an internal register C. 2. a,c; here’s what's wrong with the others: b. Did you remember to
segment registers cannot be operands of XCHG; d. at least one 7. STI
operand must be a register) . cLI
Your answers to questions 3-10 will probably not be exactly the ‘ 0 MOV CX.30
same as mine. Be sure that yours accomplish the same results. " MOV AL’
V DI ,EMPLOYEE__NAME
3. CLEAR PRINT_LINE,80 ‘,;2,,5 SCASB - SCAN TILL FIRST NON-SPACE
Mov CX,11 JNE CONTINUE
LEA DI ,EMPLOYEE_SSN = : NAME__SPACES:
MOV AL, - ’ 7 MOV CX,30
REPNE SCASB MOV AL,’*’
JNE NO__DASH . LEA D1 ,EMPLOYEE__NAME
DASH__FOUND: REP STOSB
cee _ CONT INUE:
Did you remember to load CX, DI, and AL? Did you remember to test Il OV CX, 30
ZF 1o see why the comparison ended? 10. LEA St -' EMPLOYEE_NAME
5. MOV CX,11 : LEA DI,PRINT_LINE
LEA DI ,EMPLOYEE_SSN+10 REP MOVSB
MoV AL, "’ STD
STD . MOV DX,11
REPNE SCASB . LEA SI|,EMPLOYEE_SSN+10
CLD ' LEA DI,PRINT_LINE+79
JNE NO__DASH REP MOVSB
LAST__DASH_FOUND: CLD
ces : Did you remember to clear DF after the move? You could have used
the MOVE macro instead, like this:
Did you remember to load CX, DI, and AL? Did you load DI with the MOVE PRINT_LINE, EMPLOYEE_NAME, 30
address of the last byte of EMPLOYEE__SSN? Did you remember to STD -
use STD and then 1o clear DF with CLD? Did you test ZF to see why MOVE PRINT_LINE+79, EMPLOYEE_SSN+10,11
the comparison ended? cLD

202

Answers

A. Assembler language format chapter; B. It permits the assembler to
generate more efficient code,

A. Assembler language format chapter; B. SHORT
COMMENT | THIS PROGRAM BUILDS, MAINTAINS, AND LISTS
A NAME AND PHONE NUMBER FILE

" 417100 DONNA N. TABLER
{Your text, as well as your delimeter, are probably different from
mine |
A. Purpose, remarks, and logic; adds 1 to the operand; AF, OF, PF,
SF, ZF; no; 2
B. registe}’: BX;C. 11111110 (OFEH); 11111111 {OFFH)

Messages appendix; operand types or sizes didn't match in a case
where they must match. ' :

A. Instruction summary appendix; B. Yes; DEC; 1; AF, SF, OF, FF,
ZF; byte or word register or memory.

MOV CX,5
LEA DI,CODES
MOV AX, OFFH

REP STOSB

MOV X, 30

LEA DI, ADDRESS

MOV AX,’-

REPNE SCASB

JE SPACE_FOUND
NO_SPACE :

MOV CX,30

LEA D1, NAME +29

MOV AX. ‘.-

STD

REPNE SCASB8

CLD

_ JE LAST__PERIOD
NO_PERIOD

Using the Manual 203

10. STI,
11. CLI
Computer Exercise

Write a program called SSNPROG that will:

1. Prompt for a 30-character name
a. Fill trailing blanks in name with asterisks

2. Prompt foran 11-character SSN
a. If SSN does not have 11 non-space characters, repeat the prompt

"3. Display name [including asterisks} and SSN on one line with 10 or
more spaces in between

4. Repeat until no name is input {input count is 0}

: After the name is input you will need to move it to the print line
bcfglr:t:o;f;ting for 85N. Using the instruct{ons you have lea;ned 50 far' to
fill the trailing blanks of the name with asterisks, it is b.est to fill the entire
print area for name with asterisks before copying the input name. Whetn
you move the name to the print area, you wl_l] need to use the input count to
control the number of characters used. This count is a byte;_n cann?t be
moved directly to CX. If you try to use the MOVE macro with the mp:}
count for character count you will get an assembler error. There are sever
ways to get around this. I chose not to use MOVE, but to code the move in
the program, moving 0 to CH and the input coust to CL.

If you need more hints, look at the program on the next page.
Remember, though, that there are many correct ways to des_lgn a program.
1f you have thought of another way to write SSNPROG, try it. - dise

Assemble, fink, and run your program. If your source code is different
from mine, but it works, take a few days away from it and then see whether

itis easy to read and understand.

PRGE 132
¢

INCLUWDE MALCLID.LIB
)

INCLUDE EQULIB.LIB

1

PROG_SYACK SEGMENT STACK *STACK’
o] 44 DUP (‘STALCK ¥

PROG_STACK ENDS

]

PROG_DATA SEGMENT “DATA
MNAMEPRGHPT DB LF,CR,'NAME: “ ,EOT
SSMPROWPT DB LF,CR,’38M: - EOT
ENDMESSAGE D8 LF.CR,”GO0DSYE’,EQT

INBUF DB
INCOUNT 0B ?
INDATA DB 31 DR)

]
PROS_CODE SEOMENT ‘CODE -
MAIN_PROG PROC FAR

LF,CR,88 DUPC-) EGT
an

ASSUME CS:PROB_CODE.DS 1 PROO_DATA, 581 PROG.STACK , ES 1 PROS_DATA

STARTER
ml

CLEAR OUTLINE+Z, 88
BETNAME

a1 INCOUNT , 8

JE END_PROG

CALL MIVE_NaME

CALL CETEEN

HOVE OUTLINE+ 42, INDATA, 11
DISPLAY OUTLINE

”e HAINLOOP

DI SPLAY EMNOMESSAGE
RET

GETOATA [NOUF, 31

REY

GETHAME ENDP

]

OETSSN PROC
PUsSH (=1
PUSH ax
PUBH -1}

o861,
DISPLAY SSNPROMPT
GETOATA INBUF,]12
owr INCOUNT ,1 1
E ass
noy o1
MOV -"
LEA DI, INDATA
REPNE 8Scase
JE o588
ror DI
ror X
ror [~
RET

GETSEN ENOP

IHOUE SPACES TO DISPLAY LINE
IPROMPT AND INPUT NaME
11F NO NAME END PROORAM

1PUT ASTERIBKS AND NAME IN LINE
$PROMPT AND INPUT S8N

JHOVE B8N TO LINE

1ID1SPLAY LINE

5§ AND REPEAT PROCESS

$THEN RETURN TO OPERATING SYSTEM

IPROMPT FOR NAME
FGET NAME IN BUFFER

1PROHPT FOR S8M
16ET 88N IN BUFFER
INUST BE 11 CHAR

IMUST HAVE NO SPACES

Using the Manual 205

LEA
LEA
REP
PDP
POP
POP
POP
RET
HOVE_NAME ENOP

1
PROG-_CODE ENDS
BND

ox
ot

51

2} 9

cX, 38

D1, OUTLINEs2
ALl w

8TDSH

.9

CL, INCOUNT
§I, INDATA

D1, OUTLINE+2
HOvsB

X

(7]

ol

ox

HAIN_PROG

1FIRST FILL WITH ASTERISKS

ITHEN MOVE [N NAME

0

Arithmetic

. Arithmetic 207

In this chapter, you will learn the arithmetic instructions and routines. So
far, our examples and pragtice programs have been limited by the lack of
arithmetic instructions. When you can handle arithmetic, you will be able
to write programs that cover a much wider range of situations.

MASM arithmetic operates with three types of numbers: binary,
packed decimal, and unpacked decimal. {Packed and unpacked decimals
are two varieties of binary coded decimals, often referred to as BCDs. 1f
you need to review these formats, see Appendix A.} Remember that all
information is stored in memory as binary digits. A string of binary digits,
however, can be interpreted as a binary number, as a packed or unpacked
decimal, or as a string of ASCII code characters. So far in this book, you
have worked with binary numbers {signed and unsigned) and ASCII char-
acters.

All arithmetic operations in the 8088 are performed using binary num-
bers. Special adjustment instructions are used to correct the results when
the operands represent BCDs. We'll discuss binary arithmetic first and

then the adjustments that are needed to work with packed and unpacked
decimals.

Bihary Addition and Subtraction

The arithmetic instructions for addition and subtraction are ADD, SUB,
ADC (add with carry), and $BB {subtract with borrow]. Figure 9.1 presents

206

Jpatengtion
Formal

HDb dest source

ADC cest,source

SU@ dest,source

880 desi,source

MUL sdurce

oA source

DIV source

gngm.;i .

Word,Brie

. Word,Brte

Word,Brts

Word,By te

Word, Byie

Wor d,Brte

word,Brie

Elpgy

Compinatipns Attegted

reg,req
reg,men
nom,fog
rog, i
e, i

reQ,reg
reg.men
e, reg
reg, imnm
A, inm

reg.feg
g erE
e, reg
reg,imn
e, e

reg.reg
raQ an
mem,reg
reg,inn
mrk, 1=

reg
arl

reg

a9

AF, CF, OF
PF, SF, ZF

AF, CF, OF
PF, 5F, IF

AF, CF, OF
PF, 9F, ZF

AF, CF, OF

- PF, §F, IF

CF, OF

Remarks
Adgs source to cest
Resull in desi

Adgs source and CF to dest
Result in desl

Subtracts source irom dest
Aegult in dest

Subtracts source fram dest
Resull in dest

Unsignsd multiplication af
source and acCumulator
Result is double source length
With word operandi
source multiplied by AX
high-order word of result n DX
Yow-order word of resull an AX
With byte cperandg
source aultiplied by AL
nigh-order bris of ruull_.in AH
Vow-order word of result in AL
Signed aultiplication of
source and accumulator
Result is double Jangth of source
With word operand:
source multiplied by AX
high-order word of fesult 1a DX
Tow-orger word of result va AX
With brite oprrand)
source multiplied by AL
high=order brits of rasull in AM
low-order wold of result’ in aL

Unsigaed division od accumwlintor
and extension by source

Result (quotient and remainder) in
accwnulator and axtension

With word operand:

nigh-order ward ot dividend in OX

Tow-order word of dividend in AX
quotiont in AX
reasinder i DX

Iastruction Dnr_uil Operand Flagy

With brte operand:
Righ-order brte of dividend in AH
low-order byts of dividend im AL
uatient in AL
roRdilader in AN

IBIV sowrce ord, Byte reg aane Sipned division af accumulator
- aad sxtension by source .
Result {quctisnt sad remainder) in
sccamelulor and exteasion
With word operand:
i Migh-arder word of dividend in DX
= low-order werd of dividend in AX
quotient in AX
romainder ia DX
With brise operandi
high-erder byie of dividend in AN
Vow-order byte of dividend io AL
otiont ia AL i
temaindar ia AN

INC dest Word, Byte reg i A%, OF, PF Adds 1| to operang
~en N §F, I8 .

DELC dest Uord, Brte reg AF, OF, PF Gubtracts 1 from operasd
[OF, Ir

NES desi Uorg, Brte reg A, CF, O Forms two’s complemeat 0f dest
[P&, IF Reslt in dest

Figwre 0.1 Asithmetic Instructions

the formats and other information for these {and other) instructions. As we
discuss their use, you should refer both to Figure 9.1and to the instructions’
descriptions in the manual.

ADD and SUB

Look at ADD and SUB in Figure 9.1. You can see that the formats and
operand combinations are similar to those for MOV. The operation’s result
replaces the contents of the destination, which is the first operand. If both
operands are bytes, the result is a byte. If both are words, the result is a
word. You cannot mix operand sizes. (Bxception: an immediate data byte

can be used with a word destination. The immediate data is converted toa .

word.)
How do you add or subtract two variables? Since You cannot use two
address operands, you must move one variable's contents into a register.

When the destination isa register you will probahly want to copy the result
back to memory.

Arithmetic 209

In this example, BALANCE, INCOME, and OUTGO have all been
defined with DW: '

MOV AX, BALANCE
ADD AX, INCOME
MOV BALANCE , AX ;

MOV AX, OUTGO
suB BALANCE , AX

This example uses two different techniques. The addition deginatidn is
moved to a register, and the result is moved back to the variahle BAL-
ANCE. In the subtraction, the source is moved to a register, and the result

is already in BALANCE when the operation ends. Both operations use a 16-

bit register since the variables involved are words. '
Here's another example of addition. For this one, the variables ([N'l,
IN2, and SUM) have all been defined with DB, so we must use an 8-bit

register:

MOV BL,IN2
ADD iN1,BL
MOV SUM,BL

In this example, the result is moved to a new field {SUM), not one that is

used in the a?'ithmetic. The original input variables (IN1 and IN2j are left
changed for later use.) ‘

" All sfx status flags are set by addition and subtraction. In this book._we

are not concerned with PF. Before we continue our djscu.';.sion. let'_s review

the meanings of the other flags in the context of arithmetic operations.

ignifi Fla ZF is set when an operation result is zero and cleared
ihen th?::u]t i.ag:ot zero. SF is set when the result’s .high-order l?it is one
and cleared when that bit is zero. This is significant in signed ar_:thmetlc
where the high-order bit represents the sign. OF is set when there isacarry
from or borrow to the next-to-high-order bit. In signed n_umber arithmetic,
this means that the result would not fit in the destination, but overﬂ?ws
into the sign bit. CF is set when there is a carry from or borrow to the high-

210

order bit. In unsigned arithmetic, this means that the result would not fit in
the destination. AF is set when there is a carry from or borrow to the lower
half of a byte; this flag is significant in BCD arithmetic.

Testing the Result After addition or subtraction either CF or OF
should be tested to ensure that the result fits the destination. There are
" conditional jumps for this purpose. After an unsigned operation, use JC
{Jump if Carry) or JNC {Jump if Not Carry). After a signed operation, use JO
{fump if Overflow) or JNO {Jump if Not Overflow}. When OF is cleared,
which indicates a valid signed result, you will sometimes need to know
whether that result was negative or positive. For this purpose, use JS {Jump
if Sign set) or JNS {Jump if Not Sign set}. Figure 9.2 shows the formats and
other information for these conditional jumps. To find out if the result is
- zero, use JZ or JNZ. These instructions are equivalent to JE and JNE, which
you have already learned.

Mulii—the Numbers

So far, we have dealt with single byte or single word binary numbers,
which limits us to numbers with a range of 0 through 65535 unsigned or
-32768 through 32767 signed. These are the largest numbers that can be
handled by the 8088 addition and subtraction instructions. We can, how-
ever, deal with larger numbers by using multiple bytes (or words), treating
each one a5 a digit in a Jarger number. Il restrict the discussion to multiple
' bytes, but remember that the same principles can be extended to multiple
words. :

Instruction Qescand Qparand Elags
Eprmat fizein) Sombinations Affycted Remarks
JC short~label a’s LY none Jumps to target if CF set
JNC shori-label wo/a a'a aohe Jumps to target if CF clear
JO short-1abel s/a aa none Jumps to target if OF sat
© JNO shori-label a/fa s none Junps to target if OF clear
48 short-label [%4 - aa AOAe Jumps to target if SF set
NS short-label w/s o’/a none Jumps to target ¥ SF clear
f:.c e soar CcF Clears CF
L1 »a [cF Sets CF

Rgure 9.2 Miscellansous instructions Used with Arithmetic

Arithmetic 211

Consider a variable called LIFETIME__PROFIT, which must range
from -5,000,000 to +5,000,000. The binary equivalent of this range’
requires three bytes [six hexadecimal digits). You know that in a word-
sized field the low-order byte comes first in memory and, the high-order
byte comes last. It makes sense to use that principle in all multi-byte fields

for two reasons:

1. compatibility with special numeric processors that define and han-
die multi-byte fields this way and

2. coding simplicity, since in most cases we process the low-order byte
first and high-order last. :

Let's define the field and initialize it to 2,500,000 (2625A0H):

LIFETIME_PROFIT DB OACH, 25H, 26H

We can look at each byte in this number as having a place value 256 times
that of the byte that logically precedes it, just as each digitina hexe_ldecimal
number has a place value 16 times that of the preceding digit. LIFE-
TIME__PROFIT initial value, then, can be computed like this:

byte digits decimal place total
8 value value value
low-order QAOH 160 1 160
middie 25H 37 256 9472
high-order 26H 38 65536 2490368
Total Value 2500000

Multi-Byte Addition We'll define another three-byte field,
YEARLY__PROFIT, with an initial value of 0186A0H {100000):

YEARLY_PROFIT DB OAOH,86H,0IH

We add YEARLY_ PROFIT to LIFETIME_PROFIT just as we would
manually. Add the low-order digits first. Then, the middle digits, including
any carry resulting from the low-order addition. Then, the high-order
digits, including any carry from the middle position. To perform these last

212

two steps we use the instruction ADC {ADd with Carry). As you see in
Figure 9.1, this differs from ADD in only one respect: it includes the value
of CF in the addition. We can add the two numbers like this:

MoV AL ,YEARLY__PROFIT

ADD LIFETIME__PROFIT, AL
MOV AL ,YEARLY_PROFIT+1
ADC LIFETIME_PROFIT+1,AL-
MoV AL ,YEARLY_PROFIT +2
ADC LIFETIME_PROFIT+2,AL

What about checking for overflow? There's no need to check after the
first two additions. The sign bit for the whole number is the high-order bit
of the high-order byte, so the first two additions involve unsigned num-
bers. A carry from these bytes is not an error, since in each case the carry
will be added into a higher-order byte.The third addition usés signed
numbers. If OF is set by this addition, the sum does not fit in the three bytes
provided for LIFETIME__PROFIT. The last ADC should be followed by a
conditional jump to an error routine such as JO TOO__BIG. If the addition
uses unsigned numbers we would use JC instead of JO to check for a too-
large result from the last byte addition.

Multi-Byte Subtraction What about subtraction? Again, a special
instruction, SBB {SuBtract with Borrow), uses CF if necessary to handle a
situation in which a lower-order byte has borrowed from a higher one.
Let's subtract the immediate data value 120000 {0OLD4COH]) from LIFE-
TIME__PROFIT. This time we'll be sure to include a check for overflow
when the subtraction finishes. We'll also test for a negative resuit.

suB LIFEYIME_PROF | T,0COH ; LOW ORDER BYTE
‘ FIRST
. S8B LIFETIME_PROFIT+1,0D4H ;MIDDLE BYTE
SBB LIFETIME_PROFIT+2,01H ;HIGH-ORDER

BYTE
Jo BELOW_LIMIT
JS LOSS

PROFIT:

In this example, you need not move the source or destination to a register
since you can subtract an immediate operand directly from an address
operand.

Arithmetic 213

Looping through Multi-Byte Operations If we are sure that CF is
clear before the low-order addition, we can use ADC |or SBB) there also,
and then the entire procedure can be coded as a loop. A special instruction,
CLC, clears the carry flag. It has no operands. As you might expect a similar
instruction, STC, sets CF, if you should ever need to do that. You will find
these instructions in Figure 9.2.

Here's our addition routine using a loop. {Notice the use of INC. You've
seen this before, but we'll discuss it further later in the chapter.}

CLC
MOV CX,3
MoV 8X,0

ADDUP :
MOV AL, YEARLY__PROF I T[BX]
ADC LIFETIME_PROFITI|BX|.AL

INC BX
LOOP ADDUP

Jc TOO__MUCH

In this routine, CX is the loop counter. We want to add three bytes so
CX is initialized to 3. BX starts at zero and is incremented each time the
loop is repeated. The first time 'through, the bytes at YEA.RLY__PROFIT
and LIFETIME_ PROFIT are added; the second time, those at
YEARLY PROFIT +1and LIFETIME__PROFIT +1; the third time, those
at YEARLY _PROFIT + 2 and LIFETIME__PROFIT +2. At the end of the
third repetition, BX is 3 and CX is 0. LOOP ends when CX is 0.

With a three-digit operation, a loop doesn't really s'unphfy_ matters; we
bave gone from six instructions to nine not including the conditional jump.
In a longer operation, say eight or ten digits, the loop \\-rould malfe'a big
difference. The non-loop procedure requires two instructions per c_hgn; the
loop has the same nine instructions no matter how many digits are
involved. Here is a macro that can be used to add multi-byte numbers:

BINARY_ADDER MACRO DEST__BYTE, SOURCE__BYTE ,COUNTER
- LOCAL NEXT__BYTE :

PUSH cX

PUSH BX

PUSH AX

MOV CX,COUNTER
MoV B8X,0

cLC

214

NEXT_BYTE:

MOV AL , SOURCE__BYTE{BX|
ADC DEST_BYTE[BX|, AL
INC BX

LOOP NEXT_BYTE

POP AX

POP BX

POP cx

ENDM

To use this macro you must provide three parameters: the beginning
address of the destination, the beginning address of the source, and the
number of bytes to be added, like this:

BINARY__ADDERL{FETIME__PROFIT,YEARLY__PROFIT,3

You may want to add this macro, or a similar one, to your macro

library.

Review Questions

When answering the review questions use these definitions:

ONE__BYTE
ONE_WORD
BALANCE
TRANSACT
LIMIT

D8 0 : UNS | GNED
Dw o ; UNSIGNED
DB 0,0,0 ;SIGNED
DB 0,0,0 ;SIGNED
DW © :UNS | GNED

1. Which instructions are incorrect? Why?

A.

ZTO="wDOwW

ADD AX,ONE__WORD
ADC AL,LIMIT

SUB AH,BALANCE

SBB BALANCE, 10

ADD BALANCE, TRANSACT
ADC BALANCE+1,AL

SUB LIMIT,CX

SBB BALANCE +2,DH

Arithmetic 215 -

2. Match each situation with its description. Not all descriptions are

used.
A SFisset a. Result of signed arithmetic fit in destination
__. B. OFisclear. b. Resultwaszero
___ C. ZFisclear. c¢. Result of unsigned arithmetic did not fit
in destination.
—. D. CFisset. d. Result of signed arithemetic was nega-

tive.
e. Result was not zero.

3. Foreach purpose, would you be more likely to use CLC.JO,JC.)5, 01

744

_____ A. Totest for overflow after unsigned addition
To prepare for muiti-byte subtraction

——— B.

s C. Totestforoverflow after signed addition
—___ D. Totest for a negative result after signed addition

4. Code a macro similar to BINARY _ADDER for multi-byte subtrac-

tion.

: Answers
" 1. B. operand sizes don't match E. can't add 2 addresses; All of the others are

correct. 2.A.d;B.a;C.e;D.cbisnotused, 3. A JC;B. CLC; C.]JO; D.
JS 4. Here's my answer. You probably used different names but your logic

should be about the same.

BINARY__SUB MACRO
LOCAL
PUSH
PUSH
PUSH
Mov
MOV
cLc

MoV
sB8
INC
LOOP
POP
POP
POP
ENDM

NEXT_SUB:

RESULT,SuUB1 , COUNT
NEXT__SUB

CcX

BX

AX
CX,COUNT
BX.0

AL, SUB1|BX]
RESULTIBX], AL
8X .
NEXT__SUB

AX

BX

cX

216

Other Binary Arithmetic

Looking at Figure 9.1, you see several otht.:r arithmetic instructions: MUL
and IMUL for multiplication; DIV and IDIV for division; and three mis-
cellaneous instructions, INC, DEC, and NEG. We'll discuss ali of these.

Multiplication

There are two multiplication instructions: MUL for multiplying unsigned
numbers and, IMUL for multiplying signed numbers, (The I in IMUL
stands for Integer). Addition and subtraction are the same whether the
numbers involved are signed or unsigned; the only difference lies in how to
interpret carries from the two high-order bits. In multiplication and divi-
sion, however, you get different results interpreting OF2H, for example, as
unsigned (a value of 242) rather than signed (a value of -14).

In multiplication, only the source is named in the instruction; it canbe a
register or address but not immediate data. The destination is always the
accumulator: AL if the source isa byte, AX if it is a word. The result is twice
the size of the destination. In a byte operation, the result is placed in AX. In
this case AH is called the accumulator extension. In a word operation,
DXis the accumulator extensjon; the low-order word of the result is placed
in AX and the high-order word in DX.

Let's multiply WEEKS, an unsigned byte-sized variable, by seven to get
DAYS, an unsigned word-sized variable. We can do it like this:

MoV AL.,7

MUL WEEKS
MOV DAYS,AX
or like this:

MOV AL.WEEKS
MOV BL.7

MUL BL

MOV DAYS , AX

Now let's redefine WEEKS as a signed word-size variable and multiply
it by HOURS, another signed word-size variable.

Arithmetic 217

To hold the result we will need a two-word variable:

TOT__HOURS Dw 2DUP(1)

MOV AX, WEEKS

MUL HOURS

MOV TOT_HOURS,AX
MOV TOT_HOURS+1,DX

{Note that we store the result in TOT__HOURS with the low-order word

first.})
The multiplication instructions affect only CF and OF. The extended

"accumulator is always large enough to hold the result; it cannot actually

overflow. CF and OF are set, however, if the extension has significant
digits. With MUL, that means that CF and OF are set if the extension is not
zero. With IMUL, they are set if the extension’s bits are not all zeros for a
positive number or all ones for a negative number. If you want to move a
multiplication result to a field that is the same size as the original gpe_rands.
you will need to check CF or OF first to make sure you don’t lose significant
digits. Notice that CF and OF always match after multiplication; you can
iest either one.

Here's an example where DAYS, HOURS, and HOURS_ WORKED are
all defined by DB and hold unsigned numbers:

MOV AL,DAYS

MUL HOURS

Jc TOO__MANY

MOV HOURS_ WORKED, AL

Division

There are also two division instructions, as you can see in Figur_e 9.1: DIV
for unsigned numbers and IDIV for signed numbers. The dividend is
contained in the accumulator and in its extension (AL and AH for byte
divisions, AX and DX for word divisions). The only operand for the
instruction is the source, which serves as the divisor. As with multiplica-
tion, the source must be a register or an address operand. The quotient is
put into the accumulator [AL for byte operations, AX for word); the
remainder is putinto the accumulator’s extension {AH or DX]). No flags are

affected by division,

218

What happens if the quotient won't fit into the accumulator? An inter-
rupt of type 0 is generated. Advanced MASM programmers may provide
their own routines for type 0 interrupts; the system routine provided
displays an error message [divide overflow) and stops the program. How
can you avoid these errors? First, always include a check for a zero divisor
in the socurce code because division by zero always causes a type 0 inter-
rupt. Second, when you plan the program, make sure that the quotient can
fit in the ranges shown in this table:

"

Operands . i Range

Unsigned Byte 0 through 255

Signed Byte - 128 through 127
Unsigned Word 0 through 85,535 -
Signed Word - 32,768 through 32,768

Suppose you want to calculate average hours per day by dividing days into
total hours. If days can range from 2 to 7 and hours from 10 to 250, then
average hours per day range from 1 {IW7) to 125 {250/2). Each of these
figures fits into an unsigned byte. If DAYS, HOURS, and AVERAGE are
defined with DB, we can compute AVERAGE like this:

MoV AH,O
MOV AL ,DAYS
DIV HOURS

MoV AVERAGE , AL

Note that both the accumulator and its extension were initialized before
dividing.

Here's ancther division example: we want to compute weekly cost by
multiplying rate times hours and then dividing by days to get average cost
per day. If hours can range from 10 125 and rate can gofrom 1to 4, the total
cost may range between 1and 500. When we divide by days (from 2 to 7),
our result will be between 0 and 250. We can code the routine in this way:

MOV AL ,HOURS
MUL RATE

DIV DAYS ‘
MOV AVERAGE , AL

The multiplication result prepared both AL and AX for the division. Now,
suppose that hours and rate are such that the total cost may go up to 1,000.

Arithmetic 219

Then, the average could range as high as 500 and cause a type 0 interrupt.
We must use a word-size division to get the right result; DX will have to be
initialized before the division. The revised routine looks like this:

MOV AL ,HOURS

MUL RATE
MoV DX.0
DIV DAYS

MOV AVERAGE , AX

Both DAYS and AVERAGE now have to be defined with DW instead of
DB.

When you prepare the accumulator extension for signed division you
can’t just move in zeros; you must copy the sign bit from the accumulator
throughout the extension. Two special instructions, CBW and CWD, do
exactly that. CBW extends a byte from AL through AH; CWD extends a
word in AX through DX. Look up these instructions in Figure 9.2 or in the
manual. Here is an example of a signed byte-size division. Note the test to
avoid division by zero.

CHANGE DB 7 :RANGEIS -1287TO +127

DAYS DB 7 RANGE ISOTO30

AVERAGE DB 7 'RANGE IS - 12870 +127
CMP DAYS.O

JE NO__DAYS
MOV AL, CHANGE
CcBwW ; EXTENDS S | GN THROUGH AH

IDIV DAYS
MOV AVERAGE,AL

INC, DEC, and NEG

You have already seen INC used in several examples, and you looked up
DEC in one of the exercises in Chapter 8. Figure 2.1 provides a good
description of each one. Each has only one operand, a destination, which
may be an 8- or 16-bit register or address operand. INC adds 1 to the
operand, DEC subtracts 1. Both operands set five flags, but not CF. I'll stick
to INC in this discussion, but you should be able to apply most of what I say
to DEC also. .

-220

N

Why bother with INC when you could use ADD ...,1? Well, you saw one
reason in the multiple-byte addition routine. By using INC, we were able to
add 1to BX without affecting CF. If we had used ADD BX,1, the next loop's
ADC would have used the carry from the addition to BX instead of the
carry from the previous ADC.

NEG simply replaces the destination with its two's complement. The
destination can be an § or 16-bit register or address operand. All six flags
are set. This is the quickest way to change the sign of a number without
changing its magnitude {absolute value). You will see NEG used in routines
later in this book.

Review Questions

1. Which instruction would you use for each of these purposes?

A. To multiply unsigned numbers
B. Todivide signed numbers

C. To divide unsigned numbers
D. To multiply signed numbers

2. CF and OF are set after a multiplication. Which statement best
explains the significance of these settings?

A. The result was too large to fit into the extended
accumulator. Part of the answer has been lost.

B. The result was too large to fit into the accumulator. The
high-order portion of the result is in the accurnulator exten-
sion; the low-order portion, in the accumulator.

C. The result was too large to fit into the accumulator. The
high-order porticn of the result is in the accumulator, the
low-order portion, in the accumulator extension.

3. Which statemenis are true?

A. Multiplication and division instructions specify only one
operand, the source.

Arithmetic 221

B. MUL multiplies the source by the accumulator.

0

IMUL multiplies the source by the extended accumulator.

D. In a word operation, the extended accumulator is AX and
BX. In a byte operation it is DX.

E. The low-order half of any multiplication result is put into
the accumulator; the high-order half into the accumulator
extension.

F. Before DIV, the accumulator extension must always be
initialized by extending the sign from the accumulator.

G. After any division the quotient is put into the accumulator
and the remainder is put into the extension.

H. INC and DEC are especially useful in multi-byte arithmetic
because they affect only the carry flag.

I. NEG simply produces the two's complement of its operand.

Answers

1L.A.MULB.IDIVC.DIVD.IMUL 2.B. 3.A,BE G,I

Here's what's wrong with the others: C. IMUL multiplies the source by
the accumulator, interpreting both as signed numbers. D. In a word opera-
tion the extended accumulator is AX and DX; in a byte operation, AX (AL
and AH). F. Before any division, the accumulator and its extension must be
initialized; this may be done by moving appropriate values into both fields.
If the dividend is contained in the accumulator, the extension can be
initialized by zero for DIV or by extending the accumulator sign for IDIV.

‘H. INC and DEC are especially useful in multi-byte operations because

they do not affect the carry flag.

Decimal Arithmetic

MASM uses the same arithmetic operations for packed and unpacked
decimals as it does for binary arithmetic. These operations treat all num-
bers in the same way. They do not distinguish between decimal and binary
numbers. In the decimal formats, however, a half-byte {four bits) can only
represent digits 0-9. When two of these four-bit digits are added and the
resultis larger than 9 an adjustment must be made so that the result reflects
the correct total. Similar adjustments are required in other operations. The
adjustment instructions are shown in Figure 9.3. I will discuss their use,

222 L

natryction fan Qosrand Elags
A n’a Acne N, CF Corrects AL after unpacked
addjtion
RAS n/a none AF, CF Corrects AL after wnpacked
subtraction
AR na aone PF, OF, 2F Coaverts packed decimal in AL
. into two unpaclied decimals
in AH and AL
Used to adjust result of
vapacked decimal multiplication
AAD na nons PF, SF, IF Converts two uspacked decimals in
AX into packed decimal in AL
Used to prepare dividend for
for unpacked division
["I a’a acae oF, CF, PF Corrects AL after packed addition
SF, IF .
DAS na nons AF, CF, PF Corrects AL adter packed
sF, IF subtraction

Figure 9.3 BCD Adjustmen! Instructions

but will not go into much detail on how they make the adjustments. Before
we discuss adjustments, though, let's look at how to define and initialize
variables as packed and unpacked decimals. ’

Defining BCDs : ’

Figure 9.4 shows some numbers represented as unsigned binary numbers,
packed decimals, and unpacked decimals. Remember that these are for-
mats for storing and manipulating numbers. They are not ways of repre-
senting values in your source code,)

In source code, you use “B” to indicate that you are presenting a number
in binary {0000 1011B), "H" for hexadecimal (0BH], "D* or no indicator for
decimal {11). There is no indicator for packed or unpacked decimal format

. that is equivalent to “B” for binary or "H” for hexadecimal. A value of 11 in
packed-decimal format can be written as 00010001B or as 11H. The decimal
equivalent of 11H is 17, not 1. Similarly, 11 in unpacked-decimal format can
be shown as 0000 0001 0000 0001B, or 0101H. The decimal equivalent of this
is 257.

Notice that BCD digits are the same in binary as the hexadecimal digits
0-9. Suppose that you want to define a one-byte field to be used for packed
decimals and to initialize it with the BCD digits 32. You could do it like this:

PACKED__FIELDDBO0110010B ;PACKEDBCD 32

Arithmetic 223

Decimal © Binary BCD Unpacked BCD Pagxed

12 [TITEI _UNeE 8081 0500 8014 W a0
(OCH) (81024) ZH)

27 [TTTINT] I 9080 BBID @890 B11) 18 0
(18H) (9207H) 27H)

299 5001 0819 1038 PAGD @010 BEES LDDI 0000 189) 001D 1801 100l
¢124H) {028709H} (299H)

Figure 9.4 Binary and BCD Formats

Or, you could use the hexadecimal equivalent:

PACKED__F1ELD DB 32H

; PACKED DCB 32
or the decimal equivalent:
PACKED__FIELD DB 50 PACKED DCB 32

The hexadecimal version is the clearest and easiest to code. An unpacked
field could be initialized similarly using hexadecimal notation:

UNPACKED_WOﬁD DW0302H ;UNPACKED BCD 32

We could also have defined this field as two bytes:

UNPACKED__BYTE DB 02H,03H ; UNPACKED BCD 32

As usual we store the low-order byte first.

Many processors use & standard format for packed decimals. in the
8087, all packed decimals are 10 bytes long; they contain 18 digits in the~
low-order 9 bytes. The high-order bit of the high-order byte is a sign bit; the
remaining seven bits are zeros. If you are planning files that will be used by
such a processor, you may want to use this format. I will not discuss it any
further. In fact, I will not deal at all with the subject of signed BCDY's,

Addition and Subtraction Adjustments

To adjust the result of unpacked-decimal addition, use AAA {ASCII Adjust
for Addition). AAA assumes that the addition result isin AL. If the resull is
greater than 9, either the four lower bits of AL are greater than 9, or AF is

224 o

set, or both. In either case, AAA adjusts the four lower bits to show the
correct decimal digit, clears the four upper bits, and sets both AF and CF.
To adjust the result of packed decimal addition, use DAA {Decimal
Adjust for Addition). Again AL is adjusted but, in this case, adjustments
- may be made to both halves of the byte. If the lower four bits are greater
than 9 or AF is set, the lower four bits are adjusted; if the upper four bits are
greater than 9 or CF is set, the upper four bits are adjusted and CF is set.
DAA, unlike AAA, also affects PF, SF, and ZF.
If ONE__BYTE and SUM__BYTE are unpacked decimals, then, you
would need these instructions to add ONE__BYTE to SUM__BYTE:

MOV AL,SUM_BYTE
ADD AL,ONE_BYTE
AAA :
MOV SUN_BYTE, AL

We used AL for the destination of ADD since AAA expects to find the result
there anyway. Unless this is the first step in a multi-byte addition, we
would probably also want to include a JC after AAA. Then we can gotoan
error routine if the adjusted result is too large. If ONE__BYTE and
SUM__BYTE were packed instead of unpacked decimals, the only change
in the routine would be from AAA to DAA.

The subtraction adjustments, AAS for unpacked and DAS for packed
decimals, are similar to the addition adjustments, as you can see from
Figure 9.3.

Multi-Byte Decimals

Multi-byte addition and subtraction are the same for BCDs as for binary
numbers, except that the routines must include the appropriate adjust-
ments following ADC or SBB. Here's a macro for multi-byte unpacked
decimal subtraction:

’

SUB__UNPACKED MACRO RESULT, iN1,COUNT

LOCAL NEXT__SUB

PUSH CX

PUSH BX

PUSH AX
MOV CX.COUNT

MOV ex,o

CcLC ‘

Arithmetic 225

NEXT__SUB:

MOV . AL , RESULT(BX}
SBB AL, IN1[BX]
AAS

MOV RESULT(BX], AL
INC BX

LOOP NEXT__SUB
POP AX

POP BX

POP CX

ENDM

~

i i i in the form of
The count that is passed to this macro must be. either in t
immediate data or a word-sized variable; otherwise, MQV CX,COUNT
will produce an error. BX is used to point to the byte_s being operated on
each time through the loop; the work is actually done in AL.

Decimal Multiplication and Division

AAM converts an unpacked multiplication result in AL into two unpa_cked
decimals in AH and AL. AAM is also used in routines tlfat convert bmar.y
numbers to unpacked decimals; we'll discuss its operation in more detail
than we did the addition and subtraction adjustments. _
Consider this routine, where M1 and M2 are one-byte unpacked deci-

mals:

MOV AL M1
MUL M2
AAM

If Ml = 3 and M2 = 7, AX contains 21 as a binary m.lmber after t.he
multiplication. The contents of AH are 000C0000, wh:_le AL contains
00010101. AAM actually divides AX by 10, putting the quotient (in this case
2} into AH and the remainder (1) into AL. After AAM in our cx@ple, AH
contains 00000010 and AL contains 00000001. AX, then, contains 2l as a
igit unpacked decimal.

twoA-d);gl; rcvl:ar:es AAM,; it converts two unpacked-decimal digits m AH
and AL into a binary value in AL and zeros out AH. lf does this by
multiplying AH by 10, adding the result to AL, and then moving zero to AH.
AAD is used to prepare the accumlator for a byte division; the adjustment
must be made before the division. AAD can be used any time you need to
convert two unpacked-decimal digits to a binary number.

.226

There are no packed multiplication or division adjustment instructions. -

If you must multiply or divide packed numbers you must convert them to
unpacked decimal or binary format.

Why Use BCD?

Unpacked decimals are similar to ASCII code for the decimal digits. In
ASCII code, each digit is one byte: the low-order four bits contain the
binary representation of the digit and the high-order four bits contain 0011B
{3). To convert digits that are input from the keyboard in ASCII code to
unpacked decimals, you need to change the high-order four bits from 3 to
0. One way to do this is to subtract 30H from the ASCII character. To
reverse the conversion so that you can display or print arithemetic results,
change the high-order four bits from 0 to 3. For addition and subtraction,
you don't even need to change the high-order bits; the unpacked-decimal
adjustments [AAA and AAS) can handle ASCII characters directly. This
compatibility with ASCH is the main reason for using unpacked decimals.

Figure 9.5 shows a program called ADDITION, which prompts for a
number, adds it to a total field, displays the current total, and continues
until no number is input. The working arithmetic fields are all unpacked
decimals. The input number is restricted to five digits and the total to ten
digits. The program calls a multi-byte unpacked addition macro similar to
SUB__UNPACKED.

Packed decimals are usually used to save space. They take half the
memory that unpacked decimals do. Also, each arithmetic instruction that
involves packed decimals, handles two digits at a time instead of one.
Therefore, they require only half as many operations as equivalent

unpacked decimals. Some other processors handle packed decimals -

directly; the 8087 includes instructions that allow packed decimais to be
converted to formats that are very efficient when used in the BOB7's
arithmetic operations. This kind of compatibility with other processors is
one reason for using packed decimals in files and programs. We will not
use them very much in our programs, however.

What About Decimal Places? .

So far, all the examples have used integers exclusively. How does MASM
handle decimal places? It doesnt. If you are going to use numbers that
involve decimal places, you must handle them in the program as if they
were integers. It is up to you to keep track of how many digits in each
pumber actually represent decimal places, to add trailing zeros if necessary

Arithmetic 227

PAGE 132

i INCLUDE MACLIB.LIB

INCLUDE EGULIB.LI1B

K SEOMENT STACK - STACK:
PROG.STAC 64 DUP ('STACK *)

PROG.-STACK ENDS

i
DATA SEGMENT “DATA’ .
:::gER PROMPT DB LF,CR, PLEASE TYPE NEXT NUMBER: ,EOF

‘ BYE* ,ECQT
END_HESSAGE [+ LF,CR,'GOOD , ,
OUT_MESSAGE 123 LF,CR,”CURRENT TOTAL:
Ol.ﬂ' Su'! oB 19 DUPC’ 7)) ,EOT
INBUF 0B :
INCOUNT o]] i
INDATA 0B & DUPC”)
:Nl (o]] 18 DUP{@)
SUM [+1:] 10 DUP(B)

PROG_DATA ENDS

PROO_CDDE SEGMENT ' CODE’

0C FAR
IN-PROgngME CS:PROG_CODE ,DS:1PROG.DATA, SS:PROG_STACK.ES :PROG_DATA

STARTER
ST
cLD
cLS
CURSORON
XT_MNUMBER 1
NE DISPLAY NUMBER_PROMPT
,GETDATA INBUF , 4
'crp INCOUNT .8
JE END.PROG
CALL ASCII_TO_UNPACKED
ADD_UNPACKED SuM,INL, 10
cALL UNPACKED_TO_ASCI {
DISPLAY OUY _MESSAGE
JuP NEXT_NUMEBER
END_PROG1 -
SSAGE
' gé?"m ENp-ne JTHEN RETURN TO OPERATING SYSTEH
MAIN_PROG ENDP
T
UNPACKED PROC {HOVES INPUT ASCIT CHARACTERS TO
Aect1-To- i UNPACKED DECIMAL WORK AREA
MoV X, 19 tF1RST CLEAR WORK AREA
MOu AL, #
LEA ol ,INL
REP STOSE
HOV CH, B
HOV CL, [NCOUNT ;THEN CONVERT ASCI! TO BCD
HOV ex, ¢
ASC11
suB INDATALBX],38H ; BY CLEARING UPPER 4 BITS
INC o0
LooP ASCl

MO CH, @

228

MOV
nov
MoV
DEC
ASC2:

nov
MO
INC
DEC
LO0P
RET

ASCLI_TO_UNPACKED

3
UNPACKED_TO_ASCI I

"ov
LEA
LEA
UNPL
HOV
MOV
INC
DEC
LOoP
"oV
(210]
UNP2
ADD
INC
LooP
moV
MOV
UNP3:
(o0 o
JNE
Hov
INC
LDOP
UNP4 3

RET
UNPACKED_TO_ASCI I

»
PRDOG_CODE ENDS

CL, INCOUNT
S1,0
oI,CX

o1

AL, INDATALSL)
INILDI) AL

sl

oI

ASC2

ENDP
PROC

X, 10
§1,8uUM
D1, QUT_SUM+P

AL, [51)
(01),AL
81

o1

UNP1
o, 18
BX,®

NOW MOVE ENPUT TO WORK AREA
i PUTTIRG LOW-ORDER DIGITS
H AT END OF WORK. AREA

JMOVES UNPACKED SUM TO OUTPUT

j AREA AND CONVERTS TO ASCII
JIFIRET MOVE SUM

56U HAS HIGH-ORDER FIRST

1 OUTPUT HAS HIGH-ORDER LAST

$NOW CONVERT TO ASCI

OUT..SUMEBX] ,30H
[

re2
o, 10
BX,®

OUT_SUMEBX] ,“8°
P
OUT_SUHLBX} ,* *
ax

NP3

ENDP

END MAINLPROO

Figum 8.5 The ADDITION Program

, INOW CLEAR LEADING ZEROS

JAUIT WHEN FIRST NONZERO FOUND

for aligment for addition and subtraction, to round or truncate excess digits
after multiplication, and to make adjustments for division. You must also
edit printed and displayed numbers by inserting decimal points and other
editing characters such as commas and currency signs in the proper places
and by removing such excess characters from input numbers. The logic
used in tracking and using decimal places is the same whether the arith-
metic is performed manually or by a computer; we are not going to discuss

it in detail in this book.

Is

Arithmetic

229

Review Questions

1. AH contains this value: 00000110 00000011.

A. What is this value if this is a binary number?
B. What is this value if this is an unpacked decimal?
C. What is this value if this is a packed decimal?

2. Code the definition of BINCODE if BINCODE is:

A. A three-digit unpacked decimal initialized as 173
B. A four-digit packed decimal initialized as 8175
. C. A four-digit unpacked decimal initialized as 8175

3. Match each instruction with the appropriate phrase or phrases.

Some phrases may not be used; some are used more than once.

A.

tion

Tests and affects AF
Affects CF

Adjusts packed decimals
Adjusts unpacked decimals

a. Used before binary arithmetic instruc-

AAA
DAA
AAS
DAS
AAM
AAD

smD O

NN

e BOT

L

W'_—..

Converts binary value in AL to BCD dig-
itsin AH, AL »
Converts two BCD digits in AH, AL to
binary value in AL

Adjusts decimal point after multiplica-
tion

Used after addition

Used after subtraction

Adjusts byte in AL if necessary

4. Code a multi-by‘te unpacked-decimal addition macro s'Emilar to
SUB _UNPACKED. The answer is the macro tl.lﬂt is called in @pl- .
TlObT(Figure 9.5). If yours is different, try writing a program similar
to ADDITION to test it.

230

Answers
1.A.1539B.63C.603 2. A. BINCODE DB 03H,07H,01H
B. BINCODE DB 75H ,81H or BINCODE DW 8175H C. BINCODE DB
05H.07H,01H,08H 3.A.bc.eikB.bcdikC.bcejkD.bcdjkE. ef
F.aeg;hisnotused 4.Here'sourmacro: -

ADD__UNPACKED MACRO RESULT, IN1,COUNT
_ LOCAL NEXT_ADD
PUSH CX
PUSH BX
PUSH AX
MOV CX,COUNT
MOV BX.0
cLC
NEXT_ADD:

MOV AL, RESULTIBX]
ADC AL, IN1[BX)

AAA

MOV RESULTIBX], AL
INC 8Xx

LOOP NEXT__ADGD
POP AX

POP Bx

POP CX

ENDM ’

Key Points From Chapter 9

In this chapter, you learned the MASM arithmetic instructions and some
additional instructions used to build arithmetic routines. You learned to do
single and multi-byte addition and subtraction using both binary and
decimal numbers and you learned to multiply and divide using binary and
unpacked decimal numbers. Here are some of the main points from this
chapter:

B The general format for the addition and subtraction instructions is

opcode dest,source

and the result replaces dest. The operands can be words or bytes. Dest
can be a register or address operand; source can be register, address,
or immediate data. The combination address,address cannot be used.

Arithmetic 231

i i SF and OF are
Each of these instructions affects the status Qags. _ .
sigt:liﬁcant after signed arithmetic, CF after unmgned-an‘thmehc, A.F .
in BCD arithmetic, and ZF in any arithmetic. When a significant flag is

- set the meaning is:

Flag _ Meaning

SF Result is negative

OF Result overflows allowed space

CF Result overflows allowed space

AF Result overflaws from low-order four bits
ZF Resultis zero

The addition instructions are ADD and ADC. ADC includes the
original value of CF in the addition; ADD does not.

ion i i Both subtract source
The subtraction instructions are SUB and SBB.
from dest. SBB also subtracts the original value of CF from dest.

ADD and SUB are used in one-byte operations or with the low-order
byteina multi-byte-operation.
ADC and SBB are used with the other [not low-order) bytes in multi-
byte operations.. st all s

ing ADC, and SBB can be used wit esin
m&&mﬁﬁ:ﬁ?fg&c is first used to clear the carry flag. STC
can be used to set CF if this is ever necessary.

i iti i C to test the carry

After unsigned addition or subtraction, use JC or JN
flag. Aﬂelrs:igned addition or subtraction, use JO or JNO to test the
overflow flag and JS or JNS to test the sign flag. These tests shoulc} be
made after a multi-byte operation or after the high-order byte in a
multi-byte operation.)
Multi-byte pumbers should be stored with the low-order byte first,
high-order last. |

ivi and multiplication use the accumulator and its extension.
?;:l:ilg;te opemtionF: ALis the accumulator and AH the extension. For
a word operation, AX is the accumulator and DX the extension.

232

M MUL is used to multiply unsigned numbers, IMUL to multiply signed
numbers. Both require one operand, the source, which may be a word
or a byte, a register or an address. The destination is always the
accumulator {AL or AX). The result goes in the extended accumulator,
with the high-order portion in the extension. CF and OF sre set if the
accumulator extension contains significant digits.

M DIV is used to divide unsigned numbers, IDIV to divide signed num-
bers. Both require one operand, the source, which may bea wordora
byte, a register or an address. The source is the divisor. The dividend
is always the extended accumulator. The quotient is placed in the

.accumulator, the remainder in its extension. No flags are affected by
division. '

B Before division, both the accumulator and its extension must be
initialized with the dividend. If the dividend occupies only the
accumulator, the extension can be initialized with zero for unsigned
division. For signed division, the accumulator's sign can be extended
into the accumulator extension by using CBW or CWD.

B INC and DEC each has one operand, dest, which may be a word or a -

byte, an address or a register. The destination is incremented or
decremented according to the instruction. All status flags except CF
are affected.

B NEG has one operand, dest, which may be a word or a byte, an
address or a register. The two's complement of the destination
replaces the destination. All status flags are affected.

B BCD wvalues can be initialized or coded as immediate by using hex-
adecimal digits, since the binary codes for 0-9 are the same for
hexadecimal and BCDs,

B AAA is used to adjust AL following addition of unpacked decimals.
AAA places the correct unpacked-decimal digit in AL and sets AF and
CF if necessary. .

B AASisused to adjust AL following subtraction of unpacked decimals.
AAS places the correct unpacked-decimal digit in AL and sets AF and
CF if necessary.

B DAA and DAS are used to adjust AL following addition and subtrac-
tion of packed decimals. Bach of them places two correct packed-
decimal digits in AL and affects all the status flags.

Arithmetic 233

AAM is used to adjust AX following multiplication of unptacke_d
decimals. The binary value in AL is divided by 10; the quotient 15
placed in AH and the remainder in AL. The effect is to convert the
binary vatue in AL to two unpacked-decimal digits in AX.

AAD is used to adjust AX before division of unpacked decimals. The
value in AH is multiplied by 10 and added to the value in AL; then, AH
is cleared. The effect is to convert two unpacked-decimal digits in AX
to a binary value in AL.

There are no adjustment instructions for multiplication or division of
packed decimals. The packed decimals must be gonverted to
unpacked decimals or binary for multiplication or division.

ASCII characters can be added and subtracted like unpacked deci-
mals if desired. The conversion between ASCII characters and
unpacked decimals is also very simple. To go from ASCII to
unpacked, change the upper four bits of each byte from 3 to 0. To go
from unpacked to ASCII, reverse the process.

Chapter Review Questions

Code instructions or routines to:

Add ABYTE to BEYTE. Both are one-byte binary values.

A. Goto ERROR__ROUTINE if an unsigned result overflows.
Go to ERROR__ROUTINE if a signed result overflows.

B.
C. Go to BELOW__ZERO if a signed result is negative.
D. Goto ZERO__BALANCE if a result is zero.

A. Add 250 to LOW_BALANCE, a one-byte unsigned binary
number.

B. Subtract 125 from DAYS, a one-byte signed number.

Add two eight-byte signed numbers, IN1 and IN2, putting the result
in SUM. {Hint: code the addition as a loop.}

' Subtract WITHDRAW from BALANCE; both are seven-byte

] unsigned numbers. If the result overflows, go to OVERDRAW.

234

o,

10.

11.

12.

13.

Multiply WEEKS, a one-byte unsigned binary number, by seven;
store the result in DAYS, also a one-byte number. If the result is too
large for DAYS go to TOO__MANY instead of storing it.

Multiply PRICE and QTY, two one-word signed numbers; store the
result in TOTAL__FPRICE, a two-word number. If the significant
digits of TOTAL__PRICE won't fit in one word, go to DISP__MESS
after storing the result.

Multiply PRICE and QTY, two one-word signed numbers; divide the
result by DAYS, a one-word signed number. Save the quotient in
DAILY__AVE and the remainder in REMAIN. Make sure to include
a check for a zero divisor. If DAYS is zero go to an error routine
instead of performing the division.

Divide YEAR, a one-word unsigned number, by four. If the
remaindeyr is zero, go to LEAP__YEAR. ’

Divide TOTAL, a one-byte signed number, by three. Save the quo-
tient in ONE__THIRD and the remainder in REMAIN.

A. Add INCOME to BALANCE and then subtract OUTGO. All three
variables are five-digit unpacked decimals. Code the full routines
as loops; don't use the macros developed in the chapter. If any
operation overflows, goto ERROR__ROUTINE instead of contin-
uing.

B. Repecat A using ADD_UNPACKED aad
SUB__UNPACKED.

C. Repeat A assuming all three variables are six-digit packed
_ decimals,

Multiply M1 by M2 and move the result to R1. M1 and M2 are one-
digit unpacked decimals; Ri is a two-digit unpacked decimal.

Divide D1, a two-digit unpacked decimal, by three. Store the result
in M1 and the remainder in R1.

Answers

MOV AL ,ABYTE
ADD BBYTE, AL

You may have used a different 8-bit register, or done the addition in the
register and moved the result to BBYTE.

Arithmetic 235

WPOOW>

JC
JoO
JS
JZ
ADD
SUB
MoV
MGV
cLC

NEXT__ADD:

MOV
ADC
MOV
INC
LOOP
MOV
MoV
CLC

NEXT__SUB:

MOV
sBB
INC
LOOP
Jc
MoV
MuUL
JC
MOV
MoV

I MUL
MOV
MoV
Jc

-

ERROR__ROUT INE

ERROR__ROUT INE

BELOW__ZERO

ZERO__BALANCE or JE ZERO__BALANCE
LOW__BALANCE , 250

DAYS, 125

cX.8

BX,0

AL, IN1[BX]
AL, IN2IBX]
SUM(BX] , AL
BX
NEXT_ADD
cX,7

BX,0

AL ,WI THDRAW

BALANCE , AL

BX

NEXT__SUB

OVERDRAW

AL,7

WEEKS

TOO_ MANY

DAYS, AL

AX,PRICE

QTY

DX, TOTAL_PRICE ;HIGH-ORDER FIRST
AX.TOTAL_PRICE +1 ; LON—ORDER LAST
DISP_MESS :OR JO

236

10.

MOV
IMUL
CMP

IDIV

AX,PRICE
QTY
DAYS, 0
ERROR__ROUT INE
DAYS
DAILY_AVE, AX
REMAIN, DX
AX, YEAR
0X,0 ; INtTIALIZE EXTENSION
BX.4
BX
DX,0 ; CHECK REMA |NDER
LEAP__YEAR
AL, TOTAL
; INITIALIZES EXTENSION
BL,3
BL
ONE_THIRD, AL
REMAIN, AH
CX.5
BX.0
AL , BALANCE[BX]
AL, | NCOME[BX]

BALANCE[BX], AL
BX

NEXT_ADD
ERROR__ROUT INE
CX,5
BX.0

Arithmetic 237

12.

NEXT

_SuB:
MoV AL, BALANCE|BX]
SBB AL, OUTGO[BX]
AAS
MoV BALANCEIBX], AL
iNC BX
LOOP NEXT__SUB
Jc ERROR__ROUT INE
B. ADD__UNPACKEDBALANCE, !NCOME,5
Jc ERROR__ROUT{NE
SUB__UNPACKED BALANCE ,OUTGO, 5
JC ERROR__ROUT I NE
"C. MoV cX,3
. MOV BX.O
CLC
NEXT__ADD:
- MOV AL ,BALANCE([BX]
ADC ~ AL, NCOME[BX]
DAA
MOV BALANCE|BX], AL
INC BX
LOOP ‘NEXT__ADD
JC ERROR__ROUT INE
MOV cX.3
MOV BX,0
CLC
NEXT_SUB:
MOV AL, BALANCE|BX)
SBB AL , OUTGO|BX]
DAS
MOV BALANCEIBX], AL
INC BX
LooOP NEXT__SUB
JC ERROR__ROUTINE
uov AL, M1
MUL M2
AANM
MoV AL,R1

MoV AH R1+1

;SIX PACKED DIGITS

; LOW-ORDER DIGIT FIRST
;Ht{GH-ORDER DIGIT LAST

238

13.

NOV

MOV
Div
MOV
Mov

BL,3
AL,D1

AH,0

M1 AL
R1,AH

i INITIALIZE EXTENSION

10
Bit By Bit

This chapter presents instructions that test, change, and move individual
bits within bytes or words. It's easy to describe these instructions and how
they work, but it's not so easy to explain the reasons for using them. These
bit manijpulation instructions often are necessary when coding routines to
perform complex functions that are beyond the scope of this book. As you
gain programming experience, you will find situations in which one or
another of these instructions is just what you need. In this chapter, how-
ever, [will generally discuss the *how” instead of the “why" of bit manipula-
tion.

Ay

Logical Bit Operations

Figure 10.1 shows the formats of the logical bit operations: AND, OR, NOT,
XOR, and TEST. In other contexts, these operators are described in terms
of true and false:

W Ifboth A and B are true, then A AND Bis true; otherwise A AND B is
false.

8 Ifcither A or Bis true, then A OR B is true; otherwise A OR B is false.
If A is true then NOT A is false; if A is false then NOT A is true.

M Ifeither A or Bistrue, but not both, then AXCR Bis true; otherwise, A
XORB s false.

240
<«
Eormyt Sizeia} Combinations Afiscied Ermarks
AND dest,source Word,Byte reg,reg CF, OF, PF Logica) AND of bits of operands
. [T Wil SF, IF Result has bits set where both
reg,inm oper ands had bits set
e, inl and a1} other bits clesred
CF aad OF are cleared
TEST dest.source Word,byte reQ,reg CF, OF, PF Logical AND of bits of operands
bR, reg 8F, IF Ned ther cperand changed
reg,inm CF aad OF are cleared
new, imn
OR dest,source word, by te reg,reg CF, OF, PF Lopical OR of bits of operands
reg,mm 8F, IF Result in dest
arm,reg Resulie das bits clearsd where
reg, inm both operands had bit clear
»em, inm and all other bits st
CF sad OF ars clasred
XOR dest,source wWor,Gr te reQ,reg CF, OF, PF Logical XOR of plts of eperands
g, &F, IF Rasult in dest -
nyl,reg Resul ks has bits clear where
reg, iam both oparands had matehing bit
am,inn and all other bits cleared
CF and OF are cleared
NOT dest Word,Byte reg nons Changes #8cth bit of operaad

ey Result in dast
Result has il set whers
operand aad DIt Cleared
and bit clear where operacd
had Bit set

Figure 10.1 Logical Bk instructions

!

In these logical bit operations, corresponding operand bits are compared,
and the result bit is set ar cleared according to the rules above, using 1 for
true and O for false. As with arithmetic operations, when the operation
ends, the result replaces the destination operand.

NOT does not affect any flags. The others, AND, TEST, OR, and XOR,
affect all the status flags except AF. When ZF is set, it means the result was
zero; when SF is set, it means the high-order bit of the result was set. CF
and OF are always cleared by these operations.

Let's look at the instructions in detail.

AND and TEST

AND looks at a bit position in the source and destination. If both operands
have a 1 in this position, the corresponding position in the result is set;
otherwise, it is cleared. The process is repeated until all bit pogitions in the
result have been set or cleared.

Bit By Bit 241

You can use AND to force individual bits to be cleared. Where the
source has 0 the result has 0; where the source has L, the result matches the
destination. Remember the routine used in Chapter 9 to change ASCII
characters to unpacked decimals by subtracting 30H from each character?
Another way to clear the upper half-byte is to use an AND, as shown:

AND dest, OFH ;OFH=00001111

The lower four bits of the destination are preserved: 0if they were already
0, 1if they were already 1. The upper four bits are all clgared. ‘

TEST is a special operation that performs an AND without changing the
destination, just as CMP performs a subtraction without preducing a
result. Like CMP, TEST is used to prepare for a conditional jump, usually

one that tests ZF. These instructions:

TEST AL,000000018B
3Z EVEN__NUMBER

will cause a branch to EVEN__NUMBER any time the low-order digit of
AL is zero and no branch if it is L. In either case, the actual contents of AL

are left undisturbed.

OR and XOR

OR also looks at corresponding bit positions in the source and destination,
setting the result bit if either or both operands are set, clearing the resu!t 1f _
both operands are clear. XOR (X stands for eXclusive) sets_the result bit if
only one, but not both, operands are set. In other words, if the operands
match, the result is clear; if they differ, the result is set. .

OR can be used to force result bits to be set. Where the source has 1, the
result has 1; where the source has 0, the result is unchanged. This instruc-

tion:

OR AL,01H

will make sure that the low-order bit of AL is set and will leave the other
bits undisturbed. Can you use it to convert unpacked decimals to ASCII,
like this?

OR AL, 30H

242

Yes, if you're sure that the original AL had zeros in the upper half. If AL
originally contained 10000000B, this instruction would not produce a valid
ASCII character since the high-order bit would remain set.

XOR forces the destination to change wherever the source is set and to
remain the same wherever the source ia cleared. This instruction, then:

XOR AL ,OFH

causes the lower half of AL to be reversed, while the upper half is
untouched.

NOT

NOT simply changes each bit of the destination to form the result. it forms
the one's complement of the destination. Remember that NEG forms the
two's complement, changing each bit and then adding 1to the result. If AL
contains OFFH, NQT AL changes AL to 00H, while NEG AL changes it to
OIH. NOT does not affect any flags.

Review Questions

¢

1. Foreach logical bit operation choose the phrase which best describes
its effect on an individual result bit. Not all phrases are used.

— A. AND a. Reverses value
-— B. TEST b. Setonly if either or both operands set
— C. OR c. Noeffect
— D. XOR d. Setonly if operands match
— E. NOT ¢. Setonly if both operands set
f. Setonly if operands don't match

2. Which sentences describe the effect of the AND, OR, XOR, and

TEST on the flags? {More than one sentence should be chosen.) .

Which sentence(s) describe the effect of NOT?

A. No status flags are affected,
B. Ali status flags except AF are affected.
C. All status flags except AF are cleared.

Bit By Bit 243

D. CFand OF are cleared.
E. ZF and SF are set.
F. ZFand SF reflect the result.

For questions 3 through 7 code the appropriate instructions or routines.

3. Clear the upper half of BH leaving the lower half unchanged.
Set the upper four bits of BH leaving the lower four unchanged.

5. 1fbit3of CLis set, jump to EIGHT-BIT [count the low-order bit as bit
0).

6. Change all the bits in the upper half of DL, leaving the lower bits
unchanged.

7. Changeall the bitsin DL.

_ Answers

1. A.eB.¢C.bD.fE.a;disnotused. 2.B,D,F;A 3. ANDAH,OFH 4.
OR BH,0F0OH 5. TEST CL,08H JNZ EIGHT-BIT 6. XOR DL,OFOH 7.
NOT DL '

Shift and Rot'ate

Figure 10.2 shows the shift and rotate instructions that move bits within a
byte or word. All of these instructions move data within the destination. A
right shift or rotate copies each bit to the next lowest position. The instruc-
tion determines what value is put into the high-order bit. A left shift or
rotate copies each bit to the next highest position; the instruction deter-
mines what is put into the low-order bit.

Left Shift

Part A of Figure 10.3 illustrates a 1-bit left shift. Bach bit is shifted to the left.
The high-order bit replaces CF, the low-order position is filled by 0. The
SAL instruction, or its equivalent SHL, produces such a shift. You can use
this instruction to multiply a binary value by 2, just as in decimal arith-
metic you can multiply by 10 if you shift digits to the left and insert a
trailing 0. If CF is set, the multiplication has overflowed; the result is too
large for the original destination. OF is set if the new CF does not equal the
new high-order bit. What does this mean? It means that the high-order bit

244

lostrection

Egemat

SAL dest count
SHL dest,count

SAR dest,count

SHR dest,count

RCL dest,.count

RCR dest,count

ROL dest,count

Dpgrang
§lre(s)

Word,Brte

Word,Byte

Word,Byte

Word,Brte

Word,Byte

Word,Brte

Qeerand Elaos
Coshinationy Affectay Remarks

reg,l
nen, |
reg,CL
wen, CL

reg,l
wen, |
reg,CL
nem, CL

reg,l
aen, 1

.reg,LL
nem, CL.

reg,l
»ea,)
reg,CL
am,L

reg.l
[1

-reg,CL

man, CL

ceg,l
[1 |
reg, 0L
mom, CL

CF, OF, PF
§F, IF

oF, OF

Each bit of dest shified to laft
Rrsult I dest
CF = origisal high-order bit
Low-order bit = # ’
Griginal CF lost
Rotation repeated count times
OF sot if new high-order DIt
(doa’t match sew CF

and couat = |

Each bit of dest shifted to right

Result in dest

CF = orlginal low-order bit

High-order, bit unchanged

Griginal CF 1pst

Hotation repsated count times

OF sat it aew Nigh-order 2 bits
doa’t match and coont = |

Each bit of dest shiftad to right

Result in dast

CF = original low—order bhit

High-order bit = §

Original CF Yost

Rotation repeated count times

OF sat i¥ mew hiph-order 2 bits
doa’t match and count = |

Each bit of dest shified to et

Result in Oest ’

CF = original high-order bit

Low-order bit = original CF

Rotation repested cownt times

OF set it high-order 2 bits of
original dast not satched aad
COoun tmi

Each Bit of dest shifted to right
Result in dest
CF = origisal Tow-order Bit
High-ofder bit = original CF
Rotation repeated count times
OF set If high-order 2 bits of
resvlt not matched and
count=]
Esch DIt of dest shifted to Jeét
Reswit in dest
CF = origisal high-order bit
Low-arder bit =
original nigh-order bit
Original CF Jost
Rotetion repuated count times
OF set i new high-order bit
doesh’ t match new CF and
coun ta)

Bit By Bit 245

Each bitwof dest shifted to right

ROR oest,count Word,Dyte reg,t CF, OF
oem, | Result in dest
reg,CL CF = original Jow-order bit
men, CL High-order bit =
I's original low-order bit

Original €F lost

Rotation repeated count times

OF sat if new high-order 2 bits
don’t match and count = §

Flgure w.2 Bit Moving Instructions

has changed. if a signed number was shifted, the sign has changed and the
new value is not necessarily twice the original. Suppose, for example, that
AL contains 010000018, or 65. A left shift changes AL to 10000010B with CF
cleared. If AL represents an unsigned number this value is 130, but as a
signed number the value is -126. If you are using the shift for signed
multiplication it has produced the wrong answer.

Notice {in Figure 10.2) that SAL has a second operand that contains a
count of digits shifted. This operand can be either 1 or CL. If you want to
repeat the left shift, you can put the number of positions to be shifted into
CL and then code SAL with CL for the count. The shift is repeated CL
ﬁmes, but CL is not decremented. The meaning of OF is uncertain after a
multiple shift. Also, CF will hold only the last digit shifted out. You can't
tell if other significant digits have been shifted. If AL contains 010000018
{65) and CL contains 3, then the instruction:

SAL AL.CL

leaves CF cleared and AL with a value of 00001000B (8), whereas three
multiplications by 2 should produce a value of 520. Unless you are working
with small numbers multiple shifts are not reliable for muitiplication.
However, you will find them useful in other ways.

Right Shifts

Part B of Figure 10.3 shows a 1-bit right shift. Such a shift is produced by
SHR with count = 1. Each digit shifts to the right; the low-order digit
replaces CF and the high-order position is filled by 0. This is called a logical
shift, as opposed to the arithmetic shift described below. With unsigned
numbers a logical right shift is equivalent to division by 2. As with the left
shift, OF is set if the high-order bit changes.

246

A. Lef shitt (one bit) —SAL or SHL

CF b OF

[ﬂ {High-order bit unchanged)

B. Righ shirl (one bit)-Logical (SHR)
Low OF

cF High
s [+] [Jo[0] ... J1[1]e

w@ﬁﬁh‘

C. Right shirt {one bit)~Asithmelic (SAR}

i mwawwcmm

Low OF

aemeéﬁ [1|:T1| It\]:[o ‘
e @ r,%l |!\l.1_| mem

Figurs 10.3 Bt Shilts

Part C shows a 1-bit arithmetic right shift. SAR is the instruction. Again,
each digit shifts to the right and the low-order digit replaces CF. But, in an
arithmetic right shift the high-order digit is not changed. You can use SAR
to divide by 2 without changing the sign. The manual says that OF is set if
the new high-order bit doesn't match the new next-to-high-order [that is, if
the high-order bit changes}, but it's hard to see how that can happen.

Both SAR and SHR atlow multiple shifts using CL. Again, if you use
muitiple shifts, the value in CF is the last digit shifted out. OF is undefined
after a multiple logical shift; it is always cleared by a multiple arithmetic
- shift.

Left Rotation

Figure 10.4 illustrates the rotation instructions. Part A shows a 1-bit left
rotation through the carry flag; the instruction is RCL. The difference
between a left shift and a left rotation is in how the low-order bit is filled. In
a shift, it is always filled with 0. With RCL, the low-order bit is filled by the

Bit By Bit 247

A, Left Rotation {ona bit) through CF [RCL))
CF High Low
Befora EI 1 o[oI Io[n[1]

Afor |uini |0i1i°l E(High-o:dorbiwhmed)

B. Right Rotation {one bit) throug CF {RCRA)
CF High Low OF

OF

EI (High-order bt changed)

C. Lefl Rotation {one bi) not through CF (ROL)

CF High Low OF

I°I1l;l [H(Hmwduhltumhangod)
D. Right Rotation (one bity NOT through CF (ROR}

CF High
Before m off1] ... Jo
Aher Q ﬁiro 1] ... |0|ﬂ E‘medubndmnoed)

Low OF
[A R

Figure 10.4 Bit Rotations

original value of the carry flag. If you think of the operand 'mclud%:gg CF as
arranged in a circle, RCL simply moves each bit value one position in a
counter-clockwise direction. If the high-order bit changes, OF is set; other-
wise, it is cleared.

Part Billustrates a 1-bit right rotation through the carry flag (RCR). Each
bit shifts to the right. The ariginal CF shifts into the hi.gh-ordef bit, and ?he
low-order bit goes into CF.Tf RCL is a counter-clockwise rotation, RCRisa
clockwise rotation. If the high-order bit has changed, OF is set.

248

-

Part C illustrates a 1-bit left rotation that does not involve CF (ROL). CF
is affected; its original value is lost and its new value comes from the
original high-order bit. However, that same original, high-order bit value is
copied into the Jow-order bit. In other words, the 8 or 16 bits of the operand
rotate counter-clockwise and CF is set to match the original high-order bit.
Again, OF is set if the high-order-bit has changed and cleared if it has not.

Part D shows a 1-bit right rotation, ROR, that does not go through CF.
Again, CF's original value is lost. In this case, CF's new value comes from
the original low-order bit and the new high-order bit also comes from the
original low-order bit. All other bits move to the right. OF is set if the high-
order bit has changed.

Multiple Rotations

The rotation instructions, like the shift instructions, have a count as the
second operand. If the count is 1, one bit is rotated. For rotations of more
than one bit, the count must be put into CL, and CL specified as the count
operand. CL is not decremented when the instruction is executed. The
setting of OF is undefined and not meaningful after most multiple rotation
or shift cperations. The exception is SAR, where OF is always cleared after
a multiple shift. : .

Multiple rotations through CF [RCR or RCL) leave CF with the value of
the last digit rotated out of the operand, just as multiple shifts leave CF with
the last digit shifted out. A multiple rotation that uses ROL will leave CF
matching the current low-order digit. After ROR is used, OF will match the
current high-order digit.

Review Questions

Bit By Bit 249

1. For each instruction choose the phrases that describe its operation.
There may be more than one phrase for an instruction. Not ail

phrases are used.

— A SAL a. Digits move left,

— B. SAR b. Digits move right.

— C. SHR c. High-order filled by 0.

— D. RCL d. Low-order filled by 0.

— B. RCR e. High-order filled by original CF.

— F. ROL f. Low-order filled by original CF.

— G. ROR g. High-order unchanged.
h. Low-order unchanged.
i. Low-order filled by original high-order.
j- High-order filled by original low-order.

-+

2. What does CF contain

A. aftera 1-bit right shift or rotation
B. aftera 1-bit left shift or rotation

a

3. Aftera 1-bit shift OF is set. What is the significance of this?
4. Whatis the effect on OF of a multiple shift or rotation?

] Answers
1. A adB bgC.beD.afE beF. aiG.b,j hisnotused. 2. A the
original low-order bit B. the original high-order bit. 3. The high-order bit
has changed. 4. Undefined; OF has no significance after a multiple shift
or rotation.

Key Points From Chapter 10

In this chapter you have learned five logical bit instructions and seven bit-
moving instructions. You will see many of these instructions used in the
next part of this book, especially in the data conversion routines. As you
develop your own application programs, you will find many more occa-
sions when you will use logical instructions to change individual bits in a
byte or word, or when you can simplify a routine by shifting or rotating bits
one or more positions. Here are some of the major points from this chapter:

M The logical bit instructions AND, TEST, OR, and XOR have the
general format :

opcode dest,source
B Legal operand combinations are the same as for MOV. The operands

may be bytes or words, as long as they match. (Exception: an immedi-
ate data byte can be used with a word register or address operand.)

B The logical bit instruction NOT has only one operand, an 8- or 16-bit
register or address operand.

‘"B These instructions, AND, TEST, OR, XOR, and NOT, use the corres-

ponding operand bits to affect the result bit in the same position
according to the rules listed on the following page.

250

INSTRUCTION RULES ' -

AND i both operands set, result set.
: Otherwise, result clear.
TEST Same as AND.
OR if either or both operands set, result set.
i bath clear, result clear.
XOR If operands don't maich, result set.
if both set or both clear, resutt clear.
NOT tf operand set, result clear.

it operand clear, result set.

NOT does not affect any flags. Bach of the other logical bit operations
{AND, TEST, OR, and XOR| clears CF and OF and changes SF, ZF, and
PF to reflect the result.

The result of TRST is not saved. The result of each of the other logical
bit operations {AND, OR, XOR, and NOT] replaces the destination.

AND can be used to force bits to be cleared. Each bit cleared in the
source will be cleared in the result.

OR can be used to force bits to be set. Bach bit set in the source will be
set in the result.

XOR can be used to force bits to be'changed. Each bit set in the source
will be changed in the result.

The shift and rotate instructions have the general format:

opcodedest , count

Destisaregister oraddressoperand, either 8- or 16-bit. Count is either
1 or CL. When bits are to be moved one position within dest, count
.should be 1. For multiple moves, CL should be loaded with the
number of moves and count should be CL.

On a left 1-bit shift or rotation, each bit shifts to the next high-order
position. The h:gborder bit is copied to CF. The low-order bit is filled
as follows:

INSTRUCTION LOW-ORDER

SAL, SHL -0

ROL - oniginal high-order bit value
RCL original CF

~ Bit By Bit 251

On a right 1-bit shift or rotation, each bit shifts to the next low-order
position. The low-order bit is copied to CF. The hlgh-order bit is filled
as follows:

INSTRUCTION HIGH-ORDER

SHR - 0

SAR unchanged

ROR original iow-order bit value
RCR original CF

After any 1-bit shift or rotation OF is set if the value of the hlgh-order
bit has changed.

A multiple shift or rotation repeats the 1-bit operation as indicated by
CL. CL is not decremented. OF is not significant after a multiple shift
or rotation.

Chapter Review Questions

For these questions, code the appropriate instructions or routines.

LU o o A S

Clear the two low-order bits of AL.

Set the two low-order bits of AL,

If the lower-order bit of AH is 0, go to EVEN__ NUMBER.

Change each of the upper four bits of DH.

Move each bit of BL three positions to the right, putting zeros in the
high-order position.

Move each bit of SI four positions to the left, filling the low-order bits
from CF.

Move each bit of AH one position to the right, keeping the sign bit
unchanged.

Move each bit of AH two positions to the left, filling the low-order
bits with 0.

Move each bit of BX one position to the left, filling the low-order bit
from the original high-order bit.

252

Ll

OR

XOR
MOV
SHR

MOV .

RCL
MOV

ROL

Answers

AL,0FCH
AL,03H

AH,01H
EVEN-NUMBER
DH ,0F0H

CL3

ALCL

CL.8

SICL

AH,t

CL.2

AH,CL or SHL AH,CL
BX.1

PART

Z

Reference
Routines

In the first part of this book you learned to use Macro Assembler to write
programs. When you begin to plan your own programs, though, you will
find that you need more than a list of instructions in order to do what you
want.

How do you convert a binary number to ASCII 50 you can display a
total or a page number? How do you use the printer? How do you store and
retrieve data from disk files? Can your MASM program read files written
by BASIC? These problems, and others like them, can't be solved by
learning new MASM instructions. They are handled using instructions you
already know. However, you must have additional information about such
instructions as the /Q interrupt that sends characters to the printer.

This part of the book presents information that you need in order to

handle some common situations in MASM programs and provides sample
routines for them. Many of the samples are presented as macros that you
can incorporate into your own libraries.

Since this part of the book presents reference material rather than
actual instruction in MASM, I won't provide review questions or summa-

ries. Occasionally, I will suggest a program to use and test the material

being covered.

253

1I

Data Format
- Conversions

Four major data formats are used in MASM: binary, packed decimal,
unpacked decimal, and ASCIL. In this chapter I will discuss conversions
between some of these forms, leaving other conversions for you to code for
yourself. :

ASCII and Unpacked

Mast input and output data are in ASCII characters, Numeric data in ASCII
is stored with the high-order digit first, and the low-order, last. Although
we can add and subtract ASCII digits as if they were unpacked decimals,
the arithmetic and other macros expect unpacked decimals to be stored
low-order first. The conversion routine is simply a matter of moving digits
from one place to another, clearing the upper four bits of each byte as we
go. Figure 111 shows our routine coded as a macro. Calling the macro
requires naming the destination {the unpacked number}, the source (the
ASCII variable), and the count of digits to be converted. Move each ASCII
character to AL, clear the upper four bits, and move the result to the
appropriate place in the unpacked decimal. The last ASCII character
becomes the first unpacked digit, and so on.

256

ASCZUNP MACRO UNPNUM,ASCHAR , COUNT
LOCAL NEXT_DIGIT

PUSH [

PUSH X

PUSH sI

PUSH ol

:gg :'I.COLNI sLOW-0RDER SOURCE DIGIT

MOV oL,® jLOM-ORDER DEST DIGIT

Hov X, COUNT JNUMBER OF DIGITS
NEXT_DIGIT:

MOV AL ,ASCHARL 51}

AND AL, OFH JUPPER 4 DITS = @

OV UNPNUMIDL] AL ' -

INC [+

DEC 81

LOOP NEXT.DIGIT

POP 1

POP 5]

POP cx

POP AX

ENDM

Figure 11,1 ASCH (0 Unpacked

You may want to amplify this macro by adding & check for nonnumeric
characters. If a comma, decimal point, or currency sign shows up in the
ASCII field, just skip over it. You may want special handling for other
nonnumerics also. ‘ : . ‘

The reverse situation, conversion from unpacked decimals to ASCII, is

pretty straightforward also. Try coding your own solution before you look
at the macro in Figure 11.2,

UNP2ASC MACRO ASCHAR ,UNPNUM, COUNT
LOCAL NEXT DIBIT
AX

PUSH

PUSH £X

PUSH -1

PUSH ot)

D"g’ 81, COUNT JHIGH-ORDER SOURLCE DI1GIT
c I

Y oI, 8 sH1GH-ORDER DEST DIQIT

MOV X, COUNT JNUMBER OF DIOITS

NEXT.DIBIT

AL, 30H j$UPPER FOUR BITS = '3

Figure T1.2 Unpacked o ASCH

Data Format Conversions 257

PACK2UNP MACRE UNPHUM , PACKNUM, DIGITS
LOCAL NEXT_DIGIT,P2U_DONE

PUSH A

PUSH CX

PUSH DX

PUSH 3

PUSH ol .

Hin DX,DiGITS 10X HOLDS COUNT OF UNP DIGITS

MOV s1,0 1LOW-0ORDER PACKED BYTE

MOV bI,0 1LOW-0ORDER UNPACKED DIGIT
NEXT.DIGIT:

aND AX, 0

MOV AL , PACKNUMI S11

MOV cL,4

SHL AX,CL

SHR AL, CL

MOV UNPNUMEDT), AL tLOW-ORDER DIGIT FROM BYTE

INC oI

DEC DX

JZ P2U_DONE

HoV AH,UNPHNLMIGL] jHIGH-ORDER DIGIT FROM BYTE

INC o1

DEC DX

JZ PZU_DONE

iNG sl

JHP MNEXT_DIGIT
P2U_DONE

FOP =<}

POP st

POP . DX

POP cx

POP AX

ENDM

Figura 11.3 Packad to Linpacked

Packed and Unpacked

Converting packed to unpacked data is mostly a matter of moving abyte of
packed data to a register and splitting it into two bytes, which are then
copied back to the unpacked data field. Figure 11.3 shows a macro that can
do this for any number of packed bytes. The count passed to the macro as

DIGITS is the number of unpacked digits—twice the number of packed ‘

bytes.

Ytln this macro we assume that the packed data is in the standard form of
two low-order digits first and two high-order last. Also assume that the
unpacked data will be low-order first as well. Notice the use of SHL and
SHR in this macro. Let's look at how it works. If AX contains zero and AL is
then loaded with 32H, AX's bits will look like this: 0000 0000 0011 0010.
SHL moves all of AX four bits to the left so it looks like this: 0000 0011 0010

-0000. Then, SHR is used to shift the lower byte four bits to the right, leaving

AH unchanged; now AX is 0000 0011 0000 0010. AH contains 3H, AL

258

contains 2H. We have split the two packed digits into two unpacked digits
in AH and AL. Now all that remains is to move AL and AH to the
appropriate places in the unpacked number.

Why did we use DX instead of CX for the count in this routine? In the
first place, we need CL for the shift count. We could get around this by
PUSHing CX before the shifts and POPping it after. Notice, however, that

we process fwo digits in every loop; you will find DEC DX twe places. A
LOOP using CX would only decrement CX once.

Unpacked to Packed

Converting from unpacked to packed is not quite the reverse of converting

from packed to unpacked. For one thing, the unpacked decimal may have
an odd number of digits, in which case we will need to fill our highest-order
packed digit with 0. Figure 11.4 contains our version of a macro for this
conversion. Again, DIGITS refers to the number of unpacked bytes. Basi-
cally, the macro puts an unpacked digit into AL, shifts it into the upper four
bits, and then adds the next digit to AL so that it goes into the lower four
bits. This works because the unpacked decimal's upper four bits will

UNP2PACK MACRO PACKNUM , UNPNUM,DIGITS
!

PUSH Aax

PUSH X

PUSH 2

PUSH 81

PUSH o1

Hov DX.DIGITS jCOUNT OF UNP DI1GITS LEFT

How 81,9 ’

MOV Di.®
HIGH_DIGIT,

HOV AL,8

P ox,!

JE LW D107

MOV AL, UNPNUM+ L [ST)

[g[Y) cL,4

SHL AL,CL

DEC DX
LOW.DIBIT;

ADD AL, UNPNUMIST]

HOV PACKMNUMIDI] ,AL

INC 01

ADD 81,2

DEC DX

JNZ HIBH.DIGIT

POP .2}

POP 81

POP [1}4

POP o

POP A

ENDM

Figure 1.4 Unpacked o Packed

'l')ata Format Conversions 259

alwéys be zero, as will the lower four bits of AL at this point. Nothing will
be added or carried to the upper four bits. Work out a few e:sa{nples for
yourself and see. Notice that S1, the pointer to the ur_lpacked digits, has to
be increased by 2 every time the loop repeats. We pick up two u'np_acked
digits each time. Again, we use DX instead of CX for reasons similar to
those for the preceding routine.

Unpacked and Binary

To convert unpacked to binary, multiply each unp'acked digit by an appro-
priate power of 10 {the proper power depends on its place valluel and then
add the result into the binary number. Thisis easy to accomphsh manually,
but in MASM it's much simpler to use the logic followgd in the macro in
Figure 11.5. Here, the high-order digit is added to the binary number, t.he
binary number is multiplied by 10, the next high-order an;l(!efi, the entire
aumber is multiplied by 10, and so on until the low-order digit is added and
not muttiplied. If you work it out on paper, you will see that the same effect
has been achieved. Each digit has been multiplied by the nth power of 10,

_ where n is the number of digits of lower-order.

In cur macro we have restricted ourselves toa one-wc‘ard binary value,
requiring exactly five decimal digits. You may want to think about cha‘ng-
ing the macro to allow for more or fewer digits or to check that a five-digit
number is within the one-word range.

UNPZBIN MACRO BANUM , UNPHUM
LOCAL

NEXT_DIGIT

PUSH AX

PUSH BX

puUsSH CX

:33“ ful(.o LINITIALIZE AX FOR DEST

Hov .5 1ALWAYS S DIBITS

MOV S .4 $POINT TO HIGH-CRDER SOURCE DIGIT

HoV 6,10 IMULITPLIER ALWAYS 18
NB(T_OIG;R 8x {MULTIPLY CURRENT BINUM BY 18

ADD AL, UNPNUMESI] JAOD IN NEXT LOW-ORDER DIGIT

DEC sI

LOOP NEXT.DIGIT

HOV BINUM,AX

POP 51

FOP ex

pPOP =

POP Ax

ENDM

The problem of converting from binary to unpacked is again a matter of
tens. We divide the binary digit by 10, and the remainder is the low-order
decimal digit. We repeat the division to find the next digit. We could stop
after four divisions and use the fourth quotient as the high-order digit, but
its simpler to code when we just loop through five times using the
remainder each time. Our macro is in Figure 11.6. Try coding your own
before you look at this one, or you may want to improve on this by allowing
for binary values of more than gne word.

Other Conversions

What about going between ASCII and binary? ASCII and packed? Packed
and binary? You can do any of these things by combining macro calls, asin;

UNPACK ,ASCI1 1 , 10
PACKED . UNPACK , 10

ASC2UNP
UNP2PACK

1f you frequently have use for one or more of these conversions write
your own routines using ours as a guide.

Testing the Conversion Macros

Figure 11.7 contains a short program that has no purpose except to test the
six conversion macros shown in this program. I stored the macros in
CONVLIB.LIB. lincluded addition routines in some spots just so you could

BIN2UNFP MACRD UNFPHNUM, BINUN
LOCAL NEXT.DIOIT
PUGH oX
PUSH (=3
PUSH [.4
PUSH AX
PUSH DI
oy x,3 sALWAYS 3 DIGITS
MoV oI,8 1POINT TO LOW-ORDER DEST DI16IT
MO AX, BINM sDIVIDEND IN AX
MOV BX,18 }DIVISOR ALWAYE 18
NEXT.DIGIT
nov DX, 8 1SET EXTENSION TO 0
[JL Bx
lr.‘lm) ;DIMNIDII.DL . JREMAINDER DIOIT TO DEST
LOOP NEXT_DIGLY
POP DI
POP ax
PrOP B
POP o
POP [
ENDM

Figure 1.8 Binary to Unpacked

Data Format Conversions 261

PAGE 132
INCLUDE MACLIB.LIB
INCLUDE CONMALIB.LIB

INCLUDE EQULIB.LIB

;RDG.S?ACK SEGMENT STACK ‘STACK’
[+.:]

44 DUP (’STACK ‘)

PROG.STALK ENDS
i
PROG.OATA SEGMENT “DATA’

NPROMPT DB

LF,CR, "NUMBER: ,EOT

ENDMESSAGE DB LF,CR,” GOODBYE” ,EOT

* QUTLIMNE DB LF.CR,S DUP(” *),EOT

INBUF DB &

INCOUNT DB ?

INDATA 0B & DUPC”)

UNUMBER DB s DUP(®)

PNUMBER DB 3 DUP(®)

BNUMBER OW .

ONEADD DB 1,0,0,0,¢

PROG_DATA "ENDS

]
PROS_CODE SEGMENT ‘CODE”

MAIN_PROG PROC FAR . .
ASSUME €S i1PROG_CODE,DS:PROG_DATA, $51PROG_STACK,ES1PROO.DATA R
STARTER ;
871
cLD
[~}
CURSORON '
MAINLOCP s
CLEAR OUTLINE+2,3 IMOVE SPACES TO DISPLAY LINE
CALL GETNUMBER $PROMPT AND INPUT NAME !
CMP - INGOUNT , @ 31 IF MO NAME END PROGRAM ‘
JNE CONT :
JHP END_PROG !
CONT:
ASC2UNP UNUMBER, TNDATA, 3
ADD_UNPACKED UNUMBER ,ONEADD, 3
UNP2PACK PNUMBER , UNUMBER , 3
ADD PNUMBER, 1
ADC PNUMBER+1 ,8
ADC PNUMBER+ 2,0
PACK2UNP UNUMBER ,PNUMBER, S
ADD_UNPACKED UNUMBER , ONEADD , 3
UNP2BIN BNUMBER , UNUMBER
ADD BNUMBER, 5
BINZUNP UNUMBER , BNUMBER
ADD_UNPACKED UNUMBER , ONEADD , 3 . N i
UNP2aSC OUTLINE+2, UNUMBER, S !
DISPLAY QUTL.INE X
JMP MAINLODP i AND REPEAT PROCESS ,
END_PROO)
OISPLAY ENOMESSAGE
RET 1THEN RETURN TO OPERATING SYSTEM
MAIN_PROG ENDP 1.
t
GETNUMBER PROC I
DISPLAY NPROMFT sPROMPT FOR NUMBER
BETDATA INBUF , &6 $GET MUMBER IN BUFFER
CHP INCOUNT 8 :
JE BETY - 1

262

-«

e INCOUNT , 3

JNE GETNUMBER
GET1:

RET

GETNUMBER ENDP
PROG.CODE ENDS
END .

Figure 1.7 Conversion Test Program

sce that data actually went in and got changed. The program reads a five-
digit number, manipulates it through six conversions with several addi.
tions along the way, and displays the updated number on the screen. The
updated number is nine more than the original input. You should enter the
conversion routines into your system as a macro library; you may also

12
I/O Interrupts

£

e interrupt 21H to read from the keyboard and
:i(;;l:;:;;re:cr?eidst:fi’n:: on the CET. You bave also w'ritten a feyv macros
using BIOS interrupt 10H to control certain video functions. In this chapter
I will discuss some other functions of thes‘e interrupts as well as some o_ther
BIOS interrupts. Il discuss keyboard, printer, CR’I‘.. and communications
1/O, as well as functions to get and set the date and time.

BIOS and DOS Interrupts

' interrupt transfers control to a routine that is provided as
::rty‘::; :;200;\! ;:nDla?i Mgst interrupt routines are part of BIOS. Interrupts
20H through 3FH are reserved for DOS routines. Not all of tl:te DOs
interrupts were available in DOS 1.0; many were unplemente(! in later -
versions. In some cases you can choose between a DOS or a BIOS interrupt
to perform similar functions. You can write one character on the printer,
for example, using function 5 of DOS interrupt 21H or function 0 of B.IOS
interrupt 17H. Which is best? IBM recommends using DOS ffmctlons
whenever possible. We will follow that recomn}endatlon, but in a few
cases we must use BIOS functions. Funclio.n 2 of interrupt 17_H. for exam-
ple, reads the printer status; there is no eqmval;nt I?OS funcuon:

.You will find all of the DOS interrupts described in an a!)penduf of your
DOS manual. We are interested in DOS 21H only. ?’ou vnu find its func-
tions listed in the same appendix following the list of interrupts. The

X3

264

function descriptions begin at a section labelled FUNCTION CALLS. In
this chapter and in the next two, we will describe many 21H functions. You
should be sble to learn the others from the manual if you need them.

What about the BIOS interrupts? We will teach you only a few of them
" in this chapter; there are many more. They are found in the IBM Technical
Reference Manual, but they are not easy to find or interpret. You should be
able to handle most 1/O using DOS. If you need functions that DOS does not
provide and that are not covered in this chapter, such as graphics or sound
control, consider programming in a high-level language.

Reading From the Keyboard

Yigure 12.1 summarizes the keyboard interrupts that will be discussed in
this chapter. You have learned to use function 0AH of interrupt 21H to read
a string of characters ending with CR [0DH]) from the keyboard into a
program-defined input buffer. Your program must specify the maximum
number of characters to be read, including CR, in the buffer’s first byte.

-~

Use Function Olher Proparalios
1o Qrder I3 INT Lo M) i

-Read ons character with echa 21H 1 aons
and Ciri-Break chach

Beauliy asd Remarks
Character in AL

Read one chsracter] no wiho 21K ? aons
and no Cirl-Break Check

Chgracter in ML

Read one character) no scho 21H [] none
bul Ctri-Break check

Character in AL

Read striag sading wite CR 2N (] Buffer offesl in 0X Count of char, read in
Max. char tinc, O taot isc, CR) ta

in flrat dyte of
batfar

second buffer bDrie
Charactors (lac. CR
start at third brte

Check if character wailable 2iM Rl aohe 1 typed, AL = OFFH
in Geyboard buffer *ise AL = B8

Clear bufier and call anolher 21 -} Fuattion 4 in AL Depsads on secomd
Funt tion X, 4, 7.0, 0r A funclion called

Get xerboard status bris 148 2 acar Brte in AL

Figure12.1 Keyboard VO

Bit Meaning If Set

? Insert Om

Caps Lock Dm

N Lock On

Scroll Lock On
Al Key Prassed
Ctrl Ker Prossed
Ledl Shidt Presaed
Right Ml *

-y sl

O Interrupts 265

Preparation for calling the interrupt includes putting the function number
in AH, as with all interrupts; putting the buffer’s offset into DX; and putting
the character count into the buffer’s first byte. The interrupt routine puts
the count of characters actually read [not including CR] into the second
buffer byte; the characters themselves {including CR} are copied into the
buffer starting at the third byte. Notice that since the character count must
fit into one byte, the maximum number of characters that can be read is
254 [not including CR}.

Single-Character Input Functions

Several functions of 21H read a single character, putting it into AL. I will
discuss three of them: functions 1, 7, and 8. Preparation for each of these
functions consists simply of putting the function number into AH. Func-
tion 1 echoes the character on the CRT and checks to see if you pressed Cirl-
Break. If Ctrl-Break is pressed, interrupt 23 is automatically called and
endsyour program. Function 7 of 21H does not echo the character or check

for Ctrl-Bresk. Function 8 of 21H checks for Ctrl-Break, but does not echo;

it is similar to BASIC's INKEYS.

Clearing the Keyboard Buffer

Characters typed on the keyboard are actually put into a 15-character
keyboard buffer. Characters read by functions 1, 7, 8, or 0AH are really

-taken from this keyboard buffer. If the keyboard buffer is empty when a

character is needed, the program will pause until one is available.
Function OCH of 21H clears the keyboard buffer and then performs the
function whose number has been placed in AL. This second function may
be 1, 6, 7, 8 or OAH. (I don't cover function 6 in this book.} Using function
OCH prevents you from accidentally or intentionally typing a key before

the program is waiting for one.

Here is a routine using OCH:
DISPLAY KEY__PRESS_PROMPT
MOV AH,0CH
MOV AL 08BH
INT 21H

KEY__PRESS__PROMPT is a message such as “press any key to continue®,
You could use this routine to force a program pause so the user can read a
display before the screen is cleared. Notice that the actual input function is
8, which does not echo the typed character, but does check for Ctrl-Break.

266

If you don't want the user to be able to end the program at this point, you
could use function 7 instead of 8. '

Checking for a Key

Function 0BH of 21H simply checks to see if a key has been pressed. If a
character is available, the function puts 0FFH into AL; otherwise, 00. The

function does perform a Ctrl-Break check; interrupt 23 is called if Ctrl- -

Break is detected. Otherwise, the character is not read and it remains in the
keyboard buffer. To read a character you will need 1o use functions 1, 7, or
8. You could use 0BH to end a loop, telling the user to press any key to stop
the current operation and continue the program, like this:

DISPLAY HOW__TO_ STOP
NEXT_TIME:
- ;operation suchas
;displayingadot
MOV AH, OBH
INT 21H
OR AL,0 ; ISAL ZERO?
JZ NEXT_TIME
Checking Keyboard Status

Interrupt 16H, a BIOS interrupt, aiso deals with keyboard operations. Two
of its functions, 0 and 1, deal with reading a character and determining if a
character is available, which you already know how to do using DOS
functions. Function 2 of 16H, however, is unique. It reads n byte of
keyboard status information, called KBFLAG, into AL. Bach =f th- eight
bits in this byte describes the status of a particular key. The description of
interrupt 16H, function 2, in Figure 12.1 includes a table that shows the
meaning of each bit when set, and numbers the bits from high-order (bit 7)
to low-order (bit 0). Notice that the two shift keys are represented by
separate bits. Your program can check each bit in AL. Suppose that you

need to know whether the caps lock key is on; that's bit 6. You could use
this routine:

MOV AH,2
INT 16H .
TEST AL, 40H : 0100 0000

JNZ CONTINUE
NO_CAP_ON: ... ¢

O Interrupts 267

If your program requires all uppercase input, you n}ight now pro:p;.n
the user to turn on CAPS LOCK and repeat the check until you find that it is
turned on.

Extended Keyboard Codes

You know from BASIC that some keys generate a two-byte code with the
first byte 00. The function keys, for example, use these exterfded c?des. If
you read a character and find it is 00, you need to read again to find out
which of the extended-code keys was pressed. Or, if your program doesnot
use the extended code keys, you may simply consider this an error, clear
the buffer, and require the user to type another key.

Using the CRT

Figure 12.2 summarizes the CRT |or video] functions discussed. in this
chapter. You already know many of them. You have used funcf.m:ﬁ: 9 of
interrupt 21H todisplay a string of characterson the' screen; the string’s end
is marked by "$" {24H). To prepare for thi.s. funct'm:.u, you must load the
string’s beginning offset into DX. There is no limit on the number of

characters displayed.

Displaying One Character

Function 2 of 21H displays one character at the cursor Position on the CRT.
The character must be loaded into DL. The cursor is advanced as each
character is displayed. To display more than one character you can use a
loop, but you will need to know in advance how many characters are tobe
displayed. This function is especially useful when the characters dxsp_]ayed
include *$* or when, because of the way they are u.:;ed elsewhere in the
program, it is not convenient to end the string with °$". Figure 12.3 shows a
‘macro that could be used to display any number of characters using
function 2. Function 2, by the way, checks for Ctrl-Break after each

. character is output, so the user can end the program during this display.

BIOS Video Interrupt Functions

i i i functions. It has 15
Interrupt 10H is the BIOS interrupt for video (.CR'I‘!
funcuogs but we will deal with only six of them in this book.

Setting the Video Mode Function 0 sets the video mode for the
color/graphics adaptor; in BASIC, this job is done using a combination of

268

Is eder To

Displar ene charactyr
Dloplar & string

Set video moge

Detline cursor

Set cursor pasition

Read corsor posliion
Scroll page wp

fcroll page dows

A. Uideo modes

0= 40x23 B Taat
I = 40273 Color Taut
2= 99123 WA Teut
3= H223 Color Test
4% Med. Res. Color
S * Med. Res, W
4= High Res, DA

Figure 12.2 CATVO

WIDTH and the first two
12.2 shows, there are

Use

ua
kel]
L
(L]

104
il

i

Fuaciion Other Preparatica rs
Raspired

Ll a2
2
’
]
1

Character in DL
& polats to string
Fode in AL

Btark Viae o OH

loser four blts
0,06 In CH bIt 4

(aet & for off)
End tiae la @

Row Ia DH
Colums 1a 0L
Page in BN

Al=awaber of |lags
1o be scrodled
within window

O,CL roe,colemn
for window's
upper ladt

DH,OL row,colmme
for window’s
bottan right

M+ aitribete for
blsak 1)nes
scralled In

St as tunctios §

Rusits s emarky

String must wad ip iﬂl
Modes ~~ see b A

Row s 8-24
Colum i 9-7%

Raw in DM, Column ia OL

Al=d for entire window

84w bex B belaw for
BA) attributes

See Techmical Retoronce
Hanual for color
attributes .

B Attributes for A

White eu Black = §7i (7)
Mlack wn white = Ppn 112
Black o Dinck = paN ()
Wite sn white = 770 (3173

Add WM (B qor Bigh=Intensily
Add LBN (529) for Bl ink

parameters of the SCREEN statement. As Figure

seven possible modes. The mode number must be

placed in AL in preparation for the interrupt. The routine:

AH,0
AL

W1
10H

80 charcolor text

/O Interrupts 269

- DISPLAS MACRO HESSAGE, COUNT

LOCAL MNEXT_CHAR

PUSH ax

PUSH o

PuUsSH cx

PUSH DX
mov O, COUNT
MoV -

NEXT..CHAR .

M AH, 2

MOV Ol ,HESSAGEI EX)
INT 214

INC ex

LOOP NEXT._ CHAR
POP ox

POP x

PO BX

POP AX

=r.

Fgure 12.3 Display Loop Macro

is the equivalent of the BASIC instructions:

1000WIDTH 40
2000 SCREENO,1

while using mode 5 [medium resolution b/w graphics} is equivalent to
SCREEN1L -

e Cursor We use function 1 to turn the cursor on an.d
ocf'? !:rtﬁinggnt?ol&m and CURSOROFY macros from Chapter 5. This
function also controls the start and end lines for the cursor, thereby
controlling the cursor’s size. As Figure 12.2 shows, the start and end line
numbers go into the lower four bits of CH and (_ZL. respectwe.ly..w_'hep ?nt 4?
{the low-order bit of the upper four bits) of CH is set, the cursor is invisible;
when bit 4 is cleared, the cursor shows up on the screen. The start and end
lines can range from O to 13 with the monochrome board and from 0 to 7

i hics board. :

w‘&\‘!\"r:gcocllo ;Lf:tI;On 2 in the LOCATE macro. Function 2 sets the cursor
position. DH must contain the row and DL the column for fhe new
position. Remembey that the count for rows and columns starts with 0,0 in
the upper left corner of the screen and goes to 24,79 in the bottom right. BH
must contain the number of the page on whicl_x output is b(;mg written, or
the active page. In the monochrome board or in the graplnc's mode of the
color/graphica board the page is always 0. In tbe_ color/graphics 40-column
mades, you have a choice of pages 0 through 7; in the 80-column modes, 0
through 3. In this book I always use page 0.

270

»

Functions 1 and 2 combined serve the purpose of BASIC's LOCATE
statement with its five parameters: row, col, cursoron, start, stop. The
BASIC statement:

100 LOCATES,6,1,5,7

turns on a three-line cursor and places it at fow 5, column 6. To do the same
thing in MASM you could do this:

MOV CH.,5 ; BEGINNING OF CURSOR AND TURN ON
Mov CL.,? ; END OF CURSOR

Mov AH 1
INT 10H ; DEF | NE CURSOR
MOV DH, 4 ;ROWS

MOV DL,5 ;COLUMNG

MOV BH,0 :PAGEO

MOV AH.2

INT 10H ; PLACE CURSOR

Reading the Cursor Position Function 3 of 10H reads the cursor
postion, like BASIC's CSRLIN and POS. Once again, page number must be
specified in BH. The function returns the cursor row in DH and the column
in DL. CH and CL are filled with the cursor type parameters, that is, the

same information that you would putinto CH and CL to set the cursor with i

function 1. (BASIC bas no equivalent for this part of the function.)

Scrolling the Screen We used function 6, which scroils the active
Page up, to write the CLS macro in Chapter 5. It requires seven parameters
passed through the registers, as shown in Figure 12.2. Function 7 is basi-
cally the same, except that it scrolls downward thereby bringing blank
lines in at the top of the window.

Using the Printer

Figure 12.4 summarizes the printer /O interrupts. Function 5 of DOS
interrupt 21H sends one character to the printer. The character must be
~ placed in DL. This is the only DOS printer function, and its probably all
you will need. Most printer functions, such as carriage return, form feed,
underlining, and 50 on, are triggered by characters sent to the printer as if
they themselves were to be printed. These are the same characters you

-

/O Interrupts 271

Use Function Dther Preparation

In Quger Tg MY SIn G} Reguired + Besylls and Rempriy
Priat one character . 200 3 Character in DL nons

haracter and 10K |] Character In AL Status brie in AN
":::u::.n:n::: b;h Printer B In DX Ssa box balow dor

maaning of status

Initialize printer and 104 1 Priotsr 0 in DX Same as fuaction @
retura status brte

Return status byte 140 2 Printer 0 in DX Same a3 funclion §

"Meaning of Status Brte

Bit Set Heaning
Printer Busy
ACKNOWL EDBE
Out of Paper
SELECTED
1/0 Erroe
not used
not used
Time Out

- =l

{7 is Migh-order bit, ¢ low-order)

Figure 12.4 Printer VO~

send from BASIC using LPRINT CHRS$4...). One difference: in MASM you
will have to send CR, or LF, or both at the end of each line. BASIC does this
automatically after each LPRINT that does not end with a semicolon.
Figure 12.5 contains a macro that can be used to send a number of
characters to a printer. You will have to specify the number to print an.d
make sure to include end-of-line characters. You might want to‘modify this
macro to look for a specific end-of-text character instead of using a count.

Printing a Character with BIOS

BIOS interrupt 17H, function 0, also prints one character. 'ln this case,
however, the character goes in AL and the printer number in DX. BIOS
allows for up to three printers, numbered 0, 1, and_z. If you.ha\fe only one
‘printer it will be printer 0. A byte of printer status mformatml? is retume_d
to AH. Well discuss this status byte when we discuss function 2 of this
interrupt. -

"Initializing the Printer

Function 1 of 17H initializes the printer and returns the status byte in AH.
Initializing resets all the printer options to the?.r original value§ just as
though you had turned the printer off and on again. You may find it useful
to initialize your printer at the beginning of every program that uses it.

272

PRINTER MACRO TEXT,COUNT -
LOCAL NEXT_CHAR
PUSH AX
PUSH B
PUSH o
PUSH DX
o
EX

383
g2

3
xR2%g8

‘ Figura 12.5 PRINTER Macro

The Printer Status Byte

Func:tion 2 of 17H simply reads the status byte into AH. The meanings of
the bits when set are shown in Figure 12.5. Some of them may require some
explanation. ACKNOWLEDGRE means that the printer has sent a signal to
indicate that it bas received data. SELECT means that the printer is on-line.
TIME OUT means that the prioter has returned BUSY signals for a long
time and the system will no longer try to send it data.

*
Computer Exercise |
f'l:uyowﬁting a very primitive typcwriter. program. Here are the steps to
w:

1. Initialize the printer,

2. Clear the screen and put a prompt on it.

3. Readand echo a character from the keyboard.

4, Ifthechamteriaanmendedcodeuikeafuncﬁonkey].endthe

program. Otber_wisc. continue.
5. Print the character.
6. Ifthe character was CR, add LF on both the CRT and printer.

7. Gobacktostep 3.

/O Interrupts 273

Use Fumction Dther Preparation

In Grger To INT (ln at) Beayiced Resylls and Remarky

Get character from ASYNG ZIN 3 nons Characler in AL

Send character from ASYNC Z2IH L] Characier in DL aone

Get date ' ZIH ¥ none Of = yearj DH = month
oL = day

Sel date 21N Z2BH X = yearg AL =0 if ok

DH = month; DL = dax AL = JFFH i inualid

Gat tine F3t] . ZCH none CHehours; Cleminytes
Dimseconds |DL=hund.
Set tine ' 21K 2DH CH=hours; Cl™minutes AL = 0 if ok
DH=peconds; AL=8FFH if invalid
DL=hundredths
Priat Screen 3 NORE Nowe nond
Find DOS Version 2 . A none HMajor version in AL

minor in AH
AL =8, version is
pre-2.9

" Figure 12.0 Misceilaneous O Functions

Youll find my version of this program [TYPER.ASM) at the end of the

chapter. When you test your program don't worry if the first few characters .

typed don't print immediately. Many printers don't begin printing until
their buffer is full or CR is sent.

Miscellaneous Functions

Figure 12.6 summarizes the remaining functions discussed in this chapter:
those associated with communications, date and time, screen printing, and
finding out under which version of DOS your program is running.

Communications Functions

DOS 21H function 3 receives input from the Asynchronous Communica-
tions Adapier. It waits for a character to be received and places that
character in AL. Function 4 sends the character in DL to the Asynchronous
Communications Adapter.

Daté and Time

Function 02AH of interrupt 21H gets the system date. It puts the year (in .

binary) into CX, the month into DH, and the day into DL.

274

Function 02BH sets the date. To prepare for it, place the year into CX,
the month into DH, and the day into DL. All three figures should be binary.
The year must be between 1980 and 2099; the month, 1to 12; and the date |
to 31. The date is checked for range and validity; a date of 2/30/81 will be
rejected since there is no such date. If the date is accepted, and the system
date updated, the function returns 0 in AL. Otherwise, it returns OFFH in
AL.

Function 02CH gets the time of day as four one-byte quantities. CH has
the hours {0 to 23}. CL has minutes. DH has seconds and DL has hun-
dredths of a second.

Function 02DH sets the time of day. CH, CL, DH, and DL must be
prepared with the time in the same format as returned by 02CH. If the

operation is valid, AL is returned as 00. If it is not valid, AL is returned as
OFFH.

Print Screen

BIOS interrupt 5 prints the screen. It serves the same function as Shift-
PrtSc, but is started from your program instead of by the user.

DOS Version Number

Function 30 of interrupt 21H finds the DOS version number. The major
number is returned in AL, and the minor number, in AH. If ALis 2and AH
is 1, for example, it means that your program is currently running under
DOS 2.1. If AL is 0, you can assume that a version of DOS prior to 2.0 is
being used.

/O Interrupts 275

hd PAGE , 132 iTHIS 15 TYPER.ASH

t THE TYPING PROGRAM

INCLUDE MACLIB.LIB i FODR CHAPTER 12

INCLUDE EQUL1B.LIB

1
PROG_STACK
PROB_STACK

]
PROG..DATA

. INCHAR

PROB_DATA

1
PROG..CODE
HAIN_PROG

INPUT _CHAR ¢
CHECK_CHAR:

OUTPUT_CHAR s

END_PROG 1

MAIN._PROC
PRDG.CODE

SEGMENT STACK ‘STACK®

[s:] 44 DUP (‘STaACK i
ENDS

SEGHMENT “DATA”

s/]

ENDS

SEGMENT *CODE’
PROC FAR .
ASSUME S PROG_CODE,DS1PROG.DATA , 55: PROG_STACK | ES: PROG_DATA

T STARTER .
sT1 .
cLD
HoV AH, 0 $IMITIALIZING PRINTER
HOV DX, 8
INT 17H
cLS
MoV AH,2 jDISPLAY PROMPT CHAR
MOV DL, 18H
INT 21H
MoV aH, L s INPUT WITH ECHD AND CHECK
INT 21H
CHP AL,@ JIF ANY EXTENCED CODE
JE END_PROG ; END PROGRAM
HOV DL, AL
Mo AH, 3
INT 21H
CHP AL CR 1CHECK FOR CR
JNE INPUT_CHAR
"o DL,LF t1F CR ALD LF
nov AH,S
INT 21H
MOV AH,2 t LF ON SCREEN ALSD
INT 21H
NP INPUT_CHAR
. RET -
ENOP
ENDS
END

Figurs 12.7 Typing Program

13 _
Disk I/O Using
File Control Blocks

Ia versions of DOS prior to 2.0, disk file handling requires the use of file
control blocks [FCBs). DOS 2.0 and later versions have another way to
access files that is both simpler and more flexible than the earlier one. This
chapter describes file handling using FCBs. If your programs will always
run under DOS 2.0 or later versions, you should not use this method. In
fact, you should skip this chapter and go to Chapter 14, which covers the
newer file-access method.

The File Control Block

An FCB is a 37-byte area defined in your program’s data segment. It is
divided into 10 fields that contain information 10 be passed between your
program and the DOS disk-access routines. You will find a description of
the FCB and its fields in an appendix of your DOS manual. {Note: an
_appendix in the BASIC manual also describes an FCB,; this is a special
BASIC FCB, not the DOS FCB.) Figure 13.1 shows a MASM program's
description of an FCB. We'll discuss the fields in detail.

276

Disk I/O Using File Control Blocks 277

;SET BEFORE OPEN

FILE_DRIVE PB]
FILE_NAHE 3 ‘NAMEFILE” {SET BEFORE OPEN b
FILE_BEXT (i] ‘DAT” ;SET BEFORE OPEMN
FILE_CURR.BLOCK OW] $SET BY OPEN; CHANGE AS NEEDED
FILE_REC_SIZE W [] $SET BY OPEN; CHANGE IF NEEDED
FILE.S1ZE o 2 DUP (2) $SET BY SYSTEM; OONT CHANGE
FILE_DWTE o ? $SET BY SYSTEM; DONT CHANGE
) 10 DUP(?) $SET BY SYSTEM; DONT CHANGE
FILE_CURR_REC DB [] {SET BEFORE SEQ READ
FILE_REL-REC o 2 DUF (2} 1SET BEFORE RANDOHM READ

Figure 13.9 An FCB tor NAMEFILE

File Identifiers
The first three fields, FILE__DRIVE, FILE__NAME, and FILE__EXT, iden-
tify the file. They must be initialized before the file is opened or used,

FILE__DRIVEis a one-byte field set to 1 for Drive A, 2 for Drive B, and
50 on. When FILE__DRIVE is 0, as in Figure 13.1, it tells the system to use
the default drive; when the file is opened, the zero will be replaced by the
default drive’s file number.

FILBE__NAME is an eight-byte file name, left-justified, -with trailing
spaces if necessary. FILE__EXT is the three-byte file extension, left-justi-
fied, with trailing spaces. [FILE__EXT may be all blanks.)

If the default drive is A when the program runs, the description in
Figure 13.1tells DOS to use file A:INAMEFILE.DAT. Notice that there is no
provision for specifying a path in the FCB.

Current Block and Record

FILE__CURR__BLOCK and FILE__CURR__REC identify the record to be
accessed by read or write operations. A block is a group of 128 records. The
first block, which starts at the beginning of the file, is block 0. Since
FILE__CURR__BLOCK is one word and therefore has a maximum value of
65,535, you can't have more than 64K blocks in a file. Opening the file sets
the current block field to 0; the field does not need to be defined with an
initial value. Notice that the block always contains 128 records regardless
of the record size; the number of bytes in a block may be different for
different files.

FILE_ CURR__REC can range from 0 to 127. This field identifies the
current record within the current block. The 129th record in the file is
record 0 of block L The current record field is not initialized when the file is

opened. The definition in Figure 13.1 gives the ficld an initial value of 0.

You may prefer to initialize it by moving 0 to FILE__CURR__REC before
the first read or write.

278

Record Size and File Length

FILE__REC__ SIZE is a one-word field that identifies the size of the file's
records. When the file is opened, the record size is always set to B0H {128),
¥f this is not the right record size, you must change it after the file is opened,
but before the first read or write. All records in the file are assumed to be
the same size; there is no way to indicate variable length records.
FILE__SIZE indicates the length of the file in bytes. It's a two-word field
and, as usual the low-order word is the first one. This field is initialized by
DOS when the file is opened and should not be changed by the program.

File Date

The next word, FILE__DATE, indicates the date the file was last created or
updated. This field is filled in when the file is opened and should not be
changed by your program. The five, not four, low-order bits of the first byte
contain the day of the month, a value ranging from 0 to 31. The three high-
order bits, combined with the next byte's low-order bit, contain the month
{0 through 12). The second byte's seven high-order bits contain a value
between 0 and 119; add 1980 to get the actual year. Bit-by-bit, the date looks
like this:

FILE__DATE: YyYyyYyyyym
FILE_DATE+l: mmmddddd

This layout makes a little more sense if you think of the word moved to a
register, where the first byte [FILE__DATE) would go into the high byte
and the second (FILE__DATE +1] into the low byte. Then, numbering the
register's bits from O {lowest] 10 15 (highest), the date would look like this:

15 14 13 12 11 10 9 8 7 € 5 4 3 2 1 0O
Yy ¥ ¥y y ¥y y ¥y m m m m d d d d d
HIGH LOW

Relativé Record Number

FILE__REL_ REC, the last field in the description, is a two-word field
identifying a record to be read or written by random access. If you want to
read the 128th record in the file, for example, you would set this field to 128

Disk /0 Using File Control Blocks 279

before calling a randc;m read function. Remember that this field, like other
multiple-word fields, expects to find the low-order word first and the high-
nrder word last. To read record 128, set FILE__REL__REC to 128 and
FILE__REL__REC+1t00. ‘ -

The Rest of the FCB

The 10 bytes between FILE__DATE and_FILE___CURR_REC are used by
DOS. No information is provided about what they contain or how they are
used. Just make sure you leave room for them in the right place in the FCB.

The Disk Transfer Address

When a program reads a record, an area of the data-segment must be
provided to hold the data read. Similarly, to write a record, the data to be
written must first be placed in an area of the data segment. The data-
segment address into which data is to be read or from which it will be
written is called the disk transfer address, or DTA. You must identify
the DTA before you can read or write any record. The records for NAME-
FILE.DAT can be read into or written from this area:

L I ST__NAME ' DB 20DUP(’*)
LIST_ID DB 12DUP(’ ")

When you read or write NAMEFILE.DAT in your program, you will use
the offset of LIST__ NAME asthe DTA. .) :

Opening the File)

Function OFH of DOS interrupt 21H opens a file. DX must point to the file's
FCB. The drive, name, and extension {if any} must be in the FCB before the
interrupt is called. ‘ .

The interrupt routine returns a status byte in AL. If AL is OFFH, the file
was not found; if AL is 0, the file was opened.

Make sure to test AL after using function OFH.

When the open is successful, the drive field is set if necessary, the
current block is set to 0, the record size is set to 80H, and the file size and
creation/update date are filled in from the directory.

280

OPEM_FILE PFROC -
PUSH A
PUSH X

LEA 0X,FILE_DRIVE
oV AH,OFH

+FIRST BYTE OF FCB
10PEN FILE FUNCTION

INT 21H
oR AL, 1IF AL = 2ERD
3z OPEM) } FILE WAS FOLND

LEA 0X,FILE_DRIVE
MOV AH,18H

INT 21K :
R AL, jIF AX = 2ERD CREATE OK
Frd OPENL
DISPLAY NO_RODM

JOTHERMI 8E NEED TO CREATE IT

HIF NO RDOM IN DIRECTORY

nov ERROR_CODE, 1 JSET ERROR CODE

P oPENZ | AND RETURN TO MAIN LOOP
OPEN))

oV FILE-REC_SI12€,32 $SET RECORD SIIE

MoV FILE_ CURR_REC ,# $1AND CURRENT RECORD
OPENZ;

POR [

POP AX

RET
DPEMLFILE ENDP

Figure 13.2 Opening NAMEFILE

Creating a New File

Function 16H of interrupt 21H creates a new file. Again, DX must point to
the FCB and the file drive, name, and extension {if any) must be in the FCB
before the function is called.

If the file directory lacks room for another entry, AL is returned with
the value OFFH. Otherwise, a directory entry is made for a zero-length file,
the file is opened, and AL is returned with 0. Make sure you check AL after
using function 16H.

Figure 13.2 presents a routine that cpens NAMEFILE.DAT if it exists;
otherwise, it creates the file and opens it. If the directory has no room, an
error message is displayed and an error code field is set.

Sequential Writes

Function 15H writes a record from the area pointed to by the DTA. DX
must point to the file’s FCB. The record written is the one identified by the
current block and record fields. Obviously a DTA must be established
before function 15H is called. This is done by function 1AH, which sets the
disk-transfer address. DX must point to the DTA.

Disk I/Q Using File Control Blocks 281

WRITE_RECORD PROC
PUSH Ax
PUSH DX
LEA DX, L1ST_NANE
Hv AH, 1AH
INT 214
LEA Ox,FILE_DRIVE
HOV AK, 130

;SET DLSK TRANSFER ADDR

;WRITE FROM DTA

INT 214
OR AL,® ;IF AL = 8 LRITE 0K
J2 WRITE1

DISPLAY WRITE_FAILED
MV ERROR.CODE , 1

{OTHESMISE HOT WRITTEN

WRITE]:
PGP X
FOP AX
RET

WRITE.RECORD ENDP

Figure 13.3 Writing NAMEFILE

Function 1AH does not return a status byte, but the sequential write
{function 15H) does return one in AL. If AL is 1, the disk is full. If AL is 2, it
means that the area between the DTA and the end of the data segment was
smaller than the FCB's record size. Probably, either the record description
or the FCB has an error. If AL is 0, the write was successful and the FCB's
current record [and current block if necessary| is incremented to point to
the next record.]

Figure 13.3 shows a routine to write records to NAMEFILE.DAT. The
DTA is set every time the routine is called, but this is not necessary if the
rest of the program never changes the DTA. The routine includes an error
check, but it does not differentiate between the two types of write error.

Reading Sequentially

Function 14H performs a sequential read. DX must point to the FCB. A
DTA must be established before the read. The record read is the one
pointed to by the current block and record fields. AL is returned with a
status byte. If AL is 1 or 3, end-of-file was encountered. A status of 1
indicates that no record was found and 3, that a partial record was read and
filled out with zeros. A status of 2 indicates that the area between DTA and
the end of the data segment was not large enough to hold the record read.
After a successful read, indicated by AL = 0, the current block and record
fields are incremented.

284

CLOSE-UP:
END_PROG)

]
CLOSE_FILE

CLOSE):

CLOSE_FILE
)
GETNAMNE

BETNAME
1
QETID

a1dny

BETID

)
OPENLFILE

TEST ERROA..CODE ,1
NI CLOSE_LP

e MAINLOOP
CAlLL CLOSE_FILE

DISPLAY END_MESSAGE

ENDP
PROC
PUSH Ax
PUSH ox

LEA DX, FILE_DRIVE
HV AH, 10K

ENT 21H
OR AL
¥z CLOSEL

DISPLAY BAD_CLOSE
nv ERROR.CODE, 1

POP X
POP ax
RET

ENOP

PROC

PUSH 4

CLEAR INDATA, 21
DISPLAY NAME_PROMFY
BETOATA INBUF .21
Hoy 8L, INCOUNT

NV o, 0

no CCOUNT , B
POP -]

RET

ENDP

PROC

PUSH ax

DISPLAY 1D _PRONPT
INBUF, 33
L, INCOUNT

CCOUNT B

ox

-0, FILE_DRIVE
AN, OFH

214

A8

orEN1
0, FILE.DRIVE
PN

BETOATA
o
OV

N

POP

RET

EnNDP

PROC

PUSH AX
PUSH

LEA

no

INT

OR

a2

LEA

HV

INT I
oR

J

$1F ERROR CODE NOT ZERD
3 BND PROGRAM
JELSE REPEAT PROCESS

JTHEN RETURN TO OPERATING SYSTEM

pIFAL = 0
3 CLOSE WAS 0K
$1ELBE ERROR OCCURRED

FPROMPT FOR MAME
1GET MAME IN BUFFER
$HOVE INCOUNT TO WORD SIZE

1PROMPT FOR 1D
1GET 1D IN BUFFER
(MOVE INCOUNT TO WORD SIZE

JFIRST BYTE OF FCB
JOPEN FILE FUNCTION

11F AL = ZERD

3 FILE WAS FOIND
JOTHERIIGE NEED TQ CREATE IT
1IF AX = JERD CREATE OK

11F NO ROOM N DIRECTORY

Disk /O Using File Control Blocks 285

OPENL :

DPENZ:

OPEN_FILE

1
WAITE.RECORD

WRITEL:

WAl TE_RECORD

i
PROG.CODE

HOV
JHP

MV
MV

POP
POP
RET
ENDP

PROC
PUSH
PUSH
LEA
MOV
INT
LEA
KOV
INT
OR
P24
DISPLAY
MOV

FOP
FOP
RET
ENOP

BNDS
END

ERROR.ECODE , 1
OPENZ

FILE_REC.SIZE,3
FILE.CURR_REC ¥

128
AX

AX

0X

DX, LIST_NAME
AH, 1AH

214

0%, FILE.ORIVE
AH, 134

214

AL, o

WRITEI
WRITE_FAILED
ERROR.CODE .1

DX
AX

MAIN_PROG

Figure 13.4 The NAME13 Program

3SET ERROR COOE
3 AND RETURN TO MAIN LOOP

2 +SET RECORD SIZE
{AND CURRENT RECORD

;SET DISK TRANSFER ADDR

JWRITE FROM DTA

sIF AL = 9 WRITE DK

tOTHERWISE NOT WRITTEN

e A e o

286 Disk /O Using File Control Blocks 287
MgE 132 + CLOSE_FILE PROC
' . PUSH AX
INCLUOE MACLIE.LID PUSH DX
] . LEA DX, FILE_DRIVE
INCLUDE EGULIB.LIR - HOV PRI
: INT 21H
1 oR YR | ;IF AL = 8
PROG_STACK SEGHENT STACK *STACK’ JI ° CLOSEL i CLOSE WAS 0K
o6 44 DUP C"GTACK *) . DISPLAY BAD_CLOSE {ELSE ERROR DCCURRED
PROG. STACK BHDS MOV ERRORCODE,)
1 CLOSELt
PROG_DATA SEGMENT DATA’ POP DX
0 0PEH pa LF,CR,*CANT FIND FILE®,EQT PoP ax
BA0_CLOSE o8 LF, LR, CLOSE FAILED” ,EOT RET
8AD_READ ba LF,CR,’PROBABLE END OF FILE’ EOT CLOSE_FILE ENDP
ERROR_CODE] . '
[DPEN-FILE PROC
FILE_DRIVE] [} 1SET BEFORE OPEN PUSH AX
FILE_NAME] NANEFTLE 1857 BEFORE OPEN PUSH DX
FILE_EXT o " DAT* 1SET BEFORE OPEM LEA 0X,FILE_DRIVE (FIRST BYTE OF FLB
FILE.CURR.BLOCK DW] $SET BY OPEN) CHANGE AS MEEDED Y] AH OFH 10PEN FILE FUNCTEON
FILE-REC_SIZE O™ s 1SET BY OPEN; CWANGE IF MEEDED INT 2
FILE_S12E oW 2 DUP () 1SET BY SYSTYEM{ DONT CHAMNBE OR AL,S i1F AL = ZERO
FILE_DATE o ? 38ET BY SYETEM) DONT CHANGE az OPEME FILE WAS FOUND
o 10 DUPC?) 1SET @Y TYSTEM; DONT CHANGE DISPLAY BAD_DPEN iOTHERWISE NOT FOLND
FILE.CURR_REC D8 [] JSET BEFORE SEQ WEAD MOV ERROR_CODE, 1 1SET ERROA CODE
FILE_REL.REC (W 200 (D SET BEFORE MANOOM READ »P . OPENZ . 1 AND RETURN TO MAIN LOQF
:PI’UTM be 20 DUP (M) OPEMI: nov FILE_REC_SIZE,32 jSET RECORD S1ZE
INeUT_ID [12 DUP (7) iy FILE_CURR_REC ,# JAND CURRENT RECORD
) oran:
OUTPUT_NAME P8 T N PoP o
o8 TR T Xe pop Ax
DUTPUT_[D o8 12000 ¢) RET
A CR,LF OPEN_FILE ENGP
3
PROB_DATA EHOS |':a|u1-uus PROC
] PUSH X
PROS_CGOE SECGMENT - CODE’ PUSH B
MAIN_PROG MROC FAR MOV X, 44 iPRINT 44 CHAR
ABBUME CHiPROG_CODE , 08 1 PROG.DATA , 531 PROG_STACK, ES s PROG.DATA "oy [E]
STARTER PRINTLS
1] now DL, OUTPUT_NAMET BX] jLOAD CHAR INTO DL
oD 3 Py AN, {FOR PRINT FUNCTION
(-1} INT 214 1 AND PRINT
CURSORON ING JROINT TO HEXT CHAR
TALL OPENFILE LonP PRINTI IAND REPEAT
TEST ERROR.LODE,! 1JF OPEN FAILED POP .4
JT MAINLDOP popP =3
2 E_PROD) END PROGAAM RET
MALNLOOP 4 PRINT_LINE NDP
CALL READIN IREAD INPUT RECORD . A
TEST ERROR.CODE, | JIF DD OF FILE READLN PROC
N CLOSE_UP 5 CLOSE FILE AND END push A
HOVE OUTPUT_NAME , INPUT_NAME 20 (SET PRINT LINE pusH DX
MO OUTPUT.ID,INPUT.ID,12 LEA OX , INPUT_NAHE JSET D154 TRANSFER ADDR
CALL PRINT_LINE $PRINT LINE MOV AN, 1AH
e MAINLODP JELBE REPEAT PROCESS INV 214
CLOSE UM,
CALL CLOSEFILE
e PROG Figure 13.5 (continued)
rE? JTHEN RETURN TO OPERATING SYSTER
MALLPROG (-1
[
Fgure 3.5 (continued)

288

READ]

READIN
]
PROG-CODE

Figurs 13,8

LEA + X, FILE-DRIVE
| AL L

INT 21H
oR ALS
z READ}

DISPLAY BADREAD |
L ERROR_CODOE ,1

FOP 1)
rOP AX
RET

ENODP

ENDS

1READ TO OTA

HIF AL = § READ OK
JOTHER 1SE BAD READ

14

Disk 1/O
Using File Handles

This chapter describes a method of disk /O using interrupt 21H functions
that were implemented with DOS 2.0. If your programs need to run with
an earlier version of DOS, you cannot use this method. If they will run only
under DOS 2.0 or later, this is the preferred method of disk I/O.

How It Works

In this method, when a file is opened it is assigned a 16-bit number called a
handle. Your program must keep track of which handle has been assigned
to which file. When you read, write, or close the file you place the handle in
BX before calling the appropriate 21H function. When you read or write
you aiso specify {in DX) a buffer address; that is, a offset in your data
segment where input will be placed or from which output will be copied.
Additionally, you specify in CX the maximum number of bytes to be read
or written. DOS maintains a read/write pointer for each open file; this
always points to the next byte tobe accessed in the file. The pointer is set to
0 when the file is opened and is updated by the number of bytes actually
handled by each read or write. You can also use a 21H function to change

this pointer.

285

290

Error Meaning

Code -
1 Invalid function number

2 File not found

3 Path not found

1 Too many open files (no paths leéit)

3 Access denisd

& ln;llld handle

12 Invalid access code

Figure W.1 Eror Codes for File Handle Functions

The interrupt functions for this O method use CF to indicate whether
an operafion is successful. CF is cleared when an operation is successful
and set if an ervor occurs. When CF is set an error code is placed in AX. You
can find a list of error codes in the DOS appendix that describes 21H
functions; the list is called the BRROR RETURN TABLE. The functions we
describe in this chapter use only seven of these codes; Figure 14.1 contains a
description of those seven codes.

Il discuss the six most useful file handle functions in detail. Once you

understand them you should be able to leamn others from the DOS manual
if you need them.

Create and Open

Function 3CH creates a new file. DX must point to a string that identifies
the file. The string can include the drive, path, and filename, and must end
with a byte of zeros. A character string ending in 00H is called an ASCIIZ
string. In the ASCIIZ string identifying the new file, both drive and path
are optional but the full filename, including any extension, is required. To
create a file named NAMEFILB.DAT on the default drive and path, then,
our program should include a definition like this:

NAME_FILEDB 'NAMEFILE .DAT’,0

and load NAME__FILE's offset into DX before calling the interrupt. A file
attribute must also be specified by a code in CX. A file's attribute code may
mark it as a hidden file, a system file, a read-only file, a read-write file, and

Disk [/O Using File Handles 291

so on. You will find all possible attribute codes listed in another DOS
manual appendix, the DOS Disk Allocation appendix. In this book, all fi.les
are straightforward read-write files, with attribute code zero. The routine
to create NAME__FILE, then, could be:

LEA DX ,NAME__FILE

MOV cX,0
MOV AH,3CH
INT 21H

The create function creates a new file or truncates an old one so that it
can be rewritten. It opens the file for read/write and assigns a handle which
is returned in AX. If the file cannot be created, CF is set and the error code
is put into AX. The possible error codes are 3, 4, and 5. {In this case access
denied means either that the directory was full or that the file already exists
and is read-only.) Function 3CH, then, should be followed by some type of
error testing; if no error is found the file handle must be saved for later use.

An existing file is usually opened instead of re-creafed. 'Func‘t:o'n 3DH
of 21H opens a file. Again, DX points to an ASCIIZ string identifying t.he _
file. AL contains an access code: 0 to open the file for read only, 1 for write
only, 2 for read/write. We usually open our files for read/write. This

- routine would open the existing NAME_ FILE:

LEA DX ,NAME__FILE

MOV AL,2
MOV AH, 3CH
INT 21H

Again, an error check shicuid be made. Possible error codes from this
function are 2, 4, 5, and 12. Access denied will usually mean that you are
trying to open a read-only file for write or read/write. If the open is
successful, the file handle is returned in AX and should be saved.

Figure 14.2 contains an OPEN macro which opens an existing file; if the
file is not found, the macro creates a new one. To call the macro you must
specify the variable that contains the filename, the variable that should
contain the file handle, and a variable that can hold an error code. After
using the macro you should check CF to see if the open was snfocesshxl: ifit
was not, you can examine the error code and print an appropriate message,
then end the program.

292

OPEN MACRD
LOCAL
PUSH

PUSH

FNAME , HANDLE , ECODE
Axsmaf_m‘ LE, 0PEN_DONE
cx

X

DX, FNAME
AH, 3DH
AL,2

21m
ECODE, AL
SAVE_WANDLE 1IF NO ERROR JiMP

AL,2 1IF ERROR
o DONE : oIt NOT FILE NOT FOUND

<X, 8 $CREATE R/W FILE IF NOT FOUND

DX, ANAME

AH, 3CH

214

ECODE ,AL

OPEN.DONE tIF ERROR DONT SAVE HANDLE

HANDLE ,AX
DX

cx
AX

Figure 14.2 The OPEN Macro

Here's an example:

NAME__F{LE
NAME _HANDLE
ERROR__CODE

OPEN__OK:

DB 'NAMEF I LE .DAT" .0
Dw ?
D8 ?

OPEN NAME__FILE,NAME HANDLE ER

IJNC OPEN_OK - ;conﬂuuemécnfnm —CODE
CALL ERROR_ROUTINE

JMP END_PROG

The error routine might simply display an error m i
ine o ; essage that includes
the error code or it might display a different message for every possible

error code value.

Read and Write

To read a file, use function 3FH of interru i
. \ ; pt Z21H. Before you call thi
function, BX must contain the file bandle; CX the number of gytes to read?

Disk /O Using File Handles 293

and DX the address into which the l;ytes are to be read. If we want to read
32 bytes from NAME__FILE into this area: ~

L IST_NANE DB 20 DUP (7)
LIST_ID DB12DUP (1)

we can do it like this:.

MOV BX,NAME_ HANDLE
MOV' CX.32

LEA DX, L1ST_NAME
MOV AH,3FH

INT 21H

This function reads from the indicated file starting at the current location
of the read/write pointer; the bytes read are transferred to the area to which
DX points. Possible error returns are 5 and 6. After a successful read, the
read/write pointer will be updated by the number of bytes read and AX will
contain that number. This is not necessarily the number of bytes that you
asked for. If you try to read from the end-of-file, for example, you may get 0
bytes. DOS does not consider this an error, so CF will be clear and no error
code will be passed.

In the READ macro in Figure 14.3 we test for end-of-file; if found, we set
CF and pass 100 to the error code field. This allows us to handle end-of -file
like any other error after using the macro. Notice that AX is not PUSHed
and POPped; its value will be changed. This is done because there may be a
need to know the the number of bytes actually read even when end-of-file
is not found. You'll see an example later in the chapter.

To use the RRAD macro, you must identify the variables used for the
file handle and input buffer, the number of bytes to be read, and the error
code field. After READ you should test CF for an error condition. Toread a
record from NAME__FILE you could use this routine:

READ NAME__HANDLE, L | ST__NANE, 32 ,ERROR__CCDE
JNC REAQ__OK

CALL ERROR__ROUT INE

Jup READ_DONE

294

iNOTE THAT THE READ MACRO DOES NOT PRESERVE Ax 7

READ MACRO HANDLE, BUFFER, COUNT , ECODE
LOCAL CHEC)_COUNT , READ_DONE
BX

PUSH

PUSH X

PUSH DX

OV BX , HANDL.E

O CX,COUNT

LEA DX ,BUFFER

MOV AH, 3FH

INT 214

MNC CHECK..COUNT

HOY ECODE AL

BP READ_DONE
CHECK_CQUNT :

e AX,8

JNE READ_DONE .

's?é ECODE . 180 10UR CODE FOR EOF
READ_DONE :

POP DX

POP cx

POP BX

ENDM

Figure 14.3 The READ Macro

WRITE MACRO HANDLE,BUFFER,COUNT ,ECODE
LOCAL CHECK.COUNT WRITE_DONE

PUSH A

PUSH BX

PUSH X

PUSH DX

_ Hov BX

Y o

LEA DX , BUFFER

INT © 21H
$IF WRITE OK CHECK COUNT WRITTEN
I0THERWISE SET ERROR CODE AND QUIT

1OUR OMN ERROR CODE FOR DISK FULL
3} SET CARRY FLAO FOR ERROR

g
ZER%

Figure 14.4 The WRITE Macro

To write to a file, use function 40H of interrupt 21H. This is similar to
the read function. BX contains the file handle; CX contains the number of
bytes to write; DX contains the address of the data to be written. Possible
return error codes are 5 and 6. The read/write pointer is updated and AX

Disk /O Using File Handles 295

conlains the number of bytes actually written; this may not be the number
requested. When the full number of bytes is not written it usually means
that the disk is full.

The WRITE macro in Figure 14.4 requires that you specify the file
handle, buffer area, count, and error code. After a write a check is made to
see if all bytes were written; if not, CF is set and an error-code of 99 is
returned from the macro.

Adjusting the Read/Write Pointer

Function 42H of interrupt 21H allows you to change the read/write pointer.
As usual, BX contains the file handle. There are three methods of changing
the pointer; the method isindicated by a code in AL. In each method, a two-
word offset is specified in CX and DX, with the low-order word in DX,
high-order in CX. This offset is a signed value; it may be negative.

If AL = 0, the offset is calculated from the beginning of the file. [f the
offset is 182, for example, the pointer is set to point to byte 182 of the file. To
point to the beginning of the file, move 0to CX, DX, and AL. Then the next
read or write will start at the file's beginning.

If AL = 1, the new value of the pointer is computed by adding the
specified offset to the current pointer value. In other words, the offset
specifies how far {and in what direction] you will move from the current
read/write position. If the offset is negative, you will move backwards
through the file.

1f AL = 2, the new location is computed by adding the offset to the end-
of-file location. If the file's records are 32 bytes long, you can point to the
last record in the file by moving 2 to AL, -32 to DX, and 0FFH to CX (to
extend the negative sign through the high-order word). If you move 0 to CX
and DX and 2 to AL, the pointer will be set at the end of the file, ready for
you to append new records.

Possible error codes from this function are 1and 6; in this case an error
code of 1 means that AL didn't contain a valid method.

If the pointer is moved successfully, AX and DX will show the updated
pointer value. AX has the low-order word, DX the high-order. {Remember
that before the call, DX had the low-order word of the offset, while CX had
the high-order word.) You can use method 1 with an offset of 0 to find the
current value of the pointer; you can use method 2 with an offset of 0 to
find out how long the file is.

296

FIND_END MACRO HANDLE

PUSH AX
PUSH ex
PUSH X
PUSH oX
MOV AH,42H
MOV AL.2
HOV BX , HANDLE
HOV cX,
Mo ‘DX,8
INT 214
POP DX

POP o

POP Bx

POP AX
ENDM

i
POINY MACRO HANDLE , COUNT

PUSH AX

PUSH BX

PUSH o

PUSH ox

HOV B . HANDLE

MOV cx.0

MOV DX, COUNT

cHP oX, 8

JOE POINT

NOT cx
POINT | ¢

MOV AL,

MOV A, 42H

INT 21H

PopP DX

POP ax

BoP o

POP AX

ENDM

Figure 14.5 The FIND__END and POINT Macros

Figure 14.5 contains two macros that use function 42. FIND__END sets
the pointer to the end of the file. When you plan to add records to an
existing file, you could use FILE__END before beginning to write, POINT
simply changes the pointer a specified number of bytes; POINT only asks
for a value for DX s0 the macro can only be used with a range of -32,768 to
32,767 bytes. Notice the provision for setting CX to OFFFFH if DX is
negative, thus extending the sign of DX throughout CX. When you use
cither of these macros be sure to follow them with JC or JNC to check for
errors.

Closing a File

Function 3EH of interrupt ZiH closes a file. BX must contain the file
handle. The only error code possible is 6. Figure 14.6 contains a CLOSE
macro that could be used for any file.

Disk /O Using File Handles 297 .

CLOSE HACRO ‘_Hp‘-NDLE.ECDDE

PUSH 3%
PUSH By

MOV 6% . HANDLE

MO AH , 3EH .

INT ZIH)
MOV ECODE ,AL

POP Bx%

POP AX

ENDHM

Figure ¥4.6 The CLOSE Macro

Computer Exercise

Figure 14.7 contains a simple program using OPEN, FIND_END, WRITE,
and CLOSE to write NAMEFILE.DAT. The macros from this chapter are
included under the name FILEHAND.LIB. If you want to, you can use
WRITENAM to create NAMEFILE.DAT and enter some data into it; then
write a similar program using RBAD to read NAMEFILE.DAT and display

each record on the screen. Youll find our version, READNAME.ASM, at

the end of the chapter.

PABE L1132

¥ .
INCLUDE MACLIB.LIB

i
INCLUDE FILEHAND.LIB

¥
INCLUDE EQULID.LIE

i
i
PROG_STALK SEGMENT STACK *STACK”

o8 44 DUP L'STACK *)
PROG_STACK BNDS
1
PROG_DATA SEBMENT ‘DATA’
NAME_PROMPT] LF,CR, "NAME: “ EOT
T1D_PROMPT o8 LF,CR,”ID: *,EQT
BAb_PATH o8 LF,CR,”PATH NOT FOUND’ .EOT
TOLMANY_FILES 08 LF,CR,“TOO MANY FILES OPEN’,EOT
ACCESS_DENIED DB LF,CR,“ACCESS DENIED” ,EOT
INVALID_WANDLE DB LF,CR,*INVALID WANDLE USED’ ,EQT
DISIC_FULL 0B ~ LF,CR,’DISK FULL’ ,EQT
INVALID_ACCESS 0B LF,CR,"INMALID ACCESS CODE’ ,EOT
UNKNOWIE_ERROR DB LF,CR, " NIWN ERROR’ , EOT
END_MESSAGE e " LF,CR, 'BOODEYE‘ (EOT
ERROR_CODE - 08 ?
CCOUNT oW ?
1
INBUF 08 2]
INCOUNT b8 ?

Figure 14.7 WRITENAM_ASM (continued)

298

INDATA

i

NANE_ HWANDLE
NAME_FILE

1
LIST_NAME
LiaT_ 1o

¥
PRDG_DATA
PROO_CODE
L

POSITION:

MAINLOOP

CLOSE.WP;

BNO_PROG)

MALLPROG
¥
ERROAROVTING

ERRI,

-] 21 DUPCT 1)
-
0w 2 :
08 ‘NAMEFLE..DAT* , 8
08 20 DUP (2}
0B 12 OUP (P
ews
SEGMENT * CODE”
PROC PR

ASSUNE CS5:PROS_CODE, 0 :PROO.DATA, 86 1PROD. BTACK , ES 1PROB.DATA
STARTER

$T1

an

0s

CURSORON

QPEN NAME_F I LE ,NAME_HAMDLE , ERROR. CODE

N POSITION $IF OPEN OK COMTINUE

ALL ERROR_ROUT IKE 1ELSE DISPLAY APPROPRIATE MEBSAGE
e B_PROG H AND DO PROGRAM

INC MAINLOOP

CALL ERROR_ROUT INE

L4 CLOSE.UP

CLEAR LIST_NeME, 32 PMOVE SPACES TG 1/0 BUFFER

CALL GETHAME IPROMPT AND [NPUT NAME

ow INCDUNT 8 1IF HO NAME END PROGRAM

JE CLOSE_UP

HOVE LISTNAME , INDATA ,CCOUNT ;MOVE NAME TO OUTPUT RECORD
CALL BETID 1PROMPT A0D INPUT 10

MOVE LIST_1D.INDATA, CCOUNT OVE 1D TO ONTPUT RECORD

WRITE NAME_HANDLE LIST_NAME, 32 ,ERROR_CODE

NG MAINLOOP 1IF WRITE OX REPEAT LDOP

ALt ERROR_ROUTINE tELSE DI1SPLAY APPROPRIATE HESSAGE
CLOSE MAME.HANDLE ,ERROR.CODE jCLOSE FILE

E] ENO_PROS t1F CLOSE OX END PROGRAM

CALL ERROR.ROUT INE $ELSE DISPLAY APPROPRIATE MESSAGE
DISPLAY BND_MESBNGE

RET ITHEM RETUAM TO OPERATING SYSTEM
boP ’

PROC

o ERROR_CODE, 3

ME ERR1

DISPLAY BADLPATH

"

DISPLAY TOO_MANY_FILES
e ERILEND

awr ERRON_CODE , 3
NE ERRD

DISPLAY ACCESS_DENIED
e ERR_END

or ERROIL_CODE , 4
NE ERR4

BISPLAY INUAL ED_HANDLE
N ERR_END

Figurs 14.7 WRITENAM_ASM {continued)

Disk I/0 Using File Handles

299

ERR4:
ERRS)
ERRé:

ERR._END:

ERRDR_RUUT INE

GETID
[
PROG_CODE

o ERROR.CODE, 12
JNE ERRY

DISPLAY INJALIC_ALCESS
JHP ERR_END

[0 ERROR..CODE , 79
JNE ERRé

DISPLAY DISI.FuLL
JHP ERR.END

DISPLAY UNINOWN_ERROR

e
RET
ENpP

PROC

PUSH ax

CLEAR [NDATA, 25
DISPLAY NARE_PROMPT
GETDATA [NBUF 2}
R BL , INCOUNT

ROV .0

KV E€COUNT , BX
POP BX

RET

ENOP

PROC

PUSH a

O1SPLAY [D.PROMPT
GETDATA [NBUF,13
ROV BL , INCOUNT

MOV oH, 8

MOV CCOUNT , BX
POP]

RET

ENDP

ENDS
END HAIN-PROS

Figurs 1.7 WRITENAMASM

$PROMPT FOR NAME
;GET MNAME 1N BUFFER
tHOVE THCOUNT Y0 WORD SIZE

1PROMPT FOR 1D
{GET 10 IN BUFFER

File Handles for Keyboard,
CRT, and Printer

Five handles have been pre-defined by DOS and are reserved for the use of
input/output devises. These handles are:

Input device; usually the keyboard.
Output device; usually the CRT.

0000
0001

300
0002 Error output device; always the CRT. ‘
. 0003 Auxiliary device [communications device).
0004 Standard printer {printer 0.

The first two can be redirected if desired. You can use these file handles
with the read and write functions described above. You don't need to open
or close these files and there are no read/write pointers for them. Keyboard
input and CRT or printer output is very simple using these handles.

Figure 14.8 shows the typing program from Chapter 12 revised to use
file handles for the keyboard and printer. Notice the EQUSs that assign
handle values to KEYBOARD, CRT, and PRENTER. You may want to add
these to your EQU library.

There are a few things you should know about the keyboard input. As
with function 0AH, CR signals the end of the input. If you ask for MAX
characters, nothing but CR will be accepted after MAX-1. You can enter as
many fewer than MAX as you like; CR will end the input. There is one
other limitation: no matter how large MAX is, no more than 128 characters
{including CR) will be accepted.

The maximum size of the input area, though, should be 129. That's
because when CRis entered, both CR and L¥F are put into the input area. All
input is echoed on the CRT, including the CR and LF. There is no need,
then, to add LF after CR as in Chapter 12's version of TYPER. After the
interrupt AX will contain the actual count of characters read, including CR
and LF. In the typing program this count is used to set the number of
characters to be printed after each input.

Just For Fun

Remember the telepnone number program you worked on in early chap-
ters of this book? You know enough now to revise the program so that
names and telephone numbers are saved in a file and then to write a new
program that prints the list. Go ahead and try these using the programs
- from this chapter as a guide. You may want to include headings and page
breaks in your telephone list when you print it.

Disk /O Using File Handles

301

PAGE , 132
f-

INCLUDE MACLEB.LIB
H

INCLUDE FILEHAND.LIB ~
H

INCLUDE EQULEB.LIB

KEYBOARD EQU [}

CRT £aQu 1

PRINTER EQU 4

i

PROG._STACK SEGMENT STACK ‘STACK’
08 44 DUP ¢’ STACK

PROG.STACK ENDS

i

PROG.DATA SEGMENT “DATA”

TYPE_BUFFER DB 138 DUPCTT)

PROG_DATA ENDS

: .

PROG_CODE SEGHENT ‘CODE’

MAIRPROG PROC FAR

ASSUME CS(PROG.CODE,DS:PROG.DATA,S5:PROG.STACK ;ES : PROC_DATA

", STARTER
sT1
LD -

MOV T AH,B FINITIALIZING PRINTER

Figurs 14.8 TYPER Program, Version 2

o] X, 8

INT- I
@s

INPUT_STRING:
MOV BX , KEYROARD
MOV AN, 3FH
MOV cx.ta
\EA DX, TYPE_BUFFER
INY 21K
P TYPE_BUFFER
JE END_PROG

OUTPUT_STRING:

. : mov X ,AX
MOV &%, PRINTER
now A, 404
INT A1)
. N JHPUT_STRING

B0 PROG
RET -

MAIN_PRODG awp

PROG_COOE -ENDS
-]

302

PAGE
| INELUDE
! INCLUDE
: INCLUDE
)

i
PROG.STACK
PROG_STALK
]
PROG_DATA
B6A0. PATH
TOOHANY 7 ILES
ACLESS.OENIED
INVAL 1 D HANDLE

TN | D_ACCESS
END_OF FILE

MAINLOOP)

REAC_OK

CLOSE.uPs

w32

+
MACLIB.LIB
FILEHAMND .L18

EguLlf.L1B

SEGHENT STACK *STAlK”
44 DUk (STAlE °)

“paTA

LF.CR, MATH NOT FOUND” EOT
LF,ER,*TOO MANY FILES OPEN’.EOT
LF,CR,*ACCESS DENIED’ ,EOT
LF,CR,’ INVALI0 HANDLE USED” ,EOT
LF.CR,* INMALID ACCESY CODE’ 0T
LF,CR, BN OF FILE FOUND® ,EOT
LF,CR,UNGIOMN ERROR’ ,EOT
LF,CR,’ GODORYE’ ,EOT

2

?

? .
‘NAMEFILE .DAT” &

0 DUk (M
12 OUP (7)

CR,LF

28 UP ¢)
(LN LS
12 DUP ¢)
EaT -

288E8 2% 8% 88838888835 §8

BNDS .

SEGHENT *CODE”

PROC FAR

ASSUME CHiPROB_COOE , DS 1PROB_DATA , 651 PROG_STACK, ES :PROCLIATA
STANTER

511

oo

s

CURSORON

OPEN NAME.FILE HANE-HANOLE , ERROR_COOE

M MALNLOOP VIF OPEN DK CONTINUE

CALL ERROR_ROUTINE IELSE DISPLAY APPROPRIATE MESSAGE
P B_PEDG ' MO B PROGIAN

READ NAME. HNDLE . INPUT_NANE , 32, ERROR. CODE
N READ. OX

CALL ERROA_ROUT INE

- CLOSE.LP

NOVE OUTPUT_MAME , INPUT_NAE , 24

HOVE OUTRUT_ 1D, INPUT_LD, 12 .
DISPLAY OUTAUT_LINE ~
o M INLOOP -

CLOSE NAME_HANDLE ERROR_CODE CLUSE FILE
NC END_PROS J1F CLOSE OK ENO PROGAAN
CALL ERROR_BOUT INE 1ELSE DISPLAY APPROPRIATE MESSASE

Figure 14.9 (continued)

Disk /O Using File Handles

EMNO_PROG !

M INCPROG

t
ERROR_ROUT INE
ERRL:

ERR2:

ERRI:

ERRA:

ERRS:

ERRés

ERR_END)
ERROR_AGUTINE

3
PROG.CODE

Figure 14.9

CISPLAY
RET
ENDP

DISPLAY

cLe
RET

-
;THEN RETURN T OPERATING SYSTEM

END_MESSAGE

ERROR_COOE,)
ERRY

BAD_PATH
ERRLEND
ERROR_COOE 4
EAR2
TOO_MANTY_FILES
ERR_END

" ERRGR_CODE,5

ERR3
ACCESS DENIED
ERR_END

ERROR_CODE.&
ERRA .

INVAL LD_HANDLE
ERR_EHD

ERROR.CODE . t2
ERR3

INVAL IDACCESS
ERR_END

ERROR.CODE. 100
ERRa

END_OF.F) &
ERR_EJifi

L]
HUNKNOWNL_ERROR

HAIN_PROO

15

MASM With
BASIC Files

If you have been programming in BASIC for a while, you probably have

some data files that contain valuable information which you would just as
soon not reenter from scratch for use with MASM programs. In this
chapter, I will give you some hints on how to access data from BASIC files
in MASM programs.

Sequential Files

As you know, BASIC can read and write two types of files: sequential and
random. BASIC's sequential files are very simple to handle in BASIC, but
not 50 simple in MASM. The main problem is that sequential files have
variable-length records; in fact, each data item in the record is variable-
length,

Let’s look at a sequentiat file where each record contains a name {a
string variable] followed by an integer. The maximum size for the name is
255. For the integer, it is six characters (including a possible leading sign).
Strings are stored with quotation marks surrounding them, Numbers are
stored in ASCIH characters as BASIC's PRINT command would display
them on the CRT. Fields are always separated by commas. The end of the

MASM With BASIC Files 305

recordis always marked by CR and LF; and the end of the file, by 1AH. This |
means that each of our file's records may be as much as 266 bytes long, like
this:

“A Name ... upto255total ...",-33001!@

where ! and @ represent CR and LF respectively. On the other hand, if the
string is empty and the integer zero, the record could be as short as six
characters: **,0!@

To read a BASIC sequential file in a MASM program, then, you must
read an arbitrary number of bytes into a buffer and examine each byte. As
you examine each byte, move meaningful characters to the appropriate |
fields, skip over quotation marks, look for commas that mark the ends of
fields, keep track of how many characters were actually put into each field, |
skip but keep track of decimal points and signs, and look for CR and LF to .

. mark the end of the last field in each record. You should be able to develop i
" routines to do these jobs using the commands you already know.

Random Files

BASIC's random files have fixed-length records and fixed-length fields. A '
record written with this BASIC FIELD statement:

|
FIELD #1, 18 as NAMS, 2 as AS, 4 asBS, 8asCs$:

is & 32-byte record that can easily be read into a MASM program. The input
buffer might look like this:-

IN_NAME DB 1BDUP(?)

IN_A DB 2DUP(?)
IN_B DB 4DUP(?)
IN_C DB 8DUP(?)

The problem with random files is in handling the numeric data. As you '
know, BASIC handles integers, single-precision, and double-precision
numbers. An integer in a random file is formatted by MKI$ and stored ina-
two-byte field, a single-precision number is formatted by MKS$ and stored

306

in & four-byte field, and a double-precision number is formatted by MKD$
and stored in an eight-byte field. Integers really create no problems for
MASM; MKI$ simply provides a two-byte {or one-word)] signed binary
number with the low-order byte first. If A$ represents an integer, you can
handle IN__A as you would any two-byte binary signed number. Single-
and double-precision are more complicated, however. I'll discuss single-
precision in some detail, but first I'll quickly review some of the terms that
we'll need in that discussion. |

Mantissa, Exponent, and Base

The number 5,350 can be expressed in a form such as 5.35 x 103. In this
form we say that t:2 number has a mantissa of 5.35, an exponent of 3,
and a base of 10. You can convert to other exponents and mantissas by
multiplying or dividing the mantissa by 10. Bach multiplication shifts the
decimal point one place to the right and subtracts 1 from the exponent.
Bach division shifts the point to the left and adds 1 to the exponent.

In other words, 5.35 x 10° = 53,5 x 10?3 = 5350 x 10 = 53500 x 101,

Any number can be expressed as a mantissa, an exponent, and a base.
The base that you pick determines the digits in the mantissa and the
exponent. 5,350 is 14B6H. This can be written as L4B6H x 16%. A positive
exponent represents the number of times the mantissa must be multiplied
by the base to produce the value. You can multiply a number by its base
simply by shifting the point to the right and adding a trailing zero if
required. A negative exponent represents the number of divisions by the
base required to produce that number, in other words, the number of times
the point must be shifted to the left with leading zeros inserted if necessary.
One standard way to express numbers in this form is to adjust them so that
exactly one non-zero digit is placed to the left of the point, asin 5.035 x 103,
We say that a number in this format is normalized.

Single Precision Format

To express a number in BASICs single-precision format you begin by
normalizing it in base 2. We'll work with the number 1234567, or 12D687H.
In base 2, this is 1001010101101000011B x 29, Normalized, this would be
1.0010110101010000111B x 230, Formatting a single-precision number starts
with putting this form into three bytes low order first, and then putting the
cxponent in the fourth byte. There are not enough digits to fill three bytes

MASM With BASIC Files 307

but we want to align the number so thatthe point comes after the high‘-
order digit. We fill in with trailing zeros. So far, then, our four bytes look
like this: .

ool1 1000 1011 0100 1.001 0110 0001 0100
3 8 D 2 g9 6 1 4
low middle high exp

(The point is assumed; it's not actually stored in the number.) Three more
steps are required before the single-precision format is complete:

1. Add 129 [81H) to the exponent.

2. Thehigh-orderdigitis always 1, so there's no need to store the 1; we'll
just assume it. Remove the 1.

3. Use the high-order bit position for a sign' bit. If the number is
positive, put 0 in the bit; if negative, 1. Note that only the sign bit is
involved. In single-precision format, negative numbers are not in
two's complement notation.

Now cur number looks like this:

0011 1000 1011 0lo0 Q001 0110 1001 0101
3] D 2 1 5 9 5
low middie high exp

And, that is indeed how it will be stored in single precision format.

If you want to work out another example for yourself, try a negative
number; -1234 should end up as 00 40 9A 8BH. Remember, you're not us'mg'
the two's complement; convert 1234 and then put 1 in the sign bit.

From Single Precision To Binary

In dealing with single-precision integers, the real issue is how to convert
them to binary—especially how to do it in a MASM program. We'll use
38D21695H as an example, knowing that it ought to come out 12D687H
{1234567). Here's how our number looks when we read it into our MASM

program:

0011 1000 1011 0100 0001 O©l10 1001 o©l01
3 8 D 2 1 6 g 5

308

First of all, let's reverse the steps that ended the last section. We'll start by
subtracting 129 {8iH) from the exponent and replacing the sign bit by 1.
{Don't lose track of the sign, though; youll need to know it later.) Here's

how our number looks now:

0011 1000 1011 0100 1.001 0110 0001 OL00
3 8 D 2 9 6 1 4
low middle high exp

We included the assumed point for convenience; it's not in the byte as

stored. We could quit now, just converting the three-byte number to two's -

complement if it's negative, but you will find it much easier to use the
number in arithmetic or conversions if you get rid of the assumed pointand
- fractional places.

First, we'll save the exponent in a.nother field and zero-fill the fourth
byte so we can use all four bytes for our number. Then, let's consider what
the new exponent will be when we get rid of the fractional places.

The number now has 23 fractional places—all but one of the 24 digits.
To end up with no fractional places, you must shift the point 23 places to
the right, subtracting 1 from the exponent for each place. In our example,
the original exponent is 20, so after the shift it will be -3. This means that
our number would need to be divided by 2 three times to produce the
original value with an exponent of zero or to express it in a form that does
not include an exponent.

Since the point is assumed, the number undergoes no actual change.
How do you know, then, if an exponent belongs to a normalized or non-
normalized number? You know because you control the program. Either
leave all of your converted numbers with 23 fractional places or without

fractional places.

What does it mean if you end up with a positive exponent? Suppose
your original exponent was 25. After subtracting 23 your new exponent is

2. The nomber must be muitiplied by 22 to arrive at its value with no
- exponent.

It's often desirable to go ahead and divide or multiply as indicated by
the exponent. Here is where you use the shift instructions. To divide by 2,
shift each bit to the right {SHR) and adjust the exponent; to multiply by 2,

- shift each bit to the left (SHL) and adjust the exponent. If you can get toa
zero exponent this way, fine. Make sure, though, that you don't shift out
significant bits. Don't do a right shift if the low-order bitis 1. In a left shift,
the high-order bit must be reserved for a sign, so don't shift if the next-to-
high-order bit is 1. After all of the manipulation is done, convert the
number to two's complement if the original sign bit was 1,

MASM With BASIC Files 309
|

CONVERT_SP HACRO BIN,SINGLE,EXP
LOCAL NEXT_LEFT .RIGHT_SHIFT ,NEXT_RIGHT
LOCAL CONT1 ,END_RIGHT , 5TORE_NUMBER , CONT 2
PUSH AX
PUSH (s}
PUSH DX :
XOR CX,Cx {ZERD CX
XOR X, DX i AND DX
MOV CL,SINGLE+3 i CX WILL HOLD EXP |
MOV AL, SINGLE $MOVE SP NUMBER T0O DX1AX i
MOV AH,SINGLE+ | I
HOV DL ,SINGLE+2 {
OR DL, g0 ;HIGH-ORDER DIGIT IS 1 |
sug €X,152 ;ADJUST EXP (-129-23) .
- Js RIGHT_SHIFT 11F HEG EXP SHIFT RIGHT
NEXT_LEFT: :
. TEST DH, 48H i1F BIT & SET STOP SHIFT '
JNZ STORE_ NUMBER . |
SHL DX, 1 ;OTHERWISE SHIFT DX ‘
SHL ax. 3 THEN AX
ADC DL,® i PUT SHIFTED BIT INTO DL
LooP MEXT_LEFT tDEC EXP AnND REPEAT :
JMP STORE_NUMBER 1QUIT WHEN EXP B '
RIGHT_SHIFT: .
NEG ox ;CHANGE EXP TQ POSITIVE
NEXT_RIGHT: :
TeEST AL, 1H j1F BIT | SET STOP SHIFT
JNZ END_RIGHT
SHR AX, 1 ;ELSE SHIFT ax .
SHR 0X,1 i AND DX
ch COoMT1 11F SHIFYED BIT SIGNIFICANT
R AH, BBH i PUT IT IN HIGH BIT OF AX
CONT1 N
LoOP NEXT_R|GHT 1DEC EXP AND REPEAT
MP STORE_MNUMBER 1BUIT WHEN EXP = §
END_RIGHT $1F QUIT BEFORE EXP=d
NEG cx i REMAINING EXP IS NEG
STORE.NUMBER]
MOV EXF,CX 1SAVE THE NEW EXPOMENT
TEST SINGLE+2,80H 11F DRIGINAL MUMBER NEGATIVE
32 CONT2 .
N NOT DX } CONVERT TO TWOS COMPLEMENT 1
NOT AX
ADD ax, | 1
ADC 0X,0
CONT 2 l
MoV 8IN,AL INOW SAVE NEW BINARY NUMBER
HOV BIN+§,aH
HOV BIN+2,DL
nov BIN+3,0H
POP DX '
POP o '
POP AX
ENDM |
!

Figure 15.1 Singie Precision to Binary

'Figure 15.1 contains a macro that converts a BASIC single-precision
integer to a four-byte binary number with a separate exponent. To use the
macro, specify the locations of the destination {the binary number), the’
source (the single-precision number), and the new exponent. The macro’
converts each number to a form with an exponent as close to zero as it can
get without losing digits. All the conversion is done in the AX and DX/

310

registers, with DX holding the high-order digits and AX the low-order. The
exponent is in CX. After all of the rest of the conversion is done, the macro
looks back at the source's sign bit to decide whether to put the final result in
two's complement form.

Double Precision Format

Double-precision numbers also use the exponent and mantissa form with
base 2. They have eight bytes instead of four because the original decimal
number can go as high as 17 digits, while single-precision can go only to 7
digits. The last byte is the exponent [plus 129). The other seven bytes
contain the mantissa in normalized form, with a sign bit replaced by the 1
before the point and stored low-order first. In the normalized form, there
will be 55 fractional places instead of the 23 in a single-precision format. If
you want to convert double-precision numbers you should be able to code
a macro based on the single precision one. Instead of trying to work in four
registers at once, however, you may prefer to convert the original number
to binary "in place”. If you do that, make sure to keep track of whether the
original was positive or negative; the sign bit won't be available when you
are through with the conversion.

16

Using Assembler
Subroutinesin
BASIC Programs

Assembler language programs can be used as subroutines in BASIC pro-
grams either with CALL or as a USR function. In an appendix of the BASIC
manual, you will find a great deal of information about how to set up and
use such subroutines. In this chapter, 1 will go over an example of one
method of loading and calling a MASM subroutine from a BASIC program.
Once you are comfortable with this procedure you should be able to learn
to use the other methods from the BASIC manual, -

The MASM Subroutine

. Figure 16.1 contains 2 new version of the typing program developed in

earlier chapters. We will use this program as an example of a MASM
subyoutine. Notice that there is no stack segment. Most subroutines use the
calling program's stack. Since there's no stack, there's no SS parameter in
ASSUME. ES is not needed in ASSUME either since the subroutine doesn't
include any of the string operations that require ES. {If our program hadno -
data, and therefore no data segment, we wouldn't have a DS parameter
either.)

32

PAGE.132 -
i
KEYBOARD EQu]
CRT EQU 1
PRINTER £0U 4 ’
]
PROG_DATA SEGMENT ‘DATA’
TYPE_BUFFER DB 138 DUPCY “)
PROG_DATA ENDS
]
PROG.CODE SEGMENT ’CODE’
HAIN_PROG PROC FAR -
ASSUME C5:PROG_CODE ,DB iPROG_DATA
PUSH ax o .
PUSH BX
PUSH CX
PUSH DX
PUSH 08
HOV AX ,PROGDATA 1 INLTIALIZE DS
MOV 08 AX
sT1
INPUT_BTRING1
OV BX ,KEYBOARD
mov AN, IFH
MOV CxX,130 .
LEA DX . TYPE_BUFFER p
INT 2IH .
OUTPUT_STRING:
HOV o, Ax
MoV BX ,PRINTER
MoV Ak, q0H
INT 214
END_PROG 1
POP 33
POP X
POP =]
POP ax
POP Ax
RET
t
HAIN_PROD ENDP
PROG_ COOE ENOS
© END

Figura 10,1 TYPESUB.ASM

Unlike most MASM programs, this one doesn't start by putting the
return address on the stack; the BASIC CALL takes care of that. The
subroutine must, however, PUSH and POP any segment register that it
changes, except CS. In this case, that's only DS; the subroutine’s data-
segment address is loaded into DS. If you don't preserve these registers,
you will have trouble when you retum to the calling program. You must
also make sure that SP has not changed. The other registers and the flags
don't need to be saved and restored.

.
Using Assembler Subroutines in BASIC Programs 313

Preparing the Subroutine

|
a'
The subroutine is coded and assembled like any other program. Our
source-code file is TYPESUB.ASM, so we assemble it like this: j
: |
|

MASM TYPESUB;

Next, we link the subroutine using the /H option, like this:

L INK TYPESUSB/H;

The /H option tells the linker to mark the EXE file so that the program will
be loaded as high in memory as possible. t

Saving a Memory Image |

Now we use DEBUG to find out where the subroutine will be loaded and to
save a version of the object code that can be loaded from a BASIC program.
First, load BASIC under DEBUG, like this:

DEBUG BASIC. COM
|

When you see the DEBUG prompt {-), type R to get a display of the
registers. Write down the values in CS§, IP, SS, and SP. You'll need to know
them later. When I did this, CS and 55 both contained 0907; IP, 0100; and
SP, FRFE. i

- Now load your program's EXE file and display it's original registers. The
sequence of instructions looks like this: .

-N TYPESUB.EXE
-L
R

This time just copy the values from CS, IP, and CX. CS is where the code
segment begins, IP is the offset of the first instruction within the segment
(usually 0}, and CX shows the size of the loaded program in bytes. In cur

314

DEBUG session, CS was 3F94; IP, 0; and CX, B2. Notice that the whole
subroutine was 0B2H, or 178 bytes; and 130 of that was for our input buffer.

Now we need to run BASIC (still under DEBUG) 50 we can BSAVE our
subroutine. First, we have to restore BASIC's SS and SP registers and set C5
and IP to point to the beginning of BASIC. To do these things, we need to
change CS, IP, S5, and SP to the values they had when we first loaded
BASIC. To change a register in DEBUG, use the R command with the name
of the register. DEBUG will display the current value and then prompt you
with a semi-colon for a new value. Here's how it went when 1 did it:

R S

CS 13F94

: 0907

R S§

SS 3IF94

10907

R IP

P 0000

- 0100

R SP
SP 0000

© :FFFE

Now everything's set; G (for GO) will start BASIC running. At the
BASIC prompt {OK), use DEF SEG to point to the subroutine’s CS, like this:

DEF SEG=8H3F94

Next, use BSAVE to copy to a disk file an image of the subroutine as it
currently is in memory. You specify the disk file name and the subroutine’s
beginning offset and size. You recorded those last two values from IP and
CX when the subroutine was loaded. In my example, BSAVE went like
this:

BSAVE “TYPESUB.BIN“, 0, 8H00B2

The memary image file usually has the extension .BIN as in this example.

Using Assembler Subroutines in BASIC Pro.ccums 315

Calling the Subroutine

Now you can write or finish writing your BASIC program. You can go
ahead and do that while BASIC is loaded under DEBUG or you can quit
DEBUG and restart BASIC. Your program may already almost have been
finished, but the CALL routine can't be coded until the memory image file
has been created. '

Here's how the CALL routine goes:

B First, use DEF SEG to point to the subroutine's CS address.

B Then, use BLOAD to load the memory image file. You must specify
the file name and the beginning offset {usually 0 that you found in [P
when the subroutine was loaded. ‘

M Third, assign that same offset to 2 numeric variable.

B Fourth, call the variable. Control will be transferred to the offset
represented by the variable within the segment peinted to by DEF
SEG.

In our example, the CALL routine goes like this:

1000 DEF SEG=8&H3F34

1100 BLOAD "TYPESUB.BIN",0
1200 SUBR=0

1300 CALL SUBR

To use TYPESUB a second time, you should be aBle to just repeat the
CALL s long as you have not executed another DEF SEG, loaded another
subroutine, or changed the value of SUBR.

Computer Exercise

Enter TYPESUB.ASM from Figure 16.1. Then, assemble and link the sub-
routine {use the /H option when linking} and use DEBUG to create the
menory image file.

316

S PRINT *“START FROM BASIC*

10 DEF SEG=4H3FPa hd
IS BLOAD *TYPESUB.BIN",®

ts FOR N/=1 TO 3

17 DEF SEO=WHIFP4

20 SUBR=8

39 CALL SUBR

35 NEXT Mt

48 PRINT "BACK TO BASICS® jEND

Figure 16.2 TESTSUB.BAS

Figure 16.2 shows the BASIC program we used to test TYPESUB. Use a
similar program and run your own tests.

Using Arguments

TYPESUB doesn't use any variables from the calling BASIC program, but
many subroutines do need to get input from or place results in BASIC
variables. The CALL statement can include a list of variables, known as
arguments or parameters, which are used by the called subroutine. The
BASIC manual explains the use of these arguments, but I will mention'a
few points that you should keep in mind.

The argument list names the variables to be used by the subroutine.
What is actuzlly passed is the offset of each of the variables. These offsets
are pushed on the stack in the order in which the variables appear in the
list. CALL pushes two more items on the list also: CS and IP for the return
1o BASIC. When your subroutine starts, then, the last argument’s address is
the third item on the stack—it staris at SP +4. You will need to use BP to
access these arguments; so, your program should start by PUSHing BP and
then copying SP to BP. Now, the last argument’s address is at BP +6, the
next-to-last at BP 48, and so on. To copy the offset of the third argument
into DI, then, you could use this instruction:

MOV DI ,10[BP]

Notice that you can't POP these addresses. POP always takes the top item
on the stack. You would have to POP the return address before you got to
the arguments and you shouldn't touch that, .

When you access data with these offsets, remember that they point to
locations in BASIC's data segment. If your prograr has changed DS, you
must use BASIC's DS to address the arguments; it should be sitting in your
stack as the second item your program PUSHed.

- ——— +

|

Using Assembler Subroutines in BASIC Programs 317

Before you return to BASIC, all of the items PUSHed by the subroutine
should be POPped so that, immediately before the return, SP pdints to the
saved return address. RET will use that address and remove it from the
stack, but the argument offsets are still sitting there. RET must adjust SP to
skip around these so that it is pointing to the item that was top-of-the-stack
before CALL began. To do this, simply code RET as RET n where n

~ represents the number of stack bytes to skip—two times the number of

arguments, If your subroutine uses four arguments it should start like this:

PUSH apP
MOV BP,SP ;BP+6pointstolast argument

PUSH DS i 1fsubroutinehas adataseg i

. ‘ !
}

and end like this: '

POP DS ; i f DSwas PUSHed !

POP BP

RET 8 ;two for each argument passed

One more thing: if possible all arguments should be integers. As you
learned in Chapter 15, BASIC integers are simply one-word binary num-
bers that can be handled easily in a MASM routine. Single- and double-
precision take too much special handling in MASM. Strings also make
trouble; the address passed for a string points to a special field that
describes the string, not to the string itseif. If you must pass string variables
read the explanations in the BASIC manual appendix carefully, ,

APPENDIX

A

Data Formats
and Representation

This appendix presents a quick review of the binary number system, the
use of signed binary numbers and two's complement notation, hex-
adecimal notation, binary-coded decimals, and ASCII code.

Decimal, Binary, and Hexadecimal

In daily life most of us use decimal numbers. Decimal numbers are made
up of combinations of the 10 decimsl digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) with
each digit position representing a power of 10; we say that decimal num-
bers use base 10. The position to the left of the decimal point, actual or
implied, represents 10°. Moving to the left, each position represents a
higher power of 10; moving to the right, a lower power. 327.025, then,
represents (3 x 10%) + (2 x 10%) + (7 x 10°] + (0 x 10} + {2 x 10-2) + (5 x
10°9).

Computers use binary numbers. Binary numbers use base 2. There are
two possible binary digits (0 and 1) and each position in a binary number
represents a power of 2. The pasition to the left of the binary point, actual
or implied, represents 2°. Moving to the left, each position represents a
bigher power of 2; moving to the right, a lower power. (Remember that 2
= U2, or .5; 22 = V4, or .25; 2-3 = /8, or .125; and so on.) In this book, asin
MASM source code, binary numbers are indicated by “B” following the

315

»

320 Appendix A

number. })01.101B, then, represents {L X 23] + {0 x 22) + {0 X 2} + 1 x
29 + {1 X 29 + {0 X 22),0r9.625|8 + 0 + 0 + 1 + .5 + .125). The binary
representation of 327.025 is 101000111.01B.

Bach position in a binary number is referred to as a bit (for Bmary
dig[T} or a bit position. Each bit can have a value of 0 or 1. Most computers
work with groups of eight bits; such a group is called a byte. Computers
also operate with words. In the IBM PC and its farnily, a word is 16 bits, or
two bytes. Sometimes, it is also convenient to deal with four bits at a time; a
4-bit group is a half-byte or a nibble. In this book, I usually write binary
numbers as half-bytes, bytes, or words. When we write 5 in binary form,
then, we will write 0101B or 0000 0101B, not 101B.

The hexadecimal number system uses base 16. It has 16 possible digits
i0.1,23,4,56,7,8,9 A B, C,D,E, and F}, and each digit position
represents a power of 16. “H" is used to indicate a hexadecimal number, as
in 123H {291}. Por clarity, a hexadecimal number must always start with a
digit from 0 through 9. OBAH is a number equivalent to 186, while BAH is
something Scrooge said before he reformed.

A distinct relationship exists between the binary and the hexadecimal
system, based on the fact that 24 = 16. Any hexadecimal digit can be
represented by four binary digits. To convert a hexadecimal number to
binary, you just need to replace each hexadecimal digit by its four-bit
binary equivalent. To convert binary to hexadecimal, separate the binary
number into groups of four bits (starting from the binary point] and convert
each bit to its hexadecimal equivalent. Here's an example:

1001 0011 1111 0110B
9 3 F 6H

It's much easier for humans to read and write hexadecimal numbers
than the strings of Os and 1s needed for binary. In most source code,
displays, and discussions we use the hexadecimal equivalents of the binary
numbers that the computer uses. Don't forget, though, that the computer
uses only binary.

High- and Low-Order

We often refer to a number’s rightmost digit position {the one that's the least
power of the base) as the low-order digit and its leftmost digit position as
the high-order digit. In 327.025, § is the low-order digit and 3 is the high-
order digit. In 1001.101B, both the high- and low-order digits are 1. We
extend this concept to refer to the high- or low-order nibble of a byte, the
high- or low-order byte of a word, and 5o on. In the ane-word number 0000

Data Formats and Representation 321

1

1111 1111 000OB, for example, the high-order byte is 0000 111B, the low-order
byte is 1111 0000B, the hlgh—OIdEl’ bit of the low-order byte is 1, and the low-
order bit of the low-order byte is 0. . i

Binary Addition i
There's no need to go very deeply into binary arithmetic since by and larg‘e
the computer takes care of such computations. But, to follow the rest of this

discussion, you must know the facts of binary addition. These are very
simple. There are only three basic facts. {

— (

0 + 0. =
1 + 0 =1 |
1 + 1 = 1Q .

i
: |
Notice that when you add 1 and 1, you generate a carry that must be

added into the next digit's sum. Here are two examples of multi-bit addi-
tion; you should be able to figure them out with no trouble,

1111 0101 0011 1011
+ 1011 1010 + 0111 0100 ;
1 0110 1111 ~ 1011 1111 '
Signed Binary Numbers |

When we need to indicate that a decimal number is negative, we generally
use a negative sign | —) before or after the number. A number w:lhout a
sign is assumed to be positive, but if we want to emphasize this we can use
a positive sign { +) before or after the number.

We can indicate signs in binary numbers by usmg similar techmques,
but for the computer it's more efficient if the sign is part of the number
This can be done by reserving the high-order bit to indicate the sign; n is
referred to as the sign bit. The rest of the number contains the absolule
value, or magnitude. A one-byte signed number has a high-order sign bxt
and seven bits that contain the absolute value. A one-word signed number
has a high-order sign bit and fifteen bits that contain the absolute value.!

A negative number doesn't just have a negative sign, however; mpst
computers, including the IBM PC, use two's complement notation for
negative binary numbers. To form the two's complement of a binary
number, change each digit to its opposite and then add 1 to the result. Por
exgmple: to form the two's complement of 36H (0011 0110B), change each

an -

322 Appendix A

bit; the result is 0C9H {1100 1001B). Now add 1; the result is 0CAH (1100
1010B). Using signed numbers, then, 36H is 54 and 0CAH is — 54. By the
way, if x is the two's complement of y, then y is the two's complement of x.
Work out the two's complement of 0CAH; you'll find that it's 36H.

Ranges

A one-byte number can range from 0H to OFFH. If the number is unsigned,
this is a range of 0 to 255. If the number ia signed, this is a range of -
{80H]) to + 127 (7FH). '

A one-word number can range from 0H to OFFFFH. If the number is
unsigned, this is a rasze of 0 to 65535. if the number is signed, this is a
range of ~ 32768 {8000H) to 32767 (7FFFH).

Binary Coded Decimals

It's often more convenient for us to work with decimal digits even though
the computer uses only binary numbers. A special format called binary
coded decimal, or BCD, has been devised for this purpose. It's based on
the fact that the decimal digits (O through 9} can be represented by the same
4-bit binary numbers used to represent the first 10 hexadecimal digits. To
translate a decimal number into BCD format, just translate each digit into
its 4-bit binary code. The number 123450, for example, in BCD format
would be 0001 000 0011 0100 0101 0000B, or 123450H. To change a number
written in BCD format back to decimal, translate each 4-bit group into its
equivalent decimal digit. Notice that when numbers are written in BCD
they can never contain the half-byte values 1010B, 10118, 1100B, 1101B, 1110B,
or 11t1B. How can you tell whether the string of bits 1001 0001B {91H) is a
binary number equivalent to 145 or a BCD representation of 917 It could be
either one; you can't tell by looking at it. If the string is a value in a program
you must know whether it was intended to be binary or BCD,

Packed and Unpacked Decimals

BCD numbers are used in two forms. So far we have looked at the packed
decimal form. Packed decimals represent one decimal digit per haif-byte,
two per byte. Unpacked decimals have only one decimal digit per byte;
the high-order half-byte is always zero. The packed decimal representation
of 35, then, is 00110101B {35H), while the unpacked represeatation is 0000
0011 0000 0101B {0305H).

Data Formats and Representation 323

‘BCD Arithmetic

Arithmetic with BCD numbers, either packed or unpacked, is based on
binary arithmetic. The answers, however, must be adjusted for any BCD
digit position where the result is 10 or more. For example, let's add 35 and
26 in BCD format:

0011 0101B (35H)
+ 0010 01108 (26H)
- 0101 10:1B (5BH)

This answer, 5BH, would be right if we were adding binary or hexadecimal
numbers; but it is wrong when you're adding decimal digits. The answer
should be 61. An adjustment must be made to allow for the fact that BCD
digits can only be 0 through 9. MASM provides adjustments for arithmetic
operations with unpacked decimals, as well as for addition and subtraction
with packed decimals.

The ASCI Character Code

Another way that data is represented in the IBM PC is in ASCII character
code. Each character is represented by a one-byte value. Standard ASCII
code uses only seven bits per character, so it can represent only 128
characters. But IBM uses a full eight bits per character, thus allowing an
additional 128 characters to be part of the ASCII code set.

The values from 0 to 31 are generally used for control characters. Some
of these, such a5 10 for line feed, 12 for form feed, and 13 for carriage return,
are generally accepted and recognized by most peripheral devices such as
CRTs and printers. Values from 32 through 126 are part of the standard
ASCII set. This includes 32 (20H) as the code for a space, 48 (30H) through
54 [39H) for the decimal digits, 65 (41H) through 90 (SAH) for the uppercase
letters, and 98 [61H) through 122 (7AH) for the lowercase letters. The
remaining values in this range are used for special characters. The rest of
IBM's ASCII set, values 127 through 256, represent special typefonts and
graphics characters.

When ASCII characters are included in programs or discussions, they
usually are enciosed in single or double quotation marks.

Numbers in ASCI1L

Almost all data is input or output as ASCII characters. When you press a
key on the keyboard, it is the ASCII code value for that key that is passed to

324 Appendix A

the computer. When you display characters on the CRT or print them on a
printer, the computer sends numbers to the output device, which inter-
prets the numbers as ASCH code and displays or prints the corresponding
characters.

What happens when you input a number such as 35 in response to a
prompt? The ASCII code that is received is 3335H. This is not 35in binary,
in packed decimal, or in unpacked-decinsl format. In order to use this
input as a number, your program must usually convert the input to one of
the formats that it can work with. The closest format is unpacked decimal;
all that is necessary to convert ann ASCH digit to an unpacked-decimal digit
is to change the high-order half-byte from 3 to 0. That's the main reason for
using unpacked decimals in your program. In the same way, numbers to be
displayed or printed must usually be converted from another format to
ASCII; the easiest conversion is from unpacked decimals.

APPENDIX
B .]

The Macro | ,
Assembler
Instruction Set

This appendix lists the Macro Assembler instructions grouped by func-
tions and subfunctions. For each instruction,a very brief description of its
purpose is given. An asterisk () marks instructions not discussed in this
book. Use this appendix when you know what you want to do, but aren't
sure what instruction(s) are available to do it. For a detailed description' of
an instruction’s purpose, format, and operands, look the instruction up| in
the MASM manual. ‘

Copying or Transferring Data

String Moves

LODS/LODSB/LODSW « Load ALor AX from a string !
STOS/STOSB/STOSW Storefrom AL or AX to string
MOVS/IMOVSB/MOVSW Copy a string '

326 Appendix B The Macro Assembler Instruction Set 327

1

o - DEC Subtract 1

IN « Get one byte from an input port INC Add 1

ouT + Send one byte to an output port ' NEG Subtract from 0 {form twe's complement)

Stack Manipulation Adjust Data

PUSH Push one word on top of stack AAA Adjust unpacked decimal after addition

POP Pop one word from top of stack , : AAS Adjust unpacked decimal after subtraction

PUSHF « Push flag regjster on top of stack AAM Adjust unpacked decimal after multiplication

POPF . Pop flag register from top of stack AAD Adjust unpacked decimal before division
DAA Adjust packed decimal after addition

. DAS Adjust packed decimal afier subtraction

Miscellaneous Data Transfers CBW Fxtend sign of AL through AH

MOV Copy one byte or one word CwWD Extend sign of AX through DX

XCHG « Exchange values of operands .

XLAT « Place byte looked up in table into AL 5 Logical Bit Changes

LAHF « Copy SF, ZF, AR, PF, and CF to AH ik - .

SAHF « Copy from AH to SF, ZF, AF, PF, and CF : AND Logical AND{1AND 1 = 1; x AND 0 = 0}

LEA Loads computed A into register l NOT Log}cal NOT [Change each bit)

LES + Loads segment number into ES ' XOR Logical XOR (1 XOR 0 = 1; all others = 0}

. . _ Move Bits Within Field

Comparing or Testing Data reL Rotate ¢f theough CF

CMP Compare bytes or words RCR Rotate right through CF

TEST Logical AND bit comparison ROL Rotate left without CF

CMPS/CMPSB/CMPSW Compare strings ROR Rotate right without CF

SCAS/SCASBI/SCASW Search string for accumulator match SAR Shift right retaining high-order bit

C ' SHR Shift right replacing high-order with 0
. SAL/SHL Shift left replacing low-order with 0
Changing Data]
_ Change Flag Value

Arithmetic CLC Clear CF

ADD Add without carry o —y h
CMC « Change CF (If CF=0, CF =1 and vice versa

ADC Add with carry CLD Clear DF ’

sUB Subtract without borrow STD Set DF

SBB Subtract with borrow : CLI Clear IF

MUL Multiply uasigred numbers STI Set IF

IMUL Mulipity signed numbers P

DIV Divide unsigned number
DIV Divide signed number

328 Ap]:'vendix B

Control Program Flow
Unconditional Transfer of Control
JMP Transfer control to target

CALL " Transfer control to procedure

RET Return from procedure

INT Transfer control to interrupt routine
INTO « Transfer to interrupt on overflow
IRET « Return from interrupt

Repetition with Counter in CX

LOOP Transfer controlif CX not 0

LOOPENLOOPZ Transfer control if CX not 0 and ZF
set

LOOPNE/LOOPNZ Transfer control if CX not 0 and ZF-
clear

REP Repeat string operation if CX not 0

REPE/REPZ Repeat string operation if CX not 0
and ZF set

REPNE/REPNZ Repeat string operation if CX not ¢
and ZF clear

Conditional Transfers

Note: opl and op2 refer to operands in previous flag-setting instructions
such as arithmetic, comparison, or logical instructions.

JA/JNBE
JB/INAR
JAB/NB
JBR/JNA
JG/NLE
JLNGE
JGR/NL
- JLE/NG
Bz
JNR/NZ

Transfer if unsigned op2 > opl
Transfer if unsigned op2 < opl
Transfer if unsigned op2 not < op1
Transfer if unsigned op2 not > opl
Transfer if signed op2 > opl
Tranafer if signed op2 < opl
‘Transfer if signed op2 not < opl
Transfer if signed op2 not > opl
Transfer if op2 = op] {ZF set)
Transfer if op2 not = op1 |ZF clear)
Transfer if CF set

Transfer if CF clear

Transfer if OF set

The Macro Assembler Instruction Set

JNO

Js

JNS
JP/IPE
JNP/JPO
jcxz

’ Transfer if OF clear
Transfer if SF set
Transfer if SF clear
+ Transferif PRset -
« Transfer if PF clear
« TransferifCX =0

Miscellaneous Instructions

ESC
HLT
WAIT
LOCK
NOP

Send instruction to another processor
Wait for external interrupt

» - . L] »

No operation

I

Wait for TEST signal from external processor
Lock access to resources shared by co- processor

|
|

. e

= ODIVISION DE EDUCACION CONTINUA

FACULTAD DE INGENIERIA U.N.A M.

INTRODUCCION AL LENGUAJE DE PROGRAMACION
ENSAMBLADOR PC-MSDOS

ANEXOS /

NOVIEMBRE 1991

Palacio de Mineria Calle de Tacuba 5 orimer piso Celeg. Cuauhtérnoc 08000 México, D.F. Tel.: 521-40-20 Apdo. Postal M-2285

APPEMDIX. B —— ROH BIGS INTERFACE SPECIFICATION

B.l General

The syctem cotaiss & read only memory basic
input/output system (ROM BIOS} which permits the user
pregram to access most system devices without regard

for the physicel requirements of the device. Each '

BIOS.- function is called by a2 pre-defined scftware
interzupt to which the necessary parameters are passed
through 8088 registers. For interrupts which parform
multiple functions, register AK passes the furnction
numberx. In gensral, any register (except A¥ and
FLAGS) which does not return & result, wiil be
returned unchanged.

The numeric values used in the foilowing discussion
are in decimal unless -followed by letter "h“ in which
case they are hexadecimal.

Table B-l. Summary of Reserved Interrunts

Intercept Function Type’
INT 01H Single Step ISR Hardware
IRT P2H Nonmaskeble ISR Hardware
INT @3H Breakpoint Trap Software
INT B85H Print Screen Software
INT D8H Timer Pick ISR . i . Hardware’
INT 89H Keyboard ISR] - Hardware
INT @éBH - Dumb Terminal ISR Hardware
INT OBEH Floppy Disk Cont:oller Hardware
INT 14H Video Interface Software
INT 11H Equipment Report Software
INT 12H Memory Size Report Software
INT 13H Diskette I/0 Software
INT 14H, Serial Communications Software
INT 16H Keyboard 1/0 Software
INT 17H "Parallel Printer Software
INT 198 Systen Bootstrap Software
INT 1AK ' . . Read/Set Time of Day Software
INT 1BH - . .- Keyboard Break User Supplied
Software
B-1

INT 1CH Timer Tick User Supplied
Eoftware
INT 1DH Video Paranmeters Pointer
INT 1EH Diskette Parameters - Pointer
INT. 1FH Character Generator Pointer
Table :
i
B.2 Software Interrupis . i
INT 95H —— PRINT SCREEH
This interrupt copies the screen to printer #6,. . NO

arguments are passed through 88388 registers for th1s
function. Byte 50H:0 holds the status of the prlnt
opexation where: @ = DONE, 'l = IN PROGRESS, OFFH =
ERROR. Interrupts are assumed to be enabled du:lng
printing, and any 1nterrupts which occur may examine
the status at 5@H:f.

INT IBH —— VIDEO

This 1nterrupt provides an interface to the’ CRT<foL
the following functions:

BH = 6 Set Display Mode !

AL = 46 X 25 Black & White :

46 X 25 Color ’

8@ X 25 Black & White '
86 X 25 Color |
Graphics 320 X 20 Color
Graphics 32d X 200 Black & White
Graphics 648 X 288 Black & White
AL = 80 X 25 Monochrome
Note: Modes @ through & use color graphics video
boazd Mode 7 uses monochrome video board.

2 I
SNoWs WS

AH = 1 Set Cursor Type
CH (Bits 4-0) = Starting line for cursor
CL (Bits 4-0) = Ending line -for cursor
Mote: To turn OFF cursor, call with Cx=2d8dy |

1
L3

i

{
[
1
1
1
|
|

AH = 2 Set Cursor Pasition AH = 8 Read Character and Attribute at Cursor .

Di,DL = Cursor position {row, column}, upper left . BH = Page number, must be @ if graphics mode
is 0,0, : : is selected
BH = Page bumber, must be @ if gzaph'ca mode Values Returned:
is selected AL = Character value ,
AH = Attribute value (invalid if .graphics
A4 = 3 Read Cursor Position mode) - .
BH = Page number, must be 0 if graphxcs mode
is selected. AH = 9 Write Character ond Attribute at Cursor
Valaes Returned: BH = Page number, must be 0 Jf graphics mode
DH,OL = Cursor position (row,colwnn), upper left) is selected
© is 6,08 ' CX = Number of characters to be written
CH,CL = Cursor mode AL = Character
. BL = Attribute (alpha mode). or color
AH = 4 Read Light Pen Position ' - {graphics mode)

Values Retyrned: . .

L

o d

AH = 8 if light pen not pressed, not triggered
AH = 1 if registers contain light pen position
DH,DL = Row,columh of light pen (if AH = l)

CH = - Raster 1ine (9-199, if AH = 1)

BX = Pixel-column. (0-319 or &-639, if AH =)

Note: 1If Bit 7 of AL = 1 in graphics mode, the
color will be exclusive or'd with the current
colorx of the character.

18 Write Character Only at Cursor

BH = ° Page number, must be @ if graphiCS mode
S Select Active Display Page is selected
AL = Page number (-7 if mode 4 or 1}, 8-3 if CxX = Number of characters to be written

mode 2 or 3)

6 Scroll Window of Active Page Up, Blank New

Bottom Line

Al = Number of lines (if AL = 6, blank entize
window)

CH,CL = Row,column of upper left corner of window

DH,DL = Row,colunmn of lower :1ght corner of

AL = Character .

11 Select Color Palette
BY = 8 Define background color (mode 4) or define
the border color (modes 6-3) -
BL = color value
BH = 1 Select the color palette (mode 4 only).
" BL = @ Selects Green (1), Red (2),

window - Yellow {3) \
BH - Attribute to be used on new blank line BL = 1 Se}ects Cyan (1), Magenta (2),
white (3)

7 Scrol) Window of Active Page Down, Blank New
Top Line
AL = Number of llnes {(if AL = 8, blank entlre
window)
CH,CL = Row,column of upper left corner of window
" DH,DL = Row,column of lower right corner of window
BH = Atttibute ‘to be uged on new klank line

AH = 12 Write Dot (Modes 4-6 Only)

AH

bX = Row number

CX = Column number

AL = Color value

Note: If Bit 7 of BL =1, the color will be

exclusive or'd uith the current color of the
character.

13 Read Dot (Modes 4-6 Only)
DX = Row number
CX = Column number

Value Returned:

AL = Color value

14 Write Character (Teletype Conventions)

AL = Character value

BL = Foreground color or
‘graphics mode)

BH w .. Page number (if alpha node)

character .(if

Note: <This function emulates:a teletype by
writing a character to the current cursor
position, then moving the cursor one position o
the right. Line wrap-around at right margio is
provided. Control codes supported are:

5P (206H) = ﬁ:ite a blank space '
CR (0ODH) = Crrsoz to left margip of current
' line
LF (8AH) = Cursor down one line, sctoll up if
. at bottom :

BS (08H) = Cursor left one character (non-
destructive).

"BEL (@7H)= Sound beeper

AH = 15 Read Video State

values Raturned:

AL = video modae

AH = Screesn width (40 or as))

BH = Active page number -
B-5

INT 11H — Equipment Report
This interrupt reports the system confiquration.

Value Returned: i

AX"

INT 12H — neno:y Size Report

This interrupt reports the size of contiguous memozy
in the system.

Value Returned:
A = -

‘contiguous memory which exist, starting

Equipment configuration word, defined as
follows:
Bit 15,14 = Number of Prlnters attached
Bit 13 = Not used
Bit 12 = Game interface attached
Bit 11,10,9 = Number of R5232 cards
attached
Bit 8™ Onused.
Bit 7,6 = Number of floppy disk drives
attached

66 = 1 Drive, 81 = 2 Drives,

10 = 3 Drives, Y1l = 4 Drives
Bit 5,4 = Initial video mode

60 = Dumb terminal, #l = 40 X 25 colorl

card
16 = 88 X 25 color, 11 = 8@ X 25 |
card) monochrome |
card :

Bit 3,2,1 = Not used

Bit 0 = Existance of Floppy Drives

@ = No Floppy Drives l=Fioppy -
drive exists

Number of 1K (1824) byte blocks of

from #:8. This value is oot dependent on
switch settings on the main printed
c¢ircuit board.

INT 134 — Diskette I/0

This interrupt performs all data transfers between the
floppy or fixed disk and the system memory. It also
provides a track format function for the floppy disks.

Floppy disks are numbered 6-1, depending on their
physical location in the system. Bit 0 of AX returned
by INT 11lH indicates existance of floppy drives:
d=Nonec, l=One or more.

Certain drive parameters must be defined for INT 13i.
The vector location corresponding to INT lEH mus$
point to a disk parameter table (see description of
INT 1lEH}.

AH » 0 Reset the Diskette System

Brings the disk system to an initialized state.
Recalibration will be done on the first access to
each drive following this function. This
function must be performed before the naxt use of
the disk system whenever a disk error occurs.

AH = 1 Read Disk Status
Values Returned:

_Carry = 1 if error . ‘ P

“AH = Error status
#0H = No error

@1H = Unrecognized commapnd
@2H = Address mark not found
@3H = Write protected digketta
‘@94H = Sector not found
68H = DMA overrun
P9H = Attempt to DMA across 64K boundary
16H = CRC error on diskette read
. 20H = Disk controller fajlure
404 = Seek faliled
80 = No response from disk lystem withim

time allowed

Mote: Error status bits may be combined by 1oglcn1 '

oaing uhen multlple errors occur.

A4 = 2 Read Sectors from Disk to Memory
AH = 3 Write Sectors from Memory to Disk
AH = 4 Verify Sectors from Disk
AL = Number of Sectors (1-8)
ES:BX = Address of buffer for disk data (not
required if AH = 4)
CH = Cylinder MNumber

CL = Beginning Sector Numbe:
DH = Head Number
DL = Drive dHumber (8-7)

values Returned:
Same ms for read disk status command

Note: If an error is reported by the diskette
1/0 code, the user should reset the system {INT

© 13H with AH = @) then retry the desired function.
Since no motor start up (or head load) delay is
generated, it may be necessary to allow 4
attempts on a read ox verify command while motor
spins up.

AH = 5 Format a Track on Floppy Disk
AL = Number of sectors on track
ES:BX = pddress of track descriptor table
CH = Track number {(9-39)
DH = Head number (0-1)
PL = Drive number (0-1)
Values Returned:
Same as for read disk status conmand

Note: fTrack dascriptor table is composed of 4
bytes (C,H,R,H} for the I.D. field of each sectox
on the track in physical oxder:

€ = Cylinder number

4 = Head number

R = Sector number
" W = Sector length code (@=128, 1=256, 2-512,

3=1024)

B-8

.

FPired Disk 1/0

The fixed disk I/0 interface provides access to 5-inch
fixed disk drives through the contrxoller. The
following functions pertain to the fixed disk only.
Registers Used for Fixed Disk Operationc

(DL) - Drive Number (8@H-87H)

{DH) = Head Number (8-7)
{CH) - Cylinder Number (6- 1023)
{cL) - Sector Number ° (1-17)

Hote: 2 MSB's of cylinder number are placed in the
MSB locations of the CL register, respectively
(1@ bits total). ‘

(AL) - Humber of Sectors (Range 1-80H for
read/write long 1-79H)
(Interleave value for format 1-16)
{ES:BX} - Address of buffer for reads and writes
Fixed d1sks are assigned sequentxal nunbe:s, beginning
with 86H, depending on the number of drives installed.
Drive pumber 80H is the fixed digk bootstrap drive.
(Note: To reset fixed disk drives, the drive address
in DL must be 80H-B7H.) Fixed disk parameters are
peinted to by the INT 41H vector,

{AH) = @@ Reset Disk System .
(ARH} = 81 Read Status of the last disk operation into
(AL) .
{({AH) = 82 Transfer desired sectors from dlsk to
| memory.

"(AH) = 23 Transfer desxred sectors from memory to

. disk
{(AH) = B4 Vexify the desired sectors .
(ARH} = 05 Format the desired track .
(AH) = 86 Format the desired track and set bad sector
flags
{(aH) = @7 Format the drive startzng at the desired
track

B-9

{AH) 68 Return the current drive parameters
{AH) = #9 Initialize drive pair characteristics

Interrupt 41H points to data block o
(Al @A Read long. . |
(ARH) = BB Write long .

Note: Read and write long = 512 + 4 bytes of ECC

(aH) = OC Seek
(AH) = @D Reset disk (fixed disk only)
{AH) = OE Read sector buffer [
(4H) = OF Write sector buffer (recommended pr1o: to
: formatting) i
(AH) = 16 Test drive ready !
(aH) = 11 Recalibrate : |
(AH) = 12 . Controller RAM Diagnostic [
(AH) = 13 Drive-Diagnostic ‘ !
{(AH) = 14 Controller Internal Diagoostic ;
|
Output: !

AH = Status of Current Operation

CY = @ Successful operation (AH=8)

CY = 1 Failed operation (AH has error reason)

Note: Error 11H4 indicates that the data read had a
recoverable error which was corrected by the
ECC algorithm. The errcr may not reoccur if
the data is rewritten. ‘

AL = Burst 1éngth

Drive parameters information is accessahlé in the
following registers: - ’

DL = Humber of consecutive drives attached (0-2)

DH = Maximum head number value

CH = Maximum cylinder number value !

CL = Maximum value for sector number and cylindeé
number high bits

|
If any of the following errors are repotted reset the
drive and retry the operation.

B-19 '

INT 14 -— Serial COEHnnicaEions .

OFFH Sense operation failed
@BAH Undefined error cccurred
80H Attachment failed to respond
A0H SEEK operation failed
20H Controller has failed
11H ECC corrected data error
10H Bad ECC on disk reagd
¢gBH Bad track flag detected -
g9H Attempt to DMA across 64K
’ boundary
478 - Drive parameter activity
) failed
@5SH Reset failed
g4H Requested sector not -
foungd
O2H Address mark not found
"OLH Bad command passed to
pisk 1/0

GOH No exror

The interrupt pxovides an interface to the RS-232 type
serial interfaces in the system.

AH = 0 Initialize the Communications Port

DX = Number. of serial por: (6-3)
AL » Initialization parameters
Bit 7,6,5 = Baud Rate

ggf = .19.2 Kilobaud 160 = 1286 Baud
0@l = 150 Baud . 181 = 2406 Baud
¢lg = 30@ Baud 110 = 4890 Baud
‘Gl = 600 Baud . 111 =

9600 Baud
Bit 4,3 = Parity Type :
@0 ox 10 = None

gl = 044 ’
1} = Even
_pit 2 = Stop -Bits (#=1 Bit, 1=2 Bits)
Bit 1,2 = Word Length (1@=7 Bits, 1ll=8 Bits)
valuaes Returned:) - ‘ .
Same as for return port status command

B-11

AH = 1 Send Character
AL = Character value .
DX = Number of serial port (Gs3)
Values Returned: :

AH = Status of operatiop
Bit 7 = Unable to transmit
Bit 6-2 = Same as for return port status

command

“AH = 2 Receive Character ’

DX = Number of serial port (G-3
Valuves Returned:
AL = Character value
AR = Status of operation
Bit 7 = No data set ready received
Bit 4-1 = Same as for return port statas
commaand

AH = 8 Return Port Status
DX = Number of serial port (8-3)

AH = Line contral status

Bit 7 = Time cut) :

Bit g = Transmitter shift register empty
Bit = Transmjitter holdin

-Bit 4 = Break detect 109 register empty
Bit 3 = Framing error

Bit 2 = Parity error

Bit 1 = Overrun error

Bit @

= Receiver data ready
AL = MODEM status \

Bit 7 = Receive line detect (data carrier
datect) .
Bit 6 = Ring indicator
Bit' S = Data set ready
Bit 4 = Clear to send
Bit 3 = Receive line signal detect cha
. Bit 2 = Trailing edge of ring indlcnto:ged
Bit 1 = Data set ready changed
Bit 8 = Clear to send changed

B-12

INT 16H — Keyboard 1/0

This interrupt provides an 1nterface to the detachable
Leyboard.
AH = E Read Character
Values Returned: :
AL = ASCII value or 0
AH = Scan code of key pushed (if AL = ASCII)
Extended code (if AL = #)

AH = 1 Read Status
values Returned: -
. Zero Flag = @ if a character is available
AX = Same as in read character if.2=0, character
retuozned in AX remains in buffer.

. AH = 2 Return Shift Status
. Value Returned:
“AL = Keyboard Status
Bit @ = Right shift dep:essed

Bit

Bit 1 = Laft shift depressed
Bit 2 = Control depressed
-Bit.3 = Alternate depressed
Bit 4 = Scroll lock toggled
Bit 5 = NUM lock toggled
Bit 6 = Caps lock toggled
T =

Insert state active

B-13

i

]

Extended Code Punction
3 NUL Cheractex
15 CALW LVACE
16-25 - RLT Q,W,E,R,T,U;I, :P
30-38 ALT .A,S5,D,F,G,H,J,K,L
44-50 ALT Z2,X,C,V,B,N,M
59-68 F1-F18 Function Keys Base
. Case
71 Home
72 + .
73 Page Up & Home Cursor
75 . -—
17 B
79 - £nd
8p ' v
81 . Page Down & Home Cursor
82 INS
83) DEL
84-93 Fll-F28 (Upper. Case Fl-FlB)J
94-163 F21-F32 (CTRL F1-F10)
104-213 £3l1-F48 (ALT Fl-F16)
114 CTRL PRTSC (Start/Stop
Echo to Printer) Key 55
115 : CTRL = Reverse Word
116 CTRL --» Advance Word
117 CTRL END Erase EOL
118 CTRL PG DN Erase EOS
119 CTRL HOME Clear Screen
’ - and Home
120"131 - - ALT 112'3141506f7l819161-'

. . = (Keys 2-13)
132) : CTRL PG UP TOP 25Lines
- ’ of Text & Home Cursor
INT 17H - Parallel'rrinter

this interrupt provides an 1nter£nce to the parallel

prioter devices.

B-14

ANl = 0 Print Character
' AL = ASCI! character
. DX = Priantex number (0-3)
Valce Returned:
AH = Printer status :
i/0 Error

Bit 7 = Not Busy Bit 3 =

Bit 6 = Ackpowledge Bit 2 = Hot Used

Bit 5 = Oout of Paper Bit 1 = Not Used

pit 4 = Selected Bit 6 = Time Cut Errox

. AH = 1 Initialize Printer Port
Value Returned: . .
Same as for primt character conmand

"AH = 2 Read Printer Status
Vvalue Returned:
Same as for print cbaracter command

INT 194 — System Bootstrap
This interrupt boots the system from flopﬁy disk drive

g. The boot .sector is read from the disk, loaded into
memory at #:7C00H and control transferred to it at

C'{\--that address. .

Mo parameters are passed through registers.
“fhis interrupt is automatically invoked by the system
initialization code in the ROM BIOS. ‘

INT 1AH -~ Eead/Sat Time of Day
. "rhi.s 1nteétupt alﬂlowsf. t'he‘t:_i'mg of day clock to be read
_or set. N : L '
AH =@ Read Time of Day
Values Returned: ‘ '
CX = HIgh order word of time of day count

DX » Low order word of time of day count
AL = @ if .day has not changed since last read

‘Note: !he‘ﬁ!hefcnuut in CX,DX runs at the rate of
18.2065 Hz or. 54.9254 milliseconds/count.

B-15

AH = 1 Set Time of Day :
CX = High order word of time of day count
DX = Low order word of time of day count

Note: Time count is initially set to 0 when MPC is
reset or powered on. :

8‘3. User Supplied Routines

-INT 1BH -- Keyboard Break

Control will vector to this interrupt when a break is
commanded from the keyboard. The ROM BIOS injtializes

this vector to point to a null interrupt service
routine.

INT XCH ~— Timer Tick

Control will vector to this interrupt when the timer
interrupt occurs. The ROM BIOS initializes this

vector to.point to a null interrupt service routine.

B.4 Pointers

INT IDH -— Video Parameters

. this vector points to a table of video intialization

parameters for the Motorola 6845 CRT controller chip

- on the color and monochrome video. boards. The tables

consist of the data to be output to the C
coptroller's 16 registers, R6-R15. All four stxin;:

. must be reproduced to maintain all pessible mod
. operation. The vector initfally points t:wtgg
"following table in the ROM BIOS: '

‘DB 38H, 28H, 20H, @AH, LFH, @6H, 19H, 1CH 4%¥X25

DB -ﬂ?ﬂ. 67H, @6H, 87H, @6H, @0H, GOH, BOH Color

DB 71H, SOH, 5@, OAH, 1¥H, .G6M, '19H, 1CH BEX2S

.DB_"82H, @7H, @6H, §7H, 00H, @UH, UOH, 6EH Color

B-16

DB 384, 28H, 2D0H, OAH, 7FH, 06H, 64H, 70H Color
'DB_ G2H, OiH, O6H, B7H, OOH, GOH, COH, GOH Graphics

DB 61§, S6H, 528, OFH, 19H, B6H, 19H, 19H. BBX2S
DB 82H, ODH, @BH, GCH, G@H, OH, G6OH, 8OH Monochrome

INT 1EH — Diskette Parameters

This vector points to 2 table of parameters used for
generating command strings to the INTEL 8272 floppy
disk controller. 1If floppy disk drives of various
‘types are to be used, this vector must polnt te an
appropriate table when the diskette I/0 function is
performed. The vector initially points to the
following table in the ROM B1OS: ’

Table Data Meaning 8272 Command
DB DFR SRT = 12, KEUT = 15 . Specify
DB 82H HLT = 1, 8D = & - Specify
0} :] a7 Motor Turn off Delay [Ticks)
DB -2 Sector Length Code (N) RD/WR/FMT
DB 8 End of Track (EOT) RD/WR |
DB 42 RD/WR Gap Length (GPL) RD/WR
DB FFH bata Length (DTL)} RD/WR
DB 88 Format Gap Length (GPL) FORMAT
DB F6H pata Fill value (D) FORMAT
DB 12 Head Settle Time [ms.]
DB 4 _ Motor Start Time {1/8 sec.]

B-17

INT 1PH — Character Generator Table
. t

This points to a user supplied extension of the
character generator table for graphics video modes
The user wmay define 8X8 graphics pattegn;
cogrespondxng to character values 128-255 by pointing
this vector to a table of 1K bytes of pixel data
Each pattern is defined by 8 bytes which describe the
lit pixels in each row {from top to bottom) of the 8X8
block. (Example: & value of 06006811 (binary) will

light the two rightmost pixels.)
!

- The ROM BIOS intializes this vector to 6:0, whfch

indicates that character values 128-
aodicat ' 255 are not

S S

. N
B-18

APPENDIX E — KEYBOARD SCANE CODE AMD ASCII GENERATION Key Scan Code

, ey C Key Scan Code
Position ‘in Hex Position in Hex
Table E~-1 FKeyboard Scan Codes
Eey Scan Code Rey Scan Code ' 38 26 86 s5g
Position in Hex Position in Hex 33 : 27 g1 51
40 - 28 g2 52
1 61 43 2B 41 29 83 . 53
2 82 44 2C 42 2a *
3 o3 45 2D)
4 a4 46 T, 2E
S 65) 47 2F
6 a6 48 : k]
7 67 T 49 31
8 1] 5@ k.
9 69 S1 33 ,
1@ . A 52 34 ’ .
11 oB : 53 - 35 - ’
12 (o . - 54 36 : :
13 8D 55 37
14 g8 - o 56 . 138
ceee, 18 BP - : 57 ' k]
r~. 16 10 : 58 3a
) 17 11 L 59 © 3B
ls 12 : ‘ 68 . k {od
19 . : .13 ‘ 61 3D
29 14 62) : 3E
2] . 15 S 3F
22 16 . 64 - 40
23 - 17 R 65) 41
24 18 : 66 : . 42
25 19 p . - 67 . 43
26 :) S 68 44
27 1B . . - 69 45
28 - ic - . 1 : 46
29 lo -) F 2 U 47
36 . 1E . R ¥ 48
31 5 b .13 . 49
© 32 249 - T4 4A
a3 21 o 75 4B
34 -22 T ;; 4c o o T . . : : :
35 23 _ .o . 4D : o . _Pigure E-1. Keyboard Desi
3‘ - o 2“ ‘ : .':'-" 18 . 43 . '-7. . —,v-_| ‘_‘.‘.‘g'__;-._. - i - "y o n e' gl?’ations

E-2

-

Table E-2. ASCII Character Chart ' Table E-3. ASCII Code Tables
{Used in Conjunction with Table E-2)

HmMEO-D

L
’3 HeNOMD

.‘(:

LEFT DIGIT .
lelilelslals|s]7
NULLJDLE |SR&E
0 o (s Fix ug u@ mP vs\ w-p .
I SOH OCl | l A Q a q Key Unshift Shift - -Tontrol
] afa alnt o &8 " »” 13 1 1B 1B 1B
2 P v 2 | B[R | : 8z @
[I Al %0 o“% 2] 214
el slm) cr [L s 9 35 ‘25 35
4 Eo“r’ Ec‘t ‘Q 41D} T4 A . 3 e 36
9 38 2A -
5 ENQINAK %151E|U!le|u 10 39 28 - 23
sl uwlay 53) [om - L) . - 11 30 - 29 30
. 6 ACKp §YNV 3& MG mF “V - lo:f . nlv) . 1; % - gg ;11;
08 08
zleayeme) 17 (6 [w g |w St ’
n » 3 I ar 119 . -16 71 51 - 11
- (:AN 17 T7 57
8 83 Hjae x]u (38 nH‘ ux mh . ' - .18 65 :5 o ;-s'
. . 9 72 52
Q pTAB E.M, YI9 1L IY [V]y ~ - 20 14 54 i
I an 57 Le)] L n 21 79] 59 19
LFiuBl' k!l 1J1Z 1z : 22 15 55 15
{ A Ml P’ Pl P Pl O - S -
BIVTJEscl+ | [K o |x|{ s w s0 10
N & n «) ‘ [» L4 13 1) 28 5B B 1B
1¢ FF|FS'| , <L N | l ‘ : 21 sp . D T
ot Ve 0 » [08 Ve - ' '
RIGS | —'| =
D c mf B ™ [nM nj nm m}
- E s'ouss./\.- n> EN u/\- non -:‘"
F Ist [us 2lol—1to -
on - aF £ * [,] s L Ll 27

_B~3 . EXAMPLE: A = 41HEX, R = S52HEX . S gy

2

Table E-3 (Continued}

0D oA

CTRL
41 01
53 13
44 4
46 06
47 01
48 08
4A 0a
4B 0B
4C ocC
3A :
22
7E

SHIFT
ic 1C,
54 1A
58 18
43 03
56 1§
42 02
4E OE
4D 0D
3c
SE
3r

SHIFT

ALT
20 20

" CAPS LOCK

N LOCK

2D
--2B

30
2E

Charactef Set

Table E-4.
0 {null) 32 (space)
1 O 33 !
- 34 "
3 % 35 &
4 + 3 S
5 & 31 %
6 4 38 &
7 - (beep) 39 '
8§ A 40 {
9 (tab) 41)
10 (ineleedy 42
11 (home) 43 +

12 (form feed) 44

13camlage retum45
13 A 46
15 o 47
16 » 48
1T = 49
18 | 50
12 I 51
20 52
21 § 53
22 - 54
23 1 55
24 | 56
25 | 57
28 - 58
27T - 59

28 (cursor right} 60
29 {cursor lel) 61
30 {cursor up} 62
31 {cursor down)63

A

oSt ON

i

-6

1= . N KN EBCCHOVTIOVOZETAWETIOMNODOK =B

96
97
98
99
100
101
102
103
104

105

106
107
108
108
110
111
112
113
114
113
116
117
1186
119
120
121
122
123
124
125
126

127

MEALCAUWHODOOBR =RwwmIrpamo Ol Ow

T] e e pp et

146

Table E-4 (Continued) ROOT DIRECTORY

The root direciory holds information of files and its sub-directories. Each entry
intha disk directocy takes thisty-two byles, and®onsists of the tollowing fields:

. Bytes Attrietes
2 160 i 192 L 224 g . . .
:23 S o1 | 193 - 2253 ?— 0-7 Fia name. The first byte of this field indicates its status
130 ¢ 162 6 194 -+ 226
131 3 163§ 195 221 x Byta 0 Ertry staus
132 3 164 @ 196 — 228 ¢
133 3 165 N 197 + 229 o hex 00 Entry never been used. This se ves as the
134 3 166 & 108 230 g upper bound of directory searches, for per-
135 ¢ 167 ¢ 199 % 231 = formance reasons.
136 8 168 ¢ 200 232 ¢
137 & 189 201 [233 o hex €5 Entry was used before, but file has been
138 & 170 — 202 o 234 deleted.
139 1 1M v 203 =7 235 3§
140 3 172 Ve 204 236 o hex 2E The entry for a directory. If the second byta is
141 1§ 1738 | 205 = 237 o o also hex 2E, then the cluster field contains
142 A 174 <« 208 3= 238 ¢ ' the duster number of thés directory’s parent
143 A 175 » 207 L 239 (i directory {hex 0000 if parent directory s the ~
144 £ 17658 (v dots on} 208 240 = root directory).
145 a= 1774 (V: dots on} 209 = 241 =
2z - 178 M (% dots on} 210 - 242 . » Any other character is the first character of a file name.

147 8 179 211 . 243 <
148 o 180 4 212 = 244 B-10 Fllename extension.
149 o 181 o 213 = 245 J
150 § 182 4 214 246 1 File attribute. The attribute byte is mapped as follows (vatues
151 o 183 - 215 + 241 = ame in hexadecimal):
152 ¥ 184 = 216 o 248
153 O 185 9 217 - J 249 o Byte Atribute
15¢ O 186 218 [| 250 .
155 ¢ 187 = 219 w51 ¥ o1 Flle.is marked read-only. Any attesiipt to
156 £ 188 o 220 - 252 » erase o overwrite the file resuits in an emor.
151 ¥ 189 U | 221 | 253
158 Pt 190 o 222 1 254 m 02 Hidden file. The fle Is exciuded from nomal
159 7 191 - 228 o 255 (blank ‘FF) " direclory searches, :

o4 System fila. The file Is exciuded from normal

. directory searches,
E-7 -

AppendixC -5

an.sm

12-24

2-23

f‘ Py

Appendix C

08 The entry contains the volume label in the
: first 11 byles. The entry contains no other
usable information and is meaningfd onty in

the root directory.

10 The entry defines a sub-directory, andis ex- '
cluded from normal directory searches.

20 Archive bit. The only time (his bit is reset is k
. after a fila Is backed up from the hard disk by
command BACKUP. I.Issetagalnwhumer
the fie is modified.

Note: The four file atiributes, read-only, hidden, system, and
archive, can be used together without conflicts.

‘The system files IBMBIQ.COM and IBMDCS.COM are hid-
den system files marked as read only. They are excluded
from directory searches. Files with thase atisibutes can only
be changed by the CHMOD function call.

Reserved

Th‘noﬁoﬂewé:mdedotiaslupdalsd.flhaﬂ:mlsnmpped
in the bits as follows:

<. hh > < mm >< x >
15 141312 11 109 B 76543210
where;

hh is the binary number of hours {0 - 23)

rmm is the binary number of minutss (0 - 58)

xx Is the binary number of two-second increments

Dato the file was created or last updated. The mmiddlyy are

mappad in the bits as follows:

< 25 > < ‘24 >
15 14 183 12 11 109 876543210
< Y >< mm >< dd >

where:

mm is1-12

dd is1-31

gy isO-119 (1980 - 2099)

Starting cluster numbes in file.

Note: The first cluster in the data area is always 002.

File size in bytes. The first word contains the low-order pat of
slze, ’

Appendix C C-7

|
i
|
|
i

|
23 <CTRL-C> exit address ‘

APPEw.JIX D — MS-DOS INTERRUPTS AND
FUNCTION CALLS

. |\ :
if the user types <CTRL-C> duing keyboard input or video output, “C-
. wﬁbepﬁmedontrnconsolemanhtenupuypezshexyﬁube
execitted. if the <CTRL-C> routine preserves all registers, it may end
< with a retum-fromvinterrupt instiuction {IFET) 1o sontinue program ex-
ecution, if functions 9 or 10 (budfered output and input), were being
executed, then 1O will conlinug from the slart of the line. When the
INTERRUPTS ’ interrupt occurs, all rogisters are set 1o the value they had when the
onigina call to MS-DOS was made. There ere no restrictions on what th

MS-DOS reserves interrupt types 20 to 3F for its use. This means ssolute <ngTRL-C>handlerisalbwadhdo.hM\gMS-DOSWioncahe, :
locations. 80 to FF are muar::r:dms mg;‘lﬁgﬂmmm as long as tha registers are unchanged if IRET is used. l

DOS. Tha defined intemupts lolows : '

ﬂmeprogrammasanwsagmemmenloadsinasmpnl:gram

Z Program terminzte

This Is the normal way 1o exit a program. This vector transfers 1o the logic
in the DOS for restoration of <CTRL-C> exit agdrasses 10 the @atues

which changes the <CTRL-C> address, the termination of the second
program and returr to the rst will cause the <CTRL-C> address to be
restored 10 the velue it had before execution of the second program.

they bad mmwmmmumMemmﬂwqu
flles that have changed in length should have been closet {see funciion
call 10 hex) prior to Issulng this intesrupt. If the changed file was not
dosed its langth will not be recorded correctly in the directory. Belore this
!tﬁenupllswﬂed,CSMUSTpoﬁﬂbﬂmegmmSagmum

In order for a program 1o pass a completion {or emor) code when ters

24 Fatal error abort vector :

“When a fatal emmor occurs within MS-DOS, control will be transfarred with

an INT 24H. On entry to the emor handler, AH will have its bit 7 = 0 if the
errorwas a disk error (probably the most common occurrence), bit 7= 1 if
not i it is a disk emor, bits 0-2 inctude the folowing: |

- m_hmjstmdﬂwmmm&(edt)mhexﬁ {tegrinate bit O 0 i read, 1 If write
o nndsmymﬁdau).Manmamodsmeprefmdoverushg bit2 1 AFFECTED DISK AREA i
- inderrupt hax 20, and the codes returned by them can be interrogaied in !
! batch processing (see ERRORLEVEL subcommand of baich process- bit 0 O Reserved area \

ing). bit 0 1

File allocation table
- bit10 Direclory
21 Function request bit1t Daaerea

See Il FUNCTION REQUESTS.
22 Terminate address

address repraserted by this interrupt (88-8B hex) is the address to
%mmwmmmmmmma
- wmmmduwmmbwmmm
mmwbmlammmismamamaam
uogmhnuﬂsatﬂnmnﬁnﬂead&mpﬂuhmaﬁmoiﬂwug-
ment into which the program will be loaded. Otherwise onca the second
mmmmm.hswmmmmmdumlmlmrstam-
Gon eddress. = -

Registers BP:S contain the address of a Device Header Control Block
from which agdiional information can be retrieved. Sea betow:

TABLE D-1. Devico Header

DWORD Pointer to nexd device
(FFFF if last davice)

WORD Attributes ,
Bit 15 = 1 i character devica, 0 if block
dbit1Sis 1

Bit 0 = 1 ¥f Cusrent standard inpud

Bit 1 = 1 ¥ Curmrent standard output

Bit 2 = 1 ¥ Cumrent NUL device

Bit 3 = 1 if Current CLOCK device
Bit 14 is the IOCTL bit

WORD Pointer. 1o Device driver siralegy entry point

WORD Pointer 1o Device drver intammupt entry point

8-BYTE character device named flold for block devices the first
byta Is the aumber of units.

2/

Device Heades Format (Pointer 1o by BP:S1). AL, CX, DX, and DS:BX will

be setup o perform a retry of the transior with INT 25H or INT 26M
{below). mmmamwmhmaw-ummmmmme
hardware. The values relumed are shown in TABLE D-2.

TABLE D-2. Device Header Ermor Codes

write prolect R
unknown unit

nol ready

unknown command

dala emor

bad request structure length
seek emor

unkndwn media type

secior not found

printer out of paper

wrila fault

read fauit

general failure

L d

OorPoENOMALRON=O

The registers will ba set up for a BIOS disk call and the retumned code will
be in the lower half of the DI register with the upper half undefined. The
user stack will appear as follows, from top to botlom:

134 MS-DOS registers afier issuing
cs INT 24
FLAGS

TABLE D-3. User Registers at Time of Request

DX
Si
(v]

The original inderrupt from the user 1o the DOS

+

585 QS%

MD

—ei

The registers are set such that if an IRET is exetuted the DOS will
respond according 10 (AL) as follows:

TABLE D-4. Eror Correction Codes

AL} =0 ignore the error

{ALY =1 retry the operation. IF THIS OPTIONUSED, STACK DS, |

(AL) = 2 abort the program

BX, CX, AND DX MUST NOT BE MODIFIED!

Cunrenily, the only erroc possible when AH bit 7=1 isabadmemory
mageotmeﬁleanocauonlable

NOTES:

1.

2,

Before giving this mulim control for disk enors, MS-DOS periorms
five retfles.

Fo:diskenom,ﬂ’ufsaxiﬂstakeﬁmlytoremrsowunhgdmngan
interrupt hex 21 function call, Itlsmtusedioranofsdwmg an,
lmenuplhexzsorhaxaecall.

The S, SP, DS, €S, BX, CX, and DX regisiers must be preserved.

Use of some MS-DOS function calls will destroy the operating sysiem
stack znd leave MS-DOS In an unpredictable state. # necessary,
cails 1 through 12 may be used, otherwise refrain from using MS-
0OS function calls.

The interrupt handler must not change the contents of the device
header. .

‘ theintesrupt handierwill handie enrors iiself rather than retumning 1o

MS-DOS, it should restore the appBication program’s reglsters from
the stack, remove &l but the tast 3 words on the stack, then lssue an
IRET. This will retum to the program immediately afterthe INT 21 that
experienced the emor. Note that if this s done, MS-DOS willbe inan
unstable state unill a function call higher than 12 s Issued.

AppendixD D

25 Absolute disk read

This transters control directty to the DOS BIOS. Upon return, theongmal
flags are stifl on the stack (put there by the INT instruction). This is
necessary because retum information is passed back in the flags, Be
sure to pop the stack lo prevent uncontrolled growth. Forﬂusemrypmm
*records” and "seclors” are the same size. The request is as follows in

TABLE D-5.

TABLE D-5. Disk Read Request Codes
(AL) Drive number (0=A, 1=B6, elc.)
{CX) Number of sectors to read
(DX) Beginning logical record numbrr
(DS:BX) Transler address

The number of records specified 2re transferred between the given drive
and the transfer address. "Logical record numbérs® are obtained by
numbering each sector sequentially slarfing from zéro and continuing
across track boundaries. For exampile, logical record number 0 hex Is
track 0 sector 1, whereas logical record number 12 hexlstradtzsednra

Mregistersexceptthesegrne:ﬂregslersared&suuyedbymlscan. lﬂhe
transfer was successtul the carty flag (GF) will be zero. I the transfer was
not successful CF=1 and (AL) indicates the error as shown in TABLE
D-&. : !

TABLE D-6. Disk Read Error Codes |

g
3

Description

write protect _ i
unknown unit !
disk not ready
unknown command
data efror
badtequoﬂstnﬁuraleﬂgﬂ\
seek emor
unknown media type
sector not found
printer out of paper
write faull -
" read fault |
general disk fature |

<

ODPOINOINEWONAO

D6 AppendixD . - ;

Register {AH) contains a more specific error code as follows:

TABLE D-7. Register AH Earor Codes

Retum Descriplion

80 H attachment failed to responded

40H SEEK operation failed

20H Controller fallure '

10H Bad CRC oo disketie read

08 H DMA overtun on operatian

04 H Requested sector not found -

03 H Wirite afternpt on write- protecied disk
02 H Address mark not found

00H Ermror other than types fisted

NOTE: Eror status bits may be combined by logical ORing when multi-
ple errors ocour,

26 Absgolute disk write
This vector is the counterpart Yo Intemupt 25 abova.
21 TYerminats but stay resident

This vector i3 used by programs which are 10 ramain resident when
COMMAND regains control. Such a program Is loaded 28 an

COM fila by COMMAND. Altar It has Inflalized itself, R must set DX to its
tast address plus one in the segment In which it s executing, then
execule an interrupt 27H. COMMAND will then treat the program as an
extansion of MS-DOS, and the program will not be overlaid when other
programs are executed, This conceplis very useful for oading programs
such as user-written intarrupt handlers that must remaln resident.

The new MS-DOS function cell number 31H has been established 10
aﬂuwammmmtopassamplelbn(ormujoodew
MS-DOSwhid‘canbeNelpteted batch processing.

NOTES:

1. Thisinternupt restores the interrupt 22, 23, and 24 veclors in the same
manner as INT 20. Therefore, £ can notl be used 10 install per-
manenily resident CTRL-BREAX or CRITICAL ERROR handler
routines. *

2. The maximum size of memory thal can be made resident by this
method is 64K. You can use call hex 31 to make a larger program
resident.

3. Thisinterrustmust NOT ba used by .EXE programs which are loaded
ino the high end of memory.

FUNCTION REQUESTS

“The user requests 2 function by placing a function number in the AH register,
supplying additional information in other registers as nacessary for the specific
function then executing an intarrupt type 21 hex. When MS-DOS takes control
it switches to an intemal stack. User regisiers except AX are presarved unless
information Is passed back to the requester as indicated in the specific re-
quests. The user stack needs 10 be sufficient to accommodate the interrupt
system. it is recommended that it be 80 hex in addition % the user needs.

There is an addilional mechanism provided tfor programs that conforms 1o
CPM calling conventions. The function number is placed in the CL register,
other registers are set as nomal according to tha function spactiication, and an
inrasegment call Is mage 1o location 5 in the cumrent code segment. This
mathod Is only available Lo functions which do not pass a parameter in AL and
whose numbers are equalto of less than 36. Register AXis always destroyed it
this mechanism s used, othewise it is the same as nomal function requests.

Functions 2F through 57 are ncw for MS-DOS Version 2.1. Where similar
functions exist in both this group and the group of iraditional calls, we
mmwmuwmc@s.“wyhavebem with simpler inter-
faces and provide more powerful functions than thelr taditional countesparts.

~

Manyo. .ew function calls return the canry flag clear i the operation was B ‘ Tha following o5 are pre-defined by MS-DOS and can be usc. .y yor

successful. If an error condition was encountered, the carry ftagis set, and AX progran. You do rot need to open them betore using them: |
contains one of the joBowing binaty error retum codes: : TABLE D-g. MS-DOS Handles |
& Definition —_
TABLE D-8. Binary Error Codes i :] Standard snput device. Jnput can be redrected. '
-) . * ‘
— - 1 o001 Standard output device. Output can be redirected. i
Code Condition ' - !
- 0002 Standard error output device. Output carinot be redirected.
1 invalid function number .
2 Flenotfound T 0003 Standard awxliary device.
3 Path not found ' _ : . c .
4 Too many open files (no handles Iefl) ‘ 0004 Standard printer device.
5 Access denied ‘ .
8 ivalid handle » FUNCTIONS
7 Memory control blocks destroyed The funclions araaslolowsmmauvanmshhex
8 Insufficient memory ; " i
9 | Invelid memory block address . . 0 Program terminate
10 fnvalid environment : :
11 | tnvalid format . . Theterminate and <CTRL-C> exit addrésses aré ks.oredmu:evalues
12 Invalld access code. . . they had on entry 10 the terminating program. All file buffers are flushed,
13 | kwaliddata | . :) however, files which have been changed inlength but nol closed will not
15 Invalid drive was specified \ . . L be recorded property in the disk directory. Control transters 1o the ter-
18 -~ | Atempted to remove the curent - . minale address.
17 | Not same davice ‘ : 1 Keyboard Input
18 - No more files
' waits for a character 1o be typed at the keyboard, then echos the

dxaraclerlomovﬂeodewceand:emmsnmm_mcharaaenls

oﬂhecals an z ashpuLThis ofanASCH - | :t;e:xkadfor a <CTRL-C>. If this key is detected an iniermupt 23 hex wull

smrlgcomahﬂnganopﬂonaldﬁvespecdhr.iollowedbyadireclmypam andin . - , .
smuem?asamauma.mwhgstemﬂrmedbyabytqdblnaqzems For , _ NOTE: For functions 1, 6, 7, and 8, exdended ASCli codes will require two
example: : _ 7 _ function calis. The fisst call returns 00 as enindicator that the next
B: \LEVELI\LEVEL2\FILE1 - ' 2l vl retum 2n oot

followed by & byte of zeros. (Nole that all calls which accept path names wil 2 Video output ' '
awmahwddm«abad(siwhasapmwmamder) The charactes in Dusmmbmevideodmua<cmL-c>ls
Mneuealsappumgﬁasordevioesmedbyanidenﬂﬁarmkmwnsa . aher the - 23 hexwitbe

“handle”. When you create or open a file or devics with the new calis, a 16-bit 3 Auxiliary input

binary value Is retumed In AXC This is the “handle” (sometimes known as a . : . '
token)ma:youwﬂlmhmfemngtomeﬁleamrlrsbeanopuud. . '] waastmadwaudﬁdnmmmdm.ﬂmm&‘m

character in AL.

AppendixD D9 . D10 Appendix D

. R
! N

™

4

NOTE:Al.nciialy(AUX.COMi.COMZ) support is unbuffered and non-
hetruptdlivemmstam:pﬂ\eﬁrstauxﬂiaryponisirﬁﬁaﬁzedm
2400 baud, no parity, one stop bit, and 6-bit data.

4 Auxiliary output

The character in DL is output to the auxitiary device.

5 DPrinter output

‘the character in DL ks oitput to the printer,’

G Direct console 1O

It OL is FF hex, then AL retumns with keyboard input character i one is

recdy, otherwisa 00. If DL is not FF hex, then DL s assumed to have a

valid characier which Is output to the video device, No checks are made

for <CTRL-C>. : . -

7 Direct console input withoutecho

Waits for a character to be typed at the keyboard, then retums the
characlerin AL. As with function 8, no checks are mads on the characier,

8 Console Input without echo

N This function Is identical to function 1, except the key is not echoed.

9 Print string.

On entry, DS:DX must poled to ercharacter string in memory terminated
by a “S° (24 hex). Each character In the string will be output 10 the Video
daevice in the same form as function 2,

A Buflered keyboard inpot

On entry, DS:DX must point 1p an input butfer, The first byte must nat be

zoro and specilies the nt of characters the buffer can hold. Char-
* aclers ere read from the keyboard end placed in the butler beginning at
the third byte. Reading the keyboard and (iiing the buffer continues uniil
<ENTER> Is typed. If the bufler fills 1o one less than the meximum, then

Appendix D D-11

D-12

additonal keyboard input is ignored until a <ENTER> is typed. Tne
second byte of the butler is set 1o the number of charaders received
excluding the carriage retum (00 hex), whictiis always the last charadter,
Editing of this buffer is described in Chapter 7.

" B, Check keyboard status .

I a charatteris avallabla from the keyboard, AL will be FF hex, otherwise
AL will be 00.

C Character Input with buffer flush

First the keyboard type-ahead buffer is emptied. Thenit ALis 1, 6,7, 8, or
0A, the coresponding MS-DOS input functioh is executed. f AL is not
one of these values, no further operation is dene and AL retums 00.

D Disk resit

Flushes all fila bufters. Unclosedfites that have been changad in size wil
notbe property recorded in the disk directory untll they are closed. This
function need not led before a disk thange all files which have
been written have.b . :

E Select disk

The drive specified in DL (0=A, 1=B, eic.) is selected as the defaul
disk. The number of drives Is retumed in AL

¢ Opan i

eatry, DS:DX:oint to-an unopened file control block (FCB). The disk
is-searched {or the named file and AL retums FF hex if itis not
found. If It is found, AL will retum a 00 ahd the FCB s filled 2s {ollows:

1. I the drive-code was O (defautt disk), it is changed 10 the actual disk
used (A =1, B=2,gic.). This allows changing the defautt disk withou
interderring with suhsequent operations on this file. The high byte of
the cumrent block field Is set to zero. The size of the record to be
worked with (FCB bytes E-F hex) is set 1o the system default of 80

_ hex. The siza cf the file, and the time and da‘e are setin the FCB from
information obtainéd from the direclory.,

Appendix D

2 s the user's responsibility 1o set the record size (FCB bytes E-F) to
the siza in terms of which he wanis to think of the file if the defautt B0

hex is not appropriate. It is also the user's responsibility to set the
random record field and/or current block and recosd fields.

10 Close file - -0

This function must be called after file wiites to ensure all directory °

information is updated. On enlry, DS:DX point to-an opzned FCB. The
disk directory is searched and if the file is found, its position is compared
with that kept in the FCB. Il the file is not found in the direclory, it is
assumad the disk has been changed and AL returns F hest. Otherwise,
the directory is updated (o reflact the status in the FCB and AL returns 00.

11 Search for the first entry

On entry, DS:DX point to an unopened FCB. Tha disk directory is
searched for the first matching name (name could have *7™s indicating
any letter matched) and # none are found, AL retumns FF hex. Otherwise,
nmmmswwmmmamedxﬂuandumdrmmselas
follows:

1. Htha FCB provided for searching was an extended FCB, then the first
byteis setto FF hax, then 5 bytes of zeros, then the attribute byte from
the search FCB, then the drive number used (A=1, B=2, ¢lc.), then

_the 32 bytes of the directory entry. Thus the disk rensfer address
contains a valid unopened extended FCB with the same search
attritestes as the search FCB.

2 I the FCB provided for searching was a normal FCB, then the first

byteis setiothe divenumberysed (A= 1,B=2, etc.) and the next 32
bytes contaln the matching direclory entry, Thus the disk transfer
address contains a valid unopened nomal FCB. Entries for volume
label, sub-directories, hidden and system files, will not be retumed.

3. Uf the attriturte field ks st for the volume labet, It is considered an
mmmmumwmmm

AppendixD D-13

D-14

Directory entri&.c are formatted as follows:

TABLE D-10. Direclory Entry Formats

Locaticn Bytes Description .
0 i1 File name and extension “
1 1 Altribudes. Bits 1 or 2 make \
file hidden ;
12 10 Zero field (for expansion) -
22 2 Time Bits.
-4 = secsf2
510 = min
11-15 = hrs
24 2 Date Bits. N
04 = day i
58 = month
9-15 = ypar
26 2 First allocation unit
) |
28 "4 File size, in bytes. : .
(30 bits max.) - i

12 Search for the next entry ‘

After function 11 has been called and Iound a match, funclion 12 may be
called to find the next maich 1o 2n ambiguous request (*77s s the search

filename). Both Inputs and outputs are the same as function 11. The

murvedarealorﬂ\eFCBkaepshfomanoamlylorcorwmﬂng
the search, so it must not be modified.

13 Delete filo

onenuy, Ds:DXpoimwanumpenedFCB.AIMgdiredoq
entries are deleted. If no direclory entries match, AL retums FF, other-
wise AL retums 00.

Appendix D

14 Sequeuual read -

On entry, DS:DX point to an opened FCB. The record addressed by the
cumrent block (FCB bytes C-D) and the current record (FCB byte 1F) is
loaded at the disk transter address, then the record eddress is in-
cremenied. if end-of-file is encountered AL retumns either 01 or 03. A
retum of 01 indicates no datain the record, 03 indicates a partial recond is
read and filled out with zeros. A retum of 02 means there was not encugh
room In the disk transfer segment to read cne secord, so the transfer was
aborted. AL retums 00 i the transfer was completed successiully.

15 Sequential write

. On entry, DS:DX polnt 1o an opened FCB. The record addressed by the

current block and current record fiekis Is written from the disk transter
address (or, in the case of records less than sector sizes, is butfered up
for an eventual write when a sector’s worth of data Is accumulated). The
record address s thenincremented. if the disk s full AL returns witha 01.
A retum of 02 means there was not enough room In the disk transfer
segment to wrile one record, 50 the transter was aborted. AL retums 00 if
the transfer was completed successfully. L

16 Croata file ' o o7
On entry DS:DX point to &n unopened FCB. The disk directory is saar-
ched for an empty entry, and AL retumns FF if nona Is found. Otherwise,
the entry is initiafized to azero-length fils, the'tile is opened {see function

'F), and AL retumns 00. The fils may be marked hidden during its creation

by using an extended FCB contalning the appropriate attrituste byts.
17 Rename file ' C

On entry, DS:OX point to a modified FCB which has a drive code and file
name In the usual position, and a second fite name starting 6 bytes after
the first (DSDX +11 hex) in what is normally a reserved area. Every
maiching occurence of the first Is changed to the second (with the
sion). if “7"s appear In the second name, then the corresponding posi-
fions In the originat name will be unchanged. AL returmns FF hex if no

.

.. AppendixD - D-15

D-16

18 Current disk
i

Al retums with the code of the current default drive (0=A, 1=B, etc)
H

1A Set disk transfer address’

The disk transfer address is set to DS:DX. MS-DOS will not allow disk
transters lo wrap around withinthe segment, nor to overflow into tha next
segment.

1B Allocation tabls address

On retum, DS:BX point to the allocation table for the cumrent drive, DX
hzs the number of allocalion units, AL has the number of records per
allocation unit, and CX has ths size of the physical sector. A1 DS{BX-1),
the byta before the aflocation labie is the dirty byte for the table. If set to
01, it means the {abla has been modified and must be written back to
disk. if 00, the table is not modified. Any programs which get the address
and directly modily the table must be sure to set this byte to 01 for the
changes 1o be recorded.. This byts should NEVER be set10 00 - instead,

aDISK RESET function (200 hex) should be performad to write the table *

and reset the bil. .
NOTE: Beginning withMS-DOS version 2.1 this call no fonger retums the
. address of a complate File Allocation Table, becausa the FATs
- are no longer kept reaideqthmemory.

21 Random read

On entry, DS:DX point to an opened FCB. The curent block and current
recond are set 1o agree with the random record field, then the record
addressed by thase fieldsis loaded at the current disk transfer address. If
end-of-file is encountered, AL retums either 01 or 03. f 01 is retumed, no
more data is available. 03 Is retumed, a partial recond ks avallable, filed

-out with zeros. A reium of 02 means there was not enough room in the

disk transfer segment to read one record, so the transter was aborted.
retumis 00 if the transfer was completed successtully, :

a .
On entry, DS:DX point to an opened FCB. The current black and currend
record are sat to agree with the random record fleld, then the record

addressed by these fields Is writlen (or in the case of reconds not the
same 23 sector sizes — buffered) from the disk transter address. If the

AppendixD -

disk is 1ull AL relurns 01. A relum of 02 means there was not enough
room in the disk transfer segment to write one record, sb the lransfer was
aborted. AL retums 00 i the lrans!_er_was completed successlully.

.23 File size

On eniry, DS:DX point lo an unopened FCB. The disk cirectory is
searched for the first malzhing entry and if none is found, AL returns FF,
Otherwise the random record field Is set with the size of the file (inlerms
of the record size field rounded up) and AL returns 00.

24 Set random recerd field

'On entry, GS:DX point to 2n opened FCB. This function sels the randem

racord field 1o the same file address as the current block and record
fields.

25 Setvector ‘
The interrupt type specified in AL is set to the 4-byte address DS:D)ﬁ
26 Creato a new program segment

On entry, DX has a segment number at which to set up a new progra:'n

segment The entire 100 hex area at location zero in the curent program
segment Is copled inte location zero in the new program segment. The

- memosy size information &t location 6is updaled 2nd the current termina- -
tion and <CTRL-C> exit addresses are saved in the new program

segment starling at 0A hex.]
27 Random block read

On entry, DS:DX point io an opened FCB, and CX contains a record
count that must not be zero. The specified number of records (in terms of

“--thy record size fietd) ere read from the file address specified by the

random record field into the disk transfer address. i end-of-file is reached
before all records have been read, AL retums either 01 or 03. A retum of
01 indicates end-of-file and the last record is complete, a 03 indicates the
tast record Is a partial record. If wrap-around above address FFFF hexin
the disk transfer would occur, as many records as possible are read and

Appendix D D-17

D-18

-Appendix D . .

]

i
1
|
I
|

f
AL returns 02. If all records are read successiully, AL returns 00. In any

case, CX returns with the actual number ol records tead, and the random
record field and the current biock/recordfields are setto address the next
tecord

N I

28 Random black write ;
|

I

Essentially the same as funclion 27 zhove, except for writing and a
vite-protect ingication. f there is insuflicien! space on the disk, AL

“returns 01 and no records are wiitian, Il CXis zero upon entry, no records

are written, but the file is set to the lenglh specified by the Random
Record field, whether longer or shorter than the current fite size (alloca
tion vnits are released or alioceted &s appropriate). :
29 Parse file name !
On entry DS:Sl points to a command line to parse, and ES:Dipontsto a
portion of memory 10 be filied with an unopened FCB. Leading TABs and
spaces are ignored when scanning. If bit ¢ of AL is equal to 1 on enl'y
then at most one leading file name separator wili be ignored, along with
any traiiing TASs and spaces. The lilename separators are:

s, = 4+ : . <tab> <«space> i
D

If bit 0 of AL is equal to 1, then all parsing stops if a separator Is
" encountered. The command line is parsed for a file name of the form
Dilename.ext, and if found, & corresponding unopened FCB is created
at ES:DI, The entry value of AL bits 1, 2, 2nd 3 determine what to do if the
drive, filename, or extension, respectively, are missing. n each case, if
the bit is a zero 2nd the field is present on the command line, then the
FCB is filled with a fixed value (0, meaning the default drive for the drivb
field; ail blanks for the filename and exiension fields). If the bitis a 1, and
the field is not present on the command ling, then that field in the
destination FCB at ES:Dl is left und\anged It an asterisk “»* appears m
the filename or extension, then all remaining characters h'l the name or
extension are set to “7". ;
The following characiers are Tlegal within MS-DOS file specdifications:
‘S (1=, < > |00

Control characters and spaces also may not be given as elements of fi lie
specifications. if any of these characters are encountered while-parsing,
or the period () or cofon (2} Is found in an invalid position, lhenparsmg
stops at that poinl.

l

if either “7” or "+~ appears in the flle name or exiension, then AL retums
01, otherwise 00. DS:SIderetmnpoimi_nglomeﬁrstd\maderaﬂerihe
file name.

nor&:nﬁsmumno:beuseatoreommmesmmmgm
names.’

2A Getl date

Retumns dets n CXDX. CX has the year, Gii kes the month (1= Jan,
2=Feb, etc), and DL has the day. f tha time-ol-dey clock rolis overto the
noxt day, the date will be adjusted accordingly, taking %0 account the
nurmber of days in each month and leap years.

28 Set dete

On entry CX:DX must have & vafid date Iin the same formet as returned by
{unction 2A abova. If the date is Indeed valid and the set operalion is
successiul, then AL retums 00. if the date is notvalid, then AL returns FF.

2C Get time.

Returns with ime-ol-day in CX:DX. Time is actually represented as four
8-bit binacy quanities, as follows: CH has the hours (0-23), CL has
minutes (0-59), DH has seconds (0-59), DL has 1/100 seconds (0-99).
. This fonmat ks easlly converted 15 a printable form yet can also be
" calculaled upon (e.g., subtracting two times).

20 Settimo

On enlry, CX-DX has time in the same format as returmed by function 2C
- zhove. i any component of the time is not valld, the set operalion is
sborted and AL retumns FF. If the time is valid, AL retums 00.

2€ SetReset verity fiag ~

On entry, DL must be 0 and AL has the vertly flag: 0 = no verily, 1 =
verily efter wrile, This flag Is passed 1o the VO systemon eachwrite. Nota
that the current setting of the verify switch can be obtained through call
hex 54. '

2F Get DTA

On retum, ES:8X contains the current DTA transler address. -

AppendixD D-19

30 Get bOS version Number

On return, AL contairis the major version number. AH contains the minor
version number. .

NOTE: {f AL retums zero, it can be assumed thal it is a pre-MS-DOS
version 2.1 system.

31 Terminate process andremsin resident (Keep process)

On entry,ALcontaim_abinaryexitoode. DX contains the memory size
value in paragraphs. This funciion c2ll temninates the current process
andanemptstoseuhein'rﬁalanmﬁon blockt_omemmberoi para-
grephs in DX. It will not tree up any other allocation blocks betonging to
that process. The exil cods passed in AL Is relrievable by the parent
through Wait (function cal 4D hex) and can be tested through the
ERRORLEVEL batch subcommands.

33 CTRL-BREAK check

On éntry, AL contains 00 to request the current state of control-break
checking, 01 1o set the state. if setting the state, D1 must contain 00 for

- OFF or 01 for ON. DL retums the curment state (00 = OFF, 01 = ON).

35 Get vector

On entry, AL contains & hexadecimal interrupt numbes. The CS:AP inter-
rupt vector for the specified interrupt Is retumed in ES:BX. Note that
hmuptvmanmwmmughcaﬂmza

36 Get disk free space

On eniry, DL contalns a drive { 0 = defautt, 1 = A, eic). On retum, AX
returns FFFF i the drive number was invalid. Otherwise, BX contains the
number of avallable aliocation units {clusters), DX contains the total
number of clusters on the drive, CX contains the number of byles per
sector, and AX contains the number of sectors per chuster.

Ndr&ﬂismlmumﬂnesamawmnaﬂmhuwmregms
" (exceptfor the FAT pointer) as the get FAT pointer call (hex 18)
did In previous versions of MS-DOS.

D20 Appendix D

38 Relum country dependent information {Internaticnat)

On entry, DS:DX points (0 2 32-byte block of memory in which returned

information is passed and AL contains a function code. th DOS 2.1, this

function coda must be zero. The following information is pertinent to
intemational applications. ’

WORD Datefirne format

BYTE ASCHZ sting
curency symbol

« BYTE ASCIIZ sting
thousands separator

" BYTE ASCIIZ sting
decimal separator
27byfes ‘
reserved

The date and time format has the following values and meaning:

_ 0'=USA Standard h:m:s m/d/y :
“. 1 = Burope Standaxd h:m:s d/m/y
/v 2 = Japan Standard him:s d/n/y

' 39 Create a sub-directory (MKDIR)

On entry, DX:DX contains the address of an ASCILZ string with drive and
direclory path names. if any member of the directory path does not exist,
thes the directory path Is not changed. On retum, a new directory Is
crealed atthe end of the specifiad path. Error retums are3 and 5 (referto
error retum table). ’ ‘

3@7 nmﬁhdlrecﬁoqwry(ﬂumm

Qn entry, DS:DX contains the address of an ASCIIZ string with the drive
and directory path names. The specified directory ks removed from the
© struchre. The curent directory cannot be removed. Emor returns are 3

&nd 5 (refer to emor retum tablo). Note that code 5 is retumed if the
specified directory is not empty.

Appendix D D-21

3B Change ihe current directory (CHDIR)

On entry, DS:DX contains the address of an ASCIZ string with drive ang
directory path names. If any member of the directory path does not exist,
then the directory pathis not changed. Otherwise, the current directory is
set to the ASCIIZ string. Emor retum is 3 {refer to the emor retum table),

3C Create a file (Create)

On entry, DS:DX coniains the address of en ASCIIZ string with the drive,
path, and flename. CX contains the attribute of the file. This function call
creates a new file or truncates an old file to zero length in preparation for
writing. i the file did no1 exist, then the file is crezted in the appropriate
directory and the file is given the read/wrile access code. The file is
opened for readwrite, and the handle Is retumedin AX. Emor retumns are
3,4, and 5 {refer 15 the error retum table). if an emror code of Sis retumned,
either the direciory was full or a fils by the same name exists and is
marked read-only. Nole that the change mode function call {(hex 43) can
later ba used to change tha file's atiribute.

3D Openafile

- Onentry, DS:DX contains the address of an ASCILZ string with the drive,

path, and flenames. AL contains the access code. On retumn, AX con-
tains an error code or 2 16-bit flle handle associated with the file, The
following values are allowed for the access code:

0 = fla is openad for reading.
1 = fie is opened for writing.
2 = file is opened for both reading and writing.

The readMwrite pointer is set at the first byte of the file and the record size
of the file is 1 byte (the read/write pointer can be changed through
funciion czll hex 42).-The retumned fle handle must be used for subse-

. quentinput and oulput ta the file. The file’s date and time can be cbtained
* or set through call hex 57, and its attribute can be obtained through call

hex 43. Emor returns are 2,4,5, and 12 (refer to the error retum table),

NOTE:ﬂﬂswuvnﬂlopenanymmalorh&idenﬂomnamemaum
the name specified, ‘ :

3E Close a file handle

On entry, BX contains the file handle that vas setumed by “open”. On
refumn, the file will be closed and all internat buffers are flushed. Emor
retum is 6 (refer to the crror retum table).

3F Read from a file or device

On entry, memﬁlahmdle.CXcs.ms the number ol bytes 1o
read, DSDX contzins the buiter address. On retumn, AX conlains the
number of bylas read. ! the value is Zero, than the pregram has tied o
read from the end-of-fie. This function call transters (CX) byios foma e
into a bufler location. & is not guaranteed that all bytes wili be read. For
example, reading from the keybeard will read at most one iine of text. if
this read is performed from the standard input device, the input can be
redirected. Enor retums are 5 and 8.

40 Write to a Me or device

On entry, BX contains the fils handle. CX contains the numbar ol bytes to
wriite. DS:DX contains the address of the data to write. Write translers
{CX) byles from a buffer into a file. AX retums the number of bytes
actually wriiten if this value is not the same as the number requested, it

- should be considered an emor (o emror code Is retumed, but your

program can compare these vatues). The usual reason for this is a full
disk. If this wrile is performed to the standard output device, the output
can be redirected. Emor returns 2re S and 6.

i+ 41 Delete a fila from a specified directory (UNLINK)

On entry, DS:DX contains the address of an ASCHZ sling with a drive,
path, and Mename. Giobal flename characters are not aflowed in any
part ol the string. This function cakk removes a directory eniry associated
with a filename. Read-only files cannot be deleled by this call. To defete
one of these flles, you can first use call hex 43 1o change the file's
attribute 1o 0, then delete the file. Esvor returns are 2 and 5.

42 Move file readwrile pointer (LSEEK)

" Onentry, Al.contalns a method vaive. BX coatains the file handle.CX:DX

conlains the desired offset in bytes {CX contains the most significant

paﬂ).&:reh:mbXAXeuﬂahsthemwlnmﬁmdﬂwpanm(Dx)

mmmmﬁwum

Appendix D D-23

" 44 VO control for devices (10CTL)

-and 5 or status (00 = nol ready, FF = ready) forfunction 6 and 7, or an

D24 Appendix D - o

it moves the readAwrite pointer accofdhg 10 the lollowing methods:

ALD = 'Ihepomtens moved to offset (CX:DX) bytes lromlhebegum'ng
of the file.

ALt = mepoinzerisnmvediomocunemlocaﬁonpmsoﬁset‘

AL 2 = The pointer is moved to the end-oiHile plus offset. This method '
can be used 1o cetermine file’s size. i

Error relumns are 1 and 6.
43 Change file modz (CHMOD) |

On enfry, AL contzins a funclion code, and DS:DX contains the address |
of an ASCHZ string with the drive, palh and filename. if AL contains 01 |
then the file will be set tothe aitributein CX. WAL s O then the file's current
attribute will be relurned in Cx. Error retums are 3 and 5.

|
On entry, AL contains the function value. BX contains the file handle.Oni
ratum, AX contains the number of bytes transferred for functions 2, 3, 4, |
error code. Use I0CTL 1o set or get device information associated with

opendevice handle, orsend!reaeiveconﬁolstmgstomedmhandle.

The following function valuas sre allowed in AL:

0 = Get device informalion (retumed in DX). i
1 = Set devica information (determined by DX). Currently, DH must be -
zero for this call,
2 = Read CX number of bytes into DS:DX from device control dlamel.
3 = Write CX number of bytes from DS:0X
1o device control channal. -
4 = Same as 2, but use drive number in BL (0 = detadl,1 = A etc)
5 = Same as 3, but use drive number in BL {0 = defaull, 1 = A.etc.).
6 = Gel input status,
7 = Get output status.

—

‘TL can be used to get information about device channels. Calls can
be mada on reguiar fles, but only function values 0, 6, and 7 are defined
in the case. All ather calls retum an “invalid function” efror.

NOTE: DH must be zero for call AL =

Calls AL = 2, AL = 3, AL = 4, AL = 5. These four calls allow
arbitrary control strings o be sent or received from a character
device. The call syntax is the same as the Read and Wiite calls,

Calls AL = 0 and AL = 1 have bits in DX defined as follows: ' *
15.14 13 12 11 10 9 8 7 G 5 4 3 2 1 o
rRlcC 3 i
JE THRAHBHAE
S{R ESERVED piFlelsjicinlcle
L E Liuvfjolrs
v KfLrizoin
FIGURE D-1. Function Valyes
Isoev - = 1 if this channel Is a davice.
e - = 0¥ this changel is a disk file
_ '(blilsB-iS-Ohlh!scasa))
if ISDEV -1)
EOF -OHend-of-ﬂlaaninput. ’
BIN = 1 if operating jn binary mode-
_ . {no checks for CTRL-Z).
: -OHoperaﬁnglnASCIlmode
(d\eddngtorcTRL-Zasend-ot-ﬁ!e)

~f

ISCLK = 11 this device Is the clock device.
ISNUL = 1 if this device is the null device,
ISCOT = 1 Hf this davice Is the console output.

ISCIN = 1 if this device is the console nput.
CTRL = oumammmmmmws
A;-ZandAL =3
CIRL = : 1 mmmmmmmm&-
2wu-ammm&smw be fmwm
call hex 44, tockbosetby
WISDEV = 0 o

" EOF = oummmmmmmauso-smmm

davicammbartormod\amal.
Bits4.‘8~13.ara_qls_rareresemdandd\ouldnotbeahemd.

1

45 Duplicate a file handle (DUP)

except for calls 4 and 5 which accepl a drive number in BL instead
of a handle in BX. An“invalid function™ error is retumed if the CTRL
bit is zero. An "access-denied” code is retumed by calls 4 and 5 if
the drive is iwvalid. Erer retums are 1, 6, and 13.

Calis AL = 6and AL = 7. These calls allow you to check whethera
file handle is ready for input or output. Il used for a file, AL always
retums FF ontil an end-ol-file is reached, then always retums 00
unless the cumrent filz position is changed (through call hex 42).
When used for a device, AL retums FF for ready or 00 for not ready.

L4

On entry, BX containg the file handle. On return, AX contains the refumed
fits handle. This.function c2ll tekes an opened file handie and retums a
new file handle that refers to the same file at the same position. Error
returns are 4 and 6 (refer to the error ratum table).

NOTE: If you move the read/write pointer of either handle, the pointer for

the other handle will also be changed. |
46 Force a duplicate of a handle (ODUP)

On entry, BX containg the filo handle. CX contains a second file handle,
On refum, the CX file handie will refer to the same stream as the BX file
handle. if the CX file handle was an open file, then it ks closed first. Ecror
retum is 6 {refes to the ertor retum table). .

NOTE: K you mveﬂwreaerﬂepoianer of either handle, the pointes for

the other handle will 2lso be changed.
47 Get Current directory

On entry, DL containg a drive number (0 = defaul, 1 = A, etc) and
DS:S! point 1o a 64-byte area of user memory. The ful path name
(starﬁnghwﬂnemddxmdoty)oﬂhememahworybrﬂwsmcﬁed
drmispluoedhmeamapohnedtobyDSSl Nole that the drtve letier
will not be part of the retumed string. The string will not begin with a
backslash and will be terminated ty a byte containing hex 00. Tha error
ratumed is 15,

MD

£8 & _cate memory’

On entry, BX contains the number of paragraphs requggted. On retum,
AXO poims 1o the allocated memory block. If the allocation fails, 8X will
retumn the size of the largest block of memory avaiable in paragraphs.
Errer retums are 7 and 8.

49 Free allocated memory

On cniry, ES contalns the segment of the block being ratumed. On
retum, 2 block of memory Is rétumed to the syslem pool that was
ciiacated by call hex 48. Error relums are 7 &nd 5.
§A MNodity aliocated memory blocks {SETBLOCK)

On entry, ES contalns the segment of the biock. BX, contains the new
requectcd block size In paragrephs. DOS will zliempt 1o "grow” or

“shrink” the specified blocic. If the call fzils on a grow request, then on -

return, BXconlak;sﬂnmathnbhcksizepossabt&Emrreh:msm?
8,and 9.

4B Load or execute a program (EXEC)

‘This function calt allows a program to load ancther program into memory
and {default) begin execution of it. DS:DX point lo the ASCILZ string with
drive, path, and filename of the file to be boaded. ES:BX point lo a
-~ parameter biock for the load and AL ccnlaing a function value. The
0 = Load and execute the program. A program segment prefix is es-
tablishe {or the program and the terminate and controb-break addresses
are set to the Instruction after the EXEC system call. .

Nommmdbmmummmdmmedhmm

stack. You must restore SS, SPmdanyoﬂwrquredregistus -

behapmceodhg.

Im Load, do not create the program segment prefix, and do not
begin execution. This is useful in lcading program overlays.

Foceaduommvalu&s.mebbdcpomedlobyss.ﬂxmu\e .

tollondnglonnm:

AppendixD D-27

AL = 0 Load and Execute Program

WORD segment address of environment
string to be passed.

DWORD pointer o command line to be
placed et Program Header +80H

DWORD points o default FCB 10 be
passed at Program Header +5Ch

DWORD pointer to default FCB to be:
passed at Program Header +6Ch {
|
I
I
I
I
1
t

AL = 3 Load overlay

WORD segment address where file will
be loaded.

WORD relocation factos to be applied
the image.

Notamatanopanﬁlesofaprmsare 6Upll.caledlnlhenew|ycreated
process after an EXEC. This Is extremely powerful: the parent process

" has control over the meanings of standard input, output, awdliary, and

peinter devices. The parent could, for example, wmeaseriesolracoms
maﬁa.openmeﬁleassmndardinpmopenalisungﬁleassiaruard

" output, andthen execute asort programthat iakes its input from standard

input and writes to standard output]

Also Inherited (or copied from the parent) is an emb’émenf'l’hhisa
Mdmmmmmmmmmm
configuration parameters. The following Is the format of the environment
(2ways on a paragraph boundary):

e —————

D28 AppendixD

Byte ASCIIZ string 1

Byte ASCILZ slring 2

was - /£

Byte ASCIIZ string n

Byte of zero

Typically the environment strings have the form:
parameter = value

For exampls, the string VERIFY = ON could be passed. A zero value of
the environment address will cause the newly created process to inheril
the parent’s environment unchanged. The segment address of the en-
virpnment is placed at offset hex 2C of the Program Segment Prefix for
the program being tnvoked. Emor retums are 1,2,5,8,10 and ' 11.

NOTES:

1. When your program received control, all avallable memory was
ellocated to &. You must free some memory (see call hex 4A) before
EXEC can load the program you are iwoking. Normally, you would
shrink the amount of memory you need to a minimal level, and free
the rest.

2. The EXEC call uses the loadsr porlion COMMAND.COM (at the high

end of memoty) to perform the lading. if your program has overlaid

the loader, this call wil! attemnpt to re-load the loader, thus destroying
the contents of tha last 1536 bytes of memoxy. if you have used the
*Alocate Memory™ call to allocate all of the memory and the loader
has been overtalkd, the EXEC call will retum an error due 10 in-
sufficlent memory to load the loader.

4C Terminate a process {Exit)
On entry, AL contains a binary retum code, This function call wil ter-

_ minate the current process, transferring control to the invoking process.
In addifion, a retum code can be sent. The retum coda can be inter-

rogated by the baich subcommands IF and ERRORLEVEL and by the -

wah function call (4D). All files open at the time are closed.

Appendix D D29

4D Retrieve the retumn code of a sub-process (wait).

This function call retums the £xit code specified by another process (vin
cali hex 4C or call hex 31) in AX. It retums the Exit code only once. The
low byte of this code is that sent by the exiting routing. The high byte is
zero for nommal termination, 01 if terminated by CRTL-BREAK, 02 i!
terminated as fhe result of a critical device emor, or 03 if terminated by
function call hex 31.

4E Find first matching file {find first)

Oninput, DS:DX point to an AXCIIZ string containing the drive, path, and
filename of the file to be found. The filename por don can contain global
filename charactars. CX contains the attribute iobe usedin searching for -
the fite. See function calthex 11 for a description of how the attribute bits
are used for searches. It a file is found that matches the gpecified drive,
path, and filename and aitribute, the current DTA will be filled in as
follows:

21 bytes — reserved ior DOS-use on subsequent find next calls
1 byte — dftribute found |
2 bytes ~— fila's time
2bytes — file's date
2 bytes — low word of file size
2byles — high word of file size
13 bytes — ° name and extension of file found, followed by a Bﬁq of

zercs. Al blanks are rernoved from the name and exten-
sion, and if an extension is present, it is preceded by a
period. Thus, the name retumed appears just as you
would enter it 85 a command parameter,

4F Find next matching file

‘On input, the curent DTA must contain the information that was filled in

by a previous Find First call (hex 4E). No otherinput is required. This call
will find the next directory entry malching the name that was specified on
the previous Find Firsigall. #Ha matching file is found, the current DTA will
be set as described in call hex 4E. if no more maiching files are found,
error code 18 is retumed (refer 1o the emor retum table).

" 54 Get verity state N

On retum, AL retumns 00 if verily is OFF_ 01 if verify is ON. Note that the
verify switch can be sel through call hex 2E.

56 Rename a file

On input, DS:0X point to an ASCUIZ string containing the drive, path, and
filename of the fie to be renamed. ES:DI point 1o an ASCIIZ string
containing the path and filename 18 which the file is o be renamed. Il &
drive is used in this string, it must be the same as the drive specified or
implied in the first sting. The directory paths need not be the same,
aliowing a file to be maved o andther dir and renamed in the
process. Efror retums are 3, 5. and 17 {refer 10 the emor relum table).

57 Get/Set a file's date and time

On input, AL containg 00 or 01. BX contains a file handle. f AL = 00 on
entry, DX and CX wili retum the data and time from the handie’s internal
table, respectively. If AL = 01 oneniry, the handle's date and me will be
set 10 the date and time in DX and CX, respectively. Emor retums are 1
. and 6 (refer to the ermror retum table).

.‘J' N J

" AppendixD D-31

. APPENDIX F — COMMAND EXECUTION

-

INTRODUCTION

In MS-DOS 2.1, applicalion programs may invoke a secondary copy of the
oonmandpmcessor.YourpmgrammaypassanMS-DOSmmandasa
parametertomesmﬂaryommandpmm.mmuﬁnbe
execuled as if entered from the standard input device. Be sure that adequate’
free memory (size of COMMAND.COM) exists to contain a second copy of
COMMAND.COM. :

In ihe application program, build a command string for the secondary COM-
MAND.COM with the following format: i

1 byte — length of command
xx bytes — MS-DOS command string
1 byte — caniage retum (hex 0D)

For example, if a utility program (in assembly) wants 1o copy a file from drive A
tockiveB.itmayusemefolbwhgooumandsuing: *

DB 20, "COPY A:FILE1.DAT B:*, 0Dh

PROCEDURE

The foliowing procedure shows how 13 invoke a secondary command proc-
85500 ’

1. Makasureﬂmsysmnhasaileasnmdmrybrmemcmmmd
processor. .

2. Let DS:DX point to the drive, path and name of the command processor.
This specification is avaiiable in the esvironment segment (polnted by
offsethex 2C in PSP, program segment prefix), following the string ‘COM-
PSEC=".

8. Let offset 0 of the EXEC control block point to an environment segment

(maybemummmpwmbypsazcrm.

4. Lot offset 2 of the EXEC control block paint to the command string buit
above. '

5. Use knterrupt 21 (hex) to kvoke function 48 (hex), with kmction value 0.

Appendix F K1

APPENDIX H — COM AND EXE PROGRAM

INITIALIZATION AND
. STRUCTURE

INTRODUCTION

Aler you lcad a program into memaory, but before the program is actually
axecuted, MS-DOS does certain programiinitializations. A block of informalion
Is built up as the interface between the program, the invoking process. and the
DOS. Only two types of fles, EXE and COM files, are ready-lo-be-executed
binasy files in MS-D0S.

When you enter an external command, or invoke a program through the EXEC
function call {hex 4B), DOS determines the lowes! avzilable address 1o use as
the start of avallable mesmory for the program being invoked. This area is called
the Program Segment (it must not be moved).

At offset 0 with the Program Segment, DOS builds the Program Segment
Prefix (PSFP) control block. EXEC loads the program at offsel hex 100 and
gives it control.

PROGRAM INITIALIZATION _
Alter a program Is loaded from disk inlo memory, the Program Segment Prefix. -

is set up with the foliowing format:
TABLE H-1. Program Segment Prefix

TABLE H-1 {continued)

Hex .

Otfsat information

00-01 An Instruction “INT 20h", a place to which control may be
- transforred for program tenmination

02-03 - . Memory (pamagraphs) aliocatad for the program 1

0607 Number of bytes gvallable in'the segment

AppendixH H3

Hex . ‘
Offset Information . N
08-08 Undefined _ r
0A-0D Terminate address (IP, CS)
0E-11 Ctri-Break exit address (P, CS)
1215 Critical error exit address (P, CS)
1628 Undefined '
2C-2D . Environment address (segment only}
2E4F Undefined
50-52 Two instructions:

INT 21h

RETF

5358

7C-IF

User program may make a far call to locabon 50 1o invoke all
system functions.

Undefined

File control blocks of first parameter on the command line. If
parameter conlains 1 path name, then this FCB will contain
only a valid drive number. The filename field will not be valid.

File control blocks of second parameter, restrictions similar to
first parameter’s; if FCB in hex 5C is opened, this seclion is
overlaid.

nFcamhexSClsopa\ed.mmisoveﬂaid.wwsc
unused.

An unformatted parameter area at hex 81 contains alf the
characters entered after the command name (inchuding lead-
ing andimbedded), with hex 80 set to the number of
characters. Any <, >, orl parameters on the conwnand kne
will not appear in this area, because redirection of stargard
meﬁmbwﬁ-

Once execution starts, this area (oftset 80— FF hex) becom.”
as the defautt disk transier area.

Appendix H

1. All of user memory is allocated 1o the program. If the program wants to
invoke another program through the EXEC function call, it must first free
soma memory through the Setblock (hex 4A) function call, to provide
space for the program being invoked,

2. Anenvironment is a series of ASCI strings (tolaling lesé-than 32K} in the
form:

NAME = parameter

Ead:gtringislemﬁnatedbyabyteojzems.mdmeemiresetofslringsis
temﬁnaledbyammerbyleofwos.Theeanemwubythemm
(and passed to 2!l programs it invokes) will contain a “COM-
PSPEC=" stiing atl a minimum {the parameter on COMPSFEC is the path
used by DOS to locata COMMAND.COM on disk). The last PATH and
PROMPTmndslsuedwiuaIsobehmeemimmnenLalonthhany
environment strings entered through the SET. command (see Chapter 5).

. Thaenﬂmmmﬂmywarepassedlsaduanyacopyolmehwoldngpmcess

N

I

1
Y

environment. Iif your application uses a Verminate and stay resident” concept,
youshoaﬂdbeawmﬂmﬂwcopyofﬂ\eenvimnmentpassedtnyouisstaﬁc.
Tha:ls.ﬂwmnotdwooevmﬂmquernSEr, PATH, or PROMPT
Atpmgmneuﬁy.qoﬂahmglstamarealsohﬂﬂaﬁzed.neglstarkﬁﬁaﬁzaibn
betwemaCOMprogramandnnEXEprogramms!lgMydiﬂermt.

Appendix H H-3

TABLE H-2. . COM Program Registers

Initial Value

Registers ~
AX AL=FF it the first parameter coatained an invalid drive
specifier {(otherwise AL =00)
AH =FF if the second parameter contained an invalid
drive specifier (otherwise AH=00)
cs Segment address of the initial allocation block, which
starts with the PSP
DS Same as CS
ES. Same as CS
sS : Same as CS.
P Hex 100h
SP Set 1o the end of the program’s segment. The segment |
size atoffset 6 Is reduced by hex 100 to allow for a stack
of that size. A word of zero is placed at top of stack.
{
Appendix H

TABLE H-3. . EXE Program Registers

Registers initial Value
AX Same as COM fle

" cs Set to the value passed by the finker
DS Set 10 point to Program segment Profix
E$ Same as DS
S Set 1o the value passed by the linker
P Set 1o the value passed by the finker
SP Set to the vaiua passed by the linker

PROGRAM TERMINATION

There are four ways o terminale a program. It may jump to olfset 0inthe PSP,
fssue an INT 20, Issue an INT 21 with registar AH = 0 or hex 4C, or call location
hax 50 in the PtpgramSWmemwilhAH-Oorhexw.

© All four methods result in transferring control to tha resident portion of COM-.
MAND.COM (functicn call hex 4C allows the tenminating process (o pass a
retum code). All of these methods resyltin reuming to the program that issued
the EXEC. During this retuming procass, iflemupt veclors hex 22, hex 23, and
hex 24 (terminate, Ctri-Break, and critical emmor exit addressas) are restored

. from the values saved In the Program Segment Prefix of the terminating
program. Contral ts then given o the terminate addresss If this is a program
retuming to COMMAND, control transiers to Is transient portion. If & batch file
was in process, it is continued; ofharwise, COMMAND issues the system
prompt and walts for the next command © be entered from the keyboard.

¢

FILE STRUCTURE

This section discusses how the E)(Eﬂeand.couﬁlearamm;rswedon
disk. A .COM file contains only the executsble code, while an .EXE file, in
contrast, contains & header which is usad In program inltiakzaion. "~ -

STRUCTURE OF .COM FILE

A COM filo contains only executahls code and user data. OOMBelsalways
recommended s an executable file becausa it Is shorter than an EXE fla by |
several hundred bytas, and thus occuples less disk spacs.

Appendix H H-5

STRUCTURE OF .EXE FILE

The 1ExEﬁlesprodwedbytheMS-UNKpmgramoonsisloﬂwoparls;

1. Control and relocation ifflormation
2. The load module itself

The control and relocalion information, which is described below, is at tha
beginning of the file in an area known as the header. The bad module
immediately follows the header. The load module begins on a secior

and is the megpory image of the module constructed by the MS-LINK.

The header is formatied as follows:

TABLE H-4. Header and Contral and Relocation informalon

Hex Ofiset Contents

00 — Ot hex 40, hex 5A — Signature 10 mark the fils as a valid
EXE file.

02—03 Langth of image MOD 512

04 — 05 Size of the file in 512-byte increments, including the
header.

06 — 07 Number of relocation 1abie items that foliow the forma-|
ted portion of the header, ~

08 — 09 Size of the header in 16-byte Increments. ThisIsused to
locate the beginning of the load module In the file,

!

0A — 08 Minimum number of 16-byle paragraphs requlredJ
above the end of the kaded program. .

oC — 0D Maximum number of 16-byle paragraphs required
above the end of the loaded program.

OE — OF Ofiset of stack segmerit in foad module (in segment
torm).

10— 11 Va!uetobegivanmSPregmMmﬂ\emueis
given conrol.

H6 Appendix H

) " o 6. Each relocation table item segment value is added to the start segment !
T]
ABLE H-4 (conbinued) . value. This calgulated segment, in conjunction with relocation item offse; !

value, points to a word in the load module o which is added the stan |

ment value. The resultis placed back into the word in the load module,

Hex Offset Contents sag

12—13 W(l’t.i checksum — negative sum of afl the wards in the : 7. Once all relocation items have been processed, 1t... 55 and SP registers J‘
file, ignoring overflow. are set from the values in the header and the start segment value is added 'E

.) to SS. The ES and DS registers are set 1o the segment address of

14 —15 Value to be given in the IP register when the module is ngrmnSegmemPrefme‘?hemansagnmmueisaddedmﬁ?heag

given control o CS register value. The resull, along with the headex IP value, Is used to |
: . ive control to the module.

16 —17 Offset of code segment with load module (in segment ave
form).

18 —19 Ofiset of the first relocation item within the file.

iA—1B Oveﬂay number (0 for resident part of the program).

The relocation table follows the formatted area just described. The relocation
1zble is made up of a variable number of relocation tems. The number ofilems
is contained at offset 06 - 07, The relocation item contains two fields— a 2-byte
offset value, followed by a 2-byte segment value. The two fields contain the
offset into the kad module of a word which requires modification before the
module is given control. This process is calied relocation and is accompfished
as follows: .

1. A Program Segment Prefix is built following the resident portion of the
program that is performing the load operation.

43 2. Thefomatted part of the headeris read into memory (its size ls at offset 08

\ - 09).

3. Theload module sizeis determined by subtracting the header size fromthe
fila size, Offsetls 04-05 and 08-08 can be used for this calculation. The
actual size is downward adjusted based on the contents of offsets 02-03.
Note that all files created by pre-released 1.10 LINK programs always
placed a vafue of 4 at that location, regardiess of actual program size.
Thatefore, we recommend that this fiekd be ignoved if it contains a value of
4. Based on the setting of the highflow loader switch, an appropriate
segment Is determined at which to load the load module. This segment is
called the slart segment, -

4. Theloadmoduleis:eadhuomemybegimingtrwstansegm

5. Therelocation tabla tems are read into a work area (one or more at atime),

Appendix H H-7 H8 AppendixH

2 SR | IRV

A ;"--u'

: h!!!ll!:.‘..‘r.uqlmum;ﬁg
FACULTAD DE INGENIERIA U.N._A_M.
DIVISION DE EDUCACION CONTINUA

INTRODUCCION AL LENGUAJE DE DE
ENSAMBLADOR PC-MSDOS

MATERIAL ANEXO

NOVIEMBRE, 1992

Palacio de Minerla Calle de Tacuba 5 Primer piso Deleg. Cuauhtamoc 05000 Mexico, D.F. tel: 521-40-20 Apdo. Postal M-2285

Marzo 1986

UN METODO PARA OBTENER LA CORRESPONDENCIA

ENTRE UNA FECHA Y LOS DIAS CRONOLOGICOS -
TRANSCURRIDOS DEL ARNO.

Salvador Medina Moridn *

VoL II SIS-2

*Personal Académico, Instituto de Ingenierfa, UNAM.

I N D I CE

I Introduccién.

11 Cilculo del nfimero de dfas transcurridos del afio a partir de una
fecha dada.

IIT Obtencién de la fecha a partir de los dfas transcurridos del afio.

LIV . Conclusiones.

\' Agradecimientos,

Anexo: Breve historia del calendario actual. .

s

Para el registro de temblores es de suma importancia la informacién pre-

~ cisa del tiempo de ocurrencia de los eventos. Dependiendo del tipo de -~

aparato sismogréfico, las referencias de tiempo pueden ser desde simples
marcas superpuestas sobre la traza misma del registro, hasta camplejas - -
sefiales eléctricas codificadas y miltiplexadas en el flujo binario de la
informacifn sismica.

Es usual, tanto en el registro de temblores camo en muchas otras &reas -
cientificas, registrar el tiempo nommal referido a la hora de Greemwich
y camo fechador simplemente un contador de los dfas t.ranscu:."ridos desde
el inicio del afio. Este dltimo método facilita enormemente llevar la —
cuenta del tiempo, desde el punto de vista instrumental, ya que es s8lo
un acumulador cronolégico incrementado’cada 24 horas.

Para encontrar el nfimero acumlado de dfas a partir de una fecha dada, -
se puede consultar un calendario o almanaque. Hacerlo mentalmente resul

ta laborioso (especialmente hacia finales del ano) y presenta muchas --

probabilidades de error; una diferencia de un dfa en un registro sismico
puede acarrear serias confusiones al mamento de interpretar los regis—
tros. Por este motivo se pens$ desarrollar un m&todo sencillo de cilcu-
lo, con base ?ma tabla, que permitiese encontrar facilmente la corres
pondencia entre ambas fechas partiendo de cualquiera de ellas.

'Como un complemento que pudiese ser de interés para el lector, se presen
. -ta en el anexo una breve historia de los distintos calendarios y la adop

cién de nuestro calendario actual.

II. CALOJIDDELN{MER)DEDIASTRANSCIIRRIKBDELAMAPAKPIR'DEUNA
FECHA DADA.

" Este se obtiene de una- manera miy sencilla: a partir de una fecha y hora
local dada, leer directamente de la tabla siquiente el dato buscado:

MES § DE DIAS POR MES DIAS TRANSCURRIDOS
ENERO 31 ' | 0+ X
FEBRERD) 28 + * I+xX
MARZO an - 59+ X+ *
ABRIL 30 . 90 + X + *
MY - 31 120 + X + *
JUNIO 30 | 151 + X + *
JuLlo - . .3 181 + X + *
AGOSTO 3 o 212 + X + *
'SEPTIEMBRE 30 o 243+ X + *

. -OCTUERE . 31 273 + X + *
NOVIEMBRE 30 304 + X ¥ *
DICIRMERE 3 134 + X + *

En esta tabla:

X representa el dia del mes considerando, la hora local + 6 horas (hora de
" Greenwich) .)

* : en caso- de ser ano bisiesto (1984, 1988, 1992, 1996, 2000), debe --

agregarsemdiaaXenelfengl&\endowﬂeapar&caelasterisoo (*).

Oamseve,resnecesariotmar.en consideraci®n la hora local m&s, 6 ho—
ras, para cbtener la hora de Greerwich, que al acumilar 24 horas, incre-
mentarfa el dfa del mes.

Para aclarar el procedimiento, se prasentan 1os siguientes dos ejemplos:

Y

Datos: Fecha: 18 de agosto de 1986.
Hora Local: 14:30 hrs.

~Cdlculo: Ssumando 6 horas a la hora local se cbtiene la hora de Greerwich:
20.30 hrs. (no seacu:mlaundia,.por lo que X = 18). '
Entrando con estos datos a la tabla y dado que 1986 es un afio -
no bisiesto, se d_:tiene: ' '

Dfas transcurridos = 212 +. 18 + 0 = 230

Ejamnplo No. 2:

- Datos: Fecha: 25 de mayo de 1988.
Hora Local: 21:15 hrs.

Cdlculo: En este caso la fecha y hora de 'Greem:idm serfan:
26 de mayo de 1988, 03:15 hrs. (se acumila por tanto un dfa —
X=25+1). o o '
Dado que 1988 es un afio bisiesto, se cbtiene: -
Dfas transcurridos = 120 + 26 + 1 = 147

IITI. OBTENCION DE LA FECHA A PARTIR DE 1OS DIAS TRANSCURRIDOS.

En este caso el probiema es el inverso. Se tiene el dato de los dfas —-
transcurridos, el ano y la hora de Greerwich, se desea conocer la fecha
correspondiente. Los pasos a seguir son los siguientes:

1.

2.

Restar a la hcra de Greenwich 6 horas. De ser necesario, restarle -
un dfa al ntmero de dfas transcurridos. |

Entrar a la tabla anterior en el renglén cuya cifra base es menor
0 igual al nGmero de dfas transcurridos.

Restar del ndmero de dfas transcurridos la cifra base del renglén
cbteniéndose el dfa del mes (X) correspondiente al renglén. Si se
trata de un afio bisiesto y el renglén es de MARZO en adelante, res—-—

tarle un dfa a la fecha.

1os siquientes ejemplos ilustran el procedimiento:

Eijemplo No. 3:

Datoé: Dfas transcurridos: 193
Ano: 1985 (no bisiestn)
Hora de Greemwich: 17:23

Cilculo: Hora local: 11:23 (17:23-6)
pfas transcurridos: 193

Renglén correspordiente a: Julio
Dfa del mes: 193 - 181 =12

Fecha: 12 de julio, 1985.

Ll

Ejemplo No. 4:

Datos: Dfas transcurridos: 61
- Ano: 1992 (ano bisiesto).
e Hora de Greenwich: 05:47

Cilculo: Hora local: 23:47 i
Dfas transcurridos: 60 (61-1)
Renglén correspondiente a: Marzo

- Dfa del mes: 60 - 59 - 1 (ano bisiesto) = 0 (por tanto se trata

del dltimo dfa del mes anterior).

Fecha: 29 febrero, 1992.

Ejemplo No. 5:

Datos: Dfas transcurridos: 273
Afio: 1985 (no bisiesto) Sy
Hora de Greenwich: 12:47 - B
C&lculo: Hora local: 6:47 (12:47 - 6)
Dfas transcurridos: 273

Renglén correspondiente a: Ocl:ubre -
Dfa del mes: 273 - 273 = 0 (Gltimo dfa del mes anterior).

Fecha: 30 septiembre, 1985.

et g s

R

3

IV. OONCLUSIONES.

o ———

Se espera que este procedimiento sea-de utilidad para -aquellas perscnas
que operan las redes sismicas y que frecuentemente se ven con la necesi
'dad de estimar los dfas transcurridos del afio para verificar y sincroni-

-~ zar los relojes de 1os equipos de registro autfnomo. También podrfa sex

itil durante el procesamiento e interpretacién de los datos para derivar,
a partir del registro, la fecha de ocurrencia del temblor.

V. AGRADECIMIENTOS.

Se agradece la ;raliosa colaboracifin del Ing. Roberto Quaas por sus suge——
rencias, comentarios y correcciones al manuscrito original.

4

BREVE HISTORIA DEL CALENDARIO ACTUAL.

Un calendaric es un medio de contar los dIas Y organlzarlos en --
unidades convencionales (afnos, meses, semanas), que suelen derl--
varse de ciclos astronfmicos recurrentes que constltuyen loa cam-

bios m&s regulares en la naturaleza. . = _ .

De una forma burda, podemos decir que un mes es el tlempo que le

lleva a la Luna completar una vuelta alrededor de la Tierra.l Du-
rante este tiempo, la Luna muestra cuatro faaes, -3 cuartos, de --
una duracifn aproximada de una semana. Un: ano es el tiempo que -
le toria a la Tierra completar una vuelta alrededor del Sol, lo --
cual equivales a poco més de 12 lunas o meses. ‘Por convencién, -
adoptamos que hay 7 dfas en una semana; los meSesitienen una dura
cién entre 28 y 31 dfas, y dividido el afio. en 12 meses, podemos -
referirnos con prepifién a cualquier dfa del afo conociendo el ng
mero de dfa y el nombre del mes. ' -

¥

| El pfoblema con este mé&todo de llevar la cuenta de‘;os“diés, radi
ca en el hecho de que, mientras siempre hay un n@mero entero de -
dfas en el afio civil, a la Tierra le toma aproximadamente 365 -~
dfas, 5 horas, 48 minutos y 46 segundos (o bién ekpresado en for-
ma decimal 365.24219879 dfas (1)), en completar una vuelta alre-
dedor del Sol.- Si no tomaramos en cuenta esto, y adoptaramos 365
‘dfas para cada nao civil, habrfa un error de aproxlmadamente -
0.2422 dfas por afo. Asfe pues, al cabo de 100 afios, habrIa.una -

(1) A este periodo de tiempo se le denomina Afo Trdpico (del grie
go 2pomely =tornar) y es el intervalo entre dos trénsitos -
del Sol por el punto vernal (que es la posicidn del Sol en el o
momento del equinoccio de primavera)

-

discreparicia de 24 d41fasify después de 1500 afos las estaciones ha

~;:brian cambiado totalmente, al grado de que el verano en el hemis-
ferio norte se presentarfa en diciembre. Por tanto, es obvio que

este sisgema presenta grandes desventajas.

Julio César, notable ééneral y polfitico romano, hizo un intento -
de correglr este error, ya que en su &poca el calendario romano

,era sumamente confuso.” En los primeros tiempos de la antigua Ro-

ma, el calendarlo, apegade al ciclo lunar, constaba de 10 meses -
sumando un total de 300 dfas. Por ello hubieron de aftadirse mis

. dfas para mantenerse a tono con las estaciones. Aunque en el si-

glo VIII a, &7 el’afic romano se dividié en 12 meses lunares, so-

) brev1v1eron los ‘nombres de los cuatro dltimos meses del viejo ca-

lendarlo. septiembre, octubre, noviembre y diciembre, que son las
de51gnac10nes numéricas latinas para los meses séptimo, octavo, -
noveno y décimo.r '§in embargo, atin con esta divisién de 12 meses,
los sacerdotes realizaban una muy pobre labor tratando de mante-
ner el afio acpr@e con las estaciones. Ademds, los polfticos de -
la época fueron aumentando la confusién con "enmiendas" al calen-
dario, déstinadas a prolongar su vigencia en el poder o a reducir
los éériodos de sius oponentes. De esta forma, en &poca de Julio
César, el calendario tenfa un error de mds de dos meses en rela-
cién con las. estaciones. Durante su viaje a Egipto, es probable
que César tuviera noticia del calendario egipcio (el cual sequia
el ciclo sp;ér y era de 365 dfas), relaciondndose con un astréno-
mo greco*egipc#o*iiamado Sosfgenes. Por consejo de éste, César

,;decreté que el afo 46 a, C. tendrfa 455 dfas, afadifndose 23 dfas

prd

al finalizar febrero y 67 entre los meses de noviembre y diciem--

.bre. En la tradlcidn romana, ese afio pas$ a la historia como el

de la “cdnfusidn', pero de este modo, el afio volvié a coincidir -
con las estaciones. Adem8s, Cé&sar adopté la convencién de que ~--
después de’ tres afos c..asecutivos de 365 dfas, habrfa un ano "bi-
_siesto” de 366 dfas. "El dfa extra serfa agregado al mes de febre
ro. siempre que el nfmero del ano fuera divisible entre cuatro. En
promedlo, este ano civil tenfa 365.25 dias, una razonable aproxi-

T T e
R e

macifn al afio verdadero de 365.2422 dfas. Asf, después de 100 --

anos, el error es menor a un dfa (0.78 dfas) .

Y

pPocas reformas se hicieron a este catendario llamado Juliéhb en“los
siguientes siglos. Aunque Augusto, sucesor.de César, hizo ciertds
ajustes (como quitarle un dfa al mes de febrerémpara agregarlo al
mes dedicado a su nombre: agosto, dejando.de esta forma a febrero
con 28 difas normalmente y con 29 en los anos. blSlestOB), no ‘fue” 51
no hasta los afios 526 a 530 en dque se. hicieron camh;os de 1mport;n
cia. Dionisio el Pequeiio, abad de un convento de Roma, trasladé®-
el Afio Nuevo del 1° de enero al 25 de marzo, quizf para Blginlfl--
car el anual renacimiento de la naturaleza. Asimlsmo, f136 ‘el 25
de diciembre como fecha de la Natividad. Adem&s, inic16 1a practl
ca de fechar los sucesos bajo el sistema de. “antes Yy después de --
Cristo"”, basado en cdlculos que en torno al afio’ del naclmlento de
Cristo realizar4 &1 mismo (aunque se piensa que los hizo de manera_'
historicamente errdnea}. El sistema entrd en, uso hac1a el ano 607;

en &1 no existe afio cero. Paralelamente a él dlscurre un “calenda"yl

rio astronémico“, gue por razones de pura técnica de c&lculo tiene
que introducir un afio cero. Asf por ejemplo, el anoz—6 cronolégl-

co o astronfmico, corresponde al ano 7.a.C. Dlgamos de paso que,:

segﬁn investigaciones recientes, parece probable Que ‘el nacxmlento

de Cristo tuviese lugar en este afio. L A TET

i

o

]
PR

- 4 S e e a L.

A pesar de que el calendario Juliano funcioné biéﬁ’pgg ﬁucho‘ﬁiém-”
po, en el curso de los siglos fue acumulando un_error 1mp1£c;to, -
un dfa ganado cada 128 afios. Hasta que, en 1582 se acumuld una no
table discrepancia entre las estaciones y la fecha del calendario
Juliano. Fue asf como el Papa Gregorio XIII,-después de prolonga-
das consultas con Aloisius Lilius, f£isico ¥y astrénomo 1ta11ano, Y
el jesuita Christopher c1av1us, matemitico aleman, allneé el ano -
civil con el verdadero, decretando que se le debian restar 10 --
dfas al afio de 1582, aboliendo de esta forma, los dIas entre 5 y

14 de octubre inclusive, es decir, al 4 de octubre siguié el dfa -
15, Asimismo, £ijd nue#amente el 1° de enerc como dIa del Afo Nue-
vo, ordenando también la revisifn del sistema de ano blSleStO, que ne

'-&"

cesitaba la omisién de 3 dfas cada. cuatrocientos afios. Asf, los -
anos que terminan en dos ceros (por ejemplo, 1700, 1800, etc.), sé
1o son bisiestos cuando son exactamente divisibles entre cuatro--
c;eﬁtos. Este sistema, llamado calendario Gregoriano, es el que -
se usa actualmente.. De acuerdo a &1, 400 afios civiles contienen:
(400 x 365) + 100 - 3 146097 dias,
_asI que el promedio de duracifn de un afio civil es:
146097/400 =" 365.2425"dfas, o bién .
365 dIas, 5 hrs’., 49 minutos y 12 segundos,
reduc1endo el error anual a s6lo 26 segundos, con lo cual, el ca--
m.lendarlo Gregorxano es casi exacto, pues la diferencia es de un --

i dia cada 3323 anos.

ek

La Europa cat611ca adoptd de inmediato el nuevo calendario, pero -
-los estados protestantes se rehusaron.a ello, y s8lo gradualmente

N 1o fueron aceptando, Inglaterra y sus colonias cedieron apenas en

. 1752, afio en que se omitieron 11 dfas a su calendario. Rusia, no

obstante,. conserv6 el uso del calendario Juliano (cuyos errores, -
vnaturalmente, continuaban acumulindose) hasta 1918, afic en que, co
mo uno de los ‘efectos de la Revolucién Bolchevique, el gobierno so
vxético omitid 13 dfas al afioc para poner su calendario en cohcor-

dancia con las estaciones y con los demis paises de Europa. Como

resultado de esa medida, la anual celebracién soviética de la "re
- volucién de octubre”, cae ahora el 7 de noviembre.

REFERENCIAS:

1)

2)

3)

4)

Peter Duffett, Smith., "Practical Astroncmy with your calculator";
2 ed., Cambridge University Press, 1982.

¢ ’ Bl

-, e
a5

Samuel A. Guodsmit, Robert Claiborne. "El Tlm,,. tr. . Dévalosw
y M. Alvarez, Coleccién Cientffica de TIME-LIFE, 1962.) T e

e - o -
- o] -

Hermmann Joachim. “Atlas de Astronamfa®; tr. M. Paredes, Alianza
Editorial, 1984. - &%?WJ_“*
. ; :

A. UnsBld. “El Nuevo Cosmos"; tr. C. Jaschek, Siglo XXI, 1977.

Sh

Ml -
=X =

