DIVISION DE EDUCACION CONTINUA CURSOS ABIERTOS PROYECTO DE AIRE ACONDICIONADO Del 20 de junio al 1º de julio de 1994. DIRECTORIO DE PROFESORES

1.- ING. RODRICO BENCOCHEA OLGUIN
CERENTE CENERAL
INCENIERIA QUIMICA APLICADA
BERLIN No. 166
COL. DEL CARMEN
DELEG. COYOACAN
C.P. 04100
TEL. 554 47 43
MEXICO, D.F.

2.- ING. JORGE RUIZ DE ESPARZA

DIVISION DE EDUCACION CONTINUA CURSOS ABIERTOS PROYECTO DE AIRE ACONDICIONADO Del 20 de junio al 1º de julio de 1994.

FECHA	HORARIO	TEMA		PROFESOR
Lunes 20	17:00 a 21:00 hrs.	Psicometría	Ing.	Rodrigo Bengochea O.
Martes 21	17:00 a 21:00 hrs.	Análisis de carga térmicas, ejemplos de cálculo en invierno.	Ing.	Jorge Ruíz de Esparza
Miércoles 22	17:00 a 21:00 hrs.	Cáfculo de carga variables en verano Ejemplos de cálculo en verano:		
Jueves 23	17:00 a 21:00 hrs.	Equipo terminal		-
Viernes 24	17:00 a 21:00 hrs.	Cálculo de ductos y redes de tuberias		
Lunes 27	17:00 a 21:00 hrs.	Equipo Central		
Martes 28	17:00 a 21:00 hrs.	Torres de enfriamiento de agua		
Miércoles 29	17:00 a 21:00 hrs.	Instrumentación		
Jueves 30	17:00 a 21:00 hrs.	Ingeniería de proyecto		
Viernes 1°	17:00 a 21:00 hrs.	Ahorro de enegía Mesa Redonda		

EVALUACION DEL PERSONAL DOCENTE

CURSO: PROYECTO DE AIRE ACONDICIONADO

CONFERENCISTA	DOMINIO DEL TEMA	USO DE AYUDAS AUDIOVISUALES	COMUNICACION CON EL ASISTENTE		
ING. RODRIGO DE BENGOCHEA O					
ING. JORGE RUÍZ DE ESPARZA			·	-	
	. 1981				
		٠.			
	,		· · · · ·		
•		•			
			,		
				:	
:					
		. :			
	, ,	· · · · · · · · · · · · · · · · · · ·			

EVALUACION DE LA ENSEÑANZA

ORGANIZACION Y DESARROLO DEL CURSO	
GRADO DE PROFUNDIDAD LOGRADO EN EL CURSO	
ACTUALIZACION DEL CURSO	
APLICACION PRACTICA DEL CURSO	

EVALUACION DEL CURSO

CONCEPTO	CALIF.
CUMPLIMIENTO DE LOS OBJETIVOS DEL CURSO	
CONTINUIDAD EN LOS TEMAS	
CALIDAD DEL MATERIAL DIDACTICO UTILIZADO	1

ESCALA DE EVALUACION: 1 A 10

			,					
				-				
•	•	٠		,		•		
1 3LE AGRAI	DO SU E	ESTANCIA EN LA	DIVISION DE F	DUCACION COI	NTINUA?			
	ű.		i 			,		
			SI	NO .	·		•	
si indica	QUE "N	IO" DIGA PORC	ĮUE.				•	
				• •				
2 MEDIO A	TRAVES	DEL CUAL SE E	NTERO DEL CUR	SO:				
PERIODICO EXCELSIOR	1./	FOLLETO ANUAL	GACETA UNAM	OTRO MEDIO		•		
PERIODICO		FOLLETO	REVISTAS	MEDIO				
EL UNIVERS	<u> </u>	DEL CURSO	TECNICAS					•
3 įQUE CAMBI	os suger	RIRIA AL CURSO PAF	RA MEJORARLO?	•				
3 ¿QUE CAMBI	OS SUGER	RIRIA AL CURSO PAF	RA MEJORARLO?	· · · · · · · · · · · · · · · · · · ·	-			
		RIRIA AL CURSO PAF						
		URSO A OTRA(S) PE	RSONA(S)?			-	· · · · · · · · · · · · · · · · · · ·	
4 įRECOMEND	ARIA EL C	URSO A OTRA(S) PE	RSONA(S)?	DE EDUCACION CO	NTINUA.			
4 įRECOMEND	ARIA EL C	URSO A OTRA(S) PE	RSONA(S)?	DE EDUCACION CO	· · · · · · · · · · · · · · · · · · ·			
4 ¿RECOMEND	ARIA EL C	URSO A OTRA(S) PE	RSONA(S)? SI NO MARA LA DIVISION	, 6. 				-
4 ¿RECOMEND 5 ¿QUE CURSO	ARIA EL C	URSO A OTRA(S) PE	RSONA(S)? SI NO MARA LA DIVISION	, 6. 	· · · · · · · · · · · · · · · · · · ·			
4 ¿RECOMEND	ARIA EL C	URSO A OTRA(S) PE	RSONA(S)? SI NO MARA LA DIVISION	, 6. 	· · · · · · · · · · · · · · · · · · ·			
4 ¿RECOMEND	ARIA EL C	URSO A OTRA(S) PE	RSONA(S)? SI NO MARA LA DIVISION	, 6. 	· · · · · · · · · · · · · · · · · · ·			
4 ¿RECOMEND	ARIA EL C	URSO A OTRA(S) PE	RSONA(S)? SI NO MARA LA DIVISION	, 6. 	· · · · · · · · · · · · · · · · · · ·			
4 ¿RECOMEND	ARIA EL C	URSO A OTRA(S) PE	RSONA(S)? SI NO MARA LA DIVISION	, 6. 	· · · · · · · · · · · · · · · · · · ·			
4 ¿RECOMEND	ARIA EL C	URSO A OTRA(S) PE	RSONA(S)? SI NO MARA LA DIVISION	, 6. 	· · · · · · · · · · · · · · · · · · ·			

· .

DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

Del 20 de junio al lo. de julio de 1994.

DIRECTORIO DE ASISTENTES

- Ing. Roberto Areválo González Jefe de oficina I.S.S.S.T.E. Av. San Fernando 547 Col. Toriello Guerra 14070 México, D. F. Tel. 606 38 98
- Ing. Carlos Castro Linares Subgerente Banco Nacional de México, S.A. Sevilla 10 piso 5 Col. Juárez 06600 México, D.F. Tel. 225 22 96
- 75. Rubén Francisco Martínez
 Tec.Mecanico en aire acondicionado
 FAVE SEDENA
 Canal de Garay 100
 Col. El Vergel
 Del. Iztapalapa, México, D.F.
 Tel. 607 11 79
- 7. José Luis García Arroyo Propietario Restaurant Av. Azcapotzalco 431 Col. El Recreo 02070 México, D.F. Tel. 561 33 50
- Porfirio Hernández López
 Jefe proyectos Aire Acondicionado
 Fuerza y Clima, S.A.C.V.
 Poniente 128 No. 549
 Col. Ind. Vallejo
 02023 México, D.F.
 Tel. 587 33 55
- 11. Arq. José Gerardo Hernández Tello Subdirector inst. especiales Suprema Corte de Justicia de la Nación Venustiano Carramza 117 piso 2 Col. Centro 06000 México, D.F. Tel. 542 58 10

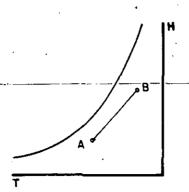
- 2. Arq. Antonio Bautista Kuri Profesor de asignatura Fac. de Arquitectura UNAM Ciudad Universitaria 04510 México, D.F. Tel. 666 12 52
- Ing. Rafael Alfredo Clemente García Coordinador inmuebles Banco Nacional de México, S.A. Sevilla 10 piso 5 Col. Juárez 06600 México, D.F. Tel. 225 24 37
- 6. José Luis Guerra Ruíz Gerente de instalaciones Matemáticas aplicadas e informática, S.A.C.V. Miguel Angel 148-1 Col. Mixcoac 03910 México, D.F. Tel. 611 12 00
- José Martín Giménez Rodríguez Calculista
 Climatización en general, S.A.C.V. Leonardo De Vinci 31
 Col. Mixcoac
 01460 México, D.F.
 Tel. 598 13 45
- Fis. Miriam C. Hernández Ornelas Coord. de proyectos de investigación Enertec 2000-SC Juárez 106-A Col. Tlalpan 14000 México, D.F. Tel. 573 09 67
- 12. César Jaso Calderas Jefe del depto. de aire acondicionado Grupo Instalaciones S.C. Cerrada Melchor Ocampo 4 Col. Pedregal de San Francisco Del. Coyoacan, México, D.F. Tel. 554 03 97

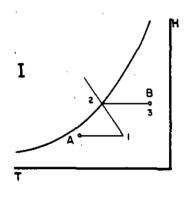
- 13. Alejandro López Vázquez Ingeniero de proyecto Grupo Industrial Bimbo Ing. Etienne Cabet 1000 Col. Santa Fé Zedec. 01210 México, D.F. Tel. 229 66 00
- Ing. Waldo Ignacio Martín del Campo C. Coordinador inmuebles Banco Nacional de México, S.A. Sevilla 10 piso 5 Col. Juárez 06600 México, D.F. Tel. 225
- 17. Rafael Morgan Vázquez Profesor Enep Aragón, UNAM Av. Rancho seco s/n Col. Impulsora Del. Nezahuacoyotl, México, D.F. Tel. 774 11 55, 774 33 73
- 19. Arq. Francisco Javier Palomares Miranda 20. Ing. Carlos Rangel Zarate Jefe de Departamento Suprema Corte de Justicia de la Nación Venustiano Carranza 117 piso 2 Col. Centro Del. Cuauhtémoc, México, D.F. Tel. 542 58 10
- Salatiel Salgado Castro Análista de Costos Fonatur Insurgentes sur 800 piso 13 Col. Del Valle 03100 México, D.F. Tel. 682 45 00
- José Concepción Saucedo López Ventas Técnicas Térmica Modulada José Luis Gutiérrez 50 Col. Ahuizotla Naucalpan de Juárez Edo. de México Tel. 358 45 72
- Ing. Juan Manuel Sizano Peña Coordinador de proyectos Enertec 2000 S.C. Juárez 106 Col. La Purisima 14000 México, D.F. Tel. 573 82 99

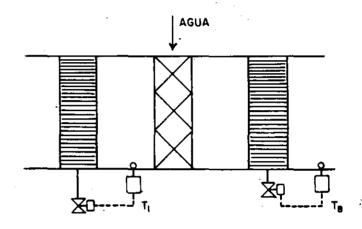
- 14. Hemima Machuca Aguilar Coord. Depto. de Prod. e Informática Enertec 2000, S.C. Benito Juárez 106 Col. Tlalpan 14000 México, D.F. Tel. 573 82 99
- 16. Ing. Juan Mejia Contreras Proyectista Teléfonos de México, S.A.C.V. Blvd. Atlixco 2501 Col. Belisario Domínguez Puebla, Puebla Tel. 91 22 48 97 30, 49 09 19
- 18. Ing. Alberto Angel Nieto Chavez Jefe de departamento Secretaría de Salud José María Izazaga 89 Col. Centro 06000 México, D.F. Tel. 709 63 88
- Jefe de proyecto Inst. Mexicano del Petroleo Av. Eje Central Lazaro Cárdenas 152 Col. San Bartolo Atepehuacan 07730 México, D.F. Tel. 362 59 11 ext. 20442
- 22. Sixto E. Santos Santiago Ing. Analista especializado en proyectos Aeropuertos y servicios auxiliares Av. 602 No. 161 Coi. San Juan de Aragón 15620 México, D.F. Tel. 785 39 88 ext. 1253
 - 24. Héctor J. Saucedo Urbina Proyectista Torre del Vigia A.R. Laredo 12 fto. Teiocote 056250 Texcoco, México Tel. 723 76 00
 - 26. Ing. Felipe Silva Tamayo Ingeniero de proyecto Gpo. Ind. Bimbo Dir. Corp. Impulsora, S.C. Atienne Cabet 1000 Col. Santa Fé Zedec 01210 México, D.F. Tel. 229 66 00

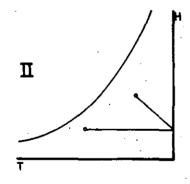
- Noé Suárez Loza
 Proyectista
 Corporación Técnico Ambiental
 Calle 25 no. 173
 Col. Pro-Hogar
 02600 México, D.F.
 Tel. 368 77 57
- 29. Julio Alfredo Tokunaga Alcudia Superintendente Ingeniería Mecánica La Torre del Vigia de México, A.C. Laredo 12 Fracto. El Tejocote Texcoco, México Tel. 723 76 00
- 31. C. Miguel Vázquez Vázquez Supervisor
 Suministros para Aire Acond., S.A.C.V.
 H. Col. Militar esq. Calle 27
 Col. Petrolera
 96850 Minatitlán, Veracruz
 Tel. 454 24
- 33. Ing. Fernando M. Valdez Vélez Coord. de la carrera de Ing. Mecánica Facultado de Ing. de la Universidad Autónoma de coahuila Unidad Universitaria Campo Redondo Saltillo, Coahuila Tel. 14 33 00

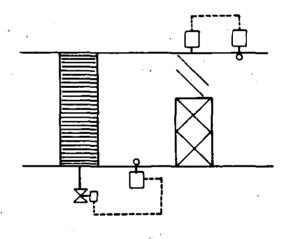
- 28. Moisés Torres Martínez
 Dibujante
 Corporación Técnico Ambiental, S.A.C.V.
 Calle 25 No. 173
 Col. Pro-Hogar
 02600 México, D.F.
 Tel. 368 25 90
- 30. Ing. M.G. Carolina Vanegas Martínez Asesor Técnico Anertec 2000 S.C. Juárez 6 Col. Tlalpan México, D.F. Tel. 310 77 74
- 32. Alejandro Velázquez Navarro Gerente de Servicio TESIG, S.A. Allende 2 Col. Del Carmen Coyoacan 04100 México, D.F. Tel. 554 50 97

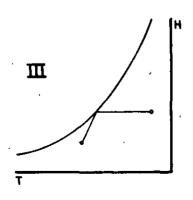

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

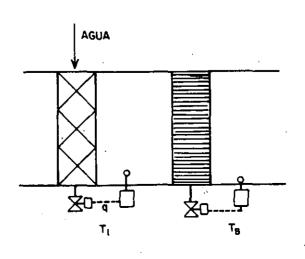

CURSOS ABIERTOS

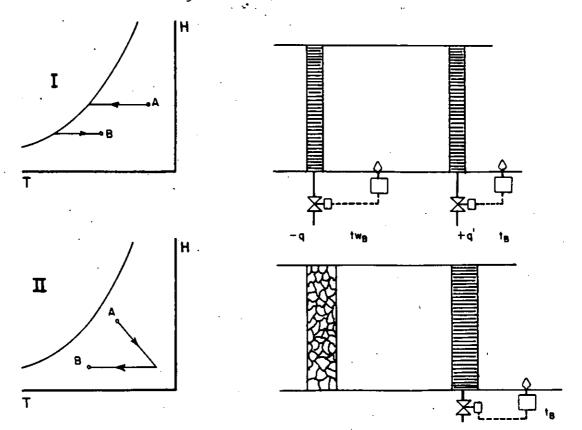

PROYECTO DE AIRE ACONDICIONADO


HUMIDIFICACION Y DESHUMIDIFICACION


Paracio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. Tel.: 521-40-20 Apdo. Postal M-2285







HUMIDIFICACION Y DESHUMIDIFICACION

DESHUMIDIFICACION

Es muy frecuente en Aire Acondicionado requerir que el aire que se encuentra en una posicion "A", deba ser transformado a otro con una condicion "B"; normalmente se requerira modificar tanto su temperatura como su humedad. Esto podra ser llevado a cabo por medio de uno o varios de los "procesos psicrometricos" empleados en secuencias o diferentes pasos.

Es importante hacen notar que para la solución de un determinado problema, habra varias posibles soluciones; todas ellas buenas, algunas mas sencillas y otras mas complejas ceno todas posibles, simpre y cuando se respeten los procesos osicnométricos. En algun momento se presentarán dos o mas alternativas TOTALMETE EGUIVALENTES y se escojerá una de ellas al criterio o queto del diseñador.

CANTIDAD DE AIRE NECESARIO

CALOR SENSIBLE

El aire que se inyecta a una area acondicionada, tiene como finalidad "recojer" o "suministrar" calor al espacio que se pretenda acordicionar; si se trata de calefacción, el aire que se introduzca al local deberá tener una temperatura mayor à la del ambiente que se pretende mantener, para que al mezclarse con el aire interior ceda calor que compense a aquel que esta perdiendo el local hacia el exterior.

Si se trata del enfriamiento requerido en verano, el aire deberá suministrarse mas frio que el ambiente para contrarrestar la ganancia de calor del local.

La cantidad de calor que puede tomar a ceder el aire de suministro se definira por medio de la siguiente ecuacion:

 $c_1 s = m \cdot C_p \cdot \Delta T$

En donde cos sera la cantidad de calor cedida o absorbida por el aire desde su temperatura de entrada al local hasta la temperatura del interior.

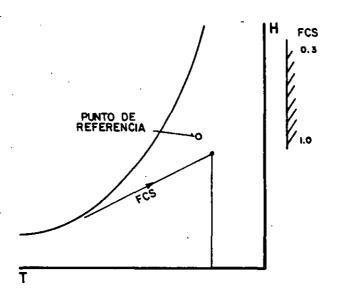
Este calor se llevara a capo siempre a humedad constante.

CALOR LATENTE

ta humedad en el interior de un local es una de las variables que deben ser controladas para conservar las condiciones propuestas de diseño; normalmente existe una generación de humedad que se debe principalmente al metabolismo de los seres vivos y tambien a algunos equipos que generan humedad hacia el ambiente. En el caso general, el aire que se seministre a un determinado local deberá tener una humedad absoluta menor a la requerida en el interior, con objeto de absorber la que se genere ahí.

La humedad en el aire representa una forma de calor, ya que está como vapor de agua y a temperatura constante la variación de humedad implicará una variación de entalpia; se define de la siguiente forma:

$\Box 1 = m\Delta H \lambda$


El "calor latente" o calor de vaporizacion del agua varia con la temperatura, presentando un problema adicional, sin embargo para el rango normal de aire acondicionado (O a 40°C) su valor no varia substancialmente, y tomar un valor intermedio como "constanta" es perfectamente permisible

 λ = 585 kcal/kg de agua

FACTOR DE CALOR SENSIBLE

Evidentemente no es posible introducir una cantidad de aire que recoja el calor sensible (qs) y otra que recoja el calor latente (ql); por lo que será necesario considerar una cantidad de aire que sea capaz de realizar las dos funciones simultaneamente. Con este objeto se define al FACTOR DE CALOR SENSIBLE (FCS) de la siguiente forma:

El factor de calor sensible, en realidad indica la pendiente de la linea de operación del aire desde que este ingresa al local hasta que llega a las condiciones interiores; y para cada problema SOLAMENTE existirá un solo FCS, ya que indica cuanto calor latente debe ser recojido por unidad de calor sensible.

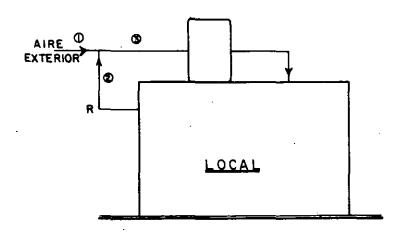
Para el caso de Verano la linea de FCS tendrá como origen la curva de saturación de la carta psicrométrica y como final el punto que define las condiciones interiores del local.

En el caso de calefacción en Invierno se presenta un problema de indefinición de las variables; si el suministro de aire es "muy grande", la diferencial de temperatura requerida sera "muy pequeña" y viceversa. El problema estriba en definir que se considera "meuy grande" o "muy pequeño"; a este respecto se hace necesario el auxilio de criterios auxiliares para poder definir una de las dos variables involucradas:

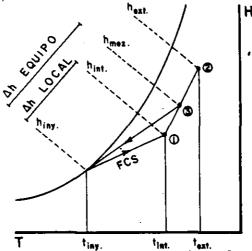
A) VOLUMEN DE INYECCION

Si el volúmen de aire que se inyecta a un lugar es muy pequeño no será posible lograr una temperatura uniforme en el local y se encontraran "puntos" frios calientes en él. Si es muy grande se tendrá una temperatu a totalmente homogenea pero habra corrientes de aire molestas.

Algunos autores y la experiencia de los diseñadores han establecido un criterio al respecto; "El aire que se suministra al interior de un local deberá ser de 10 a 20 VECES su volúmen en una hora" A este criterio se le llama "Cambios por hora". No es un criterio absoluto pero es una buena quia.


¥

B) TEMPERATURA MAXIMA DE INVECCION


Mientras mayor sea la temperatura de inyección, se requerirá menos aire y por lo tanto el equipo será mas pequeño; sin embargo una temperatura elevada causará grandes pérdidas en los ductos y sobre todo problemas serios de RADIACION en los difusores; como regla general deberá tratarse de que la temperatura de los difusores no sea mayor de 45°C.

CICLO COMPLETO DEL AIRE

Una vez que el aire ha realizado su labor en el interior del local por acondicionar, debe salir de él para ser substituido por aire proveniente del acondicionador; sin embargo en la mayoria de los casos este aire es mas facil de acondicionar que el aire exterior, obteniendose una economia de importancia. No es posible recircular todo el aire, ya que es necesaria una cantidad de "aire nuevo" para mantener la pureza necesaria; sin embargo se recirculará todo el que sea permisible y se completará al 100 % con aire exterior (Este sera función del número de personas y de la actividad que realicen).

La mezcla de aire exterior y aire recirculado será la que se suministre al equipo acondicionador.

La cantidad de calor que debera suministrar o retirar el equipo acondicionador será la diferencia de entalpias entre al "aire de mezcla" y el "aire de inyección". Normalmente la carga térmica del equipo es DIFERENTE a la carga térmica del local.

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

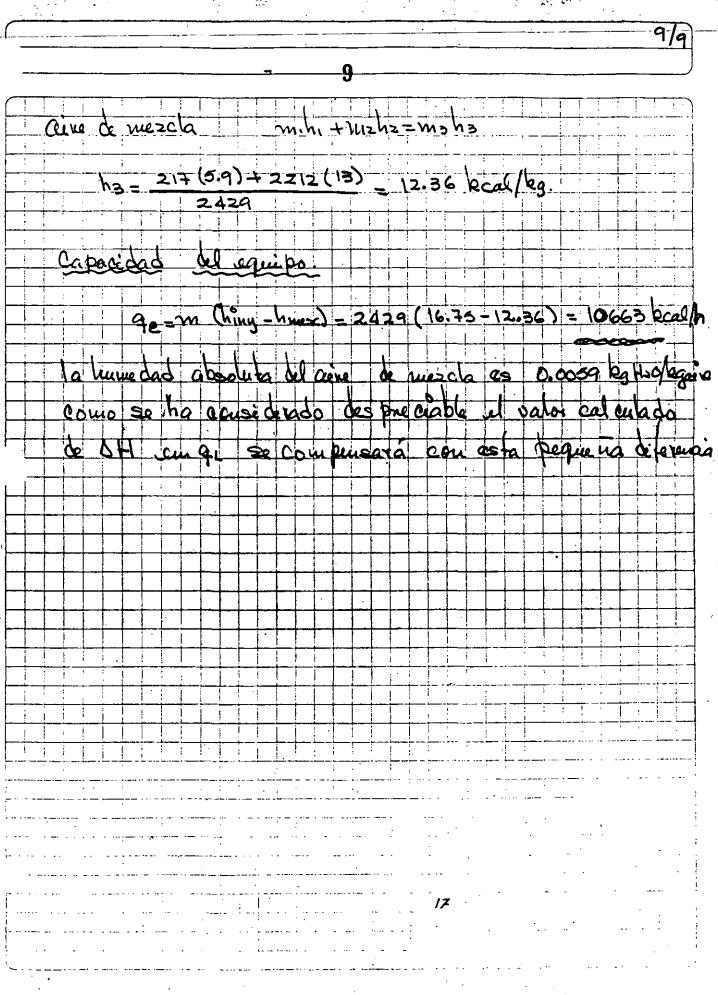
EJEMPLO DE CALEFACCION

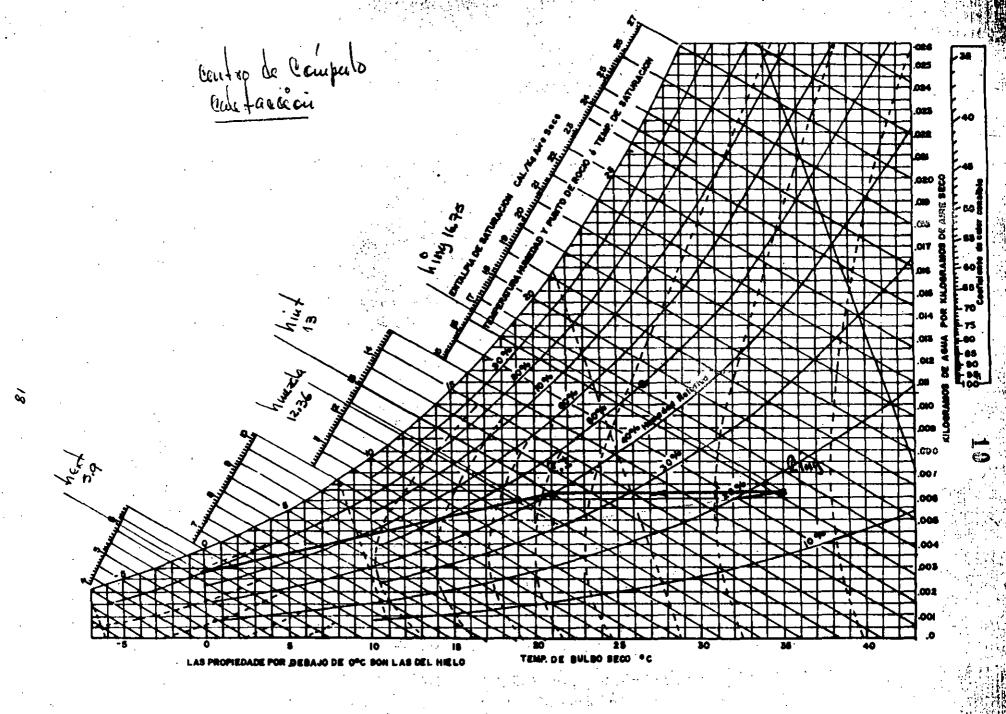
Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-228 Teléfonos: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

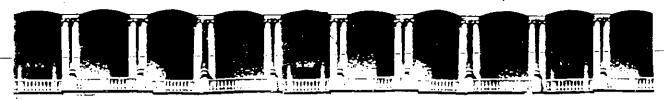
Caletarios Se proyecta acondicionar el ecutro de competo de una compania para que opere las 24 ha del dea y se requiere el disens de la caletacción: In a macion general Udicación Cd. de México 2200 ru 3.0. W + b9 = 218 = 200 Candiciones interiores Can de econes exteriores = 80% Ricena 35001614

Carga	s. Intern	esi	i			: 1	
4 texuenal	es,	330 W	થ્ય				1
2 Impra	5005	13 म	? થા		<u> </u>	.	!
	u tador			٠ (١)			
\	1 1	• !					
1 Comp	utador	9, 8dit	3.6	Mr.an	<u> </u>		
1 luni u	accou		20 w/n	m ²	tuors	euto	· ! !
bersono			1 1 4 2 5	<u> </u>			
72.3040			7 pers	bucs.			
materials		1900000					
The water	3 4 4		con				
			\				
le alto 1	osa Ce	Con Con	eto arr	uado_	15 Cm.		+
1 1 1 1 1	nuis	ישיותט ש	<u>. </u>		15 cm.		
	<u> </u>						
plator	id	yeso.			13 mm		
		1					
leid 100	1 le	dia m	a mas	1-1-	6 mm	,	+ + +
Calculo	a U						
~~~~							
to ch.	\			- <del>   </del>	1 - J	<u> </u>	+ - <del></del>
techo:	10 /WW	na um	va coso	cada(	eutio ce	i prajeu	<u>a</u>
	Dor log	u u c	ala gen	rado	se per dero	Hacia u	
	1 1		ν,		<b>)</b> :	- I	
	•	-			Irsa y	L * 1	
· · · · · · · · · · · · · · · · · · ·	Noes a	on uchie	ute ca	use dev	ar et pl	itend c	0 Lt 10
					caloud		
	NUCLUM	_			-		٠٠.
•							

Como:


TJ AU= p.


Sencembargo es incesario un analises para ST, enul caso de muros o udrios al exterior, la diferencia sera la natural; para il caso de avers uo a condicioundas contiguas, se de berá analizar tipo de construcción y la horneticidad de estos acalas Olgunos autores suguren que se conse de la como temperatura de estos locales al valor medio centre el area acondinouada y el certerior. Sen un barga se el area mo acondicionada es anna grande este valor de bara dismenuirse y si es pequeña podra in overnentarse Sein comex nesque de cousidera Ción un el calanto Der de das techo q = 3.87 (15×8) (21-0) = 9752 Rcal h 9-3.87 (15x1.2+8x1.2) (21-0) = 2243 ecal } q = 5,99 (13x15+8x15) (21-0) = 4339. Realh Se considerará la temperatura de los locales ru acondiceona dos, como, la media del exterior t= 21-0 = 10.5°C


Computado , A" 1.8 kw (860 Kal (ku) = 1548 Road Comparadox B" - 3.6 (860) = 3096 level h 300 Qu = 4(350)(0.860) = 1204 Really 13 HP Clu 142 0.5 a 3HP 1071 RCal LID = 714 ecal h a = 2 (1071) 1/3 Misclares centro de computo no se permiten catetexas en finadores de aqua uctro tipo de requipo uno en laveo tanto no existrá esta carga. = anancias 9= 9481 bcal/h 91 = 287 ecayh

Carga total del local = Ganancias - Deididas. 93 = 9481- 18093 = -8612 Real/h  $q_{1} = 287 - 0 = 287$  kcallh El segno regativo en la contabilidad textre ca indica que se requerira cale facción en 20 el que que la mente es posetivo, salvo casos naréseinos Clère necesario y condiciones de injección Qs=m Cp NT quem BHI Como parametro quea tenemos el critario de monimiento de acra 10 a 20 gambios/h Walvies recomendables Value vien de 100al = 8x 15x 2.20 = 264 m procando al gasto minimo recomendable (10 cambito) Chasto Diopuesto = 2640 m/h densédad de aine: P=1,2 kg/m @ lating 20°c  $\rho_{i} = \rho_{0} \frac{p_{i}}{p_{0}} = 12085 = 0.9263/113$ 

m = QP = 2640 m/h 0.92 Ro/m3 = 2429 Ro/h







# FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICINADO

CALCULO EN INVIERNO ( CALEFACCION )

Palacroide Milterfa (1974) (1975) (1976) (1985) Primeripiso Delegi Cuarchtémolo (1960) (1974) (1975) APDO Protei M-2035 (1986) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) Para poder hacer un análisis de la calefacción de un determinado local, contar previamente a él con las informaciones siguientes:

- 1.- Planos del local; plantas y cortes, si es posible
  fachadas.
- 2.- Materiales de construcción de los muros, techos ventanería, etc.
- 3.- Datos climatológicos del lugar; altura sobre el nivel del mar, temperaturas máximas y mínimas; temperaturas de diseño.
- 4.- Condiciones de operación del lugar
  - a) USO; oficina, hospital, casa habitación, hotel, etc
  - b) Cantidad de personas probables en el local
  - c) Equipo que habrá en el local
  - d) Iluminación; cantidad y tipo
  - e) Miscelaneos
- 5.- Recursos energéticos
  - a) Electricidad; voltaje, fases, ciclos; capacidad
  - b) Gas; natural o LP
  - c) Vapor

Una vez que se tiene la información necesaria para el desarrollo del proyecto, es conveniente realizar un pequeño anteproyecto, que permitirá hacer un análisis completo del problema. En éste se analizarán los siguientes puntos:

1.- ¿ Que tipo de barreras térmicas se tienen ?

<b>a</b> )	Muros al	exterior	( U ₁ )
( લં	Muros en	partición	( U ₂ )
c)	Techos		( U ₃ )
d)	Vidrios	•	$(U_4)$
e)	Pisos a	areas no acondicionadas	( U _E )

2.- ¿ Hay materiales especiales ?

- a) Piedra del lugar para fachadas
- b) Ventanas dobles para evitar congelación
- c) Superficies exteriores homogeneas, que requieran análisis especial de " h " ( Edificios forrados de vidrio, concreto martelinado, etc.

# 3.- Tipo de sistema a proponer

- a.- Manejadoras; proponer trayectorias de ductos y ubicación de manejadoras
  - b) Fan & coils; Proponer ubicación de los equipos y trayectorias de tubería.
  - c) Convección natural; ubicación de convectares y trayectoria de tuberías.
  - d) Ubicación de casa de máquinas y areas disponibles.

realización de este análisis permitirá que se aclaren algunas dudas y este pequeño anteproyecto, que representará poco tiempo y esfuerzo, permitirá la realización de una memoria de cálculo ordenada y lo mas lógica posible para la evaluación del problema.

#### MEMORIA DE CALCULO

Para la realización de la memoria de cálculo que debe respaldar cualquier proyecto se deberán seguir los siguientes pasos generales:

- 1.-Condiciones de proyecto
  - a) Nombre de la obra
  - b) Ubicación; lugar, altura SNM
  - c) Condiciones de diseño

c.l.- Exteriores;

tbs; tbh tbs±, Ø ±

- c.2.- Interiores
- 2.- Cálculo de los coeficientes totales de transmisión de calor " U "
- 3.- Cálculo de areas de transmisión de calor; exteriores, colindancias, particiones, vidrios, techos, etc.
- 4.- Cálculo de pérdidas de calor por transmisión

q= UAAT

y suma de todas las perdidas por diferentes areas

5.- Cálculo de ganancias interiores
Iluminación

Personal

- ----

Equipo Miscelaneos

- 5.- Carga térmica neta del sistema (4) (5)
- 7.- Cálculo del aire necesario

$$q = m(h_{ij} - h_{ij})$$

8.- Cálculo de la capacidad del equipo

$$q = m (h_{mex} - h_{m+})$$

- 9.- Selección del equipo; con la información que se ha obtenido, ya se puede seleccionar el equipo
- 10.- Cálculo de redes de ductos y redes de tubería

De esta manera se ha logrado resolver el problema y se tiene la información necesaria para la elaboración de planos, especificaciones y listas de materiales y equipo (Cuantificación)



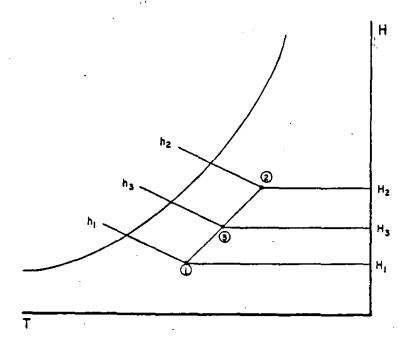
# FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

PROCESO PSICOMETRICOS

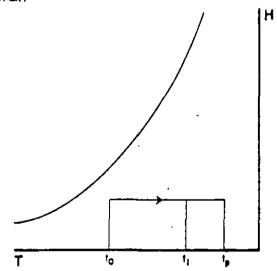
# PROCESOS PSICROMETRICOS.


Las maneras por medio de las cuales es posible modifiar las condiciones del aire son las siguientes:

## 1.- MEZCLA DE DOS FLUIDOS DE AIRE

Al mezclarse dos corrientes de aire con diferentes características, el aire de mezcla se encontrará sobre una línea recta que los une, las ecuaciones que definen éste comportamiento son las siguientes:

$$M1 + M2 = M3$$
 (1)  
 $M1 h1 + M2 h2 = M3 h3$  (2)


$$M1 H1 + M2 H2 = M3 H3$$
 (3)



# 2.- FLUJO DE AIRE SOBRE UNA SUPERFICIE SECA Y MAS CALIENTE.

Al fluir aire sobre una superficie seca y más caliente que él, el aire se calentará por supuesto, pero normalmente no alcanzará la temperatura de ésta superficie, ya que para que ést sucediera, sería necesario tener o un tiempo de contacto infinito, o una superficie de contacto infinita. Aquí se emplea un concepto nuevo llamado FACTOR DE BY PASS (FB); éste factor mide la ineficiencia de un serpentín y es el complemento a 100% de la eficiencia. En términos generales se puede medir de la siguiente froma:

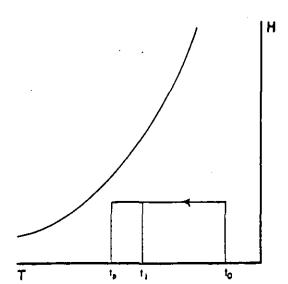
El factor de by pass es un número adimensional que relaciona las temperaturas del aire y la placa del serpentín y es función únicamente del diseño del serpentín y la velocidad del aire a través de éste. Permite fácilmente calcular la temperatura de un medio de calefacción ó predecir la temperatura de salida del aire a calentar.



tp : Temperatura de placa

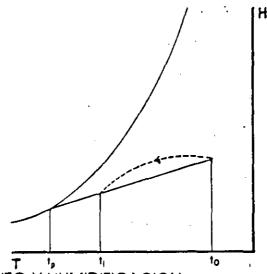
to : Temperatura del aire de

entrada


t1 : Temperatura del aire de

salida

$$FB = \frac{t_p - t_i}{t_n - t_0}$$

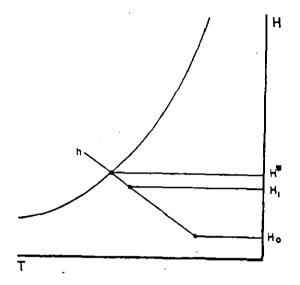

# 3.- FLUJO DE AIRE SOBRE UNA SUPERFICIE MAS FRIA Y SECA.

El aire se enfría al paso por el serpentín, conservándose su humedad absoluta constante (no llegará a saturación y el proceso se lleva a cabo de forma similar al anterior:



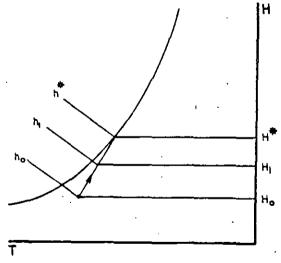
### 4.- ENFRIAMIENTO Y DESHUMIDIFICACION.

En este caso la temperatura de placa estará a un valor menor que la temperatura de rocío del aire y por lo tanto se presentará una condensación de humedad que reducirá la humedad total del aire de salida. El comportamiento real del aire se presenta aproximadamente por medio de la línea punteada, pero el "factor de by pass equivalente" nos define con bastante precisión el punto de salida del aire. En procesos donde se lleva a cabo condensación, se acostumbra llamar a la temperatura de placa "Punto de rocío del aparato" (PRA).




$$FB = ti - tp$$

# 5.- ENFRIAMIENTO Y HUMIDIFICACION

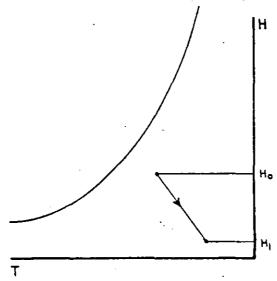

Al pasar aire no saturado a través de una cortina de agua, el aire tratará de saturarse, pero al no existir una fuente externa de calor que le permita conservar su temperatura, simultáneamente a la ganancia de humedad existirá una pérdida de temperatura ya que el calor necesario para la evaporación del agua, será tomado del medio a su alrededor y por lo tanto el proceso se llevará a cabo a entalpia constante (humidificación adiabática). Este proceso se emplea en acondicionamiento de aire para los "Enfriadores evaporativos" (lavadoras de aire) que son el sistema mas barato de proporcionar aire fresco y húmedo a un local.

Aquí se utiliza el concepto clásico de eficiencia para evaluar la bondad del sistema; se puede establecer la eficiencia en función de las temperaturas o de los valores de humedad absoluta.



#### 6.- CALENTAMIENTO Y HUMIDIFICACION.

Si durante el proceso de humidificación se introduce calor al sistema, generalmente calentando el agua, se logrará humidificar y calentar simultáneamente; este proceso presenta una variación de entalpia entre la entrada y la salida del del aire que es la cantidad de calor requerida para poder llevar a efecto del proceso.




$$\mathcal{J} = \frac{H* - Ho}{H1 - Ho}$$

#### 7.- CALENTAMIENTO Y DESHUMIDIFICACION.

Al pasar aire ambiente por un medio absorbente de humedad, como alúmina, gel de sílice, bromuro de litio, etc., una parte de la humedad del aire pasa a formar parte del material absorbente, ya sea como agua de cristalización ó agua en solución; pero al pasar de la fase vapor que tenía en el aire a fase líquida que tendrá en el absorbente, necesariamente cede su calor de vaporización

incrementándose consecuentemente la temperatura del aire y el medio absorbente. Esta es una operacion inversa a la humidificación adiabática, y presenta grandes posibilidades a un futuro muy cercano.



## HUMIDIFICACION Y DESHUMIDIFICACION.

#### DESHUMIDIFICACION

Es muy frecuente en Aire Acondicionado requerir que el aire que se encuentra en una posición "A", deba ser transformado a otro con una condición "B"; normalmente se requerirá modificar tanto su temperatura como su humedad. Esto podrá ser llevado a cabo por medio de uno o varios de los "procesos psicrométricos" empleados en secuencias o diferentes pasos.

Es importante hacer notar que para la solución de un determinado problema, habrá varias posibles soluciones; todas ellas buenas, algunas mas sencillas y otras más complejas pero todas posibles, siempre y cuando se respeten los procesos psicrométricos. En algún momento se presentarán dos o mas alternativas TOTALMENTE EQUIVALENTES y se escojerá una de ellas al criterio ó gusto del diseñador.



## FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

INTRODUCCION

### INTRODUCCION.

La necesidad de acondicionar el ambiente en el cuál ha vivido el hombre, ha sido un problema que lo ha inquietado, desde la mas remota antigüedad; se sabe que los egipcios calentaban al sol grandes piedras durante el día, que proporcionaban calefacción a las habitaciones de los faraones durante la noche; asi mismo humedecían hojas de palma que se interponían sobre las ventanas para que la brisa de la tarde, penetrara al palacio húmeda y fresca.

Las crónicas de Bernal Díaz del Castillo cuentan como se conservaba fresco el pescado que se servía en la mesa de Moctezuma II por medio de nieve que se traía del popocatépetI; trescientos años antes de que se empleara el mismo método para conservar la carne fresca para las tropas Yankis durante la Guerra de Secesión en los Estados Unidos.

El primer sistema que se puede llamar de aire acondicionado, fué inventado por un laborioso granjero norteamericano que descubrió una gran caverna cerca de su casa, de la cual salía aire extremadamente frío; construyó un rústico sistema de ductos y por medio de un molino de viento introdujo aire fresco al interior de su casa, logrando mantenerla fresca durante los cálidos veranos de su región.

A partir de éste primer experimento, al llevar aire frío para regular la temperatura de un local y así vencer las temporadas cálidas; se ha creado una de las más importantes industrias de servicios que ha permitido mejorar substancialmente las condiciones de vida de millones de personas en todas las latitudes del mundo.

En un pasado reciente, se consideró al aire acondicionado en nuestro país como un artículo de lujo o un "mal necesario" en algunas regiones extremosas. Actualmente se reconoce a ésta especialidad no solamente como un servicio útil para proporcionar confort, sino como un medio adecuado y económico para mejorar las condiciones de trabajo en oficinas, fábricas e inumerables lugares a los cuales concurren los seres vivos.

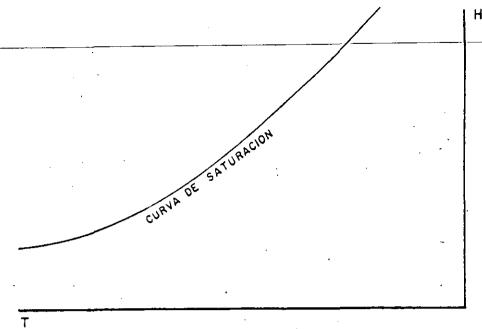
Las modernas aplicaciones para el desarrollo óptimo de especies animales y diversos cultivos por medio de sistemas adecuados de aire acondicionado, han abierto un amplio campo a ésta especialidad.

### **PSICOMETRIA**

La relación entre el contenido de humedad del aire, su cantidad de calor y la presión atmosférica; son los campos de acción de la psicrometría.

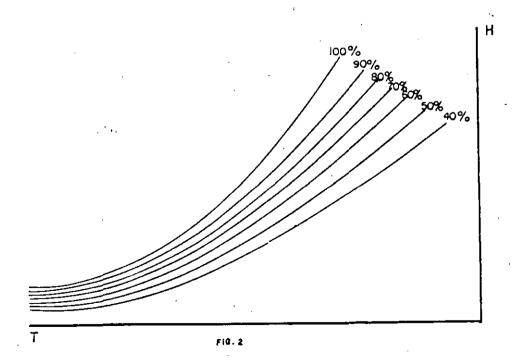
#### HUMEDAD.

La cantidad de humedad que puede contener el aire, es finita, y está relacionada con la temperatura ambiente, la presión de vapor de agua a ésta temperatura y la presión atmosférica del lugar considerado. La cantidad máxima de vapor de agua que puede contener el aire a una temperatura dada (SATURACION), está definida por la siguiente ecuación:


Las váriables aquí consideradas son:

Pv: Presión de vapor de agua a la temperatura considerada

Patm.: Presión atmosférica del lugar


18/29: Relación de pesos molecuálres del agua y aire

Si ésta ecuación se grafica para una presión atmosférica determinada y diferentes temperaturas, se obtendrá una gráfica correspondiente a la HUMEDAD DE SATURACION vs temperatura.



F10 1

Es caso más general es tener aire con una humedad menor al valor correspondiente de saturación, para poder ubicar el valor de humedad en la mayoría de los casos, se hace necesario obtener fracciones decimales del valor de saturación a las diferentes temperaturas con objeto de poder ubicar el aire que se tiene dentro de la gráfica; al graficar éstos números se obtiene una familia de curvas que son fracción decimal de la línea de saturación y así es fácil ubicar cualquier punto dentro de la gráfica.



#### TEMPERATURA DE BULBO SECO.

Es aquélla temperatura que es posible registrar por medio de un termómetro normal, y es la temperatura del ambiente.

#### TEMPERATURA DE BULBO HUMEDO.

Cuando una persona va a nadar en un día soleado, sentirá una sensación agradable, tanto en el aire como en el agua, pero normalmente al salir del qua sentirá FRIO, pese a que la temperatura del aire no ha variado. Esta sensac se debe a que al estar rodeado por aire NO SATURADO, existirá una evaporacio del agua que moja su cuerpo hacia el aire; para que el agua pase al aire deperá evaporarse. Este proceso requiere una gran cantidad de calor y éste será obtenido del agua que que humedece al sujeto, enfriándose el agua restante y tomando calor de su cuerpo.

Si a un termómetro normal se le coloca una franela húmeda sobre el bulbo y se hace circular aire ambiente, éste evaporará parte del agua que humedece al paño para tratar de saturarse: el calor requerido para ésta evaporación de agua será tomado del agua restante de la franela y al permanecer húmeda, disminuirá su temperatura hasta un cierto límite. A éste límite se le llama temperatura de "bulbo húmedo".

#### ENTALPIA.

Para un proceso a presión constante, volúmen constante y sin trabajo, el término ENTALPIA define la cantidad de calor contenido por una unidad de masa de aire; se puede definir a la entalpia del aire como la suma de la entelpia de aire seco a partir de un punto de referencia, mas la entelpia del vapor de agua (Humedad) que contiene el punto en cuestión.

Para el aire seco la ecuación que define su entelpia es:

$$ha = Cp(Ti - Tr)$$

Para la humedad del aire:

$$hw = H (Cpw(Tw - Tr) + hfgw + Cpv (Ti - Tr))$$

La entelpia total del aire será la suma de éstas dos ecuaciones:

h = Cp(Ti - Tr) + H(Cpw(Tw - Tr) + hfgw + Cpv (Ti - Tr))

Se considera que el agua añadida al aire se calentará como agua desde un cierto punto de referencia (Tr) hasta la temperatura de rocío del aire final (Tw), a ésa temperatura se convertirá en vapor y de ahí se recalentará hasta la temperatura considerada del punto (Ti).

Evidentemente la temperatura de referencia lógica es 0 C, con lo que se simplifica un poco la ecuación.

Las variables de éstas ecuaciones son las siguientes: .

H: Humedad absoluta ó específica.

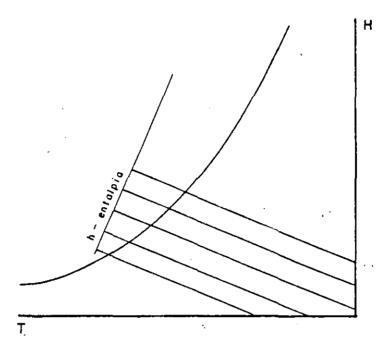
ha: Entelpia del aire seco

hw: Entalpia de la humedad contenida por kg de aire

Cp: Calor específico a presión constante del aire

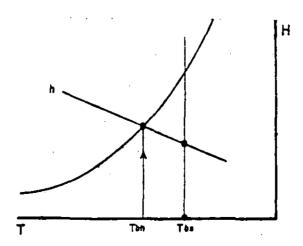
Cpw: Calor específico del agua

Cpv: Calor específico del vapor de agua


hfgw: Calor de vaporización del agua a Tw

Tr: Temperatura de referencia del sistema (0 C)

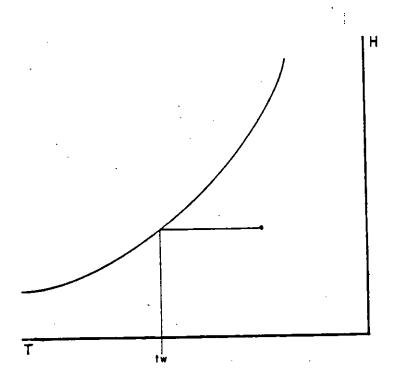
Ti: Temperatura de bulbo seco del punto considerado


Tw: Temperatura de rocio del punto considerado.

En la ecuación que define la entalpia, hay únicamente dos varibales independientes: la temperatura Ti y la humedad absoluta H, ya que Tw es una función de H. Al tenerse una ecuación de primer grado con dos varibales independientes al definir una de ellas, para un cierto valor asignado de "h" se tendrán una serie de puntos que formarán una línea recta cuyo valor de entalpia será constante. Es interesante hacer notar que la línea de entalpia constante coincide al llegar a saturación con la temperatura de "bulbo húmedo", esta circunstancia que actualmente es obvia, se descubrió casualmente.



La forma más general de encontrar las condiciones del aire ambiente es la siguiente:


Se determina por medio de un PSICROMETRO, (Aparato que tiene un termómetro para bulbo seco y otro para bulbo húmedo), las temperaturas de bulbo seco (tbs) y de bulbo húmedo (tbh); se marcan dos líneas verticales sobre una carta psicrométrica, una para bulbo seco y otra para bulbo húmedo, al tocar la línea de temperatura de bulbo húmedo con la curva de saturación, se corre hacia la derecha por una línea de entalpia constante, al cortar la línea de temperatura de bulbo seco, ahí se encuentra el punto ambiente buscado.

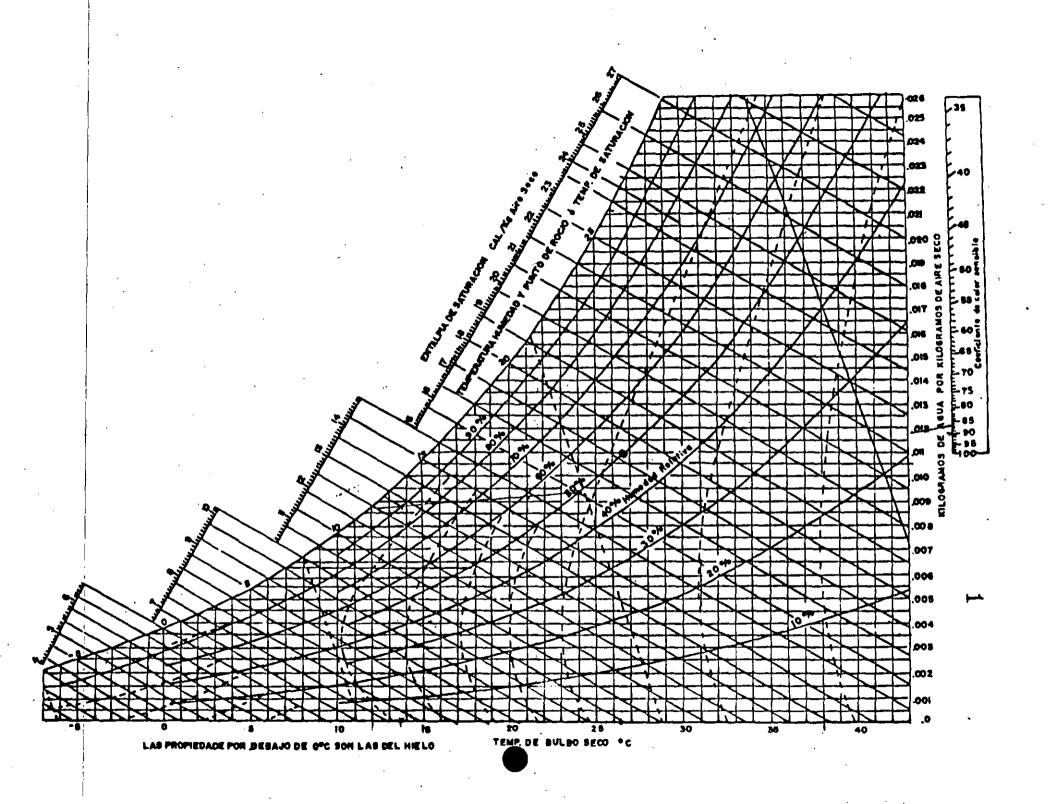


#### TEMPERATURA DE ROCIO.

Al enfriar aire no saturado, se conservará su humedad absoluta hasta que el aire toque con la línea de saturación, a partir de éste punto cualquier enfriamiento posterior ocasionará una disminución de la humedad del aire. A ésta temperatura, a la cual se llega a saturación sin disminuir humedad, se le llama temperatura de rocío (tr o tw).

Una forma simple de percibir éste concepto es la siguiente: Al servirse una bebida fría en un vaso, se empezará a enfriar el recipiente y el aire circundante también, pasados algunos minutos el vaso estará empañado exteriormente y tendrá unas gotas de rocío que se han condensado sobre su superficie. Esto demuestra que la superficie del vaso está a una temperatura inferior a la temperatura de rocío del aire.






# FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

TABLAS





## FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

CONDICIONES DE COMODIDAD

El aire acondicionado tiene como objeto fundamental el provocar zonas con temperatura y humedad adecuadas para que las personas se sientan cómodas. Esto quie re decir que, en zonas donde hace mucho frío, el aire acondicionado se diseña y calcula para producir temperaturas más altas que la exterior en el interior de los locales habitados (oficinas, escuelas, teatros, casas, etc.) asi mismo, en lugares donde se registran muy altas temperaturas, el objetivo del aire acondicionado es lograr que en los locales habitados se mantengan temperaturas más bajas que las exteriores.

Para lograr lo anterior se deben tomar en cuenta cuatro factores principalmente:

- a) Temperatura del aire
- b) Humedad del aire
- c) Movimiento del aire
- d) Pureza del aire
- e) Nivel de ruido
- A continuación se explica la importancia de cada uno de estos factores:

#### a) TEMPERATURA DEL AIRE

El primer intento de crear zonas cómodas para el hombre fué tratando de controlar la temperatura, ya que, como de todos es sabido, trabajar ó descansar en un lugar donde la temperatura sea extremadamente baja ó alta, resulta incomodo y poco eficiente.

#### b) HUMEDAD DEL AIRE

El cuerpo humano pierde bastante calor debido a la evaporación, esta evaporación aumenta cuando la humedad ambiente es baja, de aquí la importancia de - controlar la humedad. Debe de aclararse también que humedades altas produ-cen reacciones fisiológicas molestas y además afectan algunos materiales.

#### c) MOVIMIT TO DEL AIRE

El simple movimiento del aire puede modificar la sensación de calor, puede - incluso llegar a provocar la sensación de frío, ya que el movimiento del aire sobre el cuerpo humano incrementa la pérdida de calor y humedad del propio cuerpo

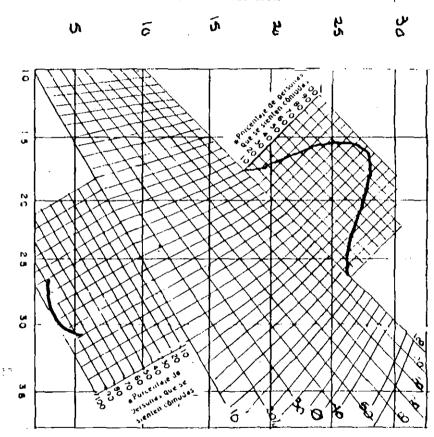
#### d) PUREZA DEL AIRE

Cuando se está en un local acondicionado, se procura recircular constantemen te el mismo aire para ahorrar energía, pero debe tenerse cuidado en purificar suficientemente este aire debido a que de no hacerlo, los olores se irán concentrando hasta ser muy molestos, el humo del cigarro provocará molestias en los ojos y la nariz, etc.

En casos especiales deberá considerarse una purificación especial, como puede ser el caso del aire inyectado a un quirófano. En general la contamina-ción del aire deberá evitarse ya que es un problema complejo que la humani-dad tiene que resolver en esta época.

#### CARTA DE COMODIDAD

Para poder establecer las condiciones adecuadas de los cuatro factores mencionados, se ha establecido la llamada "Carta de Comodidad", la cual se obtuvo desqués de una serie de experimentos realizados por la ASHAE y que permite determinar diferentes conjuntos de valores en cuanto a temperaturas de bulbo seco y humedo, humedad relativa y velocidad del aire, en función de la "Temperatura Efectiva" que se escoge.


#### TEMPERATURA EFECTIVA

La temperatura efectiva es un índice empírico del grado de calor que percibe -una persona cuando se expone a varias combinaciones de temperatura, humedad y movimiento del aire.

Una temperatura efectiva puede tener humedades relativas desde 0% hasta 100% y velocidades de aire desde muy lentas hasta muy altas y aunque la sensación de - calor en cualquier caso es la misma, la comodidad producida en los diferentes caso no es igual.

Por ejemplo se puede decir que muy bajas humedades producen sensación de "tosta miento" en la piel, boca y nariz; humedades altas en cambio provocan malos olores y transpiración mayor del cuerpo. Altas velocidades en el aire crean chiflones incómodos y molestos.

l'emperatura de bulbo hume do



Ahora siguiendo la trayectoria de la línea de temperatura efectiva de 70°F se - busca la intersección con la temperatura de bulbo seco de 79°C (26°C), ésto dá como resultado que la humedad relativa necesaria para la condición preestableci da sea de 19%.

FACTORES QUE DETERMINAN LA TEMPERATURA EFECTIVA

Cómo se puede observar, en la Carta de Comodidad se indica el porcentaje de personas que se encontrarán cómodas con cada una de las temperaturas efectivas, es decir, siempre existirán personas que no se encuentren totalmente cómodas.

Lo anterior sucede debido a los diferentes factores que influyen en la temperatura efectiva y que son:

a) Aclimatación diferente.

Esto se refiere a que personas que viven en zonas cálidas estarán cómodas a temperaturas más altas que aquellas acostumbradas a vivir en lugares fríos. Lo mismo sucede con las diferentes estaciones, ya que en invierno se siente uno cómodo a menores temperaturas que en verano.

Algo similar sucede con la humedad.

b) Duración de la ocupación.

Es de suma importancia este factor en lugares públicos como tiendas, bancos, oficinas, etc.

Se ha comprobado que cuando la duración de la ocupación es pequeña, resulta conveniente tener diferencias de temperaturas bajas con respecto a la exterior y viceversa, en lugares donde la estancia es prolongada, la diferencia de temperaturas deberá ser mayor.

#### c) Ropa

Dependiendo de la época del año, las gentes se vistencon ropa diferente, de tal manera que ésto tiene una determinación directa sobre la temperatura --- efectiva.

Debemos mencionar que en general las mujeres usan ropa más ligera que los -- hombres, lo cual crea problemas para acondicionar locales que serán utilizados por hombres y mujeres.

#### d) Edad y sexo.

Las personas de 40 años ó más, en general requieren de una temperatura efectiva mayor, así como las mujeres; esta temperatura es más alta en  $0.5^{\circ}$ C ---  $(1^{\circ}F)$  aproximadamente. La carta de comodidad está estructurada para hombres maduros menores de 40 años.

#### e) Efectos de choque.

Se le llama así al efecto producido al entrar del exterior a un lugar acond<u>i</u> cionado y provocado por el cambio de temperaturas. Este efecto se puede controlar provocando zonas de temperatura efectiva intermedia entre la exterior

y la más cómoda, por ejemplo: en los vestíbulos ó corredores de un hotel u oficina.

Se ha demostrado que estos choques no son dañinos para personas acostumbra--das a vivir en zonas donde el acondicionamiento de aire es indispensable -- (regiones muy frías y/o muy cálidas).

#### f) Actividad.

La temperatura efectiva cómoda varía dependiendo de la actividad que se desa rrolle en el local acondicionado ya que, resulta obvio, no se estará cómodo a la misma temperatura en una fábrica ó taller donde los operarios tienen -- una actividad más o menos constante, que en una oficina o en un teatro, donde las personas se encontraran intactas o casi inactivas.

#### g) Calor radiado.

Cuando se habla de aglomeraciones grandes de personas, como en un teatro o - cine, el efecto del calor radiado entre las gentes obliga a disminuir la tem peratura efectiva cómoda.

De igual manera, cuando se está en un local con muchas ventanas, el cuerpo - radía más calor al medio ambiente y ésto produce sensación de frío por lo -- que la temperatura efectiva deberá ser más alta.

#### MAXIMA TEMPERATURA EFECTIVA

En general, los diferentes manuales y diseñadores de aire acondicionado señalan que la temperatura efectiva no debe exceder de 30°C (85°F).

#### CONDICIONES GENERALES DE DISEÑO

Para diseñar el aire acondicionado de un local se debe partir de ciertas bases que son:

- a) Condiciones de diseño exterior
- b) Condiciones de diseño interior .
- a) Las condiciones de diseño exterior están dadas por las temperaturas mínimas promedio exteriores del lugar en donde se ubicará el local acondicionado, así como por las temperaturas máximas promedio. En páginas posteriores aparece una tabla que proporciona las temperaturas de diseño exterior para las principales ciudades de diferentes estados de la República Mexicana.
- b) Las condiciones de diseño interior se establecen preisamente con la carta de comodidad, pero además existen tablas que señalan la temperatura de bulbo seco y humedad relativa recomendadas dependiendo de las temperaturas exteriores.

La tabla siguiente la propone la Jefatura de Proyectos y Construcciones del I. M. S. S., que en México es una de las instituciones que más normas han - desarrollado en este campo.

### CONDICIONES GENERALES DE DISEÑO.

Temperaturas exteriores de diseño.	Temperaturas interiores de diseño.	Humedad relativa interior.
35 grados C. de bulbo - seco, o mayores.	25 grados C. de bulbo- seco.	50%
32 grados C. de bulbo - seco.	23 gmdos C. de bulbo- seco.	50%
30 grados C. de bulbo - seco.	22 grados C. de bulbo- seco.	50%

La misma dependencia señala que para invierno la temperatura de diseño interior será en general de 21°C (70°F) y humedad relativa no menor del 30-35%.

b.2) cuando se diseña calefacción debe tenerse especial cuidado con la hume dad relativa permisible ya que, si la humedad es muy alta en el local acondicionado, se puede producir condensación del vapor de agua en las ventanas. La tabla siguiente señala los máximos valores permisibles de humedad relativa dependiendo de la temperatura exterior y del tipo de ventana que se -- utilice.

De cualquier forma, se puede calcular la temperatura de rocio permisible para evitar condensaciones, según la siguiente fórmula:

tw = ti - (ti - te) U/f

tw = temperatura de rocio

ti = temperatura de b.s. interior

te = temperatura de b.s. exterior

U = coeficiente de transmisión del vidrio ó muro

f = coeficiente de película interior.

b.3) El movimiento del aire es otra condición interior que debe considerarse en el diseño.

La ASHRAE ha establecido que la velocidad del aire dentro de los locales de berá oscilar entre los 4.5 m/min (15 pie/min) y los 12 m/min (40 pie/min).

## CONDICIONES EXTERIORES ESPECIALES.

Espacios acondicionados.	Temperatura interior Bulbo s <b>eco.</b>	Humecad Relativa Interior
QUIROFANOS: Salas de Operaciones, Salas de Expulsión y Emergencias.	21 - 24° C.	50 <b>-</b> 607.
Salas de Recuperación.	21 - 24° C.	50 - 605
FEDIATRIA: Cuneros.	24° C.	50 <i>%</i>
Observación y aislamiento.	24° C.	50%
Encamados.	24° C.	40 - 50%
Prematuros.	25 - 27° C.	55 <b>- 6</b> 5 %
		**********

Como ya se mencionó anteriormente, cuando se diseña aire acondicionado para un local, siempre se procurará reutilizar el mismo aire, provocando su recirculación, para evitar grandes consumos de energía.

Lo anterior debe ser estudiado con calma ya que, si se recircula el 100% del -aire, éste se encontrará cada vez más contarinado de olores y humo así como --con mayor contenido de  ${\rm CO}_2$ .

Para evitar esta contaminación, se debe suministrar siempre una cierta canti-dad de "aire nuevo de ventilación", tirando así la misma cantidad del aire con
taminado, con ésto se logra que, a través del tiempo, todo el aire se haya renovado y la contaminación no alcance altas y molestas concentraciones.

A continuación se proporcionan 2 tablas que recomiendan la ventilación necesaria para diferentes tipos de locales, en función del uso del local y del número de personas y en función del volúmen del mismo local.

TABLA VII-3. Ventilación recomendada para diferentes lugares

13

		ft³/min.po	r persona	ft ³ /min. minimos
APLICACIÓN	Humo de cigarros	Recomen- dado	Minimo	de obra por fi³ de techo
Departamentos (normales Departamentos (de lujo Bancos Peluquerías Salones de belleza	Poco Poco Ocasional Considerable Ocasional	20 30 10 15	15- 25 7.5 10 7.5	0.33
Bares Corredores Sala de juntas Departamentos de tiendas	Mucho Excesivo Nada	30  50 7.5	25  30 5	0.25
Garajes Fábricas Funerarias (salones) Cafeteria	— Nada Nada Considerable	10 10 10	- 7.5 7.5 7.5	1.0 0.10 —
Hospitales { quirófanos cuartos privado salas de espera		30 20 30 — — 20	25 15 25 — — 15	2.0 0.33 — 0.53 4.0 2.0
Salones de reunión	Mucho Poco Nada Considerable Considerable Considerable	50 15 25 30 12 15	30 10 15 25 10	0.25 0.25 0.25
Salones de clase Teatros Teatros Tocadores	Nada Poco	7.5 15	5 10	2.0

De Modern Air Conditioning, Heating, and Ventilating, 3: edición, por Willis, H. Carrier, Realto E. Cherne, Waiter A. Grant y William H. Roberts, con autorización de Piuman Publishing Corporation.

ESPACIOS A VENTELARSE	Cambios por hom:	Minutes per cambie:				
Almacenes	4 - 6	15 - 12	••			
Auditorios	6	10				
Casetas de Proyección.	<u> </u>	1				
Clubes	12	5				
Cocinas	30	2				
Garages	12	5				
Laboratorios	10 - 20	6 - 3				
Lavandenas	20 - 30	3 - 2				
Oficines	- 10	6	, .			
Panaderias y Reposterias	20	3				
Restaurantes	12	5				
Salas de Máquinas	$7\frac{1}{2}$	8				
Salas de Recreación	10	6				
Sanitarios interiores	15 - 20	4 - 3				
Talleres	10	6				
Vestidores	10	6				

TABLA VII-3. Ventilación recomendada para diferentes lugares

	Humo de	ft³/min.po	or persona	f:³/min. minimos
APLICACION	cigarros	Recomen- dado	Minimo	de obra por ft [‡] de techo
Departamentos { normales de lujo Bancos Peluquerías Salones de belleza	Poco Poco Ocasional Considerable Ocasional	20 30 10 15	15 25 7.5 10 7.5	0.33
Bares Corredores Sala de juntas Departamentos de tiendas	Mucho — Excesivo Nada	30  50 7.5	25 — 30 5	0.25 - 0.05
Garajes Fábricas Funerarias (salones) Cafetería	Nada Nada Considerable	10 10 10	7.5 7.5 7.5 7.5	1.0 0.10 —
Hospitales { quirófanos cuartos privade salas de espera Habitaciones de hotel { Cocinas { restaurantes Cocinas Laboratorios } }		30 20 30 — 20	25 15 25 ———————————————————————————————	2.0 0.33 - 0.33 4.0 2.0
Salones de reunión  (generales  Oficinas privadas  privadas  (cafetería  comedor	Mucho Poco Nada Considerable Considerable Considerable	50 15 25 30 12	30 10 15 25 10	0.25 0.25 0.25
Salones de clase Teatros Teatros Tocadores	— Nada Poco —	7.5 15	5 10	

De Modern Air Conditioning, Heating, and Ventilating, 3º edición, por Willis H. Carrier, Realto E. Cherne, Walter A. Grant y William H. Roberts, con autorización de Pitman Publishing Corporation.

ESPACIOS A VENTILARSE	Cambios por homa:	Minutes pet cambie:				
Almacenes	4 - 6	15 - 12				
Auditorios	6	, 10				
Casetas de Proyección.	60	1				
Clubes	12	5 .				
Cocinas	30	2				
Garages	12	5				
Laboratorios	10 - 20	6 - 3				
Lavanderias	20 - 30	3 - 2				
Oficinas	10	. 6				
Panaderias y Reposterias	20	3				
Restaurantes	12 N	5				
Salas de Máquinas	$7\frac{1}{2}$	, S				
Salas de Recreación	10	. 6				
Sanitarios interiores	15 - 20	4 - 3				
Talleres	10	6				
Vestidores	10	6				

		4440	L	DATOS	SITUAC	ON		i i_		ÞΔΤΟ	5 VER	ANO			PAT	05 IN	V 15 K!N(	٦
ESTADO .	CIUPAD	DIANO		ICION RAFICA	ALTURA		SION		TEMP	FRATU	RAS.		-	GRADOS	TEM	PERATE		GHAROS
ESTADO .	CIONED	1		<del></del>	BL WIVEL			. 44.1			LEULO		RELAT	DIA	MIN		164.00	PIA
1		(*F)	LATITUD	HE HE ITHE	PEL MAR		mm Hg	2 47				; ——	7,	ANUALES	B×T.	85	в ;	AMUALES
		ļ`	N	W	, M	·			A 5	Вн	8.5	84	<del> </del>	(*c)	•c	<del></del>	1 °F	(*c)
-	APATINGAN	11.10	19'05	102" 15"	662	<b>└─</b> ─	703	441.0	37	25	102	77_	95	3.013	411.5	+15	5 9	
MICHOACAN H	MORELIA	14 15	14" 42'	101 07	1,773	<del></del>	609	31.3		19	86	66	3.0	168	4.16	·	.,_43	270
i.	TAMORA	17,70	190 59	107" 18"	1,633	810	- 30	37.5	35	20	- 95	50	27	370	-5.3	4 <del></del>	-39	2.5
	TACAPU	1935	19-45'		2,000	804	1003	340	37	19	90	1 66	52	168	0	<u> </u>	30	615
HORELOS .	CHAUTLA	25,80	18 40'	98 * 21	1,241	8.14	655	47.4	42	22	1011	72	70	025	+ 5,1	+4	45	
<del></del>	CLIERNAVACA	11.70	161" 35"	-99*141	1,5 100	847	632	37.4	31	1u	(1)	i (t	39	75C	- · · · ·	+11-	52	
MAYARIT	JAN BLAS	8.25	21° 32'	103"19"	7	1013	760	360	33	75	91	74	60	1,462	7.3	<del>, + !!</del>	5:	
<del> </del>	TEPIC	18.45	210 31'	104 55	418	, 912	GRU	347-1	16	26	97	19	47	GOO	1 19	+ 4	43	
NUEVO LEON -	MONTENUMELOS	1234	26.13.	99. 50'	432	985	724	411	37	75	102	77	35	1.856	143 1	+ 5	41	- 00
	MOUTERPLY	15.15	25"40",	100 " 18"	5 3 4	934	715	41.5	(31)	(26)	100	79	41	<del></del>	- 4 4	· ·	32	179
A A A CA	DA×ACΔ	14.45		76 42'	1,563	Buc	635	1-30°	<u>25</u>	73	75	72	35	2.10	<u>, +24</u>	, <del>, , , , , , , , , , , , , , , , , , </del>	45	
	SALINJA CRUZ	5.55	16" 12"	95° 12'	96	1,007	75.5	34.0	34	. 76	43	74	35	2.40	+160	+19	- · · ·	
PHEBLA	PUT ISLA PEHLACAN	15,15	15.20	47°23'	1,676	835	627	30 r	29	70	93	68	35	144	- 15	. , ,	<u>37_</u>	414 80
QUERETARO	GUENT TARO	17.70	20'36	100" 23"	1,842	819	614	36.2	3 5	21	91	70	30	1 159		0	37.	
CDE RE 1D RO		930	<del></del>		+	<del></del>	4			27	<del></del>	<del></del>			-49		32	_248_
QUINTANA ROO -	COZUMEL	430	16"30"	96° 61'	3 4	1,013	760	372	33	27	71	В 1	65	2,170	+9 5	<u>· 14</u>	_51_	
AND LINE BOYOU	PAYO ONISPO		22'09'				612	<del> </del>	<del></del>			64		<del></del>		+ 13	45_	.15
	DAN LOS POTOSI CULIACAN	18.75	24.79	100,24,	1,0(17	1,005	755	409	37	1ft 27	99	111	47	1.49V	- 7.7		36	145
1.	MAZATLAN	+ 5 10	71" 11"	106.12	78	1,004	753	31.4	<del>''_</del> _  اولا	L-26-	-""-	79	-	1.+2Y_    6.57.4	!_*!! +(12	+7 -+145	45_ 57	,
INALOA	TORTLONAMPO	, 10 to	25" 36"	10703		1,004	760	41.1	37	17	44	101	68					
<del> </del>		16,93	27. 65'	110*55	<del></del>	<del></del>	<del>`</del> -				<del></del>	72	47	(.734	.80	+ 17	<u> 53.6</u>	
į.	HE PAOSILLO	1350	39.02.	110*58	21	1013	742	410	47	27 78	100	82	37	1,619	+20	11	- 32	
ONORA		1440	30 * 71	110,28	<del></del>		664			26	+				+7.0	+ C	_43	979
r	CIUDAD ORREGON	13415	27*77'	107"55"	1,177	1,009	757	48.0	43	7 P	109	62 62	32	2,463	-71	+ 4	25 39	4/4
<del></del>		<del></del>	<del></del>		<del></del>		<del></del>				<del></del>		<del> </del>	<del></del>				
TARASCO	VILLEHERUCSA	12'10	17059	97*551	10	1,612	750	410	37	74	79	77		2,200	+17.2	- 19		
<u> </u>	WATAMOROS	10 64	25" 6 2"	91*30'	140	1,012	759		-36-1		47	77	46	1,015		<u></u>	32 	_47_
TAMAULIPAS	NUEVO LAREDO	11.54	270 12'	97" 51"	<del></del>	L011	750	341	ا—ا ان ان ا	-16-	77	82	27 54	(635	-7.5		i-10	
•	CIUPAD VICTORIA	15.15	33" 44"	44.00,	118	977	739	417	18	26	<del></del>	74	40		-7.5	+1	36	07
<del></del>		+	14. 25.	-	<del></del>	_	<del></del>	,	2019		100	63	39	1.27				
TLAXCALA POIN HICA	TLANCALA	16 15	·	444.12	2797	781	581	29.4			1/2		·		-1.4	<del>- • • -</del>	37	112
421121.	JALAPA	1453	19. 32'	96.35	1,347	878	647		34	<del></del>	40	70	40	745	-2.2		_43	_200
VERACRUZ POIZOU	ORIZABA	H 15	16, 91,	97*05	1,248		<del></del>	17.0		21	93	81	35 65	184	•1.5	٠٠٠	43	134
	VERACRUZ	<del></del>	<del></del>	96.09.	16-	1,011	758	35.6	, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<del></del>	91		<del> </del>	1,763	-96	+13	<u> </u>	
YUCATAN	AIE RIDA	1330	20"36"	694 36	27	<del></del>	7.58	41.0	- 17	17	99	11	47	2.1-1:	*** 6	15	. 54	*
	PROGRESO	13.00	<del></del>	64,40,	14	<del></del>	75 9	38,6	_36_			<u> </u>	10	1,700	4111	4.16	<del></del> [	2011
	FRESNILLO ZACATECAS	16.95	22" 47"	102" 33"	7,150	784	5 H G	290	26	7	62	63	39	232	- 4.5	<del></del> -	<del>12</del>	1303
4	4   E LA 3	, 10.73	11.47	16	2,412	100	361	1 740	- 111	1.2	P 4 /		47		~ 13	- 1		1203

• •

_	0 R	0ATOS 51T0	LIACION	DATOS VERANO							&	ATOR I	HVIERN	0	ì
	201		LTUES PRESION		TEMP	ERATU	845				TEMPSRATURAS				
->TAOO	CIUDAD		OBC BARCHETRICA	MAX.	De CALCULO			HUNED	GRADOS	MIN DE CALCULO		الاست	- amae		
	!	I ATITUD LONGITUD	L MAE mbar mm Hy	R.AF.	-			£	(ariss) i	DIA AHGALBS	# - Y	9.6	D 5	Dia	ქ ⊂
	'(* F )'	N W	m	c	8.6	Бн	8.5	Вн	**	(*, 1	٠.	•	·f	(°C'	<u> </u>
AGUASCAL IKNTES	IBP- AGLIAGALIENTES	21* 55" lo2* in' i	,679 Bld 612	36.8	34	!9	1 93	4.,	26	248	- 4,7	0	3.2	530	5 [
	3.15 ENSENADA	31" 52" 115" 50"	13 1012 759	365	34	25	43	79	35	109	+1,1	+5	41	492	7
15.15 MENICALI	52° 29' 116° 50'	1 1.015 760	47.6	43	111	154	o 2	-13	1,660	- 17	+1	34	372	1 (	
Bala Cariffichia	640- LA PAZ	24" 10" 110" 07"	18 Loli 758	36.0	36	- 7	97	U1	50	1,627	+40	• 13	55	1	' '
	20-4 TIJUANA	321 791 1171 021	28 1010 758	387	,3.5	7	95	7.7	.50	754	-3:	• :	36	56.	
COMPLCHE	1245 CAMPLEHE	190 31' 900 32'	25 1,010 758	38,9	36	26	47_	79	4	2 287	+ (1.7	ض1÷	÷ 1		. <del></del>
	13 54 CHOAD DEL CARMEN	18 38 41 41 64	3 1313 760	410	17	2 €	90	74	42	2172	+1© ft	+14	5/		<u>,                                    </u>
	12.45 MOHILLOVS	26" 65"   101" 26"	386   940 - 711	420	38	24	100	75	باو	1169	-70		- 17	125	X2 4
	1605 NUEVA ROBITA .	27" 55" 101" 17"	430 7-5 784	450	41	25	10:	11	30	1,539	-65	٠,		_4e: [	<u>ia</u> 5
COAHUILA	1472 PIL DALS NEGRAS	28* 42" (00" 31"	220 988 741	45.9	40	24	104	79	54	1547	-11.4	- 6	21	479	jo A
	1890 34,57,550	25 26' 101' 00' 1,	.29 . 542 U32	38.0	35	. 2	9.5	72	3	ce.	-1/-	-4		52.5	΄ σ
	14.40 COLIMA	19* 141 103*45	444 438 714	37.5	36	24	-97	75	35	1,685	د ن ه	+12	54	i	. C
COL.MA	10.30 MAN 2 AMILLO	19 04 154 35	1 13:4 7:5	306	39	27	.75	£3.1	35	2.229	+171	+ 15	5 v		با إ
снідез у	103- Тарасныца	140 54' 47 16	168 994 746	374	94	25	9.1	77	44	2.001	+12B	+15	6:		,
	1170 THATIA GUTIERREZ	16" 45' 43" 06'	935 715 936 435 715	385	35	25	95	77	*,41	1,601	+72	+11	52		, T
	1245 CHINDANUA	28" 30" 100" 04" 14	413 643 446	36.5	35	23	95	7.1	.18	691	÷11.5	٠. ن	21	793	Ĉ
	15 CIUDAD SHURET	310 441 1030 241 1.	(57 8)19 467	41.2	37	24	74	75	35	695	ر برا ب	•10	14	1289	<u> </u>
DISTRING FEDERAL	(BI) MEXICO CHAPULTEREC	19" 26" 49" 10" 2	.240 <b>780</b> 585	310	52	17	. 40		21	78	- 4.6	J	32	847	T I
	10 ³⁴ DURSHUS	24" 01" 104" 40" 1	,890 (315 ±10	35 4	33	17	91	65	23	los .	-50	0	32	550	
ひじがかどう	1235 CHAND LEROD .	25" 30"   (03" 32"   1	الالت ودري هدار	37.0	36	21	m	_ ₁₀	27	1,00	-4.2	;	74	121	ic
	1994 CRIANA	200 321 1000 491 1	175 117B -10	41.5	38	20	100	-u	22	637	-4.5	0	32	136	1
	In 44 SUANA JUATO	21001 101015 2	1,017 1101 601	338	32	18	40	64	70	. 49	+1,0		41	245	
CTANALO	IREZ TROM	21000 101041	1,804 (572 617	3 - 6	34	20	143	48	30	192	-/5	+1	36	175	i
•	1740 BALVATHERRA	200 15 100" 51 1	1,761 527 620	340	35	19	95	ا ت	25	367	-7:0		37	40	İ
	(140 ACAPIA CO (1474PG)	16" 30" 119" 86"	3 (413 7.0	35.6	33	27	91	01	÷5		41521	119			10
GUERRERO	CHAS PARASE		150 373 630	352		23	91	73	45	434	150	<del>-</del> ,-	,		m c
	13% 74 KCO		755 625 621	36.5		20	93	•8	30	518	+113	-12	, <b>-</b>		(∠≥
	1845 PACHUCA		1445 764 515	314	29	16	84		Jel	:			نات	. 1007	12 2
HIDALAJ	213. The discussion		137	-['.'-	-32	-14-	43		-3:	— <u>;                                    </u>		;	, <u></u>	849	50 ⊆
	15% GUADALAJARA	<del></del>	1,509 (144 633	36.0	3.3	20	71	- U	34	206	-3,7	•1	54	164	<b>∥∩</b> [-
JALISCO	21.4 . LAGOS	<del></del>	1880 816 412	430	37	20 .	102	_ ;-	20	574	-32T	<u>-</u> -	— ن د	10.2	: -> -
	1130 PHERTO VALLARTA	20 57 125 15	2 (,013 760	390	36	26	<u> </u>	- <u>-</u> -,1	46	2090	111,0	+14	57	-	ျှလ
	PISS TEXCOCO	<del></del>	784 588	3U.O	<b>3</b> 2	19	170	66	32	175	•• 0	-1	<u>ن</u> ز	50.3	4
MERICO	1645 TOLUCA	·	743 557	26.0	2	— <u>-</u> —	-,,·	:	47		-,;-		3.	1,570	: :

V

101

,		
		· K
	3	
Rellenos y aislamientos	kg/m ³	kcal/m, OC, hr
Tezontle como relleno o terrado seco		0.16
Relleno do tierra, arena o grava expues		
tos a la lluvia		2.0
Rellenos de terrado, secos, en azoteas		0.50
Arena, seca, limpia	1,700	0.35
Senica de carbón, seco	700	0.20
Siporex despedazado, seco	400	0.13
Escoria, seco	150	0.08
Aserrin relleno suelto, seco	120	0.10
Aserrin relleno empacado, seco	200	0.07
Bolas de plástico celular, empacado,		
seco	10-20	0.05
Virutas como relleno, seco	_	0.07
Masa de magnesia, seco	190	0.05
	190 .	0.03
Fibra de vidrio diam. de la fibra	15 100	
6 micras	15-100	0.04
Fibra de vidrio diam. de la fibra		
20 micras	40-200	0.04
Lana de escoria	35-200	0.04
Lana mineral	35-200 -	0.04 -
Plástico celular; de polyestireno	15-30	0.035
Cartón ruberoide con brea	1.200	0:20
	1.200	
Carton rubercide como aislamiento	i	0.14
Cartón corrugado, seco, poros horizon-		
tales	40	0.04
Piso de corcho comprimido	500	0.07
Placa de corcho expandido, seco	140	0.035
Placa de corcho expandido, seco -	210	0.04
Placa de paja comprimido, seco	300	0.08
Celotex	350	0.07
Fibracel, duro, seco	350	0.07
		0.11
Fibracel, medio duro, seco	1,000	
Fibracel, poroso, seco		0.07
	300	0.045
		•
Varios materiales		
	2 (00	0.70
Vidrio	2,600	0.70
Madera de encino, seco, 90º de la		±
fibra	700	0.14
Madera de pino blanco, seco, 90º de la		
fibra	500	0.12
Madera de pino blanco, expuesto a la lluvia		0.18
Asfalto para fundir	2,100	0.70
Asfalto bitúminoso	1,050	0.15
	1,000	0.15
Linolco, seco	,	
Algodón, seco	•	0.01
Lana pura, seco		0.04
- Cascara de semillo de algodon, suelta, seca		0.05
Aire	1.2	0.022

•	kg/m ³	kcal/r.0C,hr
agua	1,000	0.5
acero y fierro	7,800	45
cobre	8,900	320

## Acabados

aplanado aplanado	y mosaicos con mortero de cal con mortero de cal y pisos de mortero	al	interior	. 0	).90 ).75 ).60 50
yes0				(	851.0

Las personas que ocupan un lugar acondicionado producen una gran cantidad de calor dependiendo de la temperatura interior y el grado de actividad que estén realizando en algunas aplicaciones como pueden ser teatros o salones de espectáculos la carga térmica producida por personas es la mayor carga a disipar en las instalaciones; los seres vivos y algunas aplicaciones específicas producen tanto calor sensible como calor latente debido a la transpiración; la siguiente tabla da los valores que se emplean para el cálculo de la aportación térmica por personas.

TABLA IX-7. Calor producido por las personas

		metábolica nbre adulto	de	Grup perso		a l edio de la metabólica	2	7.7		6-6 peratu	2: ras de	5.5 L cuar		. B.S.)		.1
Grado	Aplicación	meld		% de composición del grupo		edio d meta	82°F		80° F		78°F		75° F		70° F	
de actividad	típica	hon		ict gra		- Sme	Bt	u/h	Bt	u/h	Bt	u/h .	Bt	u/h	· Btu/h	
		y/ns Relación y/de un hon	Hombre	Mujer	Niño	Prome   Prome		Lat.	Sens.	Lat.	Sens.	Lat.	Sens.	Lat.	Sens.	Lat.
Sentado	Teatro	390	45	45	10	350	175	175	195	155	210	140	230	120	260	90
Sentado; trabajo ligero	Escuela -	450	50	50	0	400	180	220	195	205	2 <u>15</u> 5 4	. 185 4.1	240 <b>60</b>	160 <b>40</b>	275	125
Trabajo de ofici- na, actividad moderada	Oficinas, hoteles, departamentos	475	50	50	0	45C	200 .	270	'200	250	215 <del>54</del>	235 59	245 چې	205 <b>5</b> 2	285	165
Parados; cami- nando despacio	Tienda de ropa, almacenes	550	10	70	20	. 450	200	270	200	250	215	· 280	245	205	285	165
Caminando; sen- tado, de pie; caminando des- pacio	Cafeterias, Bancos	550 550	20 40	70 60	10	500	180	320	200	300	·220 55	280 70	255	245	290	210
Trabajo sedenta-	Restaurantes	500	50	50	Ò	550	190	360	220	330	240	310	280 7-0	270 68	320	230
Trabajo ligero	Fábrica, trabajo ligero	800	60	40	0	750	190	560	220	530	245	505	295	455	36 <b>5</b>	2.3
matic moderado	Salas de baile	900	50	50	0	850	220	630	245	605	275	575	325	125	1(5.)	45:3
т <b>тіпал<b>до</b>, Б<b>т</b>рһ</b>	Fábricas, trabajo algo pesado	1,000	100	0	0	1.000	270	730	300	700	330	670	380	ė20	190)	540
Jugando	Boliche	1,500	75	25	0	1,450	450	1.000	465	985	485	365	* 25	925	دا _{) ک}	345

De Modern Air Conditioning, Heating, and Ventilating, 3t edición, por Willis H. Carrier, Realto E. Cherne, Walter A. Grant y William to Roberts, con autorización de Pitman Publishing Corporation

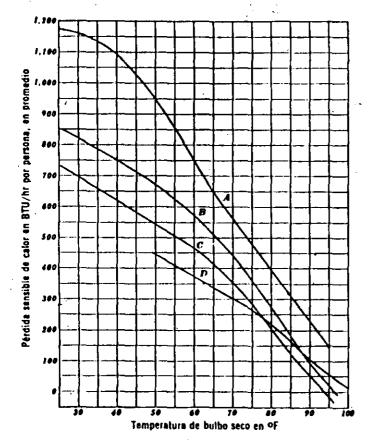



Figura 1X-84. Pérdida de calor sensible de un ser humano a varias temperaturas de bulbo seco en aire quieto.

De Air Conditioning and Refrigeration, 4º edición, por Burgess H. Jennings y Sanuel R. Lewis, con autorización de International Textbook Company.

- Al hombre trabajando (66,150 lb pie/lı)
- B) hombre trabajando (33,075 lb ple/h)
- C) hombre trabajando (16,538 lb pic/h)
- D) hombre sentado y descansando.

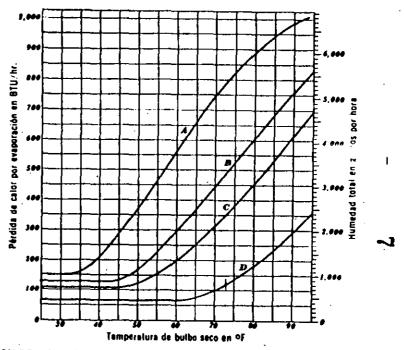



Figura IX-35. Pérdida de calor latente del ser humano por evaporación y humedad evaporada a varias temperaturas de bulbo seco en aire quieto.

De Air Conditioning and Refrigeration, 4: edición, por Burgess H. Jennings y Samuel R. Lewis, con autorización de International Textbook Company.

- A) hombre trabajando (66,150 lb pie/h)
- B) hombre trabajando (33,075 lb pie/h)
- C) hombre trabajando (16,538 lb pie/h)
- D) hombre sentado y descansando.

A.3 La iluminación que normalmente es eléctrica emplea una pequeña parte de la energía consumida en producir luz y la mayor parte se transforma en calor; en el caso de la iluminación incandescente este fenómeno resulta evidente por la alta temperatura que alcanza un foco al estar prendido, en el caso de la iluminación fluorescente, el tubo es "frío" pero la balastra que intensifica el potencial para permitir el efecto fluorescente disipa gran cantidad de calor al espacio acondicionado, como ilustración de la forma que actáa la energía se presenta la siguiente figura:

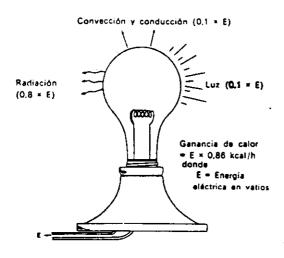



Fig. 30. Conversión de la energía eléctrica en calor y luz en las lámparas de incandescencia

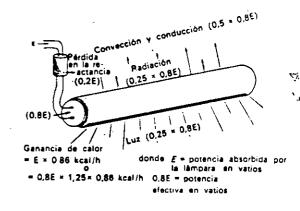



Fig. 31. Conversión de la energia eléctrica en calor y luz en las lámparas fluorescentes

El calor producido por los diferentes tipos de iluminación será el siguiente:

Incandescente q= W x 0.86 kcal/h

Fluorescente  $q= W \times 0.86 \times 1.25$ 

El valor de corrección para la iluminación fluorescente se debe al factor de eficiencia del sistema.

A.4 En general cualquier instacion donde hay acondiciona miento ambiental posee algún tipo de equipo como son bombas, motores, equipo de oficina o equipo y accesorios mas sofisticados como pueden ser equipos de computación o equipos de restaurant

Para el caso específico de motores el calor disipado por HP ÓKW nominal variará con el tamaño del motor ya que los motores grandes son sumamanate eficientes y los pequeños no lo son; de la energía absorbida, una parte se disipará como calor y la restante se transformará en trabajo; sin embargo al realizarse trabajo en un lugar acondicionado toda la energía se transformará en calor; el caso típico es un ventilador, que al remover el aire únicamente lo calienta.

La siguiente tabla nos proporciona los valores de carga térmica para varios motores en diferentes aplicaciones:

10

TABLA 50. GANANCIAS DEBIDAS A LOS APARATOS ÉLÉCTRICOS DE RESTAURANTÉS

Sin campana de extracción *

1	DIMENSIONES TOTALES			Potencia nominal	Potencia en marcha	ł	ICIAS A A A USO M	
APARATOS	sin pie ni asa (mm)	MANDO	DATOS DIVERSOS	(kcal h)	1	Calor sensible (kcal/h)	Calor latente (kcal/h)	Calor total (kcal/h
Percolador 2 litros Calent, de agua 2 litros		Manual Manual		540 77	" "	227 50	55 27	2 <b>6</b> 2 80
4 percoladores con reserva de 17 litros	508 × 762 × 640 H	Auta.	Calentador agua 2000 vatios Percolador 2960 vatios	- 4225		1200	300	1500
10 litros Cafetera 10 litros 20 litros	301 ф × 844 Н 305 × 584 evel × 523 Н 457 ф × 940 Н	Manual Auto. Auto.	Negro Niquelado Niquelado	3000 3855 4280	750 450 900	450 550 850	425 375 575	1075 975 1425
Máquina donut	330 × 550 × (450H	Auto.	Extractor motor de 1/2 CV	4000		1750		1250
Cocedora para huevos	254 × 330 × 635 H	Manual	Media 550 vatios Lenta 275 vatios	735		300	200	50.0
Mesa caliente, con ca- tientaplatos, por m ^e de auperficie		Auto.	Aislado - Calentador separado para cada plato. Calientaplatos en la parte inferior	3600	1350	9 50	9 50	1900
Mesa caliente, sin ca- ientaplatos, por m ^é de superficie		Auto.	Como arriba, pero sin calfentaplatos	2750	. 10 <b>0</b> č	540	960	1500
Freidora 5 litros aceite	<b>30</b> 5ф × 355 н	Auto.		2220	775	400	ه۵٥	1000
Freidora 10 litros aceite	404 × 457 × 305 H	Auto.	Superficie 300 × 360 mm	3975	5000	950	1425	7375
Placa calentadora	457 ×,457 × 203 H	Aujo.	Superficie activa 450 = 360 mm	2000	700	775	425	1200
Parrilla para carne	355 × 355 × 254 H	Auto	Superf. útil 250 × 300 mm	2550	475	975	525	1 500
Parrilla para sandwich	330 × 355 × 254 H	Auto.	Superficie de parrilla 300 = 300 mm	1400	475	675	175	<b>8</b> 50
Calentador de pan	440 × 432 × 330 H	Auto.	1 cajón	375	100	275	25	300
Tostador (continuo)	381 × 381 × 711 H	Auto.	Para dos cortes 360 cortes/h	L#75	1250	1275	325	1600
Tostador (continuo)	508 × 38 I × 711 H	Auto.	Para 4 cortes 720 cortes/h	2570	1500	1525	650	2175
Tostador (automático)	152 × 279 × 220 µ	Auto.	2 cortes	1025	250	617	.113	730
Molde de tortas	305 × 330 × 254 H	Auto.	1 torta de 180 mm	620	150	275	185	460
Molde de tortas	355 < 330 × 254 H	Auto:	12 tortas de 64 × 95 mm	1890	375	775	525	1300

En el caso en que exista una campana bien proyectada, con extracción mecànica, multiplicar los valores anteriores por 0,5

#### TABLA 51. GANANCIAS DEBIDAS A LOS APARATOS DE RESTAURANTE

Funcionamiento a gas o a vapor - Sin campana de extracción*

	DIMENSIONES TOTALES			Patertire	Patencia en marcha	PARA	CIAS A A	
APARATO	sin pie ni ase (mm)	MANDO	DATOS DIVERSOS	(kcal/h)	continua (kcal/h)	Calor sensible	Calor latente (kcal/h)	Calor total (kcal/h
			GAS					-
Percolador 2 litros Calentador agua 2 litros		Manual Manual	Combinación sin percolador y calentador agua	854 126	126 126	340 100	90 25	430 125
Perculador completo con depósito	482 × 762 × 460 H		4 percoladores con reserva de 17 litros			1815	455 -	2270
Cafetera 11 litros a 11 litros a 19 litros	361 d) × 864 H 364 × 964 aval × 533 H 457 d) × 940 H	Auto. Auto. Auto.	Negre Niquelada Niquelada	904	783 834 1 180	730 430 780	730 430 980	1440 1240 1940
Calientaplatos, por m ⁶ de superficie		Manual	Tipo baño maria	5430	2450	2310	1 2 70	3530
Freidors, 6,8 kg de grese	304 × 508 × 457 H	Auto.	Superficie 250 × 250 mm	3590	753	1040	705	1765
Freidore, 12,7 kg de grass	361 × 489 × 279 H	Auto.	Superficie 276 = 400 mm	6030	1135	1815	1210	30 25
Parrilla  Quemador superior  Quemador inferior	• 558 × 355 × 431 H (0,13 m* de super- ficie de parrilla)	Manual	Aistado 5500 kcat/h 3750 kcat/h	7 370		36.25 °	915	4540
Horno, parte sup abierta, por m ^a de superficie		Manual	Quemadores anulares 3000-5500 kcel/h	36 D.C	ļ	1140	1140	2200
Horno, parte sup. cerrada, por mª de superficie		Manual	Quemedores anulares 2500-3000 kcel/h	2925		875	075	17 <b>90</b>
Tostador continuo	361 × 361 × 711 H	Auto.	2 cortes 360 cortes/h	3000	2500	1940	● 30	2770
	<del></del>		VAPOR	<del> </del>	<u>.                                    </u>		L <del>-</del>	<u> </u>
Caleters 11 litros	301 db × 864 H 304 × 504 aval × 232 H	Auto. Auto.	Negra Niquelada			7 30 600	480	1216 1000
n 19 litros	457 Ø × ₹40 H	Auto.	Niquelada	ļ	ļ	835	580	1435
n 11 litros n 11 litros n 19 litros	361 φ × 844 H 364 × 584 evel × 533 H 457 φ × 940 H	Manual Manual Manual	Negra Niquelada Niquelada			780 655 930	780 655 930	1540 1310 1840
Mesa caliente por mª de superficie		Auto.	[			100	125	225
Calientaplatos, por mº de superficie		Manual				110	280	390

^{*} En el caso en que existe una cambana bien proyectada, con extracción mecánica, multiplicar los valores anteriores por 0.50

## TABLA 52. GANANCIAS DEBIDAS A LOS DIVERSOS APARATOS sin campana de extracción *

			POTENCIA		IAS A ADM	
APARATO	MANDO	DATOS DIVERSOS	NOMINAL	Calor	Calor	Calor
		•	MÁXIMA (kcał/h)	sensible (kcal,h)	latente (kcal/h)	total (kcal/h)
		ELÉCTRICOS				
Secapelo con ventilador	Manual	Ventilador 165 W	1353	200	100	440
15 a 115 V		(bejo 915 W, fuerte 1580 W)				
Casco secapelo 6,5 m 115 V	Manual	Ventilador 80 W (bajo 300 W, fuerte 710 W)	400	<i>U</i> 0	• • • • • • • • • • • • • • • • • • • •	555
Calentadores de permanente	Manual	60 calentadores de 25 W normalmente 36 en marcha	1294	710		230
Lavador y esterilizador a presión		200 × 260 × 540 mm		30 20	39 20	8740
Letrero de neón, por 30 cm	<del>- `</del>	Diámetro exterior : 12 mm	1	•	† <del></del>	•
de longitud		Diámetro exterior : 10 mm			ļ	15
Calentador de toallas		440 × 760 × 1610 mm 440 × 420 × 1610 mm		300 745	730 405	1030 879
Esterilizador de ropa	Auto.	496 × 620 mm 200 × 916 mm	1	2420 5870	2 190 60 30	4410 11920
	Auto.	420 × 430 × 714 mm	<u> </u>	8770	5294	14040
	Auto. Auto.	620 × 630 × 1230 mm 426 × 114 = 1720 mm	1 1	10 500 14 1 70	60 PG PG	17300 23240
Esterilizador paralelepipédico	Auto.	430 × 414 = 1524 mm	1 [	17270	11330	28400
*   ·	Auto Auto	914 × 1047 × 2144 mm 1047 × 1219 × 3430 mm		49 79 0 44 390	35 74 0 35 74 0	45780 81430
	Auto.	1210 × 1303 × 2430 mm		329.50	43400	94350
Estarilizador agua	Auto. Auto.	40 litros 60 litros		1930 1540	4140 6200	3190 7740
	Auto.	152 # 205 * 452	T -T	400	600	1280
Esterilizados instrumentos	Auto. Auto.	220 × 254 × 300 mm 254 × 305 × 540 mm	1	1380 20 40	798 3490	1276
Esterilizador, instrumentos	Auto.	254 × 305 × 914 mm	1	2570	2378	4940
	Auto.	305 × 406 × 620		7300	2130	4450
Esterilizador, utensilios	Auto. Auto.	464 = 404 = 430 mm 306 × 304 = 420 mm		2479 3100	51 a0 64 30	78 18 9350
Esterilizador, aire caliente	Auto.	Modelo 120 Amer. Sterilizer Co.		500	1640	1540
Al	Auto.	Modelo 100 Amer. Sterilizer Co.	<del> </del>	300	530	\$30
Alambique, agua	·	20 1/h	<del></del>	430	#0	1110
Aparato de radiografía		Para médicos y dentistas	ļļ.	Ninguna	Ninguna	Ninguna
Aparato de radioscopia		Las ganancias pueden ser grandes Solicitar información del constructor			:	
		A GAS				
Paquaño mechero Bunsan	Manual	Quemador 11 mm diám, con gas ciudad	450	240	46	300
Pequeno mechero Bunsen	Manual	Quemador 11 mm diám, con gas natura I	750	420	116	530
Quemador de Ilania plana	Manuel	Quematfor 11 mm diám, con gas natural	600	500	120	. 420
Quemador de flama plana	Manual	Quemador 11 mm diām con gas natural	1300	780	190	970
Mechero Bunsen grinde	Manual	Quemador 38 mm diám, con gas natural	1510	<b>0</b> 40	. 230	1070
Encendedor de cigarros	Manual —	Funcionamiento continuo	430	230		255
Secapelo central	Auto.	Constituido por un gaientador y un	0320	3789	1010	4790
5 cascos	. Auto	ventilation due in polsa el airo di ignice	, v. c.	5293 -	1510	4800

^{*} En el caso en que exista una campana bien proyectada, con extracción mecánica, multiplicar los valores enteriores por 0,5

TABLA 53. GANANCIAS DEBIDAS A LOS MOTORES ELÉCTRICOS

Funcionamiento continuo *

	1	ļ		
		Motor en el interior	Motor en el exterior	Motor en el interior
POTENCIA	RENDIMIENTO A	Aparato impulsado en el interior	Aparato impulsado en el interior	Aparato impulsado en el exterio
NOMINAL	PLENA CARGA	CV × 432	CA × 933	CV × 637 (1-p)
CV	*	P		ρ
			Kral/h	
1/20	40	#0	30 ,	47
1/12	49	105	. 50	55
1/4	55	145	<b>80</b>	65
174	44	180	103	70
1/4	64	250	) då , , , , , , , , , , , , , , , , , ,	90
1/3	•	. 320	215	110
1/2	70	450	320	. 135
3/4	73	660	480	(67
1	79	600	670	170
11	<b>#</b> 0	1 200	<b>*50</b>	237
2	80	1 600	t 260	320
,	<b>8</b> 1	2 350 ·	1 990	450
<b>5</b>	<b>67</b>	3 900	3 140	700
7 }	<b>85</b>	3 500	4 800	<b>850</b>
10	<b>0</b> 5	7 506	6 400	l 125
15	84	11 100	<b>9</b> 500	1 575
20	47	14 500	12 750 n	1 875
25	•	16 100	15 700	2 200
30	<b>67</b>	21 300	19 100	2 150
40	••	28 700	25 500	1 250
50	••	35 700	31 #00	4 900
**	••	43 000	38 400	4 750
75	*	53 000	47 800	5 250
100	. *	71 006	43 800	7 250
125	* 96	87 500	79 500	<b>+ 000</b>
156	91	105 000	75 600	₹ 500
200	91	140 000	127 500	12 500
250	••	175 000	159 000	16 000

[🕒] En el caso de un funcionamiento no continuo, aplicar un coeficiente de simultaneidad, determinado a ser posible mediante ensayos.

[😁] Para un ventilador o una bomba que impulse al fluido hacia el exterior, utilizar los valores de la última Columna.



## FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

CALCULO DE CARGAS VARIABLES EN VERANO

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. Tel.: 521,40-20 Apdo. Postai M-2285

## CALCULO DE CARGAS VARIABLES EN VERANO.

En la época de verano, la carga térmica se debe fundamentalmente a la energía que entra del exterior del local, aunque también in fluye la generada dentro del local por personas, equipos, iluminación, etc.

Respecto a las cargas térmicas generadas en el interior, se calculan según se analizó anteriormente en la sección de cargas tér
micas en invierno (personas, equipo, iluminación, etc.)

En referencia a las cargas térmicas generadas por las condiciones exteriores para el caso de verano, vale la pena hacer varias acla raciones:

- 1.- Parte de la carga térmica exterior se dá debido a la -transmisión por muros, pisos, techos, ventanas, puertas, etc., y la cual es provocada por la diferencia de tempe raturas entre el exterior y el interior.
- 2.- Otra parte de la carga térmica exterior se produce debido a la "Radiación Solar" que llega a los mismos elementos antes mencionados (muros, ventanas, etc.)

A continuación se analiza la forma de calcular las cargas térmicas correspondientes a las diferentes barreras exteriores, para lo cual dividiremos el problema en dos secciones:

- a) VENTANAS
- b) MUROS Y TECHOS

GANANCIA SOLAR A TRAVES DE VENTANAS:

La cantidad de energía que puede entrar a un local por una ventana depende de varias variables:

- 1.- Latitud del lugar en estudio.
- 2.- Orientación de la ventana.
- 3.- Mes y hora de estudio.
- 4.- Nubosidad del cielo.
- 5.- Tipo de cristal empleado.
- 6.- Elementos de sombra existentes.
- 7.- Diferencia de temperaturas entre el exterior y el interior.

En las páginas siguientes se dan varios tipos de tablas que nos permitirán calcular numéricamente la cantidad de energía que por radiación entra a un local a través de sus ventanas.

Las primeras seis tablas sirven para calcular la cantidad de energía solar que puede entrar por una ventana, dependiendo de la Latitud del lugar. del mes, de la hora y de la orientación de la ventana.

El cálculo de esta ganancia de energía se logra mediante la aplicación de la siguiente fórmula:

donde:

Q= Energia que entra al local (kcal/hr)

A= Area de la ventana en estudio (m²)

(FGS) = Factor de ganancia solar (kcal/hr. m²) (de tablas)

F = Factor de forma

#### TABLA 15. APORTACIONES SOLARES A TRAVÉS DE VIDRIO SENCILLO

kcal/h × (m³ de abertura)

•

O°

O

0º LATITE	JO NORTE						HOR	A SOL	_AR						0. LATITUE	SUR
Epoca	Orientación	•	7.		9	10	11	12	13	14	15	16	17	18	Orientación	Época
	N N E E	0 0 0	122 322 314	176 423 398	200 417 366	211 360 752	217 267 116	222 143 38	217 54 38	211 38 38	200 35 35	176 29 29	122 16 16	000	\$ 5	
21 Junia	S E · S O	0	100 16 16	113 29 29	73 35 35	40 38 38	36 36 38	38 30 38	38 38 38	38 38 40	35 35 73	29 29 113	16 16 100	0 0 0	H E H H O	22 Diclembre
	O N O Horizontal	0	16 16 75	29 29 235	35 35 398	38 38 518	38 54 588	143 612	116 267 588	252 360 518	356 417 398 165	398 483 235	314 322 75	000	O S O Horizontal	<u></u>
22 Julio	М Н E E S E	, 0 0	320 328	414 410	406 377	336 260	233 116	116 38	43 38	38 38	35 35 35	29 29 29	16 16	0	\$ \$ E E	21 Enero
y 21 Mayo	\$ \$ 0	0	16 16	29 29 29	35 35 35	38 38	38 38 38	36 38 36	38 38 116	38 48 260	35 97 377	29 141 412	16 124 328	0	N O	Y 21 Noviembre
	H O Horizontal H	0	16 78 46	29 746 75	35 409 84	38 528 89	44 605	116 631 92	233 604 92	336 528 89	404 409 84	414 263 75	320 84 44	0	S 0 Horizontal	
24 Agosto	H E E S_E	0	298 349	382 442 214	360 401 176	276 279 94	165 125 41	65 38 38	38 38 38	38 38 38	35 35 35	32 32 32	16 14	0	S E E H E	20 Febrero
20 Abril	\$ 0 0_	0	16	32 32	35 35	38 38	38 38 38	38	38 40 124	38 94 279	35 176 401	32 214 442	16 181 349	000	N 0	23 Octubre
	H O Horizontal	0	16 84	32 263 12	35 406	38 558 38	38 634	65 664 38	165 634 38	276 558	360 406 35	382 263 32	298 84 16	0000	S O Horizontal	•
2 Septiambre	H E E S E	0 0	257 363 257 16	320 320	273 409 273 25	184 290 184 38	84 127 84 38	38 38 38 38	38 38 38 38	38 38 38 38	35 35 35 35	32 32 32 32	16 16 16	o o o o	S E E H E	22 Marzo
22 Marzo	\$ 0 0 H 0	0 0	16 16	32 32 32	35 35 35	38 38 38	38 38 38	38 38 38	127 64	184 290 184	273 409 273	120 452 120	257 363 257	0	N 0 0 5 0	Y 22 Septiemb
	Harizontal  N  N E  E	0 0	16 181 349	263 32 214 442	35 174 401	38 94 279	38 40 124	38 38 38 36	38 38 38	38 38 38	35 35 35 35	32 32 32 32	14 14 14	0000	Horizontal , \$ \$ E	
23 Octubre V 20 Febrera	S E S S O	0	298 46 14	382 75 32	340 84 15	274 89 38	145 92 38	65 92 45	38 92 165	38 89 276	35 84 360	32 75 382	14. 44 298	0 0	H E ·	20 Abril y 24 Agosto
20 1 201 410	O N O Horizontal	0	16 16 84	32 32 263	35 35 404	36 36 558	38 38 634	38 38 644	124 40 634	279 94 558	401 176 404	214 214 263	347 181 84	000	0 5 0 Horizontal	
	/- HE	0	16 124 328	141 412	. 35 97 377	38 48 260	38 38 116	38 38 38	36 38 38	38 38 38	35 35 35	29 29 29	16 16 16	0	S S E	
1 Noviembre y 21 Enero	S E S / S O	0	329 100 16	144 29	404 165 35	334 174 38	233 179 43	114 161	179 233	36 176 336	35 165 406	298 144 414	16 100 320	0	H E H H O	21 Mayo y 23 Julio
	O N G Horizontal	0	16 78	29 29 246 29	35 35 409	38 38 528	38 38 604	36 30 431	114 38 404 38	260 48 528	377 97 409	141 246 29	328 124 78	0	S O Horizontal	
	N H E E	0	100 314 322	113 398 423	73 366 417	40 252	36 116 257	38 38	38 38 54	38 38	35 35 35	29 29	16 16	0	S E E H E	
2 Diciembre	\$ 5 O	0	122 16	176 29 29	200 35 35	211 38 38	217 54 38	222 143 38	217 257	211 360 252	200 417 366	174 423 398	122 322 314	0	N NO	21 Junio
	Horizontal	0	75		35 398	38 518	34 588	412	588	512	73 398		75	0	Horizontal Punto de rocio	Latitud sur
Correcciones	Marco me o ningún r ≤ 1 /0,85 á	narco		tin	ecto d npieza % mái		+ 0	Alti 1,7 % p		m	201	unto perior 14 % (	a 19,	5• C	superior a 19,5 °C + 14 % por 10° C	Dic. o Energ

TABLA 15. APORTACIONES SOLARES A TRAVÉS DE VIDRIO SENCILLO (Cont.)

kcal h × (m² de acertura)

4

100

100

0- LATITU	D NORTE						HOR	A 50	LAR	_					0- LA	TITUD SUR
Época	Orientación	4	7	•	•	10	11.	12	13	14	15	16	17	18	Orientación	Época
	N ME E	51 149 146	119 355 363	135 414 420	122 379 377	119 287 265	116 176	111 75 38	116 38 38	119 38 38	122 35 35	135 29 29	119 21 21	5	S SE	
21 Junio	SE S	48	132	149	116	67 38	38 38	38	38 38	38 38	35 35	29 29	21 21	5	HE	22 Diciembri
	90	5	21	21 21	35 35	38 38	38	38	38	67 765	377	149	132	146	MO	II DICIGINATI
	NO Horizontal	5 10	71 119	21 290	35 450	38 556	48 631	75 659	176 631	287 556	379 450	210	355 119	149 10	SO Horizontal	
	HE E	13 113 135	92 344 366	105 401 428	94 360 385	89 295 265	84   151   116	61 59 38	84 38 38	39 30 30	94 35 35	15	7	13 2	SE SE	
22 Julio	SE S	70 2	154	179	151 35	86 38	38	38 38	38 38	38 38	35 35	19	7	2	ИE	21 Enero
21 Mayo	50	2	19	29	35	38	38	38	38 116	86 265	151	179	.04	70 135	жо	. y 21 Naviembr
	HO Horizontal	2	19	29 290	35 450	38	38 640	59	151	295 549	360 450	40 T		113	SO Horizontal	
	H NE	2 46	40 306	43 52	40 301	40	38 92	38	38 38	40	40	41	40	2	S SE	
24 Agosto	E SE	48	374	254	404 230	282	124	38	38	38	35	29	19	2	NE NE	20 Febrero
√	\$ \$0	2 2	19	29 29	75 35	38 38	38	39	71	38	230	29 254	1 <del>9</del> 214	2	M NO	Y
20 Abril	0 NO	2 2	19	29 29	35	38	38 38	16 38	124	282 217	404 301	442 152	374 306	67 44	0 30	23 Octubre
<del></del>	Horizontal N	2	103	284	452 35	577 38	656 38	478 38	454 38	57.7 3.8	452 35	284	103	2	Horizontal 5	
	HE . E	2 2	241 352	· 279	217 409	122 287	46 127	38 38	36 38	38 38	35 35	29 29	16 16	2	SE E	*
Septiembre y	, <u>se</u>	2 2	263 16	344	330 51	254 65	151 73	57 75	38 73	3 <b>8</b> 65	35 51	29 35	16 16	2	ME M	22 Marzo Y
22 Marzo	<u> </u>	2	16	29	35 35	38 38	38	18	151	254	330 409	344	263 352	2	NO -	22 Septiemb
	HOrizontal	2 2	16 84	29 263	35 133	38 561	637	38 669	46 637	122 561	217 433	263	241		SO Horizontal	
	HE HE	0 0	13 157	27 179	112	38 75	38 38	38	38 38	3 <b>3</b>	35 35	22		o o	SE SE	r
23 Octubre	SE SE	0	320 279	398	193	333	219	124	18	38	35	27	:	3	HE	20 Abril
y 20 Febrero —	\$ \$0	0	13	108	149 35	174 38	192	198	192	333	404	10s 398	279	0	N NO	y 24 Agosto
	NO Horizontal	0	13	27	35	38	38	36	108 38 596	271 75	193 119 377	179 230	320 157 59	0	0 SO Horizontal	•
	М	0	10 73	230 24 100	377	35	38 38	38 38	38	35 35 35	32	24 24	10	0	SE SE	
	NE E SE	0	268	387	358 436	35 252 396	105	38	38	35	32	24	10	0	E NE	21 Mayo
21 Noviembre	\$ \$	0	94	176 24	246 32	760 46	282 84	287 189	282 295	260 396	246 436	176 414	94 298	0	N NO	y
21 Enero	0	0	10	24	32	35	38	38	105	252 35	358 46	187	268 73	0	o so	23 Julio
	Horizontal N	0	10	168	355	474 35	30	569 38	547	474 35	355 32	168	10	0	Horizontal S	
	NE E	0	40 233	75	46	35 246	38 113	38	38 38	35 35	32 32	24 24	10 10	0 0	SE E	
22 Diventile [	SE S	0	268 135 10	117 200 24	254 32	404 295 62	328 314 97	325 214	97 314 328	62 295 404	32 254 442	24 200 417	10 135 268	0	NE N	21 junio
	SO O HO Horizonsal	0	10	24 24	32 32	35 35	38 38	38 38 547	113 38 523	246 35 452	352 46 325	171 75 179	233 40 38	0	o so Horizontal	
	Marct "A	l q		179 efecto	l 325 de	452	<u>523</u>	Altitud				de ro		T	unto de rocio	Latitud sur
Correcciones	o ningur irai × 170,85 ò 1	ca	l	limpiez 5 % m	:a	+	0.7 %	par (	300 m	1		a 19.5			perior a 19,5°C 14 % por 10°C	Dic. o enero

5

# TABLA 15. APORTACIONES SOLARES A TRAVÉS DE VIDRIO SENCILLO (Cont.) kcai/h × (m² de abertura)

20°

20°

O" LATITE	JO NORTE	<u> </u>					HOR	4 SOL	AR						0° LA	TITUD SUR
Época	Orientación	6	7	T•	•	10	11	12	13	14	15	16	17	16	Orientación	Época
	N_	76	uı	90	6.0	51	46	40	46	51	67	90	111	75	\$	
	NE E	219	401	390	330 387	225	103	40	3 0	36	38	12	24	1	SE	
. <b>-</b>	<u> </u>	7.5	168	198	179	260 139	111 -57	38	38	38	38 38	32	24	- 1	E	
21 Junio	S		24	32	3.	38	36	38	38	38	38	32	24		NE NE	22 Ciciemos
			24_	32_	36	38	38	38	57	119	179	198	168	75	NO	0.5.12 5.
	0		24	32	38	38 38	38	3 <b>8</b>	111	260	387	434	401	220	0	
1	Horizontal	30	162	328	477	585	629	678	629	275 585	330 477	390 320	162	220 30	SO Horizontal	•
	N	54	75	62	46	40	38	. 38	38	40	46	62	75	54	5	
	HE E	192	358	374 442	301 393	1 98 26 <b>8</b>	84 124	38	38	38	35	.32	21		SE	
22 Julio	SE	84	189	230	214	154	78	38	30	38	35	32	21	•	NE NE	21 Energ
y	S		21	32	35	30	38	38	38	38	35	32	21		H	21 Energ
21 Mayo	50	-	21	.12	35	38	38	38	78	154	214	230	189	84	HO	21 Noviemi
1	но	1:	21	32	35	3 B	38 38	38 38	124	268 198	393	37.4	401 358	203 192	) 0     50	
i	Horizontal		149	320	474	585	650	680	<b>450</b>	585	474	120	149		Horizontal	
	N	16	27	29	35	31	30	38	30	38	35	29	27	16	5	
ľ	HE E	122	301	320	241 404	135 287	138	38	30 38	38 38	35 35	29	19	5	SE	
24 Agosto	SE	78	241	304	292	765	149	54	38	38	35	29	19	5	HE	
24 790310	\$	5	19	29	3 .	54	65	70	65	54	38	29	19	5	76	20 Febrero
20 Abril	50	5	19	29	35	36	38	54	149	265	292	304	241	78	ОМ	72 O
,	0	5 5	19	29	35 35	38 38	3 B 3 B	3 <b>8</b> 38	138	135	404 241	447	385	143	0	23 Octubre
	Horizontal	13	130	270	452	569	437	447	637	569	452	320 290	301 130	122	SO Horizontal	
	N	0	16	29	15	30	38	24	38	38	35	29	16	ō	5	
	HE E	0	225	235	160	59	38	38	38	38	35	29	16	0	SE	
22 Septiembre	3E	- 0	352 268	368	404 379	325	122	111	30 40	38	35	29	16	0	<u> </u>	
· •	S	, ,	21	59	103	141	170	174	172	141	103	59	21	١٠	ME	22 Marz
22 Marzo	50	-	16	29	35	38	40	111	227	325	379	368	268	710	NO	22 Septiem
	. O	0	16	29 29	35 35	38	38	38	122	2 12	404	10	352	0	0	22 Septien
}	Horizontal	] "	81	252	414	38 537	38 610	38 631	38 610	59 537	160	235 252	225 81	0	S0 Horizontal	
	. N	0	10	24	32	35	38	30	38	35	32	24	10	0	5	
	HE E	0	119	141	70	35	38	38	38	35	32	24	10	0	32	
23 Octubre	38	0	268	394	3 <u>82</u> 433	271 404	132	200	38 73	35	32	24	10	0	HE HE	20 Abril
y Vetubra	S	ا ہ	57	135	204	252	287	301	287	252	206	135	57	ő		20 ~2 Y
20 Febrero	50	0	10	24	32	35	73	200	322	404	433	396	244	•	NO	24 Agosto
].	0	0	10	24	32	35	38	38	132	271	302	.378_	268	0		,
, i	Horizontal	0	48	184	344	35 . 443	38 531	38 564	38 531	35 463	78 344	747	119	0	50 Horizontal	
	<u> </u>	1 0	•	21	29	35	35	-35	35	35	29	21		0	,	
	HE	0	65	70	38	35	35	35	35	35	29	21		0	25E	•
1 Noviembre	SE.	- 0	198	347	344	428	366	35 246	124	35 43	29	21	•	0	HE	21 Mayo
	š	ŏ	75	167	77	333	368	182	344	333	271	107	75	ŏ	77	¥
21 Enero	<u> </u>	<b>1</b> °		21	27	43	124	246	344	428	444	390	198	۰	но	23 Julio
i	0	8		21	29	37	35 35	35 35	116	244 35	344	347	192	0	1 . 1	
	Horizontal		13	130	271	396	466	488	466	396	273	130	13	ŏ	Horizontal	
	M 0 5 19 29 32 35 35 32 29 19 5 0	s														
ſ	HE	0 1	38	4	32	32	35	35	35	32	29	19	3	0	SE	
<b>├</b>		+ :	151	377	328 452	230 431	363	763	162	32 34	29	19	5	0	E HE	
22 Diciembre	3	١	67	200	361	358	396	404	396	358	301	200	67	ő	H	21 Junie
	50	0	3	19	29	54	162	243	363	431	452	377	160	٥	HO	2. 23
	0	0	[ 5	10	29	32	35	35	43	230	120	320	151	٥	<u></u>	•
	HO Horizontal	0	10	97	29 249	32	35 436	35 441	35 434	32 366	32 249	97	36 10	0	50 Horizontal	
·			<u> </u>			Ļ				ļ	L		ا	Ļ	1	
1	Marco metálio	:0	00	fecto	de	1	A	titud		P	unto	de roc	io	P	unto de rocio	Latitud sur
Correcciones	o ningún marc		I .	impiez				por 30	M O			a 19,			perior a 19,5° C	Dic. o enero
ļ	= 1/0,85 à 1,1	17	1 15	% m	ěπ.	J				J -	14 %	por 10	>- C	ļ +	14 % por 10° C	+7%

TABLA 15 APORTACIONES SOLARES A TRAVÉS DE VIDRIO SENCILLO (Cont).  $kcal/h \, \times \, (m^a \ da \ abertura)$ 

30°

30°

O LATIT	UD NORTE	1				1	IORA	SOLA	R						· 0º LAT	TUO SUA
Época	Orientación	6	7	•	•	10	11	12	13	14	15	14	17	18	Orientación	Época
	H HE E	284 292	78 377 423	48 352 436	38 263 387	38 149 265	36 51 119	38 38 38	38 38	34 34 34	38 38 38	48 32 32	78 27 27	13 13	S SE E	
21 Junio	SE S SO	113 13 13	203 27 27	32 32	244 38 38	198 40 38	51 38	44 57 46	38 51	38 40 198	38 38 244	32 32 244	27 27 203	13 13 113	ME M HO	
	0 HO Horizontal	13 13 51	27 27 165	32 12 355	38 38 488	38 30 584	38 36 450	16 18 478	119 51 430	245 149 588	367 263 488	434 352 335	423 377 145	292 284	O SO Horizontal	22 Diciembr
	H ME E	252 270	54 355 420	38 333	35 241 393	124 268	38 43	38 38	38	38 38 38	33 35 35	38 32 11	34 24 24	59 10	S E	
22 Julio y 21 Mayo	SE S	113	222 24 24	271 32 32	271 38 35	225 54 38	143 73 38	59 81	38 73	38 54 225	35 38 271	12	24 24 222	10	HT.	21 Enero Y
	O NO Horizontal	10 10 40	24 24 179	32 32 333	35 35 477	38 38 580	38 38 640	38 38 467	119 43 440	268 124 580	393 241 477	233 333 333	420 355 179	271 252 40	O SO Horizontal	21 Noviembi
	NE N	16	21 292	29 27 1	35 179	35 73	38 38	34	38	35 35	35 35	29 29	21 21	14 5	S SE	
24 Agosto	SE S	100	398 245 21	344 15	401 149 73	303 127	124 222 157	105 170	40 157	35 35 127	35 35 73	29 29 35	21 21 21	5 1 5	HE H	20 Febrera y 1
20 Abril _	30 0 HO	5 5	21 21 21	29 29 29	35 35 35	35 35 35	36 38	105 38 38	124 38	274 73	149 461 179	344 447 271	265 398 292	100 179 149	0 30	23 Octubre
	Horizontal H NE	0	127 13 200	290 27 244	436 32 108	35 40	38	36 36	38 38	35 35	32 32	290 27 27	127 13 13	7 6 G	Horizontal \$ \$E	•
2 Septiembre	SE S	0 0	336 265 24	355 48	390 412 162	279 162 222	304 265	181 284	38 67 265	35 35 222	32 32 162	27 27 48	13 13 24	0	HE N	22 Marzo Y
22 Marzo	0 NO	0	13 13	27 27 27	32 32 32	35 35 35	38	38 38	306 130 38	382 279 40	390 108	355 428 244	336 200	0	. 0 \$0	22 Septiemb
	Horizontal N NE	3	67 2 89	219 21 105	366 29 48	32 32	35 35	31 38	35 35	32 32	366 29 29	219 21 21	67	0	Horizontal \$ SE	<u> </u>
23 Octubre	SE S	0	198 48	385 154	358 442 249	254 431 328	114 258 377	38 249 393	15 127 377	32 40 328	29 29 249	21 21 154	48	0	HE N	20 A
20 Febrero	50 0 NO	0	8	21 21 21	29 29 29	32 32	127 35	249 38 38	368 114 35	431 254 32	442 358 48	385 366 105	198 214 89	0		24 Agosto
	Horizontal N NE	0	16 - 21	132 14 43	271 24 24	387 29 29	32 32	32 32	463 32 32	387 29 29	271 24 24	132 16 16	16 2 2	0	Horizontal S SE	
1 Noviembre	SE S	0	73 75 27	295 344 184	314 436 295	225 419 371	94 387 417	32 282 431	173 417	29 62 371	24 24 295	16 16 184	2 2 27	0 0 0	E HE H	21 Mayo
21 Enero	0 NO	0		16 16	24 24 24	62 29 29	173 32	32	387 94	439 225	436 314	344 295	75 73	0	но 0 50	23 Julio
	Horizontal 0 5	73	192 24	295	32 364	32 393		29 295 29	192	73	5	0	Horizontal \$			
	ME E SE	0	0	309	284 425	29 217 419		32 32 292	32 32	29 29 75	24 24	10	0	0	SE E HE	
22 Distembre	so 0	0	0	10	306 24 24	75 75	12	32	431 387 86	385 439 217	284	173 309 249	0 0 0	0	0 N	21 Junio
	Horizontal	3	0		172	29		325	330	29 263	172	27 51	0		50 Horizontal	Latitud ave
Correcciones	Marco metál o ningún ma = 1/0,85 ó 1	rco		Defecto limpio 15 % r	ES	+		ltitud por 3	0 <b>0</b> m	1	uperio	de ro rail9 por 1	,5° C	su	Punto de rocio perior a 19,5 °C 14 % por 10° C	Latitud sur Dic. o Enero + 7 %

TABLA 15. APORTACIONES SOLARES A TRAVÉS DE VIDRIO SENCILLO (Cont.) kcal/h × (m² de abentura)

40°

400

0º LATITE	JD NORTE						HORA	SOL	AR						<b>0•</b> LA`	TITUD SUR
Época	Orientación		7	•	•	10	11	12	13	14	15	16	17	10	Orientación	Época
	N	8.7	54	32	35	38	38	3.8	38	38	35	32	54	56	ISÍ	<del></del>
-	₩.E 'E	320 341	360 436	303 439	198	81 257	119	38	38 38	3.8 3.8	35	32	27	16	3.E E	
-	SE	138.	238	295	101	268	192	97	38	38	35	32	1:27	16		
21 Junio	\$ . SQ	16 16	27	32	51 35	94	119 38	92	119	94 258	301	32 295	27 238	16	H	22 Diciembre
i-	0	16	27	32	35	38	38	38	110-	257	385	439	436	138	0 א	
1	HO Herizontal	16 84	27 222	363	35 485	3 B 569	38 629	38	38 629	81 569	198	303 363	360 222	320	so	
	N	65	38	32	35	38	38	38	38	38	35	32	38	65	Horizontal S	
	HE E	287 320	344 436	284	179 390	70 265	38 116	. 38	38 38	38	35 35	32	27	13	SE E	
22 Julio	SE	146	260	322	119	298	222	113	40	38	35	32	27	13	NE NE	21 Enero
¥	\$ \$0	13	27	35	70 35	119	170	187	170 222	119 298	339	35	27	13	N NO	¥
21 Mayo	0	13	27	32	35	38	38	38	116	265	390	444	436	320	- 70	21 Noviembri
	NO Harizontal	13	19B	32 341	35 463	38 550	410	38 631	38 610	550	179 463	284 341	198	287 65	SO Horizontal	
	н	19	23	-29	35	38	21	38	38	38	35	29	21	19	5	· · · · · · · · · · · · · · · · · · ·
	HE E	184	398	222 439	124 393	43 273	38 122	38 38	38 38	38	25 35	29	21 21		SE E	
24 Agosto	se.	130	284	374	396	377	290	179	67	38	15	29	21	•	NE	20 Febrero
у	\$ \$0	8	21	65 29	138 35	241 38	263 67	179	263 290	241 377	138	65 374	21	130	, и	Y
20 Abril		8	21	29	35	38	38	- /-	122	273	396	439	398	227	0	23 Octubri
ŀ	NO * Horizontal	8 24	21 127	29 271	35 406	38 501	38	36	38	43	124	222	274	184	so	
	N	0	13	24	32	35	_556 35	38	556 35	501	406 32	271	127	24	Horizontal \$	
	NE	0	138	157	70	35	35	38	35	35	32	24	13	0	SE -	
2 Septiembre	<u>E</u> SE	- 0	314 257	404 390	377 439	268 425	122	244	111	35	32	24	13	0	E	. 22 Mana
y	S	0	32	119	219	298	330	129	330	298	219	119	32	0	N	' 22 Marzo Y
22 Marzo	<u>so</u>	0	13	24	32	38 35	111	38	360 122	425 268	439 377	390 404	257,	0	NO 0	22 Septiembre
1	NO	0	13	24	32	35	35	38	35	35	70	157	130	o	so	•
	Horizontal N	0	57 5	181	336	414 29	477 32	32	477 32	29	336	181	57	0	Horizontal	
Ì	HE .	. 0	94	89	32	29	32	32	32	29	27	16	5	ŏ	2 32	•
⊢	E SE	0	230	317 358	336	230	105	32	170	2*	27	16	5	0	€	
23 Octubre	\$	o	57	160	282	142 373	417	439	417	54 171	27 2 <b>82</b>	160	57	0	NE .	20 Abril
20 Febrero	<u>so</u>	0	5	16	27	<u> </u>	170	290	390	442	336	358	219	0	но .	24 Agosto
1	HO	ő	5	16	27	29 29	35	32	105 32	238	330 32	317	230 94	0	SO SO	•
	Horizontal .	0	21	78	173	273	333	349	333	273	173	78	21	0	Horizontal	
	M ME	0	0	32	19	24 24	27 27	29 29	27 27	24 24	19	:		0	S SE	•
	E	. 0	0	246	271	200	390	29	27	24	19		0	0	E	
21 Noviembre	SE .	0	0	295 160	390 262	377	428	314 450	189 428	377	282	140	0	0	NE N	21 Mayo
21 Enero	<u> </u>	- 0	0	-	19	73	189	31a 29	390	200	390 271	295		0	NO 0	23 Julio
	NO O	0	0		19	24	27	29	27	24	19	12	] ;	0	50	
	Horizontal	0	0	43	116	.198 24	249	279	249	198	116	43	0	0	Horizontal	
İ	HE	. 0	0	19	16	24	27	27	27	24	16	5	ő	ŏ	2 S B	
<b>-</b>		0	0	195 238	343	184	84	27	27	24	16	5	0	0	£	
22 Diciembre	SE S	0	0	138	268	401. 363	3 85 428	311	198	343	19 268	138		0	· NE	21 Junio
22 Diciembre	50	0	0	5	19	81	198	311	385	401	363	238	0	0	HO	
	NO.	0	0	5	16	24 24	27 27	27 27	84 27	184	233	195		0	0 50	
·	Horizontal	0	0	21	36	149	206	230	204	149	80	21	0	0	Horizontal	
	Marco metáli		٥	efecto	de		Altit	tud		l .	into di				to de rocio	Latitud sur
Correcciones	o ningún ma			limpie:		+ 0.	7 % p	or 300	m		eniora 4 % po				ora 19,5 °C % por 10° C	Dic. o Enerc
	× 1/0.85 6 1,	. ,	I "	5 % m	dī.					_ ''		J 10'	~		~ 000 10° C	7 / 7

TABLA 15. APORTACIONES SOLARES A TRAVÉS DE VIDRIO SENCILLO (Cont.) kcal/h × (m² de abertura)

50°

50°

0º LATIT	UD NORTE	1 _					ĤOI	RA SO	LAR						O- LATIT	UD SUR
Época	Onentación	6	,		,	10	11	12	13	14	15	16	17	10	Orientación	Época
	M HE E	78 341 377	32 339	32 254 439	35 135 368	38 43 254	38 30	38 38	38 38 30	38 .38 38	15 75 75	32 32 32	32 27 27	78 21 21	S SE	
21 Junio	3 E 5	173 21 21	276 27 27	341 43 32	366 105 35	336 184 38	265 235 62	165 252	67 235 265	30 184 336	35 105 364	32 43 341	27 27 274	21 21 173	NE H HO	22 Diciembri
	O NO Horizontal	21 21 119	27 27 233	32 32 360	35 35 469	38 38 534	38 38 580	38 38 596	111 34 580	254 43 534	348 135 469	439 254 360	444 339 233	377 341 119	0 SO Horizontal	1
	H HE E	57 309 355	29 317 436	32 235 442	35 119 382	3 <b>4</b> 40 260	38 38 116	38 38 38	38 38 38	38 38 38	35 35 35	32 32 32	29 27 27	57 16 16	- S SE E	
22 Julio y 21 Mayo	SE S SO	176 16 16	290 27 27	363 57 32	387 135 35	368 217 38	295 265 70	189 787 189	70 265 295	38 217 368	35 135 387	32 57 363	27 27 290	16 16 176	H H HO	21 Enero
Zi Mayu	NO Horizontal	16 16	27 27 203	32 32 322	35 35 431	38 38 509	38 38 556	38 38 572	114 38 554	260 40 509	382 119 431	442 235 322	436 317 203	355 309 89	0 50 Horizontal	21 Noviembr
	H HE E	21 206 254	21 254 393	27 189 428	32 , 84 382	35 35 265	38 38 122	38 38 30	30 30 38	35 35 35	32 32 32	27 27 27	· 21 21 21	21 10	S SE E	
24 Agosto	. S	143 10 10	301 24 21	390 97 27	425 198 32	414 284 35	358 352 108	241 374 241	108 352 358	35 284 414	32 198 425	27 97 390	21 24 301	10 10 143	ME M NO	20 Febrero Y
20 Abril	, O NO Horizantal	10 10 35	21 21 124	27 27 241	32 32 355	35 35 433	38 38 485	38 38 501	122 38 485	265 35 433	382 84 355	428 189 241	393 254 124	254 206 35	0 SO Horizontal	23 Octubre
	N NE E	0	10 157 276	21 124 374	27 43 352	32 32 252	37 32 116	32 32 32	32 32 32	32 32 32	27 27 27	21 21 21	10 10 10	0 0	S SE E	
22 Septiembre Y 22 Marzo	5E 5 50	0	233 29 10	377 138 21	439 252 27	442 355 46	393 406 151	284 428 284	151 404 393	46 355 442	27 252 439	21 138 377	10 29 233	0	HE HO	22 Marzo
22 Marzo	O NO Horizontal	0	10 10 40	21 21 132	27 27 238	32 32 320	32 32 379	32 32 401	116 32 379	252 32 320	352 43 238	174 124 132	276 157 40	000	0 50 Horizontal	22 Septiembre
	H HE	0	78 198	10 54 268	19 19 284	24 24 214	27 27 94	29 29 29	27 27 27	24 24 24	19 19 19	10 10	0	0	S SE E	
23 Octubre  y  20 Febrero	SE S SO	. 0	187 46 0	301 143 10	393 268 19	425 371 65	390 425 187	311 452 311	187 425 390	65 371 425	19 268 393	10 143 301	0 46 187	0 0	H H HO	20 Abril y
20 Pebrero	O HO Horizontal	0	0 0 5	10 10 51	19 19 122	24 24 195	27 . 27 233	29 29 254	94 27 233	214 24 195	284 19 122	268 54 \$1	198 78 5	0 0 0	0 50 Horizontal	24 Agosto
	N NE E	0 0 0	0	2 13 138	10 10 171	14 16 154	21 21 75	24 24 24	21 21 21	16 16 16	10 10 10	2 2 2	000	0	S SE E	
21 Noviembre y 21 Enero	SE S SO	0	0	168 92 2	257 189 10	344 314 57	344 387 181	290 414 290	181 387 344	314 344	169 257	92 168	. 0	0	HE. H HO	21 Mayo y 23 Julio
21 Energ	O NG Horizontal	0	0	2 2 10	10 10 35	16 16 81	21 21 127	24 24 143	75 21 127	154 16 81	171 10 35	138 13 10	0	0 0 0	0 50 Horizontal	
. [	NE E	0	0	0	8 73	13 13 127	16 16 62	19	16 16	13 13 13	8	0	0	0	. SE . E	
?? Diciembre	SE S SO	0	0	0	111 84 8	290 268 67	355 168	271 382 271	168 355 314	67 268 290	84 111	0	0 0	0	HE H NO	21 Junio
	O NO Horizontal	0	0	0	13	13 13 51	16 16 89	19	62 16 89	127 13 51	73 8 13	0	0	0	O SO Horizontal	
Carrecciones	Marco metál o ningún ma × 1/0,85 ó 1	rco		efecto limpiez 5 % m	:a .	+ (		titud por 30	0 m			,dero	,5 °C	su	unto de rocio perior a 19,5° C 14 % por 10° C	Latitud sur Dic. o enero + 7 %

### TABLA 16. FACTORES TOTALES DE GANANCIA SOLAR A TRAVÉS DEL VIDRIO (coeficientes globales de insolación con o sin dispositivo de sombra o pantalla)*

Aplicar estos coeficientes a los valores de las tablas 6 y 15 Velocidad del viento 8 km/h. Angulo de incidencia 30ª. Con máxima sombra de persiana

TIPO DE VIDRIO	SIN PERSIANA O PANTALLA	IN Littones cales	VAS VENE( ITERIORES horizontales inclinedos RTINAS DE	• 0 verti- 45°	VENE EXTE	SIANAS CIANAS RIORES horizoniales idos 48º	EXT	RSIANA TERIOR Inclinados Incales)	DE Circulació arriba y lat	EXTERIOR TELA n de aire eralmente
		Color	Color media	Color	Cotor	Exterior ciero Interior cocurd		Color os	Color claro	Color medio u oscuro
VIDRIO SENCILLO ORDINARIO	1,00	0,56	0,65	0.75	0,15	0.13	€,22	0, 15	0, 20	0.25
VIDRIO SENCILLO 6 mm	0,94	0,56	0,65	0,74	0,14	0, 12	0,21	0, 14	0,19	0,24
VIDRIO ABSORBENTE								T -		1
Coeficiente de absorción 0,40 a 0,48 Coeficiente de absorción 0,48 a 0,58	0,73	0,56 0,53	0.62 0,59 0.54	0,72 0,62 0,56	0, 12 0, 11 0, 10	0, 11 0, 10 0, 10	0, 18 0, 16 0, 14	0, 12 ° 0, 11 0, 10	0, 16	0, 20 0, 18
Coeficiente de absorción 0,56 à 0,70	0,62	0,51	0,34	0,38	0, 10	0, 10	0, 14	0, 10	0,12	0, 16
VIDRIO DOBLE Vidrios ordinarios Vidrios de 6 mm	0,90 0,80	0,54	U.61 0.59	0,67	0,14	0,12	0, 20 0, 18	0,14	0, 18	0.22
Vidrio interior ordinario		0, 52		0,65		,	, ,	l	}	
Vidrio ext. absorbente de 0,48 a 0,56. Vidrio intenor de 6 mm	0,52	0, 36	0,39	0,43	0, 10	0, 10	0,11	0, 10	0.10	0.13
Vidrio ext. absorbente de 0,48 a 0,56	0,50	0,36	0,39	0,43	0, 10	0, 10	0,11	0,10	0,10	0,12
VIDRIO TRIPLE					T			,		
Vidria ordinario Vidria de 6 mm	0,83 0,69	0,48 0,47	0,56	0,64	0, 12	0,11 0,10	0, 18 0, 15	0,12	0,16	0, 20
VIDRIO PINTADO	- °, 87	<u> </u>	- 0,32	<del>  "." -</del>	<del></del>	<del></del>	•,,,,	<del>                                     </del>		<del>  ", ",</del>
Celor claro	0,28				j	İ			!	İ
Color media	0.39		<b>\</b>	}	}	1		}	ì	1
Color oscuro	0,50			l	l	<u>L</u>		1	ļ	į .
VIDRIO DE COLOR ******										$\vdash$
Ambar	0,70		1			Ι .		ļ	ŀ	
Reje decuro	0,56		ŀ			:				1
Azul	0,60		· ·	}	}			<u> </u>	1	}
Gns	0,32			1.	ŀ	J		]	ļ .	[
Gris-verde	0,46			ł			•	1		1
Opelescente clero	0,43			1	1				ł	
Opelescente oscuro	0,37		1		١.	!			ł	·

TIPOS DE VIDRIO O DISPOSITIVOS	<u> </u>	COEFICIENT	£ <b>\$</b>	Factor solar**
DE SOMBRA*	Abserción (e)	Reflexión (r)	Transmisión (t)	ractor adias
Vidrio ordinerio Placa regular 0,65 mm Vidrio absorbente térmico	0,06 0,15 según fabricante	0.08 0.08 0.05	0.86 0.77 (1-0,5-e)	1.00 0.94
Persiana veneciana, color ctaro color medio color medio color obscuro	0.37 0.58 · 0,72	0.51 0.39 0,27	0.12 0,03 0,01	0.56*** 0.65*** 0.78***
Tela de fibra de vidrio blanquecina (5.72-61/58) Tela de algodón, beige (6.18-91/36) Tela de fibra de vidrio, gris claro Tela de fibra de vidrio, color canela (7.55-57/29) Tela de vidrio blanca con franjas doradas Tela de fibra de vidrio, gris obscura	0.05 0.26 0.30 0.44 0.05 0.80	0.60 0.51 0.47 0.42 0.41 0.29	0.35 0.23 0.23 0.14 0.54 0.11	0.48*** 0.56*** 0.59*** 0.64*** 0.65***
Tela «Dacron» blanca (1.8-86/81) Tela de algodón, gris obscura con revestimiento de vinito (análoga al estor)	0.02	0,28 0.15	0.7 <b>0</b> 0. <b>00</b>	0,76***
Tela de algodón, gris obscura (6.06-91/38)	0.02	0.28	0,70	0.76***

Los factores correspondientes a las diverses cortinas serán sólo a titulo de guía, ya que el material resimente empleado en las cortinas puede ser de diferentes colores y texturas; las cifras entre parentesis son onzas por yarda cuadrada, y números de hebras de la urdimbre.
 *** Comparado con el vidrio ordinario.
 *** Para dispositivo de sombra combinado con vidrio erdinario.

Las dos últimas tablas presentadas en la página anterior enlistan varios factores de corrección que modifican la ganancia solar dependiendo del tipo de vidrio que se emplee y de los dispositivos de sombra instalados como cortinas o persianas.

Además de emplear las tablas anteriores para el cálculo de la enegía que entra al local por sus ventanas, debemos de recordar que por el hecho de existir una temperatura mayor en el exterior, habrá una cantidad de energía que entrará por transmisión por la ventanas. Esta cantidad de energía se calcula en forma idéntica a como se señaló en el capitulo anterior de cargas térmicas en in vierno, o sea mediante la aplicación de la siguiente ecuación:

#### Q=UxAxAT

Haciendo uso de todo lo anterior, se habrán calculado todas las ganancias de energía que recibe un local a través de sus ventanas. Resulta conveniente aclarar que cuando en un local existen varias ventanas y/o muros al exterior, con diversas orientaciones, es necesario hacer un analisis detallado para encontrar el mes y la hora críticos y con éllo poder seleccionar el equipo adecuado que cubra las necesidades del local en cualquier época del año.

GANANCIAS DE ENERGIA EN VERANO A TRAVES DE MUROS Y TECHOS.

Como ya se mencionó anteriormente, la ganancia de energía que entra a un local por sus muros y azoteas se debe tanto a la transmisión, como a la radiación.

Para hacer sencilla la solución de este problema, fué diseñado un método llamado de "Diferencia de Temperaturas Equivalente"; este método consiste en el cálculo experimental de la diferencia de temperaturas que debiera de haber entre el exterior y el interior para provocar, por pura transmisión, el efecto total logrado en la realidad por transmisión y radiación a traves de muros y techos. En las páginas siguientes se proporcionan tablas que dan los resul tados experimentales obtenidos y que dependen de: orintación del muro, densidad del muro, y hora del día; y para azoteas depende tam bién de si está o no sombreada o rociada con agua.

Para el cálculo de la energía que se gana en un local a través de sus muros y azoteas, lo único que se requiere es la aplicación de la siguiente ecuación:

#### Q=UxAxATe

donde:

Q= Energía recibida dentro del local (kcal/hr)

U= Coeficiente de transmisión total del muro o techo (kcal/hr.m²•C)

A = Area del muro o techo (m²)

Te= Diferencia de temperaturas equivalente entre el exterior y el interior. (de tablas)

TABLA 19. DIFERENCIA EQUIVALENTE DE TEMPERATURA (°C)

Muros soleados o en sombra*

Valedero pera muros de color oscuro, 35 °C de temperatura exterior, 27 °C de temperatura interior, 11 °C de variación de la temperatura exterior en 24 h. mes de Julio y 40° de latitud Norte °°

	PESO DEL											Н	ORA	sou	AR		HORA SOLAR  MAÑANA TARDE MAÑANA													
RIENTACIÓN	MURO	,			MAÑA	NA								TAF	DE							М	AÑA	NA						
	(kg/m²)	4	7		•	18	11	12	13	14	13	14	17	18	19	29	21	22	23	24	1	2	3	4	1					
ME .	106 386 300 766	2.8 -0.5 2.2 2.8	0,3 -1,1 1,7 2,8	12,2 - 1, 1 2,2 3,3	12.8 2.8 2.2 3.3	13.3 13.3 2.2 3.3	10.4 12.2 5.5 3.3	7,8 11,1 8,9 3,3	7,2 8,3 6,3 5,3	8.7 8.5 7.8 7.8	7,2 6,1 6,7 8,9	7,8 4,7 5.5 7,8	7,0 7,2 6,1 6,7	7.8 7.8 4.7 1.5	4.7 7.2 4.7 3.5	3,8 6,7 6,7 5,3	4,4 4,1 4,1 5,3	3.3 3.3 5.3 5.3	2,3 4,4 5,0 3,5	1,1 3,3 4,4 5,5	2, 2 3, 9 5, 0	-1,1 1,1 3,3 5,0	-1,7 0,3 3,2 4,4	2.2 6 2.6 1.9						
£	100 300 500 700	0,5 -0,3 2.0 4.1	9,4 -0,5 2,8 3,5	14.7 4 3.3 5.5	16.3 11,7 4,4 3.9	20,0 16,7 7,8 4,4	19,4 17,2 11,1 3,0	17,8 17,2 13,3 8,5	11, 1 10, 6 13, 9 8, 3	4,7 7,8 13,3 10,0	7,2 7,2 11,1 10,6	7,8 6,7 10,0 10,0	7,8 7,2 6,9 9,4	7.8 7.8 7.8 8.9	6,7 7,2 7,8 7,8	3.3 4,7 7,8 4,7	4,4 4,1 7,2 7,2	3.3 5.5 4.7 7.8	2,2 4,4 6,1 7,8	1,1 2,8 5,5 7,8	0 2,2 1.0 7,2	-0.5 1.7 4.4 7.2	-1,1 0,5 3,9 4,7	-1,7 0,5 3,9 6,7	-1,7 0 3,3 6,7					
SE	100 310 500 700	1.3 0.3 1.9 1.0	23 6,3 4,4	7,2 0 3,3 4,4	10,6 7,3 3,3 4,4	14,4 11,1 3,3 4,4	15.0 13.3 & 1 2.9	15.4 15.6 6.9 3.3	14,4 14,4 9,4 4,1	13.3 13.9 10.6 7.8	10,4 11,7 10,4 6,3	6.7 16.8 19.9 8.9	1.3 4.3 14.1	7.8 7.8 7.8 8.9	6.7 7.2 7.2 8.3	5.5 6.7 6.7 7.8	4,4 6,1 6,1 7,2	2.3 2.5 2.5 4.7	2,2 4,4 5,5 6,7	1,1 2,3 3,3 6,7	0 2,8 5.0 4,1	-0,3 2.7 5,9 4,1	4.8 1,7 4.4 8.3	-1,1 1,7 -4,4 5,5	-1, 1 1, 1 3, 1 5, 0					
y	9 9 9 9	-0,5 -8,5 2.3 1.9	-1,1 -1,7 -2,2 3,3	- 2,2 - 2,2 1,1 3,3	0,5 -1,7 1,1 1,0	2,2 -1,1 1,1 2,2	7,8 3,9 1,7 2,2	12,2 6,7 2,2 2,2	18,8 11,1 4,4 2,2	14.7 13.3 4.7 2.2	15.6 13.9 0.3 1.9	14.4 14.4 8.9 8.5	11,1 12,6 16,0 7,3	8,9 11,1 10,0 7,8	6.7 8,3 8,3 6,3	3.5 4.7 7.8 8.9	3.9 3.3 4.1 9.9	3,3 4,4 8,5 7,8	1,7 3,3 5.0 6,7	1, 1 2, 2 4, 4 5, 5	0,\$ 1,1 4,4 5,5	0, 5 0, 5 3, 9 5, 0	0 0.5 3,3 3.0	3,3	2					
<b>30</b>	108 200 500 700	-1,1 1,1 3,9 4,4	·2,3 0,5 1,8 4,4	· 2,2 8 3,3 4,4	-1;1 0 2,8 4,4	0 0 2,2 4,4	2,2 0,5 2,0 2,7	3,3 1,1 3,3 3,3	10,4 4,4 3,9 3,3	14,4 6,7 4,4 3,3	18,9 13,3 6,7 3,9	22,2 17,8 7,8 4,4	22,8 19,4 10,4 8.0	23.3 30.0 12.3 1.5	16.7 19.4 12.8 8.3	13.3 16.9 13.3 10.0	6,7 11,1 12,8 18,6	3.3 5.5 12,2 11,1	2.2 3.9 8.3 7.2	1,1 3,3 5,5 4,4	0,5 2,8 5,5 4,4	0.8 2.2 5.0 4.4	0 23 10 44	0,5 1,7 4,4	-0,5 1,7 3,1					
0	100 300 500 700	-1,1 1,1 3,9 4,7	-1,7 0,3 3,9 6,1	-12 13 13	1,1 0 2,2 1,0	0 0 3,3 4,4	1,7 1,1 3,3 4,4	2,3 2,2 2,3 4,4	7,8 3,7 3,7 5,6	11, 1 5, 5 4, 4 8, 8	17.8 10,4 5.5 5.8	22,2 14,4 6.7 5.3	25.0 18.7 9,4 6,1	24.7 22.2 11,1 4.7	18.9 22.8 13.9 7.0	12,2 20.0 18.4 8.9	7.8 18.6 18.0 11.7	4,4 8,9 14,4 12,2	2,8 3,5 10,4 12,6	1, 1 3, 3 7, 6 12, 2	2,8 4.7	3.2 3.1 10.5	0 1,7 5.5 8,9	+0, 5 1, 7 - 3, 0 8, 3	10. 1. 4.4 7.					
но	100 200 200 700	-1,7 -1,1 2,8 4,4	-2.2 -1,7 -2,3 -3,9	·22 ·22 22 23	- 1,1 - 1,7 2,2 3,3	0 - 1,1 2,2 3,3	1,7 0 2,2 3,3	2,3 . 1,1 2,3 2,3	1.5 1.3 2.2 1.3	4.4 2.2 3.3	10,4 1,5 2,8 3,3	13,3 6,7 3,3 3,3	16,3 11,7 5,0 3,7	22.3 16.7 6.7 4.4	20.6 17.2 9.4 5.0	16, 9 17, 8 11, 1 5, 5	10,0 11,7 11,7 7,8	3,3 4,7 12,2 16,0	2, 2 4, 4 7, 8 10, 6	1, 1 2, 3 4, 4 11, 1	0 2,2 3,9 0,9	-0,5 1,7 3,9 7,3	-0, 5 0, 5 3, 3 6, 1	- 1, 1 0 3, 3 5, 5	0. 2.					
и (en la aombra	106 200 500 700	-1,7 -1,7 0,3 0,5	-1,7 -1,7 0,5 0,5	·23	- 1,7 - 1,7 0	- 1, 1 - 1, 1 - 0	0,5 -0,3 -0	2,2 5 0 0	4,4 1,7 0,5	5.5 3.3 1,1 0	6.7 4.4 1.7 0.3	7,8 5,8 2,2 1,1	7,2 4,1 2,8 1,7	4,7 4,7 2,0 2,2	1,5 4,7 2,0 2,0	4.4 6.7 4.4 3.3	2.3 5.5 2.9 3.9	2,2 4,4 3,3 4,4	1, 1 3,3 2,8 3,7	2.3 2.2 3.3	0 1, 1 1,7 2, 3	-0,5 0,5 1,7 1,7	-0,5 0 1,3 1,1	-1, 1 -6, 5 1, 1 1, 1	-1, -1, 0,					
		٠	7	•	•	10	11	12	13	14	15	14	17	19	19	28	21	22	23	24	1	2	,	4						
				i	MAÑ	INA								T.	RDE						<u> </u>	M/	MAN	IA.						
	ſ												HOR/	4 SQ	LAR															

## TABLA-20.--DIFERENCIA-EQUIVALENTE-DE-TEMPERATURA-(°C)

Valedero para techos de color oscuro, 35 °C de temperatura exterior, 27 °C de temperatura interior, 11 °C de variación de la temperatura exterior en 24 h., mes de Julio y 40° de latitud Norte **

CONDI- CIONES	PESO DEL												HOF	RA S	LAR			-							
	TECHO	MAÑANA						TARDE								MAÑANA									
	(kg/m²)	•	,	6	•	10	11	12	13	14	15	14	17	18	19	29	21	22	23	24	١	2	3	4	3
Soleado	50 160 208 300 400	-2,2 0 2,2 3,0 7,2	-3.3 -0.5 1,7 4,4 4,7	-3,9 -1,1 -1,1 -3,3 -6,1	-0,5	-0.5 1,1 3,3 4,4 6,7	3, 9 5, 6 5, 5 6, 1 7, 2	8,3 8,9 8,9 0,9	13,3 12,6 12,6 12,0 12,2 12,2	17,8 16,7 15,6 15,0 14,4	20.0	23:9 22.8 21.1 19,4 17.8	25.4 23.9 22.2 21.1 19.4		22.8 22.2 21,7 21,1 20,6	19,4 19,4 19,4 20,0 19,4	15.4 16.7 17,8 18,9 18,9	12,2 13,4 15,6 17,2 18,9	8, 9 11, 1 13, 3 15, 6 17, 8	5.5 8.3 11,1 13,9 16.7	3,9 4,7 9,4 12,2 15,0	1,7 4,4 7,2 10,0 12,8	1.3 4.1 8.9		-1, 7 1, 1 3, 3 6, 1 7, 8
Cubierto de agua	100 200 300	-2,6 -1,7 -0,5	-1,1 -1,1 -1,7	0 -0,5 -1,1	1, 1 -0, 5 -1, 1	2.2 0 -1,1	5,5 2,8 1,1	8, 9 5, 5 2, 8	10,4 7,2 3,9	12, 2 0, 3 5, 5	11, 1 8.3 6,7	10,0 8,9 7,8	8.9 6.3 8,3	7,8 8.3 9,7	6.7 7,8 8,3	5.5 6.7 7,8	1,3 5,5 4,7	1, 1 3, 9 5, 5	0.5 2.8 4,4	0.5 1.7 3,3	0.5 0.5 2.2	- 1, 1 - 0, 5 1,7	- 1,2 - 1,1 - 1,1		- 2.8
Rociado	100 200 300	-2.2 -1,1 -0,5	-1,1 -1,1 -1,1	0 -0,5 -1,1	1,1 -0,5 -1,1	2.2 0 -1.1	4, 4 1, 1	e.7 2,8 1,1	8.3 5,0 2,8	10,0 7,2 4,4	7,4 7,8 5.5	8,9 7,8 6,7	8.3 7.8 7.2	7, 8 7, 8 7, 8	6,7 7,2 7,1	£.5 6.7 4.7	3.3 5.0 6.1	1, 1 3,9 3,5	0, 5 2, 8 4, 4	0 1,7 3,3	- 0,5 0,5 2,1	- 1, 1 0 1, 1	- 1, 1 0 0, 5	· 1,7 · 0,5	1,7 0,5
(en la sombra)	100 206 360	-2,8 -2,8 -1,7	-2,8 -2,8 -1,7	-2.2 -2.2 -1,1	-1,7	0 -1,1 -1,1	1, 1 0 -0,5	3.3 1,1	5.0 2.0 1,1	4.4 2,2	7,2 5.5 1.3	7,8 6,7 4,4	7, 2 7, 2 5, 0	4.7 4.7 5.5	5,5 6,1 5.5	4.4 5.3 8.3	2,8 4,4 5,8	1,1 3,3 4,4	6,5 2,2 3,3	0 1,1 2,2	• 0,5 0 1,1	- 1,7 - 0,5 0,5	- 2,2 - 1,7 - 0	- 2.2	
		•	7		MAÑ	10	11	12	13	14	15	16	17	148	ARD	20 E	21	23	23	24	1	2 M	AÑAI	I I	5
•									HORA SOLAR																

Ecuación: Ganancias por transmisión a través del techo (kcal/h) = Área (m²) × (Diferencia equivalente de temperatura) × (Coeficiente de transmisión global, tablas 27 ó 28).

- Si las bóvedas o buhardillas están ventiladas o si el techo está aislado, tomar el 75 % de los valores precedentes.
   Pera techos inclinados, considerar la proyección horizontal de la superficie.
- ** Para condiciones diferentes, aplicar las condiciones indicadas en el texto
- *** Los pesos por m^e de los tipos de construcción clásicos están indicados en las tables 27 ó 28.

TABLA 20 A. CORRECCIONES DE LAS DIFERENCIAS EQUIVALENTES DE TEMPERATURA (°C)

Temperatura exterior a las 15 h para el mes considerado menos		VARIACIÓN DE LA TEMPERATURA EXTERIOR EN 24 h																
temperature Interior	5	6	7		,	10	11	12	13	14	15	16	17	18	19	20	21	22
- 16 - 12	-21,2 -17,2 -13,2	-21.7 -17.7 -13.7	-22,3 -18,3 -14,3	-22,8 -18,8 -14,8	-23,3 -19,3 -15,3	-23,8 -19,8	-24,2 -20,2 -16,2	20.7	-25, 1 -21, 1 -17, 1	-25,4 -21,4 -17,4	-26,0 -22,0 -18,0	-24.5 -22.5 -18.5	- 23,0	-27.4 -23.4 -19.4	-27,9 -23,9 -19,9	-28,8 -24,8 -20,6	-21.3 -25.3 -21.1	-29,8 -25,8 -21,8
• 4	· 9.2	· 9,7	10.3	-10,0 -6,4	17,1	-15,8 -11,8 - 7,6	-12.2 - 8.0	12.7	-13.1	9,4	-14.0 9.8	-14,5 -10,3	- 15,0 - 10,8	-15.4 11.2	-15,9 -11,7 - 9,8	-16,8 -12,6 -10,6	-17.3 -13.1 -11.1	- 17,1 - 13,1
+ 2 + 4 + 4	0,6	· 1.4	1.2	· 2.7	1,3	- 3.6 - 3.6 - 1.7	· 4.1	2.7	· 1.0	- 7,5 - 5,5 - 3,6	· 4,0	- 6,4 - 4,5	- 6.9 - 5,0	. 7.3	· 7.8	· 0.6	· 9,1	: ;;
+ 10 + 12	2,8 4,7 4,8	4.2 6.3	1,7 3,6 5,7	1,2 3,1 5,2	0,7 2,6 4,7	0,3 2,2 4,3	1,7	1.2	0.8	0,3 2,4	0.1	- 0,4 1,3	- 1, 1 0, 8	1,5	· 2.0	2 0 7	. 3.3	. 3,
+14 +16 +18	10,8 12,6	10.3 12.3	11,7	7.2 9.2 11,2	18,7	6,3 8,3 10,3	5.4 7.4 9.4	5.3 7.3 9.3	4,9 6,9 8,9	4, 4 6, 4 8, 4	3,8 5,8 7,8	3, 3 5, 3 7, 3	4.0	2.4 4.4 4.4	3, 9 5, 9	3.3 5.3	0,8 2,6 4,6	0, 2, 4,
+ 70 + 72	14.8	14,3	13.7 15.8	13,2	12.7	12.3	11,8	11,3	10.9	10,4	11,9	9.3 11.4	10, 7	10,5	7.9 10,0	7.3 9,4	6,5	å,



## FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

SELECCION DE SERPENTINES

Paracio de Minería Carle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. Tel.: 521-40-20 Apdo. Postal M-2285

#### SELECCION DE SERPENTINES

Uno de los problemas que se deben solucionar en el diseño de un sistema de aire acondicionado, es la selección adecuada de los serpentines de enfriamiento o calefacción con que va a contar la unidad manejadora a emplear. Una véz que se han calculado las cargas térmicas que habran de retirarse, es necesario especificar los equipos que realizarán este servicio; del análisis psicrométrico del problema considerado tenemos las siguientes variables:

- a.- Condiciones de inyección; tbs, tbh
- b.- Condiciones de mezcla del aire; aire exterior
   y aire de recirculación que se alimentarán al equipo
   enfriador: tbs, tbh
- c.- Calor total por absorber o suministrar Kcal/h
- d.- Cantidad de aire requerido; kg/h, m³/h

Con esta información se puede proceder a la selección de los equipos requeridos:

El primer paso consiste en hacer una selección de la unidad manejadora que será empleada; requerimos el gasto de aire y la presión que habrá que vencer en las redes de ductos y difusores.

Para la correcta selección de la manejadora, los fabricantes sugieren una velocidad máxima a través de los serpentines de enfriamiento para evitar arrastre de agua que se haya condensado en ellos; se presenta una tabla de velocidades recomendadas por un fabricante. SON VELOCIDADES MAXIMAS

Altura SNM. ( m )	Densidad aire ( kg/m ³ )	Velocidad máxima (Pies/min)	( m/s )
0	1.2	615	3.12
304	1.16	6 <b>30</b>	3.20
610	1.11	640	3.25
915	1.07	6 <b>50</b>	3.30
1 220	1.04	66 <b>0</b>	3.35
1 525	1.00	57 <b>0</b>	3.40
1 830	0.96	685	3.48
2 130	0.92	, 7 <b>00</b> ,	3.55
2 440	0.89	7 <b>10</b>	3.60
2 740	0.85	7 <b>25</b>	3.68
3 050	0.82	740	3.76

En la selección que se realice de una unidad manejadora es necesario tomar en cuenta estas velocidaes máximas de flujo a través de los serpentines; una vez seleccionada la manejadora, ya se cuenta con información del area de los serpentines que se habrán de seleccionar.

#### CARGA TERMICA UNITARIA ( CTU )

Las capacidades de los serpentines tanto de enfriamiento como de calefacción se encuentran tabuladas en capacidad térmica por unidad de area (Kcal/mñ), (BTU/ftñ)

por lo que es indispensable tener una selección de la

unidad manejadora para conocer el area de flujo de los

serpentines y así poder calcular la CTU

### Ejemplo:

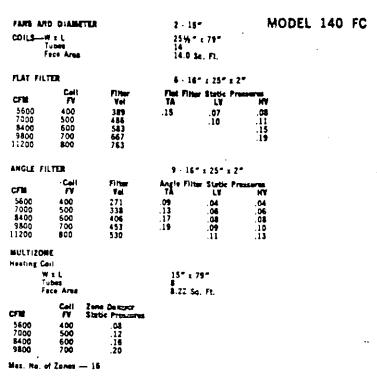
Se tiene una carga térmica de 74 300 Kcal/h Gasto de aire  $12 750 \text{ m}^3/\text{h}$ 

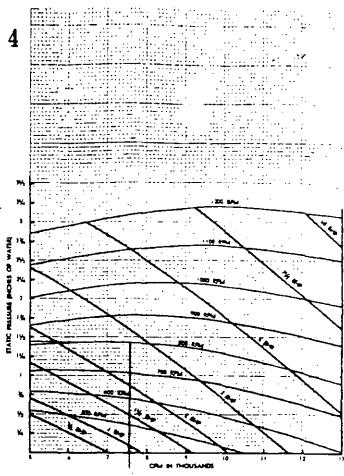
Condiciones del aire de mezcla tbs= 24 °C (75°F) tbh= 19°C (66°F)

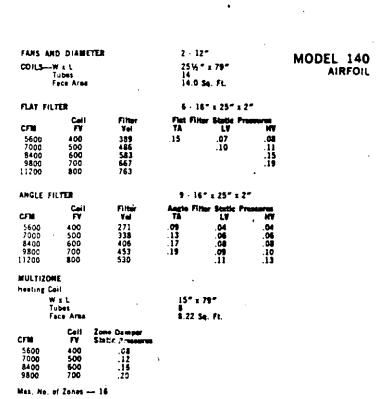
Condiciones requeridas de inyección tbs= 11.4°C (52.5°F) tbh= 11.0°C (51.8°F)

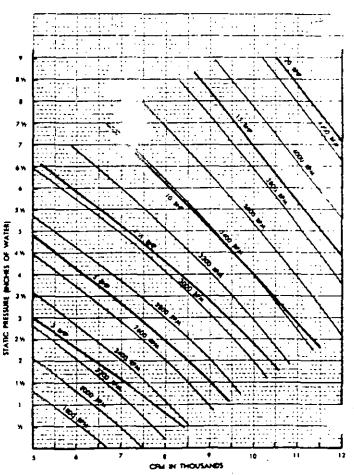
Para estas condiciones se selecciona una unidad manejadora modelo 140 cuya area de serpentín es de 14 ft²; la velocidad de flujo del aire es de 535 ft/min.

Con la información de que se dispone se busca la capacidad en las tablas de serpentines para agua helada; encontrandose lo siguiente:


Serpentín de la serie HC con 5 hileras trabajando a una velocidad de 500 ft/min; empleandose agua de 45°F, con una diferencial de 10°F y un gasto de 5 gpm/circuito


Por regla jeneral el mejor equipo será el que sea


mas sencillo. Para calcular las caidas de presión tanto del


agua en circulación por el serpentín, como para el aire

que pasa a través deél, los fabricantes dan tablas o nomogramas









3	<b>D</b> ~		: 4-	-0-			. B.		·e-	-0-		<b>-</b> -							<b>.</b>	
 HUTB		DBI	#TUH	WH	DEF	STUH	WBI	D#1	BTUH	-Ro	081	BTUH	RC wei	, DB1	O, BTUH	Ro	D91	wt	T.	GPA7
12670	55.8	20.0	15390	22.2	53.8	17720 17100	51.5	21.4	19620	٠٠.ي	49.4	21240	47.7	<b>17-7</b>	22380	46.5	46.5	RISE		CJR.
11660	50.7 58.2	57.8	14320 12340 11770	54.3	54.8	16460 14140 13510	52.3	52.6	18320 15690 15020	. 6	50.7	20570 19830 16980 16340	49.1	49.2	21820 21270 18160	47.6 50.7	47.7 50.8	10 12 8	40	
9100	58.6	40.0	11180	37.2	57.7	12860	55.6	55.9	15020 14320 11760	54.3	54.4	16340 15600 12730	53.1	53.2	17520 16730 13650	51.3	52.1	10 12	45	1
7150	61.0	61.7	8660 8140	58.9 59.4 59.8	59.9	10580 .9990 9380	58.2 58.0	59.0	10440	57.2	57.3	12090	56.4 57.0	56.4 57.1	12960	55.5	55.6	10 12	50	
16540	51.7 52.3 53.0	53.3	201 to 194 for 18 for		10.0	22336 24950 22336	46.7 7.5 48.6	47.2 47.7 48.2	3	45 . : 45 . 7	45.0	24.75 24.75				42.5	43.	8 10 12	40	
18900	55.6 55.6	50.0	27	23.4	53 (8)	176.20	3) .8	52.7	1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	99.7 50.4 51.1		20000	45.7	46.4 46.4 30.0	210-	4: . 4		8 10 12	45	3
10040	50.2	59.2 59.8	1200	56.0	27-3	2350 1380		55.5 56.1	4 407 4347 2472 5		3-1.4	15295	53.4	54	16 25 2 15 20 2 14 4 2 2			8 10 12	50	
_	30.5		Z1310 20610			23160			24540 24040			25490 25070			26150 25790			8 10	40 1	i
17010	51.8 54.0	52.0	17910	51.8	52.3	21980 18820	50.1	50.3	23450	45.3	49.0	24560	47.9	44.1	25320	43.2	47.3	12 #		_
13938	37.5	55.7 56.4 56.5	16400 15570 12730	55.8	56.3	18060 17370 14000			19440 18700 15110	53.5	53.7	20470 19760 15940			21170 20570 16600	48.4	48.4	10 12 6	45	5
18138	58.7	59.0	11970	39:3	57.9	13350	33:8	55.4	13520	54:3	55.7	15210 14380	53.4	53.5	15090	52.8	52.8	12	<b>50</b>	<u> </u>
13710 13110 126 <b>56</b>	U57.4 57.8 56.1	58.6 59.0 59.4	17000 16360 15680	54.9 55.4 55.9	55.6 56.1 56.6	19610 19060 18310	53.4 53.4 53.9	53.6 53.6 54.3	22090 21390 20590	51.2 51.7 52.3	51.4 51.9 52.5	24010 23280 22440	49.7 50.3 50.9	50.4 51.0	25750 24960 24130	49.0	49.0	· 10 12	40	
10930 10390 9850	59.3	60.6 60.9 61.3	13530 12900 12250	57.5 57.9 50.4	58.2 58.6 59.1	15770 15060 14330	54.4	56.7	17550 16900 16100	55.0	55.2	19280 18400 17560	53.9	54.0	20680 !9600 18900	52.9	52.9	8 10 12	45	1
8260	61.1	62.4		59.8 50.2	60.9	11840 11180 10510	58.7 59.1 59.6	59.0 59.5 59.9	13160 12530 11780	57.7 58.2 58.7	57.9 58.4 58.9	14480 13650 12840	57.4	57.5	15530 14680 13810	56.7	56.7	10 12	50	
19150	) 53.4 53.9	54.6	22076	20.6.	<u>م</u> وم.							_29260   <b>2</b> 0510	45.3	45.4	36571 36571	44:	44.2	 8 10	40 1	,
17500 -45070 14340	54.5	22.8	2122	51 6. 34 [1]	54.8	191 P	82.4	50.1	26120 28340			4"		,		49.:	46.3	12		3
13570	57.5 59.;	20.4	6336	·		13250	£6.3	56.6	127									10 12 8	45	3
9730	60.	61.4	124.20 124.00 174.00	56.7	58.4			57.9				19030.	ŝŝ: <b>₽</b>	:35:4v	18831. 17933 18933	35.0	32.1	10	<b>50</b> ,	1
F0100	33:3	53.4 54.0 54.6	24600 23790 22890	49.3	30.9	27070 26370 25530	47.5	18:ş	28420 27550	44.0	47.0	30630 29960 29110	44.7	44.8	31610 31060 30410	43.7	43.8	10 12	40	
15710 15710	55.9 55.6	56.5 57.2 57.9	19600 18650 17700	53.0 53.7 54.4	53.7 54.4 55.1	21870 20900 19970	51.4 52.8 52.8	51.7 53.1	23580 X 22740 21690	50.1 50.7 51.4	50.9 51.5	24910 24160 23290	49.6	49.7	26010 25340 24430	48.7	48.7	10 12	45	5
12180 12180	58:8 58:8	59.7 60.3 60.8	14520 13600 12660	56.8 57.4 58.1	57.5 58.1 58.8	16290 15360 14350	55.3 56.2 56.9	55.6 56.5 57.3	17660 16750 15730	54.5 55.1 55.9	54.6 55.3 56.1	18610 17900 16670	53.6 54.3 55.0	53.7 54.4 55.1	19720 18810 17770	52.9 53.6 54.4	53.0 53.6 54.4	10 12	50	•
مراملا	Π <b>58</b> -4	60.0		56.3 56.8	57.2 57.6	21370 20580 19770	54.3 54.6	54.8 55.3	24110 23250 22340	33:7	52.9	26510 25610 24660	51.2	51.3	28420 27550	50.5	50.6	10	40 \	_
	60.2		16740 14470 13790 13110			19770 17050 16270 15470			19240 18390 17510			21150 20250 19310	54.5	54.6	26550 22740 21790	53.5	53.6	12 \$ 10	45	1
	60.8		13110 10940 10350 9750			15470 12830 12130 11410						19310 19900 15040 14150			20790 17110 16160	54.7	57+1	12 8 10	50	•
7660	02.2	63.7													15230	58.1	56.2	iž *	,	
19970		57.3		35.7	M.	200	٠٠٠ <u>٠</u>	31:9	34178	40.5	1.7	32500	47.2	64. 66.	331.00	46.7	46.6	10 12	40	
15570	57.4 57.9 50.4	59.9	9656 7038		(26.5	E C	<b>Z</b> ::	54.0		53.5	3.7	2000	52.3	3	27970 200-0	50.6	50.7	10 12	45	3
12130 11340 12130	60.3 60.7	61.4	2504 2406 2406 2506 2506 2706 1206	30.3	50.7	384C	\$7:17 50:3	58.2 58.8	20100 3210 3210 20480 23430 23430 11550 11550		弎	20:96 17000:	55.	55.65 55.65	2123	<b>3</b> : 7	55.1	10 12	50	1
22700 21990	53.5	55.0	27310 26320	50.7	51.5	30470 29680	40.6	49.1		46.8	47.0		45.4	45.5	36620	44.2	44.3	8 10 12	40	1
21010 18100 17090	56.4 57.0	57.9 58.5	21670 20540	54 . 1 54 . 7	55.7	28610 24490 23320	53:2	33.8	_									10	45	5
16140	57.5	59.1	19470	37.6	56.5	22200	55.6	54.3	19940									12 8 10	· 50	
STUH	<b>= 9</b> 粒	Per Hou	14970 13930 Ir <b>Per S</b> qu luib Temp	are Fo	ot Of Fa		57.7	Sali Wal War	17620 = Initial = Final 1	Wet Bi	ulb Tem	perature	55.8	55.9	Z0190	55.1	2245	. 12	•	
	= Fina	i Dry Bu	ib Temper	reture				WT	= Water			u tabl W								
																				21



### FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

. CURSOS ABIERTOS

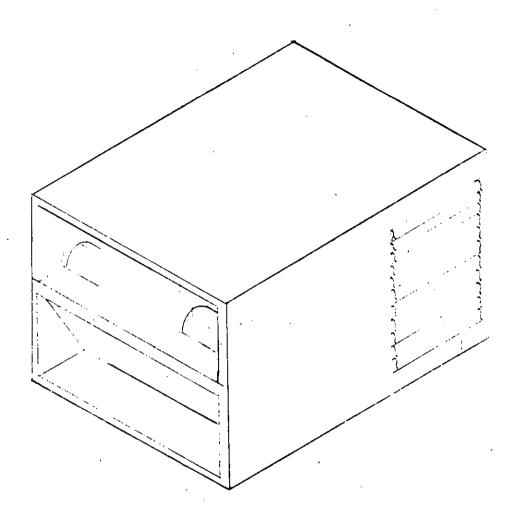
PROYECTO DE AIRE ACONDICIONADO

EQUIPO TERMINAL

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. Tel.: 521-40-20 Apdo. Postal M-2285

#### EQUIPO TERMINAL

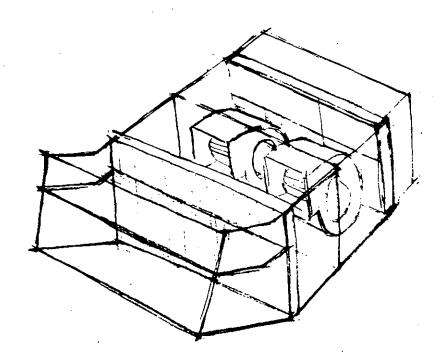
Se da el nombre de equipo terminal, a aquel que "produce" el aire que se va a emplear para el acondicionamiento de un local. Los equipos mas comunes son los siguientes:


- a) Unidad paquete
- ঠ) Manejadora de aire
- c) Fan & coil

Hay algunos otros como son el equipo de inducción y otros pero por ser equipos poco comunes en nuestro medio no son muy importantes.

#### A.- UNIDADES PAQUETE

Es un sistema de refrigeración completo integrado en una sola unidad; contenienda condensador, compresor, sistemas de control y una cámara que contiene un serpentín evaporador y ventiladores centrífugos para el manejo del aire.

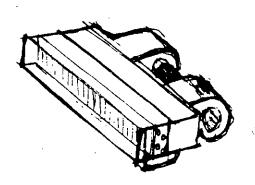

Esta unidad para instalaciones pequeñas es la mas cómoda, ya que requiere una inversión moderada y su costo de instalación es relativamente bajo

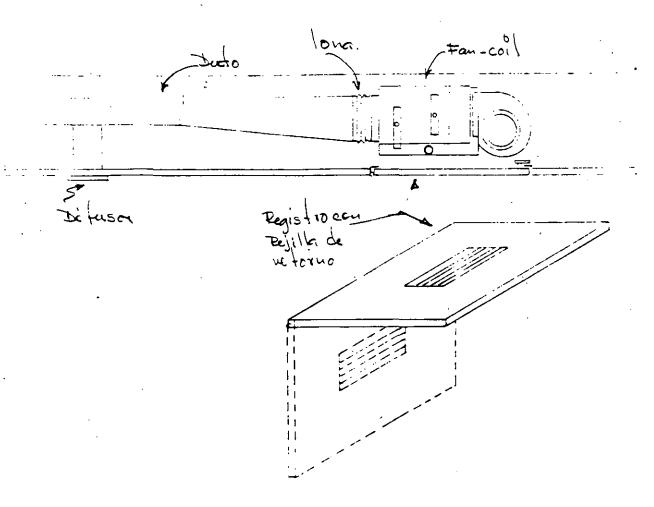


#### B.- MANEJADORA DE AIRE

Es un equipo constituido por uno o mas ventiladores centrífugos, serpentines que operan con agua helada, calien te o sistema de expansión directa. Caja de filtros y compuer tas para regulación de aire.

Se emplea para el acondicionamiento de zonas relativamente extensas y puede ser para el abastecimiento de una "zona" que deberá tener una temperatura homogenea o varias zonas (Multizona) en cuyo caso se regulará la temperatura del aire que será enviado a diversas zonas del local por medio de un sistema de compuertas de regulación que permitirán que el aire enviado sea mas frío o mas caliente; esto re regulará por medio de sistemas de control de temperatura.





### 'C.- FAN & COIL

El fan & coil realmente es una pequeña manejadora cuya capacidad normalmente es inferior a 3 TR ( Toneladas de refrigeración, una TR es 3 024 Kcal/h ) este equipo opera normalmente por medio de la circulación de aqua helada; aunque los hay que operan por medio de expansión dimecta. Su empleo se limita a locales pequeños como cuar tos de hoten, oficinas, etc; sin embargo agrupandolos pueden cubrir areas importantes. Se instalan normalmente en el claro, comprendido entre el plafond de un local y el techo; el aire acondicionado producido se intruduce al local por medio de un ducto y un difusor, el retorno se hace normalmente colocando una rejilla de retorno bajo el equipo. La gran ventaja que presentan es la versatilidad que se logra en el control de temperatura, ya que se puede controlar al gusto del usuario, además cuentan con un motor de 3 velocidades que permite el flujo de aire al qusto del que lo va a operar.

Como regla general, siempre que esto sea posible, será mas cómodo y mas barato enviar agua helada a través de las instalaciones de un edificio que ductos de aire acondicionado; esto da una mayor importancia al empleo

de manejadoras y fan & coils







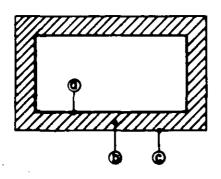
## FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

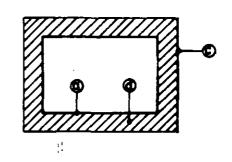
CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

DUCTOS

#### **DUCTOS**


Los ductos para aire son conductos por los cuales se hace circular el aire  $nec\underline{e}$  sario para mantener las condiciones de comodidad establecidas para un local determinado.


Normalmente la sección rectangular y fabricados en lámina galvanizada calibre - 22, 24 o 26 dependiendo de sus dimensiones, no obstante, también pueden ser de sección circular, lo cual permite dar mayor velocidad al aire pero también requiere de mano de obra más especializada.

Estos ductos deben ir aislados por varias razones: en caso de conducir aire caliente, para evitar que este aire se enfrie antes de llegar al lugar donde se requiere, en caso de conducir aire frío, para evitar que éste se caliente en el trayecto y también para evitar que el aire que rodea al ducto al enfriarse, for me gotas de agua condensadas que provocarían finalmente goteras, humedades y deterioro.

A continuación se dan tablas que indican el calibre de lámina que se debe util<u>i</u> zar dependiendo de las dimensiones del ducto, así mismo se muestran esquemas de como se debe aislar un ducto de calefacción y uno de refrigeración.

DIMENSIO MAYOR DE cm	N DEL LADO L DUCTO pulg	CALIBRE DE LAMINA GALVANIZADA A USAR
0- 30	0-12	. 26
31- 76	13-30	24
77-135	31-54	22

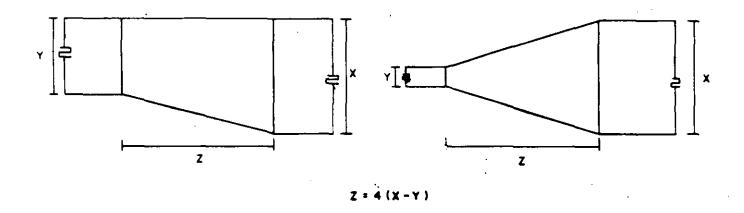




DUCTO DE CALEFACCION

DUCTO DE ENFRIAMIENTO

- a) Ducto de lamina galvanizada
- b) Aislamiento de fibra de vidrio de 25 mm de espesor (1")
- c) Papel bondalum pegado con resisto 5000
- d) Aislamiento de fibra de vidrio o espuma de poliestireno de 25 mm (1") Ø.


En_caso_de_que_los-ductos-se-instalen-a-la intemperie, habrá que ponerles un recubrimiento a base de cemento monolítico de 25 mm de espesor (1") puesto sobre una tela de gallinero que le ayudará a adherirse al aislamiento.

Para el diseño de ductos deben seguirse ciertas normas que a continuación se s $\underline{e}$  ñalan:

- 1.- Su trayectoria debe ser lo mas recta posible
- 2.- El largo y ancho del ducto no debe rebasar una relación de 3:1
- 3.- La caída de presión recomendable es de 8.5 mm H20/100 mt. de ducto (0.1 pulg H20/100 pies de ducto).
- 4.- Las velocidades máximas permisibles son las que aparecen en la siguiente table:

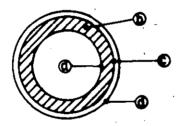
TOMAS DE	RESIDE	ENCIAS	LOCALES	PUBLICOS	INSTALACIONES INDUSTRIALES		
	m/s	FPM	m/s	FPM	m/s	FPM	
Aire exterior	2.50	500	2.50	500	2.50	500	
	4.00	800	4.50	900	6.10	1200	
Filtros	1.25 1.55	250 300	1.55 1.80	300 3 <b>5</b> 0	1.30	350	
Serpentines	2.30	450 500	2.50 3.05	500 600	3.05 3.50	600 700	
Lavadoras de aire	2.50	500	2.50	500	2.50	500	
Succión de ventilador	3.50	700	4.00	800	5.10	1000	
	4.50	900	5.10	1000	7.10	<b>1400</b>	
Descarg <b>a de ventilador</b>	5.10	1000	6.60	1300	8.15	1600	
	8.65	1700	11.20	2200	14.20	2800	
Ductos principales	3.50	700	5.10	1000	6.10	1200	
	6.10	1200	8.15	1600	11.20	2200	
Ductos secundarios	3.05	600	3.05	600	4.00	800	
	5.10	1000	6.60	1300	9.15	1800	
Derivaciones a difuosres	2.50	500	3.05	600	4.00	800	
	4.00	800	6.10	1200	8.15	1000	

### 5.- Las reducciones deben seguir las siguientes relaciones:



### **TUBERIAS**

Las tuberías utilizadas parala conducción de agua fría o caliente y vapor pue-den ser de los siguientes materiales:


- a) Cobre tipo "M" (agua fría o caliente)
- b) Fierro galvanizado cedula 40 (agua fría o caliente),
- c) Acero negro soldable cedula 40 (agua y/o vapor).

Lo más frecuente es utilizar tubería de cobre para diámetros desde 13 mm (1/2") hasta 76 mm (3") y tubería de acero negro soldable cedula 40 para diámetros de 100 mm (4") en adelante.

Nunca-deben-emplearse-combinaciones-de-tuberías-de-cobre-y-tubería de-fierro que galvanizado ya que la unión de estos materiales genera una diferencia de potencial eléctrico llamdado PAR GALVANICO, el cual produce deterioro de la conexión y obviamente su falla después de algun tiempo.

En general no es recomendable el uso de tubería de fierro galvanizado debido a su corta vida (5-10 años) y a los graves problemas de obstrucción que presenta: Al igual que los ductos las tuberías deben ir aisladas para mantener su temperatura y para evitar condensaciones de aire que los rodea.

A continuación se dá una tabla que señala el espesor recomendado de aislamientos para los diferentes diámetros de tuberías y para las diferentes temperaturas.



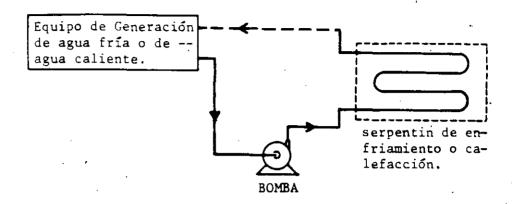
AISLAMIENTO DE TUBERIAS

- a) Tubería de cobre o de fierro
- b) Aislamiento de fibra de vidrio
- c) Manta de cielo impregnada con impermeabilizante
- d) Pintura y/o lámina de al<u>u</u> minio o galvanizada.

Para el diseño de tuberías deben tomarse en cuenta las siguientes consideraciones

- 1.- Las trayectorias deben ser lo más rectas que la estructura y arquitectura lo permitan.
- 2.- La caída de presión por fricción no debe exceder del 10 m col H20/100 m. tubería en tuberías de agua fría o caliente.
- 3.- Las velocidades máximas permisibles son:

	m/s	FPM
Tuberías de agua (fría o caliente)	3	590
Tuberías de vapor ( P=7 kg/cm²= 100 psig)	50	9800
Tuberías de vapor ( P=1.05 kg/cm²=12 psig)	30	6000


4.- Las tuberías por ser metálicas, tienen dilataciones y contracciones sido a los cambios de temperatura; estos cambios de longitud deberán ser absorbidos por accesorios especiales llamados juntas de expansión (para tuberías de vapor) y por mangueras flexibles (en tuberías de agua fría y caliente). Se de berá instalar una junta de expansión o manguera flexible (según el caso) cada tramo que pueda tener una variación en su longitud de 2.5 a 5.0 cm (1"-2") Si la variación es mayor de 5.0 cm (2") se deberán instalar varios accesorios de los mencionados. Si la variación es menor a 2 cm (3/4"), se puede absorber con un juego de codos.

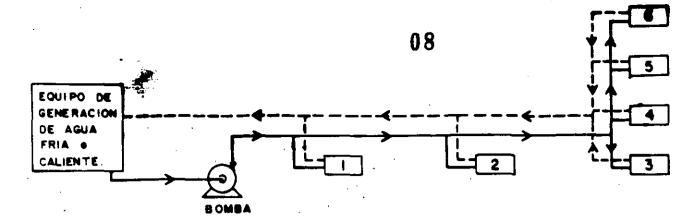
A continuación se proporcionan gráficas para el cálculo de diámetros de tuberías de agua (fría y caliente) y para vapor en alta y baja presión, así como para el cálculo de longitud equivalente de los diferentes accesorios que pueden instalar se.

En los sistemas de agua fría y agua caliente existen fundamentalmente dos criterios a seguir:

- a) Retorno directo
- b) Retorno inverso

Ya sea el agua fría o el agua caliente, se producen o generan en un equipo de refrigeración (reciprocante, por absorción, centrífugo) ó en un equipo de calefacción (caldera, caldereta, calentador); a partir de éste equipo, el agua se bombea para que llegue a todos los serpentines que tiene que alimentar (manejadoras y/o fan & coil); el agua atraviesa los serpentines correspondientes y regresa nuevamente al equipo generador de agua fría o caliente.



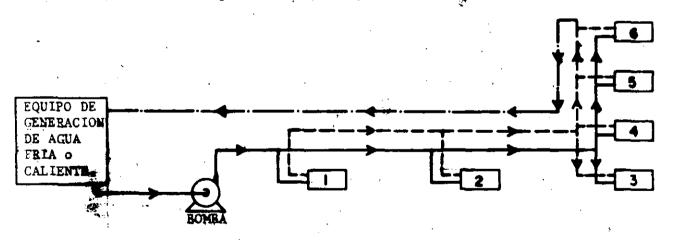

CIRCUITOS DE CIRCULACION DE AGUA

Dependiendo de como se diseñe el retorno, el sistema será de retorno directo o de retorno inverso.

#### RETORNO DIRECTO

En este sistema, el agua que sale del equipo de bombeo alimenta a los diferentes equipos que lo requieran en forma consecutiva, o sea, primero al equipo que se - localiza más cerca y al último al que se encuentre más alejado.

La tubería de retorno normalmente es una tubería paralela a la de alimentación pero que circula en sentido contrario, o sea que recoge primero el retorno del -- equipo más alejado y finalmente el del equipo más cercano, para así regresar al -- equipo de generación de agua fría o caliente.




ESQUEMA DE UN'SISTEMA DE

#### RETORNO DIRECTO

## RETORNO INVERSO

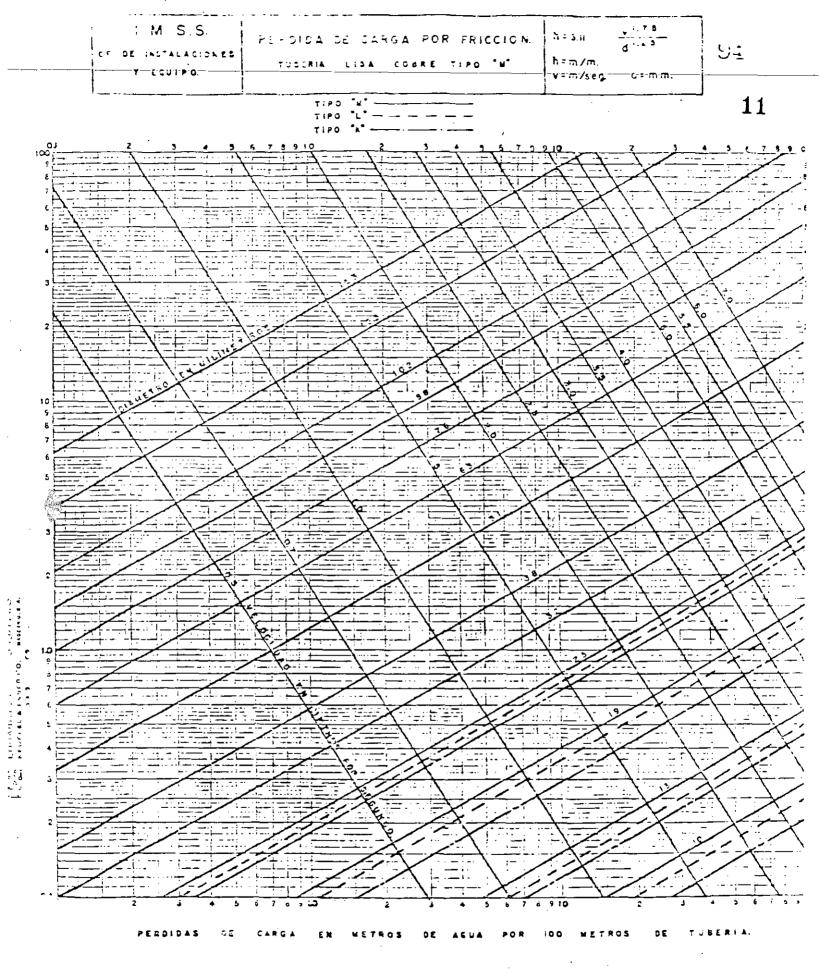
Este sistema tiene la alimentación de agua en la misma forma que en el caso anterior, en donde difiere es pecisamente en la tubería de retorno cuya trayecotria recoge primero al equipo más cercano, que resulta ser también el primero en ser alimentado y conecta al final con el equipo más alejado que es el ultimo en ser alimentado, para de ahí regresar al equipo generador de agua fría o caliente.



ESQUEMA DE UN SISTEMA DE RETORNO INVERSO

Como se puede observar, en este último sistema se requiere de una tubería más - que en el caso anterior, pero tiene la gran ventaja de quedar balanceado casi - totalmente desde el momento de su construcción lo cual hace más eficiente su - funcionamiento.

En el caso del retorno directo, el agua llega con una presión alta al primer ser pentín y con una presión baja al último serpentín; en el retorno, la presión de salida del último serpentín resulta ser también más baja que en el primero y es to provoca que en el último serpentín circule menos aqua que en el primero.


Esto se puede corregir instalando válvulas tipo globo en la salida de cada ser-pentín para dar en forma manual la caída de presión necesaria para que todos los serpentines operen con el gasto de agua correcto. De cualquier forma, no es -fácil dejar correctamente balanceado todo el sistema ya que cuando se abre o cierra la válvula globo de cualquiera de los serpentines se modifica el flujo en todos los demás.

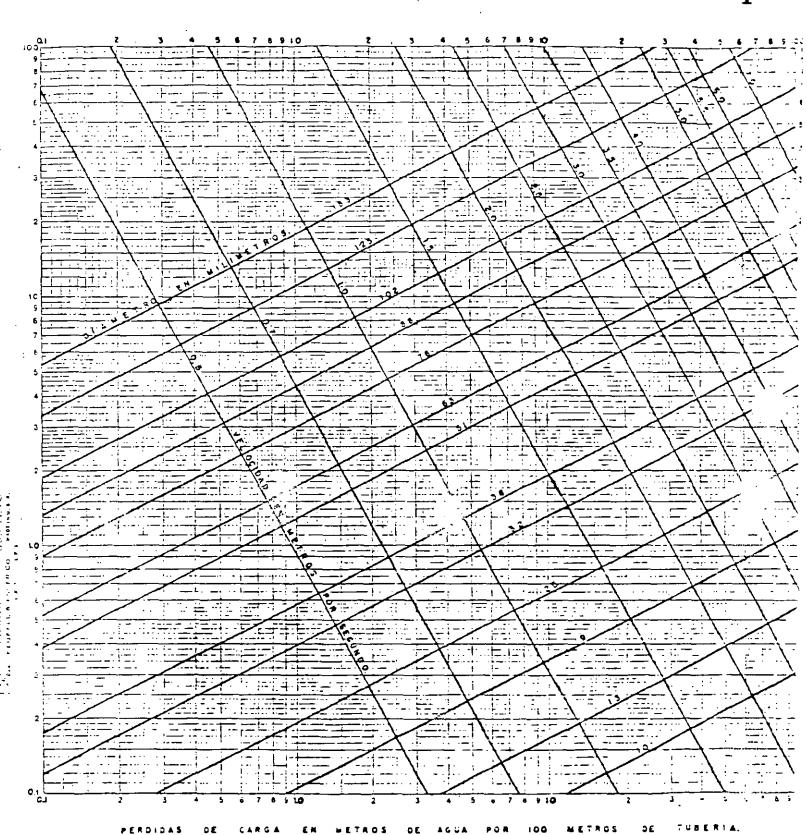
Cuando se utiliza el retorno inverso, la alimentación al primer serpentín, es al igual que en el caso anterior, con presión alta y en cambio el del último serpentín es con presión baja, pero a diferencia del retorno directo; en este sistema de retorno inverso se provoca que, el retorno del primer serpentín, que tiene — una presión todavía alta, circule una longitud equivalente a la que provoca la — caída de presión en la tubería de alimentación de forma tal que, cuando se juntan el retorno del primer serpentín con el del último, sus presiones ya están practicamente igualadas sin necesidad de válvulas adicionales.

Este sistema de retorno inverso es más caro en su costo inicial, pero a mediano plazo resulta más económico debido a que disminuye los costos de mantenimiento.

Es aconsejable utilizar este criterio en instalaciones grandes (hoteles, edificios de oficinas, etc.) donde se aprovecharán sus ventajas constantemente.

En instalaciones de pequeñas dimensiones (casas habitación, pequeños comercios, u oficinas), no resulta práctico su empleo, además de que no siempre se tiene - una amortización atractiva.



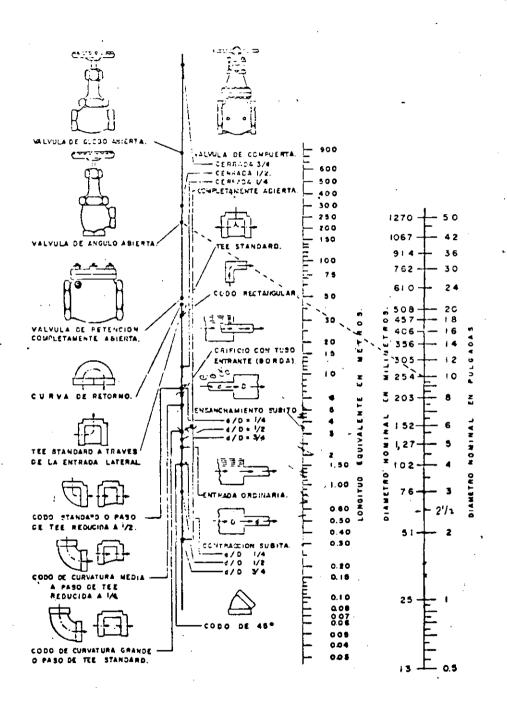

FERDIDA DE CARGA POR FRIÇCION DE 2.57 - 12

OF CE INSTALATIONES

Y EQUIPO TUBERIA MEDIANAMENTE RUCOSA. V= m/seg co

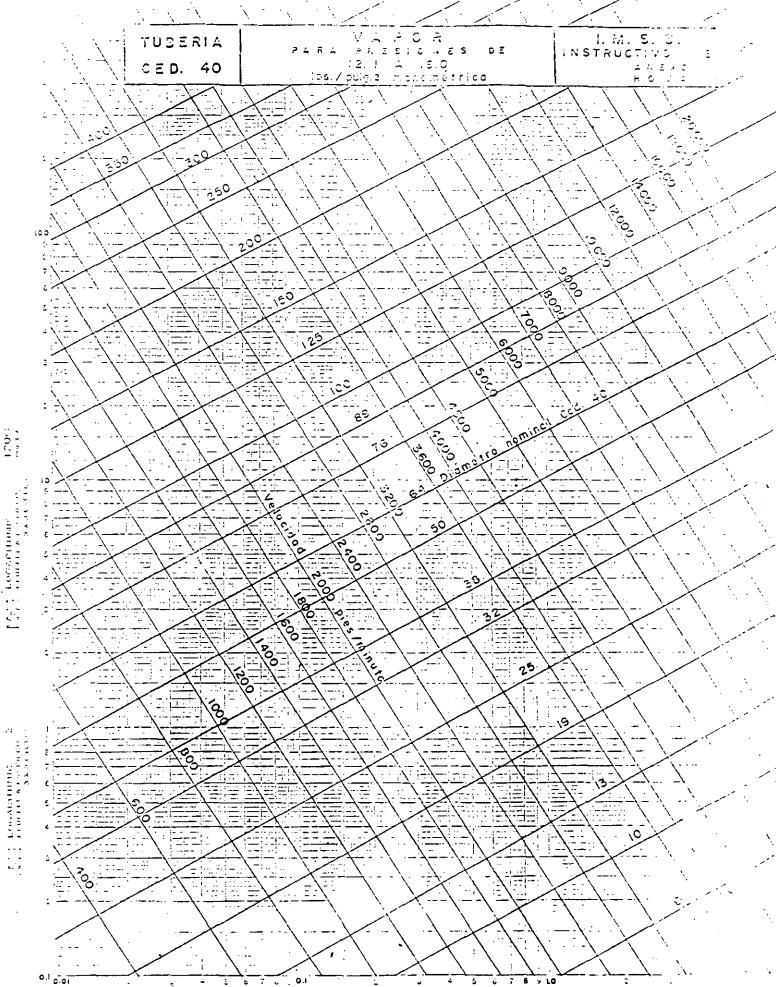
h= 2.57 1 22 h= m/m v= m/seg d= mm

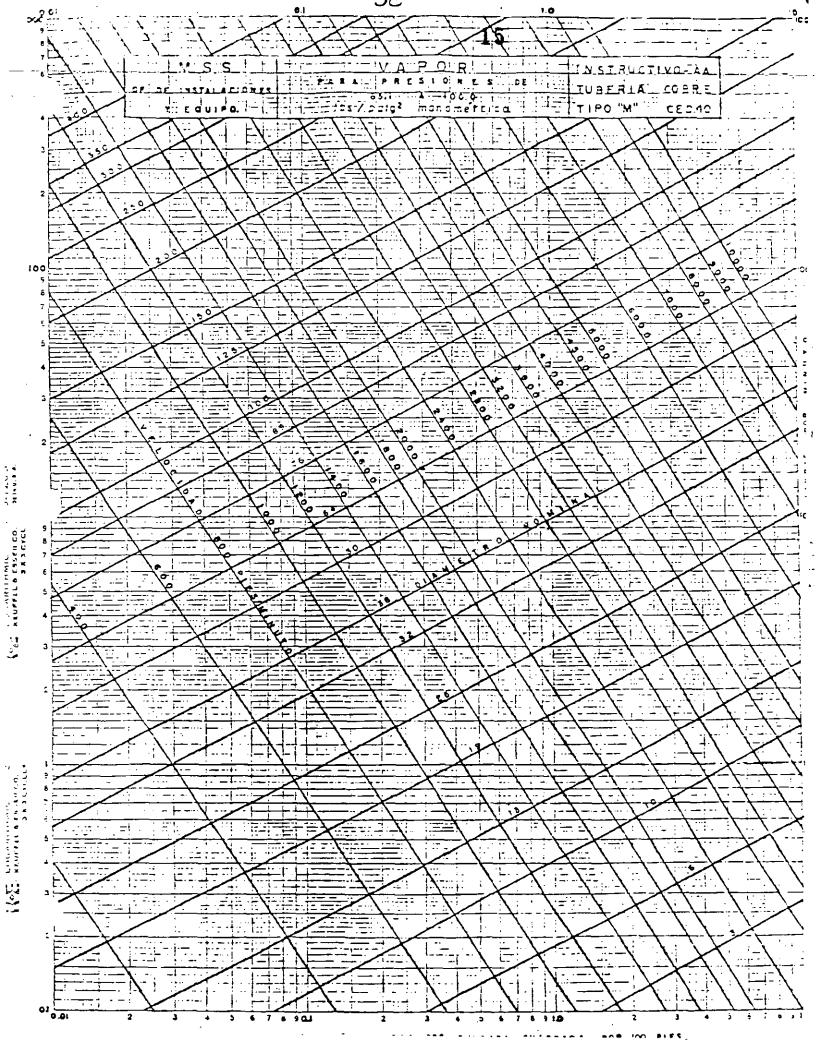
1




I. M. S. S.

OF DE INSTALACIONES


Y EQUIPOS.


PERDIDAS DE CARGA EN
INSTRUCTIVO
CALCULOS



NOTA

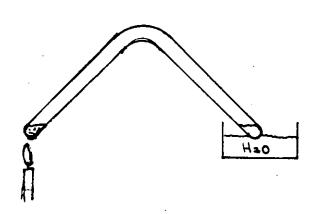
PARA CONTRACCIONES Y ENSANCHAMIENTOS BRUSCOS UTILICESE EL DIAMETRO MENOR "d"







# FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA


CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

ENFRIADORAS POR ABSORCION

Paracio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. Tel.: 521-40-20 Apdo. Postal M-2285

En 1824 el Físico Michael Faraday realizó una serie de experimentos basados en que el cloruro de plata, (un polvo blanco) es capáz de absorber grandes cantidades de gas amoniaco formando un ión complejo; este proceso puede hacerse reversible por medio de la aplicación de calor y se liberará amoniaco en forma gaseosa. Faraday introdujo en un tubo en forma de "U" invertido cloruro de plata amoniacal y al calentar uno de los extremos se genera amoniaco que se condensa en el otro



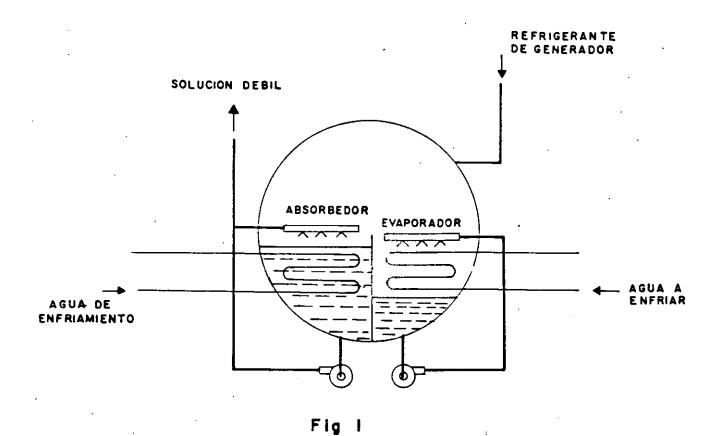
extremo por medio de enfriamien

to con agua; al retirar la fuente

de calor y enfriamiento respecti

vamente, se inicia una evaporación

del amoniaco que consume calor para


llevar a cabo el cambio de esta

do (líquido a vapor) producien

dose un efecto de refrigeración

Aprovechando este principio el Ing. Marcel Carré registró una patente para el empleo de una mezcla absorbente-agua para idear un sistema de refrigeración por absorción.

El sistema actualmente de uso en el mercado emplea como absorbente bromuro de Litio y como refrigerante agua; el sistema funciona de la siguiente manera:



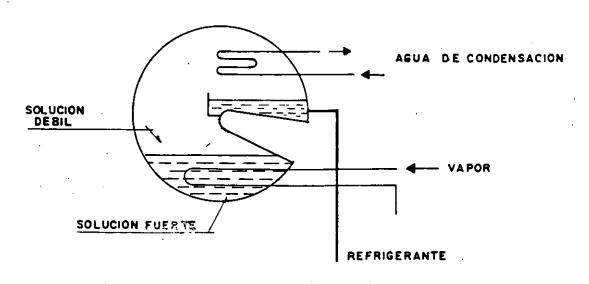



Fig 2

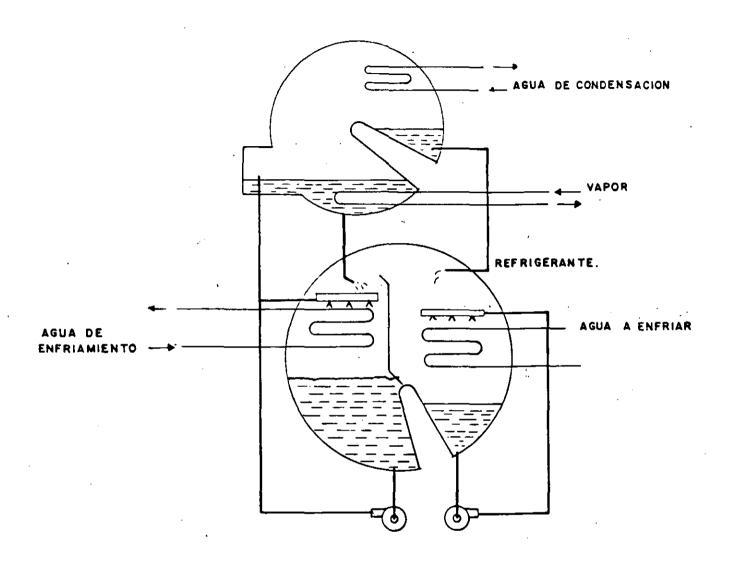
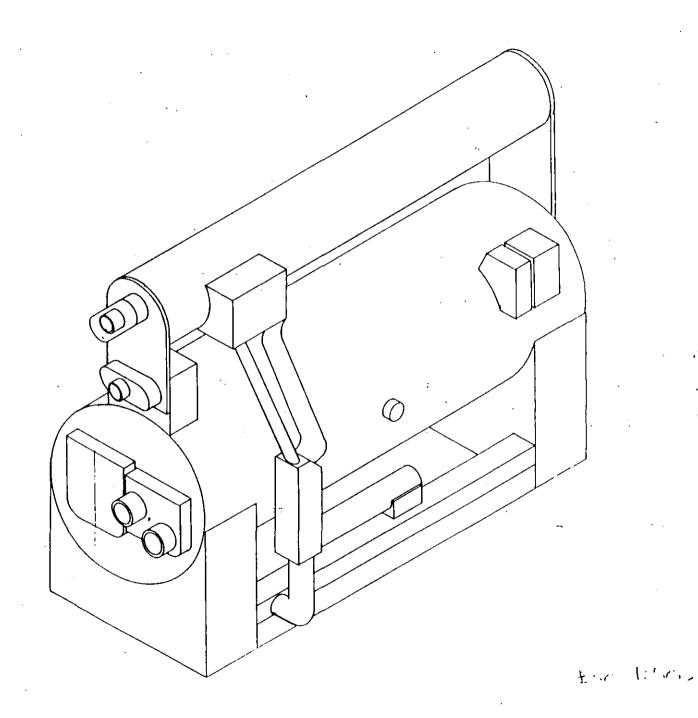



Fig 3

La figura (1) representa un recipiente hermético que contiene el ABSORBEDOR y el EVAPORADOR divididos por medio de una mampara; el absorbedor contiene una solución concentrada del absorbente que es recirculada por medio de una bomba y espreada sobre su depósito, creando una gran superficie de contacto (el area de las pequeñas gotas) todo el recipiente se encuentra a muy baja presión y el vapor de agua que se halla presente es facilmente absorbido por esta solución; la reacción es exotérmica por lo que es necesario enfriar al absorbedor para que se obtenga la máxima capacidad posible.

En la sección correspondiente al 3VAPORMOR se recir
cula refrigerante ( agua ) por medio de una bomba para lograr
que ésta presente máxima superficie posible para favorecer
su EVAPORACION; al evaporarse el agua, que en forma de vapor
pasará hacia la otra parte de la cámara, necesita consumir
calor(CALOR DE CAMBIO DE FASE) que obtendrá del cambiador
de calor que se encuentra en la zona del evaporador; este calor
al ser retirado provoca la REFRIGERACION y así se obtiene agua
helada de este equipo.


En la figura ( 2 ) se representa el sistema de recuperación

de refrigerante; en otro recipiente hermético GENERADORCONDENSADOR, se alimenta la solución diluida de absorbente
y refrigerante ( SOLUCION DEBIL ) y por medio de un serpentín
de vapor, se hace hervir esta solución, generándose vapor de
agua ( refrigerante ) que pasará a la parte superior del recipiente y se condensará ahí por medio de un serpentín enfria
do por agua de torre de enfriamiento ( CONDENSADOR ). Simultaneamente se logra tener al refrigerante en forma pura por
evaporación y a la solución absorbente suficientemente concentrada para porder iniciar el ciclo de absorción nuevamente

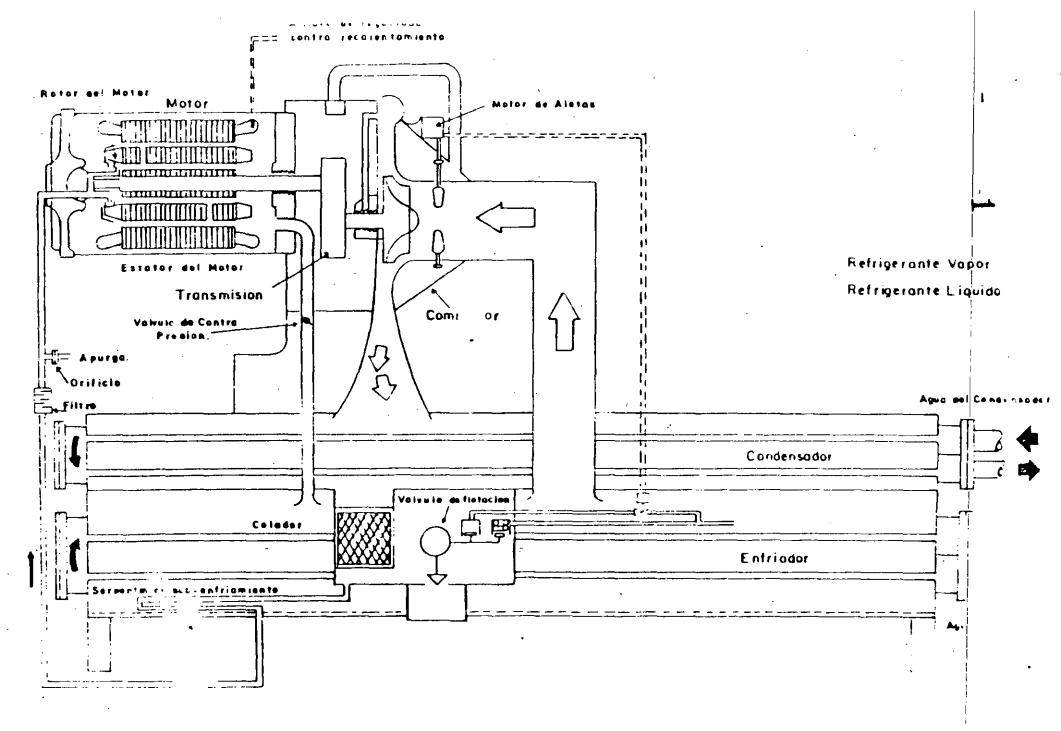
El grupo generador-condensador trabajan aproximadamente a presión 10 veces mayor que la del absorbedor- evaporador 3 pulgadas absolutas de mercurio/ 0.3 " abs. por lo que para pasar del recipiente de " alta " presión al de " baja " se requieren restricciónes para mantener esta diferencial de presión.

En la figura (3) se representa esquemáticamente el ciclo completo de un sistema de refrigeración por absorción y es importante hacer notar que uno de los elementes fundamen tales en la economía del sistema es un cambiador de calor que enfría la solución "fuerte" obtenida en el generador por medio de la solución debil" que va hacia el sistema de regeneración.

Durante las diferentes condiciones de operación a las que normalmente se ve sometida una máquina de absorción, se pueden presentar súbitos cambios de " carga " que pueden originar una excesiva concentración de la solución " fuerte " o un enfriamiento súbito de ésta originando una CRISTALIZACION de la solución; en la gran mayoría de las máquinas modernas está prevista esta eventualidad y antes de que ocurra un sis tema automático de dilución entra en operación. Sin embargo el problema de la cristalización se llega a presentar y es uno de los riesgos mas importantes en la operación de estas unidades.






## FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDCICIONADO

MAQUINAS CENTRIFUGAS

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. Tel.: 521-40-20 Apdo. Postal M-2285



## MAQUINAS CENTRIFUGAS

El equipo centrífugo, funciona en base al principio de "Evaporador inundado". El equipo está constituido por un gran envolvente dividido en dos secciones; la parte alta constituye el condensador del equipo, y la parte baja el eva porador. Para lograr la evaporación del refrigerante, se crea una succión por medio de un rotor centralago (parecido al de una bomba) que gira aproximadamente a 12 000 rpm. La descarga del rotor al pasar por la voluta del equipo convierte la velocidad de descarga en presión y es descargado el vapor refrigerante hacia el condensador. Para el rango de operación de un equipo centrífugo se requiere un refrigerante con bajas presiones de condensación y una presión de evaporación moderada tambián.

Las presiones de operación normales para un equipo centrífugo son del siguiente orden.

Alta presión (Condensador) 7 a 8 psig
Baja presión (Evaporador) 16" de vacío

El refrigerante empleado en la generalidad de los casos es R-ll por sus propiedades adecuadas al rango; sin embarga existen algunos equipos que operan con R-12

La velocidad del rotor es constante y para regular la capacidad del equipo se modifica la caida de presión de la succión del compresor centrífugo por medio de un juego de álaves movibles que cierran el paso al flujo de gas; al disminuir el flujo de vapor disminuye la presión de succión y aumenta el ponto de ebullición del refrigerante, controlandose así la capacidad del equipo.

#### PARTES PRIMCIPALES

## 1.- MOTOR-IMPULSOR

En algunas marcas de equipo, el motor de la unidad se encuentra dentro de un recipiente sellado formando parte del interior del equipo; en este caso el motor es enfriado por una corriente de refrigerante que circula por medio de diferencias de presión entre el evaporador y el condensador; el sistema de lubricación del grupo mecánico se lleva a cabo por medio de una bomba de aceite que opera inclusive durante algún tiempo después de que el equipo ha dejado de operar. Ya que las velocidades a las que opera este equipo son muy altas, elcuidado del sistema de lubricación es primordial para la vida del equipo.

## 2.- FLUJO DE REFRIGERANTE LIQUIDO

El refrigerante pasa del condensador al evaporador por medio de una válvula reguladora de flujo de líquido; se pretende mantener constante el nivel del evaporador para cualquier capa-

cidad y un nivel mínimo en el condensador; para algunos modelos se emplea una válvula de flotador y para otros una válvula de orificio variable que ha demostrado mayor versatilidad a las variaciones de carga.

#### 3.- SISTEMA DE PURGA

Siendo que la parte de baja presión de la máquina funciona a una presión inferior a la atmosférica, es frecuente encontrar pequeñas entradas de aire al sistema principalmente por el eje de mando de las compuertas de control de capacidad y algunas veces, en equipo en mal estado hay entrada de agua de los serpentines enfriadores. Se requiere un sistema que elimine estas impurezas que afectan en forma determinante el funcionamiento del equipo y para esto se emplea el sistema de purga, que en algunos equipos es automático y en otros manual; se en forma permanente una pequeña cantidad de vapor del condensador y se pasa a una pequeña cámara enfriada por un serpentín de refrigerante, el refrigerante en forma de vapor que esté presente se condensará, lo mismo vapor de aqua si se encuen tra presente; la parte superior de ésta cámara forma un sello hidráulico con el refrigerante impidiendo que los no condensables salgan, por medio de la válvula de purga se tira al ambiente el aire que está presente, subiendo nuevamente el nivel del refrig gerante. El agua presente flotará sobre el refrigerante y podrá distinguirse por medio de una mirilla; sobre el nivel de refrigerante estará el de agua que se puede eliminar por medio de otra válvula



# FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE A.CONDICIONADO

TORRES DE ENFRIAMIENTO

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. Tel.: 521-40-20 Apdo. Postal M-2285

El proceso que se lleva a cabo en una torre de enfriamiento es el tipico de humidificación y calentamiento, este proceso -- también se lleva a cabo en los condensadores evaporativos y en una infinidad de problemas de aire acondicionado.

La torre de enfriamiento es un dispositivo auxiliar en un sistema de refrigeración que tiene por objeto enfriar cierta can
tidad de agua, aprovechando, el proceso de humidificación del aire.

Las torres de enfriamiento se clasifican de acuerdo a la forma de mover el aire a través de la torre. Existen tres formas -- que son las mas comúnmente usadas:

- a) TIRO NATURAL
- b) TIRO INDUCIDO
- c) TIRO FORZADO

Tiro Natural; se emplea el "efecto chimenea" aprovechando - las diferencias de densidad del aire dentro de la torre contra una columna de aire exterior con densidad constante.

Se construye una estructura hiperbólica, normalmente de con creto con grandes arcos de acceso en su parte baja para la entrada del aire ambiente, en la garganta de la parte superior de la torre se colocan una serie de espreas o rociadores que dejarán caer el agua caliente en el interior; al descender el agua provocando una lluvia estará en contacto con el aire cada vez menos saturado humedeciendolo y calentándolo hasta llegar el agua a la parte inferior donde es colectada a una cisterna subteranea. El aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo y caliente formará una como con el aire cada vez mas húmedo con el aire cada vez mas húmedo con el aire cada vez mas húmedo con el aire cada vez mas húmedo con el aire cada vez mas húmedo con el aire cada vez mas húmedo con el aire cada vez mas húmedo co

corriente ascendente y saldrá por la parte superior.

Este equipo maneja gastos de agua superiores a los 500 m³h y su gran ventaja es que no consume energía en ventiladores; — se emplea fundamentalmente en acerías y termoeléctricas.

flujo de aire a traves del empaque por medio de un ventilador colocado en la parte superior del equipo y se distribuye agua caliente sobre el relleno enfriador (empaque) por medio de un sistema de espreas; al descender el agua contacto con aire mas frío y menos saturado, produciendose un efecto de contracorriente que incrementa considerablemente la eficiencia del equipo.

Tiro forzado. - En una época se emplearon las torres de enfriamiento de tiro forzado, se fuerza el aire por medio de ventiladores desde la parte baja de la torre hacia arriba y el agua cae en cotracorriente; han perdido popularidad debido a que la violencia con la que penetra el aire provoca que parte del empaque no opere correctamente y se requiere incrementar las dimensiones del equipo.

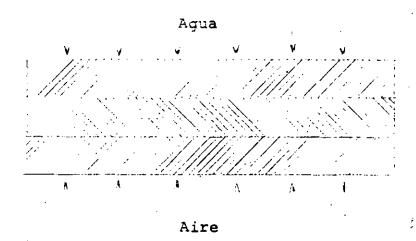
## EMPAQUES HUMIDIFICADORES

Para el enfriamiento de agua en una torre se requiere crear un espacio físico en el cuál se establezca un contacto íntimo entre el agua por enfriar y el aire que será el medio de enfriamiento; este espacio debe reunir las siguientes cond:

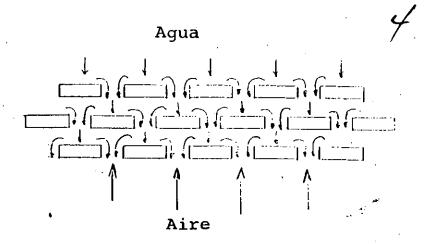
- 1.- Gran superficie de contacto en poco volúmen
- 2.- Poca caide de presión al flujo de aire
- 3.- No descomponerse o podrirse con el agua


Los empaques se clasifican en dos tipos principales
PELICULA y SALPIQUEO

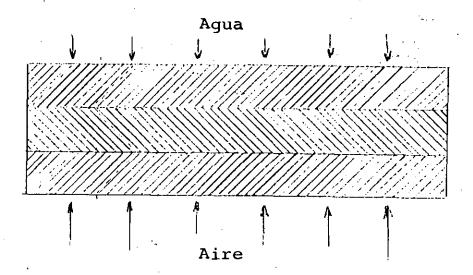
## EMPAQUE DE PELICULA

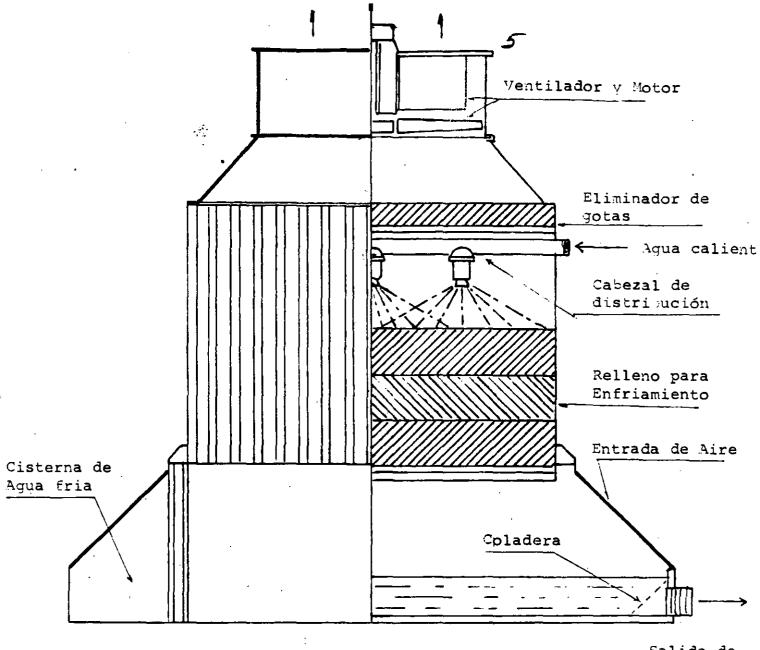

Se pretende formar una película de líquido de muy pequeño espesor sobre la superficie del empaque para que el aire al tener contacto con ella pueda efectuar la transferencia de masa y calor.

## EMPAQUE DE SALPIQUEO


Se pretende formar una serie de pequeñas cascadas en el interior de la torre para que el aire circule a través de ellas, humidificandose y realizando la transferencia.



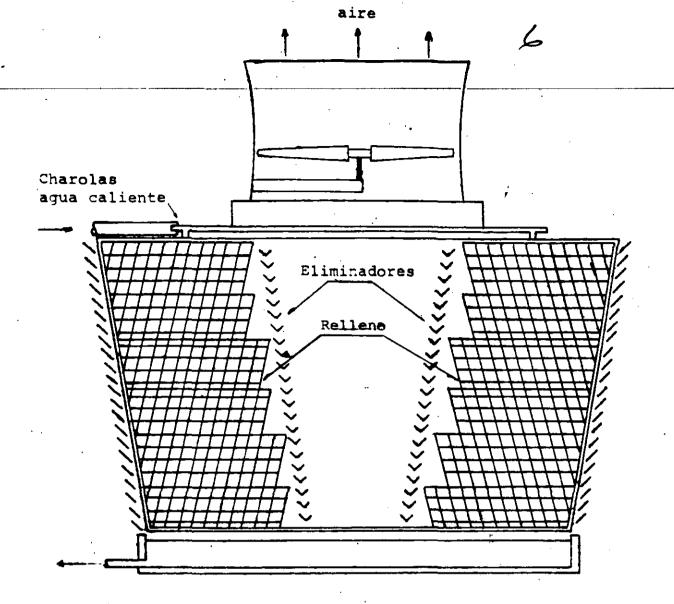

STRAGT NO TREESTED.




EMPAQUE DE PELICULA



EMPAQUE DE SALPIQUEO.






Salida de Agua fria

TORRE DE ENFRIAMIENTO DE TIRO MECANICO INDUCIDO

( Empaque tipo película )



TORRE DE ENFRIAMIENTO DE TIRO MECANICO INDUCIDO DE FLUJO CRUZADO (Empaque pélicula o salpiqueo)



# FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

MANTENIMIENTO

Paracio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. Tel.: 521-40-20 Apdo. Postal M-2285

#### MANTENIMIENTO

El criterio de mantenimiento se ha modificado en forma substancial durante las últimas décadas; ha pasado de ser correctivo a PREVENTIVO el criterio antiguo de personal improvisado, insuficiente y abrumado de trabajo con "soluciones para ayer" ha pasado a la historia como una PESIMA opción El costo de los equipos, refacciones y horas-hombre desperdiciados por este sistema debe ser erradicado como una pésima inversión ya que su productividad es muy escasa y siempre habrá problemas "urgentes" que no se podrán resolver.

En las instalaciones actuales se debe VIGILAR el equipo, no esperar a que falle y solucionarlo con medidas de emergencia.

Un director de mantenimiento de importante cadena hotelera comentaba "Estoy tranquilo tomando un café con usted por que SE que todo marcha bién "Esta tranquilidad se debe a una excelente programación que se lleva a cabo en su departamente de mantenimiento. "Aquí no hay sorpresas" comentaba; los regis tros de los equipos se llevan a la perfección y los riesgos de falla se MINIMIZAN, se programa una revisión general de cada equipo cada determinado períoda de tiempo y se cuenta con las refacciónes probables para no tener sorpresas. El "mantenimiento" normal como lubricación, verificación de presiones, tensión de bandas, análisis de aguas de caldera, etc; se realizan con

con un programa perfectamente definido, cada miembro del depto tiene asignados determinados equipos y un programa semanas para lubricación, verificación, etc. Se llevan registros de cada parte de equipo para saber su tiempo de operación, cambios refacciones, fallas comunes y un programa de remplazo

De las observaciónes que se han hecho anteriormente, se pueden establecer quatro puntos fundamentales para la correcta instrumentación del mantenimiento.

- A) PROGRAMAS DE MANTENIMIENTO
- E) BITACORAS DE OPERACION
- C) ANALISIS ESTADISTICO DE OPERACION Y REEMPLAZO
- D) CAPACITACION AL PERSONAL

## A. - PROGRAMAS DE MANTENIMIENTO

Es físicam ete imposible revisar, lubricar y verificar todos los equipos diariamente; se deben establecer programas para los equipos con la frecuencia que se requiera y distribuir los como tarea diaria para el personal de mantenimiento. Por ejemplo, si no hay personal encargado directamente de los equipos de tratamiento de agua, se programará una revisión al día, o tal vez por turno, si la instalación lo requiere; para calderas, unidades enfriadoras, etc. normalmente hay un encargado u operador por turno; él se deberá encargar del mantenimiento general de su equipo así como del equipo accesorio.

Es fundamental que cada equipo esté asignado a una

persona específica y que se lleve un informe de que se le hizo al equipo durante su mantenimiento; (Si se encontró en perfectas condiciones el informe debe decirlo NO SE HIZO NADA)

## B) BITACORA DE OPERACION

Los equipos principales, enfriadoras, calderas, torres de enfriaméento, etc. deben llevar una bifacora de operación, en la cuál se registrarán sus condiciones de operación probablemente 3 d 4 veces por turno; es fundamental la veracidad de la información de la bitácora, ya que el estado interno y las condiciones de operación se deben o tener de información de la bitácora. Cada fabricante presenta tipos de hojas de bitácora para sus equipos; todos ellos son buenos, sin embargo es conveniente tomándolas como base diseñarlas específicamente para cada caso o grupo de empresas; por ejemplo cadenas hoteleras, en donde se requerirá una copia para el jefe de mantenimiento y otra más para la Dirección corporati va de mantenimiento.

C) ANALISIS ESTADISTICO DE OPERACION Y REMPLAZO

Este análisis a base de informes periódicos de mantenimiento
y bitácoras de operación se realiza para prever reparaciones
mayores a equipo, paras programados y substitución de unidades,
en grandes cadenas hoteleras se centraliza este trabajo y se
procesa por medio de computadora; para el caso normal el jefe
de mantenimiento debe realizar estos estudios permanentemente

Es común que el jefe de mantenimiento no tenga tiempo para realizar este trabajo; esto indicará una falla de organización, el jefe de mantenimiento NO DEBE ser mecanico de operación sino coordinador de su departamento.

## D) CAPACITACION AL PERSONAL

La capacitación del personal debe ser de 2 clases fundamentales:

## 1.- GENERAL

### 2.- ESPECIFICA

Es común el reclutamiento de personal para mantenimien to entre el personal de intendencia o el mercado libre de trabajo donde la preparación que tiene el personal escasamente cubre la educación secundaria; es necesario darle una capacitación general sobre plomería, electricidad y mecánica básicamente para que este personal pueda ser útil en las labores que le serán asignadas; la capacitación que obtiene en el campo adolece de fallas profundas en la teoría de las operaciones que realiza y la calidad del trabajo es muy deficiente; es conveniente que se capaciten por medio de cursos especiales para el nivel en el que se desarrollarán ya que su rendimiento y calidad justificarán ampliamente la inversión.

Para el caso de operadores de calderas, subestaciones equipos de enfriamiento, etc. es necesario que se tenga una preparación específica, ya que los equipos a su cargo son com plicados y pueden llegar a presentar riesgos, a este respecho

hay cursos magníficos que dan algunas empresas fabricantes o instituciones especializadas.

En general, cualquier capacitación que se proporcione a un ser humano tendrá dos grandes ventajas; primero permitirá a éste una superaci ón personal y después logrará un mejor desarrollo de su trabajo con las consecuentes ventajas para su empleador.



# FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUÇACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

TABLAS ANEXAS

Paracio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. Tel.: 521-40-20 Apdo. Postal M-2285

TABLA IX-4. Temperatura diferencial total equivalente, para calcular la ganancia de calor a través de paredes

		Ü							•		•		/.	<b>,</b> .
	TIEMPO SOLAR													
Latitud		, A.M.						P.M.						Latitud
Pared	3	10	12	2		4	6	-	8	10	5	1	2	aur
_lmcfa_elt		Co	lor exte	ior de l	r de la pared (O=obscura, C=clara)									Pared bacía el:
	0 C	0 0	0 0	0	c o	С	0	c o	С	0	С	0	С	
Partición														
NE E	$\frac{22}{30}$ $\frac{10}{14}$	1	1 1	0 12 6 12	10 14 12 14	14 14	1	14 10 14 10		6	4	2	2 2	SE E
SE S	13 6	26 1	6 28 1	8 24	16 16	14	14	14 10	10	6	4	2	2	NE
SQ SQ	- 4  - 4   - 4  - 4			4 26	20 26	1 1		14 10 28 2	1 !	6	6	2	2	N NO
0		0	0 6	6 20	12 40	28	48	34 2:	2 22	8	8	2	2	ο .
NO N (sombra)	-4 -:	$\begin{vmatrix} 0 - 1 \\ -2 - 1 \end{vmatrix}$	2 6	4 12 4 10	10 24 10 14	20 14	1	26 3 12	3 8	6	4	2 0	0	SO . 3 (sombra)
			·	Tabiq	ue de 4	plg d	pied	ra.						- <u> </u>
NE E	2 -	1 (	1 1	10 10 17 14	6 12 14 12		- 6	14 12 14 12	1 14	10 10	10 8	6	4	SE E
SE	2 -:	2 20	10 28	16 26	16 15	14	14	14 1:	12	10	8	6	6	NE
S SO	0 -		2 12	6 24 2 12	16 26 8 32		j	16 1: 26 3	1.	10	8	6	6	NO N
O	0 -	2 0	0 4	2 10	8 20	- 18	40	28 4	2 28	16	14	6	6	0
NO N (sombra)	1 1	$\begin{vmatrix} 1 & -2 & -4 \\ 4 & -2 & -4 \end{vmatrix}$	-2 2 -2 0	2 8 0 6	6 10	1 [	30 12	22 3 12 1	1 1	12	10 8	6	6 4	SO S (sombra)
				Lac	drillo b	icco (	le S r	olg -						
NE E	1 1	0 0 2 12		10 16 12 26	10 10	1 1	3 - 1	10 1 10 1	- 1 1	12 14	10 10	8 10	8	SE E
SE S	2	0 2	0 16 0 2	8 20 0 12	12 20 6 24	14	14	12 1 1 1 16 2	12	12	10 10	8 8	6	NE N
so -	1 1	0 2	0 2	0 6	4 13	1	26	15 3	1 1	<b>!</b>	13	8	6	7.0
0 N0		2 4	2 4 0 2	2 6	4 10	8 6	18	14 3 10 2	0 22 2 18		22 22	18 10	14	0 S0
N (sombra)	1 1	2 - 2 -	$-2 \left  -2 \right  -$	-2 0	0 0	1	1 - 1		0 10	l: . !	10	6	6	S (sombra)
	<del></del>	<del>. 1</del>	Tabiqu	<del>- , , -</del> -		<del></del> -			<del></del> 1	,—			<del>- 1</del>	
NE E	1 .1	2 2 6 8	2 10 6 14	2 16 9 18	10 1	3 10	14	S 1	0 8 4 10	14	10	10 12	8 10	SE E
SE S	1 1	4 6	4 6 4	4 14 2 4	10 1 2 1				2 10 6 12		10 10	12 10	10 8	NE N
SO	8	4 6	4 6	4 8	4 1	0 6	1 1	8 2	0 12	24	16	20	14	NO
7.0 0	8 2	4 6 2 2	4 6 2 2	6 8 2 4	1 11	0 6 6 4	14		0 16 0 8		16 14	24 18	16 14	0 S0
N (sombra)		0 0	0 0	0 0	0	2 2	6	6	8 8	8	8		6	S (sombra)
NE	T el	دا ا	6 0		bique d			6 1	2 6	امد		10		SE
E	12	6 8 8 12	6 8 8 12	4 8 8 10	6 1	2 8	14	10 1	2 6 4 10	14	6 8	10 14	8	E
SE S	3 1	6 8	6 10 6 6	6 10 4 6	6 1 4	0 6 5 4	t . i		4 10 0 6		10 8	-12 12	8	NE N
so	10	6 10	6 10	6 10	6 1	6	10	8 1	0 8	12	8	14	10	NO
%0 0	8	8   12  6   8	8 12 6 8	8 10 4 8		8 4	8	6 1 4	0 6 8 6		8 6	. 16 10	10	0 . SO
N (sombra:	4	4 2	2 2	2 2	2	2 2	2	2	2 2	4	4	6	6	· S (sombra)

TABLA IX-4. Temperatura diferencial total equivalente, para calcular la ganancia de calor a través de paredes (conclusión)

*																				
en er	TIEMPO SOLAR																			
Latitud norte	A.M. P.M.										Latitud sur									
~·	S 10		12		2		4		6		8		10		12	2 ]				
Pared hacía el:		,,a		Color exterior de la pared (O=obscura, C=clara)								Pare hacia								
	0	С	0	С	0	С	0	С	0	С	0	С	0	С	0	С	0	С		
Concreto ó piedra de S plg ó bien bloque de concreto de 6 u S plg												, _								
NE E SE S SO " O NO NO (sombra)	4 6 8 2 6 4 0	2 4 2 1 2 4 2 0	4 14 6 2 4 6 4 0	0 8 4 1 2 4 0	16 24 16 4 6 6 4	8 12 10 1 2 4 2	18 12 8 8		18 18 16 14 12 6	6 10 12 12 10 8 6 4	12 14 14 18 22 20 12 6	8 10 12 12 16 14 10 6	i	10 10 10 12 16 18 14 8		S 10 10 8 16 18 16 6	10 8 10 14	6 8 8 10 6 4	SE E NE NO O SO S (sor	nbra)
·						Con	cret	ا ن ه	piedi	ra de	12	 pl <b>g</b>								<u></u>
NE E SE S SO O NO N (sombra)	6 10 8 6 3 10 6	4 6 4 4 6 4 0	6 8 4 8 6	2 6 4 2 4 6 2	10 6 4 6 8	2 6 4 2 4 6	14 18 14 4 6 10 6	10 8	16 10 8 10 6	8 12 10 6 6 4 2	10 16 16 14 10 12 8	8 10 10 10 8 8 6 4	10 12 14 16 19 16 10 6	10 12 14 10 8	12 14 20 24 18	14 12	20	10 10 8 12 14 14	E NE N NO O SO	nbra)

NOTAS:

Ganancia total de calor debida a la radiación solar y a la diferencia de temperaturas en Btu/h-pie² Coeficiente de trans-misión de calor de la pared en Btu/h-pie²-°F

De Air Conditioning and Refrigeration, 4º edición, por Burgess H. Jennings y Samuel R. Lewis, con autorización de International Textbook Company.

TABLA IX-5. Temperatura diferencial total equivalente para calcular la ganancia de calor a través de techos

					Tien	ipo s	solar			
Descripción de los materia		A. M	[, .		. ,	P	М.		<del>-</del>	
		8	10	12.	2	4	6	8	10	12
Techos es	rpuestos al sol.	Cons	stru	cciór	ı lig	era				<del></del> .
Madera de 1 plg			.00	<b>7.</b>	43	<b>5</b> 0:	24	10		^
Madera de 1 plg y ai de 2 plg	slamiento	12	38	54	62	50	26	10		0
Techos es	xpuestos al sol.	Cons	struc	cción	i me	dia				
Concreto de 2 plg Concreto de 2 plg y ai de 2 plg Madera de 2 plg	slamiento	6	30	48	58	50	32	14	6	2
Concreto de 4 plg		٥	20 [.]	38	50	52	<b>Δ</b> Ω	22	17	6
Concreto de 4 plg y ai de 2 plg	slamiento		20	, <u>, , , , , , , , , , , , , , , , , , </u>	Ju		70		12	J
Techos ex	xpuestos al sol.	Cons	tru	ción	pes	ada				
Concreto de 6 plg		4	6	24	38	46	44	32	18	12
Concreto de 6 plg y ai de 2 plg	islamiento	6	6	20	34	42	: 44	34	20	14
	Techos en la	som	nbra							
Construcción ligera Construcción media Construcción pesada		-4 -4 -2		6 2 0		12	12		6	

Tomado de Air Conditioning and Refrigeration, 4 edición, por Burgess H. Jennings y Samuel R. Lewis, con autorización de International Textbook Company.

## NOTAS:

1. Calculada con el método de Mackey y Wright.

Para techos que no sean planos, considérese el área proyectada.
 Cuando el color del techo es claro como el blanco o el aluminio, añada a la temperatura equivalente diferencial en techos a la sombra el 55 % de la diferencia entre el techo a la sombra y el techo expuesto al sol. Cuando el color es gris claro, azul claro, gris claro o rojo brillante añada el 80 %.



# FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

ANALISIS DE CARGAS TERMICAS

## ANALISIS DE CARGAS TERMICAS

1 100

En la evaluación de un problema de aire acondicionado, el análisis de las cargas térmicas que intervienen en él es de primordial importancia; estas aportaciones o pérdidas se pueden clasificar en dos grandes grupos:

a.- CARGAS FIJAS

b.- CARGAS VARIABLES

Las cargas fijas se pueden a su vez clasificar de la siguiente forma:

- a.l Transmisión de calor
- a.2 Personal
- * a.3 Iluminación
  - a.4 Equipo y miscelaneos
- A.l La transmisión de calor que ocurre a través de barreras físicas como muros, ventanas, pue-rtas etc está definida por la ecuación general de la trasferencia de calor:

 $T\Delta A U = p$ 

En doade

U: Coeficiente total de transferencia de calor

A : Area a trav'es de la cuál fluye el calor

∆T: Diferencial de temperatura entre los

## lados de la barrera

cálculo de "U" es la parte medular del problema y en ocasiones la mas engorrosa; U está definida de la siguiente forma:

$$U = \frac{1}{\frac{1}{h_{1}} + \frac{1}{h_{0}} + \frac{x_{1}}{k_{1}} + \frac{x_{2}}{k_{2}} + \dots + \frac{x_{n}}{k_{n}}}$$

en don

h_i: coeficiente de película interior para aire quieto

ho: Coeficiente de película exterior para aire en movimiento 24 km/h (15 millas/h)

x : espesor del material que constituye la
barrera ...

k : conductividad térmica del material de la barrera

valores de "hi" y"ho" se consideran constantes dentro de cir o rango de rugosidad de la pared y velocidad del aire y sus alores en sistema métrico son los siguientes:

$$h_1 = 8.03 \text{ kcal/ } h \text{ °C m}^2$$
  
 $h_0 = 29.3 \text{ "} \text{ "}$ 

La conductividad térmica " k " está definida como

$$k = kcal - m / h m^2 \circ C$$

Y la distancia o espesor " x " en metros

	Kcal/m2h°C
SUPERFICIE AL AIRE EXTERIOR. Velocidad del viento m/seg. 12/Km/h (3.33m/seg.6 menos).	w. <del>-</del>
Velocidad del viento 5m/seg. 18Km/h (5m/s)	δ menos
Velocidad del viento m /seg. 24km/h (6.67m/seg. 6 mas).	δ más 30
SUPERFICE VERTICAL INTERIOR SUPERFICIE HORIZONTAL INTERIOR Flujo hacia abajo	5 6 4
SUPERFICIE HORIZONTAL INTERIOR Flujo hacia arriba	. १८८७ होते । १८८७ होते । १८८७ होते । १८८७ होत्रेक्षण होते । १८८७ होते ।

# NOTA 1:

Los coeficientes de conductividad K están expresados en Kilocalorías por metro cuadrado, por hora y por grado centigrado de diferencia de temperatura, para un material de un metro de espesor. Dividiendo el coeficiente K entre 0.124 se obtienen BTUs por piécuadrado, hora grado Fahrenheit, para una pulgada de espesor.

# NOTA 2:

Los coeficientes de transmisión U y los de convección f están -dados en kilocalorías por metro cuadrado por hora y por grado -centígrado de diferencia de temperaturas. Para convertirlos a BTUs por pié cuadrado, hora, y grado Fahrenheit habrá que dividir
los entre 4.88

COEFICIENTES DE CONDUCTIVIDAD TERMICA DE DIVERSOS MAT	TERIALES
Materiales de construcción Kg/m ³	К
Muro de ladrillo al exterior Muro de ladrillo al exterior con recubrimiento impermeable por -	10.75
fuera Muro de ladrillo interiores Muro de ladrillo comprimido vi-	0.66
driado para acabado aparente, exterior:	1.10
Muro de tabique ligero con recu- brimiento impermeable por fuera 1,600,1 1,400	0.60 0.50
1,200 -1,500	0.45
Muro de tabique ligero al exterior 1,600 (1,800)  Placas de asbesto cemento 1,800	0.70
Siporex al exterior con recubrimiento 660 Impermeable por fuera 510	0.18
Siporex al interior en espacio seco 660	0.12 0.16
510 410	0.13
Concreto armado 2,300 2,300 2,200 Concreto ligero al exterior 1,250	1.50 1.10 0.60
Concreto ligero al interior 1,250 Concreto ligero al exterior 800	0.50
Concreto ligero al interior: 800  Muro de tepetate o arenisca calcarea	0.30
al exterior Muro de tepetate o arenisca calcarea al	0.90
Muro de adobés al interior	0.80 0.80 0.50
は (4) しょうきょう こうさん こうしょう こうしょう ちょうい こうしゅう ロー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー	3.00
###Predra de cal, marmol 2,600  Piedras porosas como archisca y la  "caliza blanda o archosa 2,400	2.00