L

WY b B o . ,-___';_.- | -: .- 8 1 : 5 wen
Jﬁrmm:'if" ----- L fﬂ“m~£3ﬂ“mn' L Tﬂ-mwulﬂmln,

Palacio de Mineria Calle de Tacuba § Primer piso

FACULTAD DE 1IN GENIERIA U. N.A_M.
DIVISION. DE EDUCACION CONTINUUA

CENTRO DE INFORMACION Y DOCUMENTACION
"ING. 3RUNO &.SCX&LONI"

gL CENTRO DE INFORMACICN Y'DGCL._STACIuN "ING. BRUNO MASTANZONI" TIENE '~
PO} OBJETIVO SATISFACER LAS NICISIDADZIS DI ACTUALIZACION AL - PROPORCIONAR

'::LA ADECUADA 'INFORMACICH QUE:PIRMITAMA3LOS PROFESIONALES INGENIZROS™PRCTZ-
'SORES Y ALLMXCS, ESTAR AL TANTO DEL Z3TADO ACTUAL DEL CONGCIMIENTO sosaz— '
.TEMAS ESPECIFICOS ENFATIZANDO LAS INVESTIGACIONES DE VANGUARDIA DE LOS --

CAMPOS. DE ‘LA INGENIZRIA TANTO NACIONALIS COMO EXTRANJERAS. w0~

POR LO QUE SIZ PONE A DLSPOSICLO\ OE LOS ASISTEN TES DE LOS CURSOS DE LA -
D.z2.C.7.1.; ASI CCMO AL PUBLICO EN GINERAL.

EN DICHO CENTRG USTED TENDRA LGS SIGUIEZNTES SERVICOS:
* PRISTAMO INTERNO '
"% PRESTAMO EXTERNO
* PRESTAMO INTER3IBLIOTECARIO
* SERVICIO DE FOTOCCPIADO
* CONSULTA TELEFONICA
* CONSULTA A LOS BANCOS DT DATOS: LIBRUNAM EN CD-ROM Y EN LINEA

LOS MATERIALES A SU DISPOSICION SON:
% LIBROS
* TESIS DE POSGRADO
* NOTICIAS TECNICAS
* PUBLICACIONES PERIODICAS
PUBLICACIONES DE LA ACADEMIA MEXICANA DE INGENIERIA
* NOTAS DE LOS CURSOS QUE SE HAN IMPARTIDO DE 1971 A LA FECHY

*

' EN LAS AREAS DE INGENIERIA INDUSTRIAL, CIVIL, ELECTRONICA, CIENCIAS DE La-
. TTIERRA, MECANICA Y ELECTRICA Y COMPUTACION. ' a

PR -

EL C.I.D. SE ENCUENTRA UBICADO EN EL MEZZANINE DEL PALACIQ-DE MINERIA LADO _ °

- ORIENTE. EN HORARIO DE SERVICIO DE 10:00 A 19:30-HORAShDE LUNES A VIERNES.

Deleg. Cusuhtémoc 06000 México, D.F. Tel:52140-20 Apdo. Postal M-2285 .

mumnr [EA

}=—ACULTAD DE INGENIERIA U.N.A.M.
DIVISION DE EDUCACION CONTINUA

A LOS ASISTENTES A LOS CURSOS DE LA DIVISION DE EDUCACION CONTINUA

Las autoridades de fa Facultad de Ingendierla, por conducto delf Jeéé de £a Divisdidn
de Educacidn Continua, otorgan una censfancia de asistencia a quienes cumpf.an con
Los nequisitos EétabEECLdOé para cadd curso.

[t

EL control. de asdstencia se L?_euma a cabo a través de £a pernsona que) erwnego
Las notas. Las inasistencias serdn computadas porn Las autonidades de La Divisdidn,
con el fin de entregarle constancia Aozamen,te a Los aiumnoa que tengan un minimo
del'§0% de asistencias. :

Pedimos a Los asistentes hecogen su constancia ef dia de fa clauswra. Estas se -
netendnin por el penlodo de un aito, pasado este tiempo La DECFI no se hard res-
ponsable de este documento. :

Se necomienda a £Los asistentes participar activamente con sus Ldeas y experiencias,
pues £o0s cunsos que ofrece La Divisibn estdn planeados para que Los profesones -
expongan una tésis, pero sobre fodo, para que coordanen ﬂa.é opiniones de todos Los
internesados, comstotuyendo verdadernos &eminarios.

Es muy L{mporntante que fodos Los asistentes LLenen y entreguen su hoja de inscrip-
cion al iniclo def cwrnso, L{nformacidon que servird para dnteghan un directorio de
asistentes, que se em%egazm opomtunamanie.

Con el ‘objeto de mejoran Los servicios que La Divisdiin de Educacién Continua oggfiece,
al §<nal def curso deberdn entregarn fa evaluacidn a fravés de un cuestionario dese-
fado par emltin juiclos andnimes.

Se necomienda LLenarn dicha evaluacidn conforme Los profesores Ampanian sus clases,
a efecto de no Llenar en La dltima sesidn Las evaluaciones y con &s10 sean mds
fehacientes sus apmeuauonu. .

i GRACTAS L

Palacio de Mineria Calle de Tacuba § brimer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal }-2285
Teléfonos: 5128955 512-5121 521.7335 521-1987 Fax 510-0573 521-4020 AL 26

._
jui]
1
=Y

R T W W

E_ AUDI mwcﬂ"

Tk
ANEXO
N

UDITORI

LI AL S T wrpary St S e ey ey

T

—

" 'P__nnnxpmr'x‘z'-n’

D »w

o

TR ORI BT ey uumy

Eﬂ’:XPOSICtONi@ L

N
PLANTA

RS DIVISION DEYEDUCACION CONTINUA
% (;-'U' FACULTAD DE INGENIERIA U.N.A M.
LN CURSOS ABIERTOS

; _,_-_,._')\":)

GUIA DE LOCALIZACION
| - ACCESO |

2 - BIBLIOTECA HISTORICA

3 ~LIBRERIA U NAM

4—-CENTRO DE INFORMACION Y DOCU-
MENTACION "ING. BRUNO
MASCANZON!"

5-PROGRAMA DE APOYO A LA

~ TITULACION |

i AULAS

o AL I e e R i R g R g S

6 —OFICINAS éENERALEs

7 - ENTREGA DE MATERIALY CONTROL
.DE ASISTENC!A

s

8 SALA DE D:SCANSO

@|44444

- -y — _-- -

+'—-“ F—"T—" W o
GALERIA DEl ACADEMIA I

ESY SANITARIOS .

Zer P/SO

FACULTAD DE INGENIERIA, UNAM.
DIVISION DE EDUCACION CONTINUA g .

PROGRAMACION DE APLICACIONES
EN AMBIENTE WINDOWS

MATERIAL SUPLEMENTARIO

1994

Palacio de Minerfa, Calle de Tacuba S, prirer piso, Delegacion Cuauhtémoc, 06000 México, D.F Tel. 521 40 22 y 23, Fax 510 05 73 Apdo. postal M-2285 -

- Module 1: Using Visual Basic

Module 1: Using Visual Basic 17

> Overview |

= Visual Basic Tools
= Building a Simple Visual Basic Application

= Visual Basic Menu Commands

Overview

The purpose of this module is to introduce you 1o the key clements of Visual Basic.
This is not intended to be an exhaustive review of alt functions and tools; rather. it
is designed to get you up and running on the product. Later modules will flesh ou
all of the details that you need to know to become Visual Basic programmers.

The best way to leam about Visual Basic is 1o review the individual functions in
each major portion of the Visual Basic interfuce and then walk through the steps
you should follow to develop an application.

The module is divided into three major sections. The lirst mijor section is o lecture
about the elements of the Visual Basic application that you use in the creation ol
applications. The second is o demonstration where the wainer walks you througph the
application design process and you end up with i connpiled executable tile, The
linal section s i lab that gives you hands-on practice using some ol the wols hat
you have just been inroduced to, '

Prerequisites

There are two key skills that you need for success in this module:

» Practice in using a mousec

= Understanding of graphically based applications

Overall Objective

At the end of this module, you will have successully vreated your fiest Viswal Basi
application.

1

ey ——— T s Wy, o

Module 1: Using Visual Basic

Learning Objectives

At the end of this module, you will be able to:

» Design an application user interface using the Form window, Toolbox, toolbar,
and Property window. :

s Nume and save the application’s forms and project files.
s Start and stop an application from the Visual Basic menu and/or the toolbar.

a Create an exceutable file and add it to a Windows group.

Module 1: Using Visual Basic = 14

> Visua<l Basic Tools

» Form and Project Windows
= The Toolbox and Properties Window
= The Toolbar and Code Window

20 Modute 1: Using Visual Basic

Form and Project Windows

— Mictosoft Visust Basic [design) o]
i Eile Edit ¥Yiew Run Debug Qplons r{ind Help

s e o

Bl la)) (R

oot

121
G

REEE

Lz EI e E

o
~
d

:@'ﬂj'
i
&

What Is a Form?

Forms are the heart of a graphically based application. They are what the user sees
and imeracts with in order Lo accomplish some task. They are also the place where
you begin 1o build applicutions; on them you place controls—commind buttons, list
boxes, option buttons—that present the user with the choices that they have,

What Is the Project Window?

The Project window is a list that Visual Basic uses to keep track of the forms that
you are using for'your application. You will have as many .FRM liles listed in the
Project window as you have forms in your application. In addition you may have
other files— . BAS and . VBX files—but we will hold off talking about those for a
little while.

-

Module 1: Using Visual Basic il

The Toolbox and Properties Windom’r

' Pointer “\ 63
Label A
Frame I™)O
Check Box |®@|®
Combo Box
Horizontal Scroll Bar |em E]
' Timer =
Directory List Box [9|@
Shape ||@]|~
Image e
Custom Controls (*.VBX) _ETEI

Picture Box

Text Box
Command Butlon
Option Buiton
List Box

Vertical Scroll Bar
Drive Lisl Box
File List Box

Line

- Data Control

What's in the Toolbox?

As the name suggests, the Toolbox is where you go to get the basic elements of
every Windows-based application you create in Visual Basic.

There are two ways that you'can place controls on a loin, cither by double-clicking
the control tool in the Toolbox or by clicking and dragging the control. For the mosi
part, either method has the same result. When you double-click atool, the control
shows up in the middie of the form; so you then have 1o drig the control to the |

correct position on the form.

Each control that you place on a form has o set of properties that you can use in
order to get the right “look and feel” for your application. For the time being, wlf vou
need to know is that there are properties o cach control. s Liter modulbes you will
get a much closer look at the most commaonly used properties o most of the 1ools in

the Toolbox.

Custom Cpntrols

You can add controls to the Toolbox. Some third partics huve created custom
controls that you can purchase separately. The Professional edition of Visual Hasic™

contains various custom controls.

E To Add a Custom Control

1. From the File menu, choose Add File.

2. Select the appropriate file. Custom Control liles huve w VX extension.

3. VChoose OK.

22

Module 1: Using Visual Basic

What Are Properties and How Are They Set?

Propesties for a control are set using the Properties window:

(3 Properties £

Foim1 Foim 3

w{. tFoumi
LapiFiehon Fahe |
Haek Codn &H
Beader5iyte 2 - Sizatde
Caplion
Chol- prtiols
Cordediton
Dtawddeuge
Gt e
Criawtasulth
Erestied
Foll ket
Pl

| redFedd

I e dtht abe
Fordtl e
Forntiem
Fead®snd sibni Falie
Fontlrancnare Tige

z To set propertics

I. Click the control whose properties you want set.

2. Scroll the Properties list on the Properties window until you find the property
you want to set and select it

3. Place the value Tor the propenty in the Seltings combo box.

4. Click the check box to the left of the Settings combo box.

What [s the Toolbar?

. The tonlbar provides quick access to common commands or functions. These

functions — like saving projects and starting the application during the design phase
—are alse available from the Visual Basic menus as well as through access and

shoreut keys.

File Ldit Yiew Bun

Debug Qptions ﬂmdow Ijl:lp

Microgoft Visual Baslc [design] -

° H__jﬁ—‘l 360 ¢00 "“’I—I_ﬂ i lmwys T

Nine of the relevant items on the toolbar are.

Touller

NMenu path

Shorteat keys

New Fonng

New Module

Open opect

" Save Projecr

I"rom the File menu,,
choose New Form,

From the File meny,
choose New Module,

Isrom the [File menu,
choose Open Project,
From the File menu,
choose Save Project.

n/a

nfa

nfa

n/a

Module 1: Using Visual Basic 23

Toolbar Menu Path Shortcut Keys

Menu Design window From the Window menu. CTRIL+ M
choose Menu Design.

Properties window From the Window menu, 14

) choose Properties.
- Start From the Run menu, rs

choose Run.

Break . Froan the Run menu, TR ¢ BREAK .

: choose Break.

End From the Run menu, | Wi
. choose End.

Note The rest of the functions deal with debugging and will be covered during 1hig
module. .)

Position and Size Coordinates

Visual Basic displays the coordinates for the upper-lelt corner lor each control o
the form relative to the inside upper-left corner of the form. ht also displays the
width and height of the control. You can set ihese values hy placing the form or
control approximately where you want it, or you can specily Lefl and Top
coordinates from the Properties list. The unit of measurciment is in twips (there wie
[.440 twips in an inch). You will find out later that you can change this unit of
measurement to something you are more familiar with.

What Is a Code Window? |

Code windows display the code that implements your application. At first Code
windows only contain the template for procedures and functions: you will add mere
code to them as you develop your application. There arc several ways to open i
Code window. The easiest way is to double-click the ubject whase code you want o
view. For example, to locate the Click event template for o comimand hu:um
double-click the command button on the form during desipn time,

*'Formtfrm " L 7
Object: [Commandl [i¥] Proc: [Click w o |

Sub Commandl_Click () . : .

l

End Sub

e

24 Module 1; Using Visual Basic

Building a Simple Visual Basic Application

Walk Through—Building a Visual Basic Application

Z To start WORLD
I. From the Walk Throughs program group, start WORLD.

‘The purpose of this little application is to give you a chance to walk through
st ol the major steps needed for developing a Visual Basic application,

How does the application work?

It lias one text box and two command buttons.
2. Cheose the Fill button,

When the user clicks the button, text is revealed in the text box.
A, Choose the Clear button,

When the user chicks this button, the wext in the wext box is cleared.
4. Quit the WORLD appiication.

From the Control menu, choose Close.

Modulél:Using Visual Basic 25

e mskmirmr

2 To start Visual Basic
1. Double-click the Visual Basic icon,

Visual Basic will start with & blank form on the scoeen,

r—

2. Resize the form to:
Height 2700
Width 4065

E To design the base form

The first step in designing the user interface is lo set the properties for the
application's base form. In this case, set the properties for the Hello, Warld!
form.

I. In the Properties window Properties lisl, select BackCulor,
2. Click the ellipsis {...) at the end ol the text box.
3. Select a shade of green.

The background of the form turns green. Selecting any color will automatically
hide the color palelic.

4. In the Properties list box, select Caption,
5. Inthe text box, type Hello, World!
The Form title bar will contain Hello, World!
6. In the Properties window Properties list, select Nawne.

7. Inthe text box, type lrmWorld

Z To add controls and set propertics ’
To create the form's controls, double-click the appropriate buttons in the Toelbos,
i. Double-click the commind button wal in the Toolbos,

2. Set the following properties:

Caption Fill
Name - cnudbill
FonlSize 18

" 3. Move the Fill button to the upper-right comer of the form.

26 Module 1: Using Visual Basic !
o 4. Double-click the command button tool in the Tooibox.
5. Setihe following properties:
Cipion Clear
Name cmdClear

FomSize 18
. Muve the Clear button to the lower-right corner of the form.

] _ 7. Double-click the text box tool in the Toolbox.

8. Set the Tollowing propertics:

Name 1xtBox |

Texl Delete any text in the text box for this property.
/
' Z To add the Basic code to enable the controls

In this step, code will be added to activate the functionality of the controls in the
Torm. The code will enable the text box to be filled with the words Hello World!
whean the user clicks the Fill button and enable the text box to be cleared when the
user clicks the Clear button.

I, Double-click the Fill button that you just created to open the Code window.

When you double-click this command button, Visual Basic brings you directly to
_the template Tor a procedure that responds to a Click event for this control. The
cnainies of evenl procedures follow the pattern:

suhy ohjectname_eventname ()

in s case the procedure is named:

Sub o emdFill _click ()

Also noie that Visual Basic provides the statement that ends the subroutine:

Enid 3ub

lir the graphic below, notice that the object name shows up in the Object list box
on the left, and the event name shows up in the Procedure list box on the right.

Vit 0 frmWorldrm g
Object: [cmdFill]41_! Proc: | Click ¥ g
Sub cmdFill_Click () L
, ‘
End Sub
¥
RTTe ; rR A A A R

" Module }: Using Visual Basic 27

2. Add the following code:
txtBoxl.Text = "Hello, World!"
Add a line of code between the two lines of the wmplate Tor the Click event
procedure, This code gives the application the tarpet for the action (filling the -

text box) and the contents that you want assigned o the text box, In this case,
"Hello, World!" is the contents.

3. In the Object list box, select cmdClear.

4. Add the following text:
txtBoxl.Text = "*
Inside the template for this Chck evenl procedure. add o line of code to give the
application the target for the action (clearing the text bux} and the contents thi
you want assigned to the text box. In this case the contents is an emply
string ("),

E To save your work

Before you create an executable version of this Visual Basic application that you
can run directly in Windows, you should save the source code to disk. Yeou wull do
this through two actions—saving the form and saving 1he pln]ul

. From the File menu, choose Save File As.

Save File As;:]
- File Name: g
[~FRM [
cwalkthrussamples
Direclories: i
(4
[...] &
[-a-] /
-] :
-] !
[
R A ! el

Make the current directory CAWALKTHRUASAMPLES.
Save the file as WORLD.FRM.

Choose OK.

From the File menu, choose Save Project As.

Save the file as WORLD.MAK.

Choose OK.

I

28 Module 1: Using Visual Basic

Y

z To make an executable file

To ereate an executable file, make sure the source code for the project is open in
Visual Basic, :

!. From the'File menu, choose Make EXE File.

2. -Make the current directory CAWALKTHRUASAMPLES.
Y Save the file as WORLD.EXE.

4. Choose OK. .

g

. Mimimize Visual Basic.

Z To start the executable from Windows

You can start an executable file from Windows in two ways: |} create a program
group.and add the name of the file 10 the group; or 2) start Program Manager, open
the File menu, and choose the Run comimand. We'll use the first method.

I Trom the Program Manager File menu, select New.,
The New Program Object dialog box appears.

2. Select the Program Group option.

3. Cheose OK. .
The Program Group Properties dialog box appears.

In the Group Properties Description control, name the group something like
SAMPLES. : '

4. In the Group File control, type SAMPLES
5. Chouse OK.
A blunk window will appear.
6. From the Program Manager File menu, choose New.,

The New Program Object dialog box appears with the Program Item option
selected.

7. Chonse OK.
The Prograny ltems Properties dialog box appears.:
8. Name the application.

In the Description control, name the application WORLD or another name that
reflects its function. :

Now comes the tricky part. You need to help Windows locale the executable file
that yuu created.

¢ Click the Browse buttan.
The Browse window will appear,
10, Sclect drives and directories to locate WORLD.EXE.
S deshonld be in CAWALKTHRINSAMPLES.

' Module 1: Using Visual Basic 25

11. Choose OK.

The Program Items Propertics dialog box appears with WORILD.EXE in the
Command Line text box.

{2. Choose OK.

The SAMPLES Program Group will appear continning WORLD and o programn:
icon.

2 To run your application
. Double-click the World icon.

The Hello, World! application wiil start in the same screen location where the
form was created.

2 To stop your application
1. Click the Control menu in the upper-left corner ot the Hello, World! form.
A menu will appear.
2. Choose the Close command,

Windows closes the application for you.

30

Module 1: Using Visual Basic

Visual Basic Menu Commands

v order 1o develop the simplest ol applications, there are a number of Visual Basic
conunands that you need to know about. Below is a brief listing of these commands.
The list is not exhaustive: there are a couple of topics that have been left to a later

.Managing Forms and Projects: The File Menu
Editing Visual Basic Code: The Edit Menu

Testing Applications During Development: The Run Menu

Visual Basic Window Management: The Window Menu

Getting More Information: The Heip Menu

mundule.

~ Managing Forms and Projects: The File Menu

Adding a New Form
Iile menu, New Form

Adding an Existing Form to a Project
File menu, Add File-

Dieleting a Form from a Project
t-ilc menu, Remove File

Making an Exccutable File
File menu, Make EXE File

Printing Code

. File menu, Print, select Code option

Printing Forms
File menu, Print, select Form option

Saving a File and Naming it

File menu, Save File As ,
Saving a Form

Fite menu, Save File

Note Siving u file docs not mean that the project is also saved.

- Nuveng i Project

File menu, Save Project

Suving it Project and Naming Tt
File menu, Save Project As

F S, -

Module-1: Using Visual Basic n

Note A Walk Through showing you how o save a text version ol the code is

located at the end of this portion of the module.

\

Editing Visual Basic Code: The Edit Menu

Searching Code for a Text String
Edit menu, Find

Searching and Replacing a Text String
Edit menu, Replace

Cutting and Pasting Text
Edit menu, Cut, Copy, and Paste

Undoing Changes
Edit menu, Undo

Testing Applications During Development: The Run Menu

Starting the Application

~ Run menu, Start

Notice the change in the title bar when you select this optivn Lo indicate that you -

are now in Run mode.

Stopping the Application

. . —Run menu, End

Visual Basic Window Management: The Window Menu

Displaying the Properties Window
Window menu, Properties
Displaying the Toolbox

Window menu, Toolbox

Displaying the Project Window
Window menu, Project Window

Displaying the Color Palette
Window menu, Color Palette

Getting More Information: The Help Menu

Using the Help Table of Contems
Help menu, Contents

‘Searching for a Specific Topic

Help menu, Search

Locating Product Support Information
Help menu, Product Support

32

Module 1: Usitig Visuat Basic'

Walk Through—Saving a Text Version of Code

Procedural programmers are used 1o seeing all of their code in one place.
Remember, however, that the code is not executed in the order it appears in the text
file you create here. 1t is still event-driven code, and the flow of execution still
depends on user and system events.

2 To save a text version of code

0.

. Restore Visual Basic.

From the File menu, choose Open Project.

Open WORLD.MAK, tocated in \AWALKTHRINSAMPLES.

Choose OK. '

[.oad the sample project that you have just completed, but do not run it.
From the Project window, seleel WORLD.FRM.

Make sure that you select the correct file. When you load a project, the first file
in the list is selected by default.

Fram the File menu, choose Save Text,

Visual Basic will give your text file the same name as the form, in this case

WORILD.TXT. That will probably do in most cases. Make sure that you save
the file 10 (he WALKTHRWSAMPLES subdirectory.

. Choose QK.

Minimize Visaad Basic.

Return to Program Manager.,

. Inthe Accessories group window, open Notepad.

. From the File menu, Choose Open,

Use the Open dialog box to locate WORLD.TXT.

. Clhwoase QK.

This loads WORLD.TXT into Notepad so that you can review the code.
I you want (o print code directly to a printer, choose the Print command from
the Visual Basic File menu.

You can print just the form or code or both for the current file, or you can print
all lorms or code or both for your entire application. Remember, however, that
BAS files do not have a form associated with them, so in this case you will only

. heable w print code,

2 To save a text version of propertics and code

You can also save the form with the properties and code in a text file.

6.

From Visual Basic, open the project WORLD.MAK in
WAL KTHROUGH\SAMPLES,

- Fronthe Project window, select WORID.FRM

Fronn the File nrenu select Save File As.

Select the check box Save As Text and choose O

- The formas saved intext formal. The extension .FRM is used.

Lise Notepad 1o compare the two text files.

Module 1: Using Visual Basic 33

Walk Through—Using Visual Basic Help
2 To use Help :

1. From the Visual Basic Help nmienu, choose Contens,

The Visual Basic Help window appears. This window provides a briel topicai
tour of the major components of Visual Basic.

A topical list that might be of interest to you is Propramming Language.
2. Choose the Programming Language topic.
Information on that topic appears in a window.,
3. Choose the Beep Statement.
Language reference matcrial on the purpose, use. and syntax of this statement
appear on screen.
Z To use the Search command

Like standard Windows Help, the Visual Basic Help system has i Search commiinl
on the Help screen. To use Search, simply type in the term yousire looking tor,

1. From the Visual Basic Help window, choose Search.
2. Type Toolbox in the text box.
The text box is located at the top of the screen.
3. In the Search dialog box, select Show Topics,
Select the topic Toolbox.
Choose Go To.

Visual Basic opens a window with information on the rerm “Toolbox.”

L

6. From the Help screen, choose Back.

Visual Basic returns you to earlier topics,

z To use the Hislory command

Use the History command to return to topics that you have covered carlicr in the
session. Topical lists in this option arc arranged in reverse chronelogical order.

1. From the Visual Basic Help window, choose History.
The Windows Help History dialog box appears.
2. Double-click the topic of your choice.

The Help screen for that topic appears.

LNl

v e e T

3 . Module 1: Using Visual Basic

Z To cut and paste sample code into your code

The most powerlul part of the Visual Basic Help system is the large number of code
sarnples that you can paste into a project and run.

The fullowing procedures allow you to copy and paste sample code for a Click
cvenl. '

I. Visyal Basic should already be running.
Make sure there is a new form on the screen.
2. From the Help menu, choose Search.
3. Type Click in the text box.
4. Click the Show Topics bution,
Click Event should be highlighted,
5. Choose Go To. .
0. At the (op ol the Help form, click the word “Example.”
Tins brings up sumiple code in 4 window.
7. From the Event_Click example window, choose Copy.
This brings up another window with all the sample code in it,
5. Highlight the code you want. .
- In this case, take only the lines starting picturei.Move. . .
Y. Click the Cnpy.hullun.
This capies the selection to th<: Clipboard and hides the copy form.
0. Exit Visual Basic Help.
1. Double-click the picture box tool at the top of the Toolbox.
12, Drag the picture box to the lower-left corner of the screen.
13, Double-click the picture box on the form.
The Code window will open, l
14, Feoun the Edit menu, choose Paste.
I%ste the sample code from the Clipboard 1o your form.,
I5. Front the Run menu, choose Start,
Fo. Chick the picture box once.
Iwill move toward the upper-right corner of the screen.
17. Continue clicking the picture,
Iowill disappeir into the upper-right comer.
I8, rown the Run menu, choose End.

19 Minimize Visual Basic.

Module {: Using Visual Basic

35

Summary

~

» Visual Basic Tools

» Building a Simple Visual Basic Application

= Visual Basic Menu Commands

Objectives

In'this module, you learned to:

Design an application user interfiuce using the Forny windowe, Taolbos, 1oolhar.

and Property window,
Name and save the application's forms and project files.
Start and stop an application from the Visual Basic menu and/or the toollr,

Creale an executable Tile and add it to s Windows gronp.

36 Module 1: Using Visual Basic ’ .

Lab Time

Gu to the Creating An About Box portion of your lab manual,

\\\\'}

4/
v,

e

\

Module 2: Designing and Bmldm0
Vlsual Basic Applications

Module 2: Designing and Building Visual Basic Applications 39

> Overview

Event-Driven vs. Procedural Programming

Microsoft Visual Basic Terminology

Application Development Process

User Interface Design Guidelines

Configuring Your Environment

Overview

The purpose of this module is to introduce you (o several related concepis than help
you make the transition from the procedural wuorld to the event-driven world. This
module creates the logical framework tor much of the rest ol the course. It contras
programming for Microsoft Windows with MS-DOS wnd viher character-bascd
applications. '

It also provides a high-level averview of and establishes relationships between
objects and events.

This module also outlines the general process that is used Lo develop Visoal Basie
applications and some general saggestions tor ovesall application design,

Prerequisites

None,

Overall Objective

At the end of this module, you will understand the paridigin shift from procedurd o
event-driven programming.

Learning Objectives

At the end of the module, you wiil be able w:

» Explain the key differences between graphical and character-based applications.
n Provide high-level definitions for soime key Visuad Basic wenns,

Outline o basic applicition desipn and developrent procedune.

Axplain several Tundamentid principles ol aser intesbace desp

A

A}
a0 Module 2: Designing and Building Visual Basic Applications '

Event-Driven vs. Procedural Applications

Procedural Event-Driven

1

57

Programmer-Driven User-Driven

Character-Based |%| Graphically Based

|
Single Tasking [Multitasking

Windows Control
of Environment

Programmer Control
of Environment

e RS Sk Bt b £

©raditionald progriunming is linear. It has a top-down sequencing that is controlled
by the programimer,

Windows-based progranuming is event-driven. Windows-based events can be
riggered in one of two ways. They can be either user-triggered or system-triggered.

Below, in pseudocode, is a very general summary of the structure of an event-driven
program lor the Windows operating system:

Example I Heain MAIN- PROGRAM
' ! Begin Loop
' Ask Windows to pass messages Lo your program
B ' about what events have occurred

o Case Statement GETEVENT
a : . CASE Click
K * You can choose teo insert code to respond to
o * click events f[or the appropriate chjects.)
t CASE Change
1t ' You can choose to insert code to respond to
11l ' change events for the appropriate objects.
2 CASE ...
\ R

14 " CASE Default:
14 ' " VB will handle other events internally
1% ’ ' without giving your program access.
1h * One of the default cases is the *end
17 ' application" message that causes an exit
[RE Yolrem Ller Toup and causos YLUI application

- TRLE v beamianiale,

[:'-,;\l) il tASe SLatoment

.l ek Loy
el MATH PROGRAM

References ior i complete list ol the events that Visual Basic recognizes, see the Introduction
m Hw Microsoft Visual Basic Langunage Reference.

P - [. - —

*

Module 2; Designing and Building Visual Basic Applications 4

Notice that there is not a lincar flow 1o the program becimse the tlow depends on
what events are generated and the order in which they e reported to your progriom
by the Windows operating system. '

Applications that run in the MS-DOS environment are programimed to be the onlh
application running. MS-DOS —based applications dv not handle multitasking very
well. ‘

Window applications are mubltitasking. They can share sereen space and computing
time. ' T,

MS-DOS -based applications are character-based. Windows-based applications ar
graphicaily based and typically use proportionally spaced fonts.

Applications programmed Lo run in the MS-DOS environment are able w control
the environment the user operates within. The program can have contro} over the
sequencing and appearance of where the user will go next in the application.

Applications programmed to run under Windows give contiol of the environment b
Windows. How the user moves between evenlts is contralled through the Windows
operating system itself rather than through the Windows-hased application.

T

42 Module 2: Designing and Building Visual Basic Applicalions

Visual Basic Terminology

Application Ig

-t 2 -
T ~
o Form1 |i Form2
: T
[1
I Control 3 Con trol ‘; Contro!l || Control
| 1 1 2
1 *m—mﬂ—.ﬁ.ﬁ; e
| l
|

) PropenyHPropertylilPropertyy Property|
Event Eve L 1 1
re|{Pr

Procedu ocedure

T e

The terms on this Toil depict two major components of the Visual Basic
developmient environment: the graphical side of it and the code side. Put in tabular
form, they look tike this:

Application
frorms
Propertics
iivents
Conrols
I'ropertics .
lvengs

What Is an Object?

Consider this example: The dashboard of your car offers users a variety of gauges,
dials, und accessories that take input and give output. The thermostat tells you how
hot the engine is. The steering wheel lets you change direction. Each one of these
"nbjects” performs a specific purpose, and you use it to attain a given goal or
objective. Users learn how to use these objects.

For the most part, users do not learn how to install, maintain, or troubleshoot these
things. They do ok learn how these things function, The user anly needs to know
that these objects work and whad (o expect from e, Tnoa like manner, Visual
‘Basicoffers programmers objects— forms and controls—that they can use to build
applications. For the most part, the programmer need only use the object without
necessarily having a detailed understanding of how the object does what it daes.

Module 2: Designing and Building Visual Basic Applications 43

The Graphical Side
Objects

Components of an application, usually forms and contrals,

Forms

Forms are the building blocks of applications, They e the windows thal users see
- when they run your application; they are the major steuctusad unies that make tp

your application, Visual Basic is made up ol several formis. The Toolbox, thwe

Propertics window, the Project window, and the Save Project As dislog box are ali

examples of forms. :

Walk Through—Forms and What You Get Free

To open a blank form
1. Start Visual Basic.
A blank form shuuld‘bc on the screen.
2. From the Run menu, choose Start,
Notice all of the things that Visual Basic gives your Torm, such as;
e Sizing border -
¢ Control menu
¢ Minimize button
e Maximize button

You don't need to write any of the code for painting any of these features of vour
application. You also don't need to write any of the cinle Tor managing these
features, -

3. From the Run menu, choose End.

Controls

Controls are the tools you piace on forms it provide ssers with application
functionality. Examples of controls are the command hunons and Tabels.

Properties

Forms and controls have properties Gattributes) thet yon can cliange during desien
and run time. An example ol a pmpcrly‘i.\' the caplion il appears o Conuimg
button. Generally speaking, you set the values for control and Toerm properties when
you are designing your application.

Event Procedures

Event procedures are code internal to Visual Basic and Windows that s written ton
you and provides your application with somc of its husic functionadity. For example
when a user clicks a check box, the Click event knows how 1o painLan X i the
square. However, you must place code inside the Click event tor that check box o
cause your application o react appropriately whem i user plices an X in of remove
an X from the check box. -'

44 .Module 2: Desig'ning and Bullding Visual Basic Applications

The Code Side

Project

Your development project is made up of more than graphical forms and controls; it
also has Basic code init. This is managed and accessed through the Project
window,

Walk Through— Visual Basic View of Your Project
To view your project

I

)

3

0.

I it isn'talready started, Start Visual Basic,
Frinn the File imenu, choose Open Project.
Fowd the ICONWRKS.MAK file.

his e is located in \WWBASAMPLESMCONWRKS.

Fram the Run enu, choose stant to ryn the application.

Waork with the application for a minute, but the point here is that lhlb application
is made up of a number of different forms.

. From the Run menu, choose End to stop the application.

Aceess the Project window.,

‘The Project window keeps track of the forms and modules that make up your

application.
For our purposes, Visual Basic treats each of your forms as a separate

component, '

Visual Basic keeps track of the number and kinds of files that you are using in
vour application 1n the . MAK file and loads them when you want to start
working on your project.

Quit Visual Basic.

7

Module 2: Desighing and Building Visual iasic Applications 45

Module

In Visual Basic a module is a tile that contains only code. One exampic of a 3AS
file that you could see at the top of a Project window is MODULELBAS,

Another way of showing Lhe rel.munshlp amung forms, controbs. properties, and -
event procedures is this:

MODULE1.BAS ‘
Data and Code L'\

FORM1.FRM
Graphical Elements
Data and Code

————~________ Project

Tt

FORM2.FRM . ;
Graphical Elements o
Data and Code 3 [S v P

LT

SRR s

The MAK file contains names of both the .FRM and the .BAS tiles in the project.

e

e i e et kAL T = e —— -

4b Moduie 2: Designing and Building Visual Basic Applications

Application Development

- Creating an-Application

Z To creale an application in Visual Basic, follow this sugpgested sequence

Y.

Open anew project (or use the new project created when you start Visual Basic)
to organize the parts of your application,

Create u form Tor each window in your application.

Deiny the contrals Tor each form.

S Create the menu bar Tar the main form.

Set the torm and control properties.

. Write event procedures and general procedures.

Save your work,
[Debug your code.

Create an exceutable file to turn the project into an application.

Distributing the Application

When you distribute the executable of your application to users, you need to

distribute a copy ol the Visual Basic dynamic-link library VBRUN300.DLL with it.

This dynamic-link library (DLL) is a part of the Visual Basic installation files, and

vou can distribute it royalty iree. If you build your application using any of the

available custom controls, you will also need to ship all appropriate .VBX files, and

in some cases .DLL files. The product documentation for the custom controls will ‘
tell you what these Nikes are.

w2 Foally, during design time, you may decide o move the forms for the application to
anatbier machine. Inthis case, you will probably need to rebuild the MAK file,
becawse it keeps track of all the files that make up your application as well as the
fully qualified path to them. To do this, copy all the files to the new machine, then
update the paths n the . MAK file by using the Remove File command from the File
menu,snd then the Add File command.

Module 2: Designing and Building Visual Basic Applications

User Interface Design

General Guidelines
= - Design Basics
= Color

s Fonts

47

User interface design guidelines are an agreement to creale consistent user
interfaces.

User interface guidelines are important for ease of learning by the user. They also
prevent programmers and developers from "reinventing the wheel”

They are guidelines-—suggestions on the way you might want 1o design the user
interface. There are no hard and fast rules.

General Guidelines
n Design basics

» Design for the user, not the system

Composition and functionality

* User control

e Dircctness

. C(.m.\'istcncy

o Clarity

* Aesthetics

+ Feedback

s Forgiveness B
= Color

e Color as an attention-petler

s Complementary versus circus colors
o lonls

¢ Seril versus suns-sert!’

* Size

» Number (varicly)

B i Lon s

48 Medule 2: Designing and Building Visual Basic Applications

For More Information
For more details on user interface design guidelines, sce:
» The Windows hnterface: Au Application Design Guide

w Visued Design Guide contained within Visual Basic

Walk Through—Designing the User Interface

As your walk through this application, look at the property listed and answer the
question that follows. '

> Print Utility #1
1L tram the Walk Throughs program group, start Prin} Ulility #1.

First impressions are important. Are the function and purpose of the application
. appanent fromoa first ook at the interface?

LI

2. Title Bar

The title bar should contain the name of the application, Does it?

A Menus

The menu structure should reveal something aboult the contents of the
“application. Doces it?

. Does the first menu item foilow user interface guidelines?

I the Help comimand in the standard place?

s the Quit connmand handied suitably?

Whete does the About conmand normadly appear?

Module 2: Designing and Building Visual Basic Applications 44

T
.

. Scroll bar

Is this the most effective way (o ask users for the nnmber ol copies they will pe
wanting? '

Are the size and location of the scroll bar appropriare given the overall purpose
of the application?

. Options

How many sets of options are there really an this form?

Are the check boxes presented in red, the best way o pet informtion from the
user?

How should the header, footer, and page numbering questions he implemented!

. FileName text box

If the user wants to find a file and print it, what other 1ools does the user need
besides this simple text box?

. Stop and Print buttons

Are these buttons appropriately sized for this form awmd itk function?

. Exit

Close the application.

50 Module 2: Designing and Building Visual Basic Applications

Y. Print Utility #2
. #rom the Walk Throughs program group, start Print Utility #2.
2. Open the second version of this application.

“Is the overall layout of the form effective? How does the layout suggest how the
user might work with the form?

How do the rames help structure the user's decisions?

+

How is the menu structure consistent with user interface guidelines?

Why were the header and fooier options dropped from the form?

Why was the Percent Done Iabel added?

A Quirthe appliciition,

Module 2: Designing and Building Visual Basic Applications 51

User Interface Design Guidelines

Device Input —

Getting Input from a Mouse
There are a limited number of things that users can do with o mouse:

1. Single-click with cither the primary or secondipy tleltor right ap or bottanm
button.

2. Double-click with either the primary or secondary hinon.
3. Drag normally with the primary button,

4. Drag and drop.

For example, a single click with the primary mouse button normally indicates that «
choice such as a bold, italic, or underline wext format option has been made on the
ribbon of a text editor. Selection of a file 10 be opencd s normadly indicated by
single click.

Double-clicking selects the object to be acied upon and initiates the action. That 1.
if you want to select and open a file, you simply double-click a lilename. The same
thing happens when you double-click an icon.

Dragging is used to resize a window, move the window o a new location, or
reposition an icon. Drag and drop is normally used o select an object. for example.
the name of a file, and then place it over another object. for example, a printer. so
that the file can be printed.

52 Module 2: Designing and Building Visual Basic Applications

Keyboard and Mouse Functions

Whenever possible, all mouse actions should be duplicated with an equivalent
keyboard action, Keyboard shortcuts and access characters should also be used 1o
reduce the number of keystrokes and potential for errors by the user.

For example, in most.cases you will want to give a keyboard shortcut for the most
comnionly used commands. If possibie, use the first letter of a menu or control as

the access character. If there is a conflict, use another letter in the menu or control
name.

-

When yon design the application und s forms, specify the shoricut keys.

s 4 9 4 4 4 9 A A A & .~ o

~

Module 2: Designing and Building Visual Basic Applications 53

4

Configuring Your Environment

Envirgpment Oplions™

i

Requre Vriabie Declaration

Syrtax Checking
Defaut Save Az Format -

S ave Project Before Run Aeset All*

New Statement Tet
Next Statement Background

Breakpoint Background
Comment Taxt

You can configure much of the look and feel ol the development environment. Froni
the Options menu, choose Environment Options. From this window you can scl
everything from the default tab stop in code to the foreyround and background
colors of comments in code. -

Setting Default
Tab Stop Widih d
Require Vanable Declaration No
Syntax Checking No
Default Save As Format Hinary
Save Project Before Run Niv

Selection Text
Selection Background
Next Statement Text
Next Statement Background
Breakpoint Text
Breakpoint Background
Comment Text
Comment Background
Keyword Text

Keyword Background
Identifier Text

Module 2: Designing and Building Visual Basic Applications

Setting Defaull
Idennlicn Backgoound

Conde Window Text

Cuebe Window Background

Debug Window Text

Debug Window Background

Cirid Width 120 Twips
Gand Heigly 120 Heiglit
Show Girid Yes

Align to Grid Yes

IFor u list of the colors available, see the Colors section of CONSTANT. TXT

locaed i the W13 subdirectory.

Note Changing 1o u larger grid size and then aligning the controls to the grid may

change the size ol your controls.

Automatically Loading Visual Basic Extensions at Startup

You can control which of the .VBX or Visual Basic Extensions are loaded when
starting up a new project by editing AUTOLOAD.MAK with a text editor. This file
ix loculed in the \VB subdirectory. The default settings are:

GRID.VBX

MSOLE2Z.VBX o
ANIBUTON.VBX
CMDIALOG.VBX
CRYSTAILLVBX
GAUGEVBX
GRAPHL.VBX
KEYSTATVEBX

MSCOMM VBX
MSMASKED.VBX
MSOUTTIIN.VRX
Plectirvix

SPIN.VBX

THREED.VBX
ProjWinSize=152,402,248,215
ProjWinShow=Y

s

a “‘ 4.'&#& (’ ..g aﬂ\" “_.z‘.;"._l" & B % % N . .® -:. N

- @ & & &

Module 2; Designing and Building Visual Basic Applicalions 35

Summary

Event-Driven vs. Procedural Programming

Microsoft Visual Basic Terminolog.y

Application Development Process

User Interface Design Guidelines

Configuring Your Environment

Objectives

- In this module you learned to;

Explain the key difTerences between grapliical and chareter-based applications.,

Provide high-level definitions for some key Visual Basic werms,

Qutline a basic applications design and development procedure.

Explain several fundamental principles of user inertace design,

Y

36

Module 2: Designing and Building Visual Basic Applications

Lab Time

Gt the Himployee Database Application Specification portion ol your kb manuad,

- Module 3: Working with Forms

——— o ——— e AT ——

v — Module 3: Working with Forms 59

> Overview

_® Forms and Their Properties
= Message Boxes
= Starting the Forms of the Employee Database

= Muitiple Document Interface Applications

Overview

The purpose of this module is o introduce you to the Visual Rasic programmer’s
fundamental tool —the form.

Even though this is o relitively brel modale, it imtrodnees some key wess it e
reqjuired for a Tull understanding ol the programining enviroitent, This module
primarily focuses on the various propertics associaled with forms, separate from the
discussion ol controls and propertics. This nudule also iouches an event procedures
and methods associated with forms. A more detailed discussion of these issaes will
be found in a separate modulc. '

This module also serves as the introduction o the main clements of the class

application and walks you through creating. naming. and saving these forms.

Prerequisites

Prior to starting this module, you should have a Tundinmental awareness of:

s Windowing technology from the user perspective

» The Visual Basic programming environment

. Overall Objective

Al the end of this module, you will understand the fundimentals of working with
forms in Visual Basic.

64

Module 2: Working with Forms

E To code the message box sample application

-

>

If Visual Basic is not running, start it.

Double-click the command button ool in the Toolbox.

_Place it in the lower-right corner of the form, or any aihicr ant-of-the-way phice.

In the Propeérties window Properties list for the commiand bunon, change the
following property:

Caption: Exit

Click anywhere on the form.

This puts the focus back on the form.
Double-click the command button.

This will automatically opeh the Code window Tor the Torm and ke you to the
Command1_Click event template.

Add the following code:
Msg$ = "Have you saved ali your work?”

MsgBox Msgs, 3 + 32, "MsgBox Walk Thru®

What does the code do? First you create a string varialle with the message vou
want to display, and then you call the MsgBox statement. You can pass the
MsgBox statement three arguments. Although the second and third arguments

- are optional, in this case we have you include them.

The first argument is the message string that is displayed inside the message
box. ‘

The second is a sum of values that indicates to Visual Husic the rype of message
box you want. More about these numbers in a minute. '

The third argument is the title of the message hox,

. From the Run menu, choose Start.

9. Test the dialog box.

10.
. From the Run menu, choose End.
12.

~ Use the mouse pointer to choose the Exit comimand buttan. The dinlug box will

appear in the middle of your display.

To close the Message WalkThru dialog box, choose the Cancel butlon.

In the Code window, highlight MsgBox.

Use the mouse pointer to highlight this word in the cude.

\

Module 3: Working with Forms ~ --- €5

[d,
[5.

by,

7.

Press Fl.
Make sure you are in the design mode, not the run mode.

By adding the appropriate key values listed in the second table in the Visual
Help topic for the Msglox statement, you can control the number and type of
buttons, control the icon displayed in the message box, und even set a delault
tten. ‘ '

‘tn this walk through, you add the value 3 (to request @ messuge box with Yes,
Nu, and Cancel buttons) and the number 32 (Lo request a message box with a
Warning Query or question nuek icon).

There are more sophisticated ways of implementing and using message boxes,
hut this gives you a start.

Did you notice that the Yes, No, and Cancel command buttons do much, yet?

il you read further down in the Help window, you see that each of the different
huttons returns a different value. You will use those values a little later in the
course, along with some cenditional Jogic to code the three buttons on the dialog
box. For the time being... ' -

Minimize Help.

Fram the Iile menu, choose Save File As. _

Save this form in \WALKTHRINSTUDENT] as MSGBOX.FRM.
From the Iile menu, choose Save Project As.

Suve the project in the same subdirectory as MSGBOX.MAK.
Sclect the Visual Basic Contral menu, and ¢hoose Close,

Quit Visual Basic and Help.

——

s

I

-

-

66 Module 3: Working with Forms

'

Modal and Modeless Dialog Boxes

Gpen Project

Fie Name: Direcloties:

|m c\vb

projectl mak s [L)

= vb

CJ bimaps

] edk

i he

-) icons
) metalile '+

List Files of JType: Drives;

[Proiect Faesl" ARl 3] [&c [#]

Modal, Modeless, and System Modal

You can designate a form as being either modeless or modal. The default is
madeless, which means that the user can open the forav and sttl get o ather forms
within the application to do work. Modal forms, in contriast. require that the user do
something—click a button, check 10 make sure they reatly do wint 1o delete all
those files—before they can do any work.

Walk Through-Modal Dialog Boxes
Z To use a medal dialog box
1. From the File menu, choose Open Project.
Bring up the Open Project dialog box.
2. Access the Project window.

Place the cursor on any other portion of the Visual Basic interfice. Press cither
one of the mouse buttons. '

A beep sounds and the cursor continues to flash in the wxt box. b this case the
user must choose one of the three choices presented: Locitie the nume of a

project using the list boxes, input a valid project name, i choose QK or
Cancel.

3. Click the Cancel button.
Close the dialog box.

C e o i
© e e e e ey wl

" Madule 3: Working with Forms 57

Application Modals and System Modals

Mudad dialog boxes do have a limit; they only guide the user within their own
application. They have no eflect if the user switches 1o Windows or to another
application. In order 1o make a form system modai, all you need to do is to use the
sivle% parameter for both MsgBox statements and functions.

The syntax looks like this: -
ifome] Show [xrvleh]
In addition, you would need to declare three global constants:

tiiobal Consi. MODAL = 1
filabal Const MODELESS = 2
tilehal Const SYSTEMMODAL = 4096

Waik Through—Making the Forms of the Employee
Database Application

‘Tu make the forms of the Employee Database application

I. If Visual Basic isn't already running, start it.

2. Set the following properties for the form: i
Caption Employee Database
,Name frmEmpDB .
Height 5760 (approximately)
lcon \WBMCONSWMISC\WMISC28.1CO
Width 7600 (approximately)

Nole When you set the Icon property Tor & form, you will need to know the full
path to the source file, but the Visual Basic interface wiil only tell you that you
have an icon by displaying the property as (Icon).)

X From the File menu, choose Save File As.

Mauke sure that you save the file in the appropriate subdirectory. If you don't, the
MAK file will not be able to find this part of your project. This first pass at the
application should be saved in \STUDENT I\FORMS.

<. Name the file EMPDB.FRM,
5. Choose OK.

This siaves the form.
0. l(_‘lick the Project window,

Notice that the Hilename is in the left column on this list, and the name of the”
form is in the right column,

So far, you have given the forny the names that are known o the file systemund
o Visual Basic.

7. From the Control menu for the Employee Database form, choose Close.
Close EMPDB.FRM.

K. Fromthe IFile menu, choose New Form.

B T A @ B A m - -~

Add a sccond form to the application.

N

)

. f

68

Module 3: Working with Forms

9.

16.

Set the following properties for the form:
Caption Employee Record

Name frmEmpRec

Height 4545 (approximately)
MaxButton False

Width 5485 (approximately)

. From the File menu, choose Save File ‘As.

Now, rename and save the file, making sure that you siave it in
\STUDENT INFORMS.

. Name the file EMPREC.FRM.
12.
13.

Choose OK.
From the Control menu on your newly created Form, choose Close.

Ciose the form, and notice that the name of this form has been added w the lisg
in the Project window.

User interface guidelines suggest that applications have an About box—aza form
that indicates that the application is copyrighted. You have alicaudy ereated an
About box; now you need to add it to this application.

Nole You will also want to make some changes 1o the Abowt form, but the

~+ directions for doirg this are not included here. You would, for example, change

the caption for the About box so that it contained Lthe namwe of the application,
but doing that here distracts from the point of this walk through.

. Copy ABOUT.FRM from \STUDENTNABOUT (o ASTHDENTINFOR M8,

Before you add the About box form 1o the project list. you should make a copy
of the About box form that you have already completed and place that in
\STUDENTI\FORMS.

. From the File menu, choose Add File.

ABOUT.FRM should appear in the \FORMS subdirectory. so all vou need to do
is select the name so that it appears in the text box.

Choose QK.

e mame of the added Torm shoald appea o the Trogect 10

From the File menu, choose Suve Project As.

Now that you have made most of the basic Torms for the Fanplovee Database
application, you need to renime and save the file that keeps track of the files in
the project. -

The Save Project As dialog box should appear center screen, with the correct
subdirectory already listed in the current working dircctary and a \u&.utul
filename with the appropriate file extension.

. Name the project as EMPLOYEE.MAK.
. Chouse OK.

. This saves all of your current butld information,

S —

Module 3; Working with Forms 69

200 Fron the Run menu, choose Stant, _ /

11" you want to test the application, you should see the Employee Database form
appear on screen. This form appears only because that was the first form you
created. If you try to open the Employee Record form, you will see that you have
not implemented code for that task yet.

21. From the Run menu, choose End.

(=)
ra -

. Quit Visual Basic.

70 Module 3: Working with Forms

Multiple Document Interface Applications

PareatForm 7 ~{-
Child Tof
Chitd 1-{<]

Placing Forms Within Forms

-+ -=VYisual Basic alfows you to write applications that can creae multiple copies of o
form and display all the forms within a single container form. Microsoft Word fir
Windows and Microsoft Excel are both applications that attow users to do this,

- Walk Through —Creating MD! Applications

E To see the final version of your MDI application

l. From the Walk Throughsprogram group, start MDI.

For the most part, in this course, we will focus attention un placing controls on
forms. However, Visual Basic has the capacity to place forms va forms aitd

mudtiple instances of forms on forms.

The purpose of this walk through is to give you the fandamentitls of

implementing an MDI application, We don't include all the enhancemments thar
you might want 1o implemeat. Detailed coverige can be Tond 1o ilee Tollow-on

Programming in Microsaft Visual Baxic 3.4 coursce,

2. From the File menu, select New,

Do this three times. You may not see much happening at fiest, but each tinwe vou
select New, another instance of the child window s beang deawn onosereen, one

atop the other.

3. From the Window menu, choosc Tilc,

This organizes and displays all of the child windows it you have created.

4. From the Control menu on the Parent forni, choose Close,

In order to create this application framework, follow the steps hedow? but there i
L - warning required here. You will be typing i a number of things that haven't
P been explained yet. Don't worry: they will be, For the titne being. accept that

things work and that the details will follow.

—

. Module 3: Working with Forms SOy A [

Z Ta create o simple MDI application]

td

0.

Y.
[,

Stant Visual Basic:
A new, hlank form will appear on screen.

FFrom the File menu, choose Add File.

. Usg the browser to add PARENT!L.FRM located in \WALKTHRUAFORMS.

Nole Under normal circumstances, you wouldn’t go this route. You'd select the
New MDI Form command. If you did that, a second form would appear on

sereen, the entry mianed MDIFORM LIRM would be added 1o your project list,
and the New MDI Form command on your File menu would be disabled. From
there, you would need 10 add all the menu items; but since you haven't done that
yet, we wilk give you the completed form, so that you can concentrate on the

MDI capabilities, \

Now you should have two forms in your project.
In the project list, put the focus on FORM1.FRM.

That is, make sure that you see FORM.FRM on top of all the other forms
within Visual Basic,

irem the File menu, choose Save File.

Save the lile as FORMLFRM,

FFrom the Window menu, select Propcnies‘.

This displays the Properties window for FORM|.FRM.

In the Properties window Properties list, locate the MDIChild property.

-y

The default value for this property is False.

. Double-click the value in the table.

This togplesthe value 1o True,
Select the Control menu for the Properties window and choose Close.,
In the Project window, highlight PARENT.FRM and choose View Form.

This places the focus on this form.

. Open the File menu on the Parent Form and choose the New command,

This is the shorteut Tor getting from the form to the code that supports it You
should now be in a Code window that looks like this.

= PARENTY.FRM ']
ober [olaien —TH]pincs ek Rl

Sub maof §ledew Click ()

Lnd Sub

e -

" e — - I . . . I T T L T -~

...-...a-ow44-&«'0@&6@aéaaanaééééaﬁ'ﬁat

72

Module 3: Working with Forms

2.

15.
16,

7.
18.

Place your cursor on the line between the Sub and End Subs fines and add this

- code:

Dim NewDoc As New Forml
NewDoc . Show

That's all there is ta i, Your questions about Dine and New iwnd Show will all b
answered in a little while.

. From the Object drop-down combeo box, choose General,

This moves you to the General Declaritions section of the code, where you can
declare a couple of conslants that Visual Basic needs tor arranging the windows
that your application creates.

Add the following code:

Const CASCADE = ¢

Const TILE_HORIZONTAL = 1

From the Object drop-down combo, select mnuWindow scadve,

Add the following code on the blank line between the Sub and End Sub lines:

MDIForml.Arrange CASCADE

From the Object drop-down combo, select the ninuWindow Tife.
Add the following code on the blank linc:

MDIForml .Arrange TILE_HORIZONTAL

That should do it. Now all you need to do s to run your application,

Z To run your new application

Bow W

Choose the Run icon on the toolbar.

From the File menu on the Parent furm, choose New.

Do this a couple of times so that you have several windows 1o wark with,
From the Window menu on your application, choose Tile.

This tiles all of your windows.)

From the Window menu on your application, choose Cascacle.

This re-arranges all of the windows.

6. From the Run menu, choose End.

7. From the Visual Basic File menw, sclect Save Project As,

Now that you have the framewaork for an MDD application finished, save your
work.

Save the project as MDIL.MAK and nkal‘ sure that it i~ in
\WALKTHRUNSAMPLES.

Summary

Module 3: Working with Forms

n

Forms and Their Properties

Message Boxes

Starting the Forms of the Employee Database

Multiple Document Interface Applications

Objectives

b this module you learned Lo;

s Setcaptions on f0r|1.1s.

s Sct the Name property for a form.
» Addalormto a project. '
w Saveall of the forms in a project.

s Suve the project itself. !

- - - —- -~ (- — -

Module 4: Laying Out Menus

Module 4: Laying Oul Menus 77

Y Overview

= Menu Guidelines

= Microsoft Visual Basic Implementation

Overview

Previous modules gave you a chance to see und use the processes you should Tollow
for developing Visual Basic applications. In those mundules you developed a single-
form application. In another module, you developed all thie forms that are needed 1o
implement the databasc front-end, but there was a part that was misstng —the
menus on some of the forms. This moduile beging with o discussion of the general
layout of menus and the user interface specification. 11 ends with o
demonstration/walk through ol the Menu Design window,

Prerequisites

To successtully complete this module, you must be ably to use o mouse. Experience
with Windows-based applications is useful but not lu]mlLd You should also be
able to start Visual Basic and create a form.,

Overall Objectives

The overall objective of this module is to teach you lum to design user-friendly
menus and create thermn using Visual Basic.

78

'

Module 4: Laying Out Menus

Learning Objectives

AL the end ol this module’s lab, you will be able to:

= Lastand explain the use and value of all of the key menu elements:

Access or hot keys
Sheirtcut keys
Moenu bar
Separator bar

llipsis

s Create an application that uses at least one menu on an application window and
uses more than one form. It should include a least one functionality menu as well
as o Help mena that includes choices to display a simple Help form and an

Abhout box.

S T Y

e

Module 4: Laying Out Menus

5

Menu Guidelines

=1

Eile

1@ Find Character

Paragraph Document

e
Bt e

Help

Cut

Copy

Paste

Paste Special...
Paste Link

Cirnl+ X
Ctri+C
Ctrl+V

Links...
Object
Insert Object...

Move Picture
Size Picture

Style Guidelines

Menus and Their Standard Properties

Under user interface guidelines, menus are one of the primary ways for
programmers to structure application functionalities tor users. Normally, menus do

one of two things: explicitly invoke a commund, such as closing an application
using Exit, or invoke a dialog box that offers users more options.-such as the bold
"and italic text-formaltting options.

Menu Structure

Under normal circumstances, most applications will start out lite on the

development side with thrce main menus— File, Edit, and Help. The File menu

normally will contain commands that are related o file nanipulation:

Quitting the application, by convention, is done from the hattom of the firstmenu,

New

Open

Save
Save As
Print

Print Setup

Repaginate

Exit

Help is normally the Lust menu on the right.

ety

8u Module 4: Laying Out Menus

Style Guidelines

The generad Edit menu normally contains at leust these four commands:

s Undo
s Cw
s Copy

RN LTS IT

1y contain several other commands as they are needed for specific functions
witliin the apphication.

Finally. Help is normally implemented with at least these four choices:

s Copients—Tuble of contents for Heip
= Scarch for Help on..—Index to Help
s How te Use Help—Directions for using Help

= Abow application name—Copyright notice

Special Features of Menus

Period Ellipses

The thiree dots at the end of a command on a menu indicate that a dialog box will
appear oflering you more choices related to the command. A lack of three dots
indicates that as a result of choosing the command, an action will be carried out.
For examptle, il you choose Centered from the Paragraph menu, all highlighted
paragriphs will be centered on the page. :

Checking Options
A check mark next to a menu item indicates to the user that the option is currently
invoked.

Separaling Clusters of Related Commands
Separator hars are used 1o visually cluster related commands so that the user sees a
short list of related items, rather than a long list of seemingly unrelated items.

Access or Hot Keys

Access keys are marked by an underscore beneath a single letter in the menu item
wrcommand. Access keys are the keyboard (as contrasted with the mouse) input
device Tor the menu. Access keys are invoked by pressing the ALT key and then the
underscored letier in the command. For example, pressing ALT+F opens the File -
menu. Pressing ALT+F+0 opens the File menu and then chooses the Open command.

For access keys, you should 1ry to select the letter that will be most memorable for
most users, Normally this is the first letter in the word, but that might not always
work. For example, Minimize and Maximize both begin with "M." so a better set of
options might be o use the "o from Minimize and the "x” from Maximize for the
ACCUSS KOV, .

Module 4: Laying Out Menus 81

Style Guidelines

Shortcut Keys

Shortcut keys are a second form of keyboard access toathe menu. To use shorteu
keys, the user need only press a function key or some othier key combination (such
as CTRL+A) in order to execute a command,

Some examples of standard shortcut keys are as follows:

Fi . ’ Help

CTRL+X Cutting selected text .
CTRL+C Copying selected text

CTRL+V Pasting sclected text

CTRL+Z Undo

oy ——

W

Module 4: Laying Out Menus

Visual Basic Implementation

B ¥iehu Deaign Window]
Cagtion: |]

Name: [] [Cancal]
tndeg: [| Shascut
[0 winduw List UatpContatp: [0]

) Checked D Enabled [yisible

I"l‘l'l‘JI_E"l—l| Insest ” Dalete I

i

AR e 4

The Menu Design Window

From the Window menu, choose Menu Design window. If the Menu Design
winduow commind is unavailable (dimmed), click any of the forms in your Visual
Basic application, You will then be able to access the Menu Design window, The
Mcnu Design window dialog box appears.

The remainder of this topic divides the Menu Design window into two units—
Menu Layout fems and Layout Manipulation ltems.

Menu Layout ltems

ltem Default Description

Cuplion Name that appears ‘on the menu.

N Name used in code. Use mnu as o prefix,

Inddiex Used for adding menu items dynamically.

Shortewt . CTRL + shortcut keys.

Window h.ist ' Specifies whether a menu control will include o
list ol open MDI child forms.

HelpComext1D Specities an identifier for the menu item in a

_ Help system. .

Checked Not checked Indicates whether a check mark will be
displayed to the lefl of a menu choice.

Lnabled Checked Indicates whether a menu choice is available o
the user (disabled choices are dimmed).

Misthle Checked Liclicanes whether a menu item is visible o 1he
user,

Layou! Manipulation ltems

In order to use most of the Layout Manipulation Items on the Menu Design window,
you must [irst select the control (imenu) and then press the manipulation item to alter
the control

Moduie 4: Laying Out Menus 83

Item Funetion
LEFT ARROW Raises a menu item one fevel - for exiumple, miakes a

) submenu into & main meno.
RIGHT ARROW Lowers a menu itens one level —Tor example. makes o

main menu into a suhmenar.

UP ARROW Maoves the meau iteim up one position in the menu hist,
DOWN ARROW Muoves the mena item dowis one position i the meenn lise
Next - Moves the cursor down one it i the menw listo Also,

clewrs the Caption and Naune so that you can add w new
menu item,

Insert Inserts o blank line i the hist of meaus so that you can il
ancw menu iten.

Dclete Deletes the scelected menu ilem (rom ihe hist.
Style Guidelines In order to implement access or hotkeys, place an ampersand (&1 in front of the

letter to be used in the ALT+ combination. For example. 1o implement ALT+F as the
access key combination for the File menu, you would 1ype &File in the Caption
control of the Menu Design window.

Separator bars are implemented by entering a single hyphen (-1 as a Caption,

Note You must assign a menu name 1o the separator cven though it is not really
acting as a control.

Walk Throughs —Startup Application with Menus and
Click Events \ B '

2. Tosee the final version of the menus Walk Through
I. From the Walk Throughs program group, start Sturkn).

© This sample application scrves two parposes. [intasduces you to the methuds
for implementing menus in Visual Basic apphications, wnd it gives you a simple
example of how Click events work in Visual Basic, Incidentally, this sample
application also shows you how to use the Shell function,

2. Choose the Cardfile command button.
This application starts up Cardlile or Windows Pamnthish™.
Close Cardfile.

4. From the Edit menu, choose Colors.

The application shows the implementation ol menus. cascading menus and
checked menus. It also uses the ampersand for hoi kevs.

5. From the Colors cascading menu, choose Red.

Finally it shows the use of a Click cvent 1o reset the hackground cobor of the
application.

Now, the quéslion is: How did we do ull of that?

6. Close the Startup application.

84

Module 4: Laying Out Menus

Z ‘T implement menus on the Startup application

0,

1,

I Visual Basic isn't running already, start it
A new blank form should be on the screen.
From the File menu, choose New Project.
Start i new project.

Setthe following properties for the form in the Properties window:

Nanw frmStartup

Caption Startup Applet

Fleight 2860 (approximately)
Widih 2670 (approximately)

. Open the Menu Design window,

Make the Tollowing Ehungcs.

Ment item Caption Name Indentation
bl &Edit mnuEdit 0
Cuolors &Colors mnuColors |
Red & Red mnuRed
White &White mnuWhite
Select the Checked
option. _
Blue & Blue] mnuBlue 2
. - mnudSepl !
Enit E&xil mnuExit -
Help &Help mnuHelp 0
At &About... mnuAbout i
Deselect the
Enablcd option.

Nole Notice that the menu names include only the prefix and the menu
function. We shortened the names tor this exercise to facilitate completing the
walk through.

Choose QK.

. Double-click the command button tool in the Toolbox nwice.

Add two command buttons and place them appropriately on the form.

Setthe Tollowing properties for the command butlons.

Button Name Caption
Candfile cmdCardtile &Cardfile
PaimBrush cmdPaintBrush & PaintBrush

< Fronn e Project Window, ehoose View Code,
“ Make sure that STARTUP.FRM is in the foreground.

In the Object drop-down combo box, choose General Declarations.

Module 4: Laying Out Menus 85

1.

17.
18.

19.
20.

Add the following code: ‘

Const RED = &HFF&

Const WHITE = &HFFFEFF Make sure you type six Fs.
Const BLUE = &HFF0000 Make sure you type four zeros.

Set the hexadecimal values for the colors that you want. You can find ihese
colors and several others in CONSTANT. TXT.

Note . There is a second method for completing the step abave: Open
CONSTANT.TXT, and copy and paste the uppropriaie lines into the Generul
Declarations section of the form.

. .In the Object drop-down combo box, sclect emdCardlile and locate the Click

event template.

When the user clicks this command button, use the Shell function to start
Cardfile in a regular window. Add the [ollowing code:

x% = Shell("c:\windows\cardfile.exe", 1}

. In the Object drop-down combo box, select cmdPainiBrush and Jocate the Click

event procedure template,

When the user clicks this command button, use the Shell function to star
Paintbrush in a reguiar window. Add the following code:

y% = Shell{"c:\windows\pbrush.exe", 1}

. In the Object drop-down combo box, select mnuRed and locate the Click evem

procedure template. Add the following code:

frmStartup.BackColor = RED
mnuRed.Checked = True
mnuWhite.Checked = False
mnuBlue.Checked = False

. In the Object list box, select mnuWhite and locate the Click event procedure

template, Add the following code:

frmStartup.BackColor = WHITE -
mnuRed.Checked = False
mnuWhite.Checked = True
mnuBlue.Checked = False

. In the Object drop-down combo box, select mnubBlue und locate the Click evemt

procedure template. Add the following code:

frmStartup.BackColor = BLUE

mnuRed.Checked = False

mnuWhite.Checked = False

mnuBlue.Checked = True

From the Run menu, choose Start and test your application,
From the Run menu, choose End.

Close the application. You may notice tiat e Exitand Abont conuinds e
not implemented yet. Yoo will complete those Tunetions in the next module

Save the form as STARTUP.FRM in \WALKTHRUASAMPILLES.
Save the project as STARTUP.MAK in \WALKTHRINSAMPLES.

36 Module 4: Laying Oul Menus

Summary

* Menu Guidelines

= Microsoft Visual Basic implementation

Objéctives

In this module you learned to:

Listand explhain the use and vitlue of all of the key menu clements:

= Aveess or hot keys

s cShortewt keys

o Menu bar

e Scparator bar

o Elipsis

Create an application that uses at least one menu on an application window and
uses more than one form. It should include a least one functionality menu as well

as a-Help menu that includes choices to display a simple Help form and an
Aboul box,

,"—Q“—"‘-\-_- o

. & e

Module 4: Laying Out Menus 87

Lab Time

Go to the Creating Application Menus portion of your lab munual,

Module 5: Connecting Forms

ﬂ..*r ﬂuﬂ_ﬁ,.ﬁ_ﬂ_ﬂﬂﬂx.‘m.‘.\ﬁﬁei@\\a-\tu‘-\l.\5...\.\as\.\ - - -

Module 5: Connecting Forms 9

> Overview

= Form Management
Statements
~ Methods

Event Pro_cedures

= Setting the Startup Form

Overview

This module has two broad goals. First, it provides an introduction to the concepts
of event procedures and methods as they relate 10 managing the lorms of your
application. Second, it reviews all the important events and methods, and therefore
is a crucial lead-in to the controls modules, and the general discussion of functions
and statements as they are implemented in Visual Basic. :

This module also contains the first actual hands-on experience you will get in
writing code that will be implemented by user actions with the application inlerfuce.

Prerequisites

Prior to starting this module, you should already bhe fannilior with these terms:
w Contrals '

» Forms

= Properties

Overall Objective |

The primary objective of this module is o present the notion of event procedures
and to discuss the essential events needed 1o manage fonns,

92 Module 5: Connecting Forms o

Learning Objectives

At the end of the module, you will be able to:

Use the Unload statement to unload a form from memory.

Ust the Load stutement to load a form into memory.

Usxe the Show method to display a form,

Use the Hide method to hide a form but not unload it from memory.

Set the starap lorm.

Maduie 5: Connecting Forms 93

State'ments

Opén Project ~ --

File Name: l]
s\..wb-disclemployee P | ?
Eiles: Directories; e |,
employee.mak -] I ¢
[text) :
(-a-] |
[-c-]
[-d-] !
[-s-) i

Syntax

" Example

Further Examples

The Load State'ment

The Load statement is used 1o load a form or control into memory, It normally
appears within other event procedures.,

Lioad object .

‘Event procedure for a control on Forml

Sub Commandl_Click () *
Load Form2

End Sub h

Important Load docs not automatically displivy the fonn: it just loads it into
memory. To make the form visible 1o the user, call the Show method, discussed
later in this module. In some cases you may choose to preload afl the forms in the
application at application startup. Doing this causes theim o be displayed maore
quickly when the Show method for the forms is called w the appropriate time. Of
course this technicue will add (o the time it tikes 1o st your application initadly,

Application Form I'rocedure/Event

Calculator CALCFRM Form_Loinl
Cuncel_Clivk

Y4

Syntax

Example

Syntax

Example

Modute 5. Connecling Forms

The Unload Statement

The Unload statement is used to remove a form or contro} trom memory. Unloading
a form [rom memory may be necessary when the memory resources used are needed
for some other object or when you need to reset properties to their original value.
Anuother typical use for the Unload statement is in an OK button Click event for a
furm like an About box. There is no reason to keep the About box form in memory,
because i1 s seldom used.

Note that when a form is unloaded. only the display component is unloaded. The
code associated with the form module remains in memory.

Unload ohject

dudy tommandl_Click ()
HUn bl Forml

Fiwed b

End Statement

This statement ends o Visuad Basic program, procedure, or block. By itself, the End
stalement stops program exccution, closes all files, clears the values of all variables,
el destrovs all forms,

You have seen or will see various uses for the End statement in other modules to
end portions of code. The topic appears here because you can use the End keyword
alone e code to end your application.

End | {Function | Select | Sub | Type }]

Statement Description

End Fouerion Ends a Function procedure definition
T Ends a block If...Then statement

Eind b Enods a Seleet Case block

Ened Ends a Sub procedure

At TFypee Ends o user-defined type definition

More exammples e availuble in Visual Basic Help,

1 ‘Hhed Guatement Example

A b EndDema ()

1 1o 'Set up infinite loop

4 Msg$ = "Enter A, B, C, or X." 'Enter X to exit

B UserlInput$ = UCase$(InputBox$(Msg$s)} ‘Get user input
& Select Case Userlnput$ 'Evaluate input
/ Case “A": Msg$ = "You entered °"A'.* ’
K Case "DB*: Msg5 = *"You entered 'B' .-~

EA Case "C": MsgS = "You entered 'C'."

10 Case "X": End "End if user entered X
! Case Else: Msg$ = "You made an invalid cheice.

12 ATry again.*

11 . End select

e MugHox Msg$ “Display results

[LOOp

1-6 End Fup

Module 5: Connecting Forms 95

e

Methods —Hide

EMPDB.HIDE
Employee Database - : T%
Employee: Depanment: - g
Maria Lopez ; %
Peler Krauss ors ?
Barbara Richardson SAL ;

wh -rgl-x;puoﬂz;;.wi%_\-:‘

Delete s S Exit I

et X N e e

k2

Syntax

Example

Further Examples

Hiding a Form

When a form is hidden, it is removed from the screen il its Visible property is set
to False. A hidden form's controls are not accessible to the user, but they are
available to the running Visual Basic apphication, to other applications
communicating with the Visual Basic application through dynamic data exchange,
(DDE}, and to timer events.

If a form is not loaded when the Hide method is invoked, the form is loaded but nol
shown.

[form.] Hide

Note the optional form in the square brackets. Also nate that the period within the
brackets is not optional. -

The tollowing example is available lrom Viswad Basie Help,

1 ‘Hide Method Example

2 Sub Form_Click {)

3 Dim Msg$ Cbeclare wvardable
4 Hide *Hide teom

5 Msg$ = “Choose OK to make the form roaujgrar.”

6 MsgBox Msg$ CYDisplot merEnays:
7 Show ' Show !.irm anain
] End Sub

Application Form IProceduse/lvent
Menu MAIN.FRM muAppMpr Click

it Chek
mnuNu_Chick
mauToa Click

9% ' Module 5: Connecting Forms

‘Walk Through—Hide vs. Unload

2 To see the difference between Hide and Unload

From the Walk Throughs program group, start Hide vs. Unload.

When the application starts you see two forms. Form1, on the left, contains two
buitons: one 10 show Form?, the other to unload Form?2,

Form2, on the right, contains nine buttons, Command| through Command8, and
a button labeled Hide Form2. The eight command buttons were placed on the
forn to make sure that Form2 uses enough memory and Windows resources to
lusivate the point. :

The purpose of the application is to demonstrate the difference of the impact on
memory and Windows-based resources when hiding a form versus unloading it.

Chuk the Hide Form?2 button.
This hides the form,
In Program Manager, choose About Program Manager from the Help menu.

I'rean the Help menu in Program Manager, choose About Program Manager.
Note the values for the two lines at the bottom of the form for amount of
Memory and System Resources free,

. Chouose OK.

Close the About Program Manager dialog box.
IPress CTRL+ESC Lo display the Windows Task List.
Dauble-click Hide.

. Chick the Unload Form?2 button.

Unload your Form2.
In Program Manager, choose About Program Manager from the Help menu.

Note thwe values Tor thetwa fines at the botom ol the Torm for smount of
Memory and Sysiem Resources free.

Now that Form?2 has been unloaded, not just hidden, you should see more
mereory and/ar resources available, The wmount will vary depending on your
tmachine's environment.

. Choose the OK button.,

Clase the About Program Manager dialop box.

Press CTRL + BSC.

. Select Hide from the Task List,
. Click the End Task button.

Terminate the project.

Tk

Module 5: Connecting Forms

97

Methods — Show

EMPDB . SHOW

Employee Database -+ -

Employee:
Maria Lopez
Peter Krauss

Barbara Richardson

Department:

Exit j

RS T T

T RAXEI TR STy

Syntax

Example

Further Examples

Showmg a Form

Show is used to display forms that have been loaded. 11 you use the Show methd
on a form that has not been loaded, the Show method will .lllll)llhlllCd”\" load the

form and then show it.

form.] Show [style%]

Note The style% parameter is an integer valuc that determines whether the form is

modal or modeless. If style% is 0, the form is modeless: if sivle% is 1, the form is

modal.

Users must respond to a modal dialog box by clicking uny one of a number of

buttons. Any dialog box that lets the user continue working with other forms in the

application is a modeless dialog box.

This example is available from Visual Basic Help.

il el .8 hick

mscradllen Chek
mnuShell_tUlick

H *Show Method Example

2 Sub Form_Click ()

3 Dim Msg$ Lol variable
4 Hide Hivhe Toam

5 Msg$ = "Chouvse OK Lo omake thee Toam g an 7

6 MsgBox Msg$ Tspbay messag-
7 Show Cheew forin agains
8 End Sub

Application Form Proceduore/lvent

Hello GETSTART.FRM muuButtertly Click

i) Module b: Connecting l-oris

Walk Through—Connecting Forms in Startup
Z, To run the STARTUP.MAK project

3]

1.

IT Visual Basic isn*t running alrcady, start it
A new, blank Torm should be on the screen.

Fromm tlie File meny, choose Open Project.

. Open STARTUP.MAK.

This should be located in \WALKTHRUWSAMPLES. Load the cade, but da hol
run the application yel.

From an MS-DOS prompt copy ABOUT.FRM from \STUDENTINABOUT v
\WALKTHRUASAMPLLS.

From the File menu, choose Add File.

. Choose ABOUT.FRM.

Choose OK.

This adds ABOUT.FRM o the .MAK file for the Startup application.
Select STARTUP.FRM in the Project Window and choose View Code.
[the Objecet list box, select mnuAbout.

Gior tor the Object list box and locate the template for the mauAbout_Click cveat.
I should be cinpty.

Add the Tollowing code:
Limitewit . Show 1
Add the code that will show the About box when the user sclects the Help menu

i the About command. Remember the | causes this form to be modal, Notice
the syntax here? FormName. Show.

fmportant You might be tempted to use the Load statement to display the
fronADbout form, but you will find that won't work here. Loading a form only
means that B is in memory. {1t doesi't mean that the form is actually displayed on
sercen. Forthat you need o use the Show method.

. Fooancthe Run menu, choose Start.

Start the appication o test the result.
Openthe Help menu and choose the About comimand on the Stantup application.

The About bax from the lab appears on screen.

Nole You will need 1o now change the Cuption property on the About box form
as well as the Jeon and Text propertics on the label to fit the current application,

. Choose QKL
Try 1o cheose the OK buuon un the About Box form.

Your haven't coded tiat yet, .

Moduie 5: Connecting Forms 59

20.

21,

22.

23,

24.
25.

26.

. From the Run menu, choose End. '
. Select ABOUT.FRM.

Select the ABOUT.FRM file'in the Project winduw.

. Choose View Code. .

Bring up the Code window,

. In the Object list box, select emdQOK.

Locate the code template for the cmdOK _Click event procedure.

. Add the following code:

Unload frmAbout

Add that code un the blank line in the emplate.

Notice the syntax here? The Unload statement counes lirst, and the object niame
follows. Notice also that there is no punctuation.

. From the Run menu, choose Start,

Start the application again to test the success of your changes.

Open the Help menu and choose the About commund un the Startup applicul‘mﬁ
This should display the About box. .

Choose OK. !

Choose the OK command button on the About box. and it disuppears from the
screen.

Now the question is what do you do to end or close the upplication itself”?
From the Edit menu, choose Exit.
Try exiting from this command.

In order to close the application entirely, you still need 1o make vne more clunge
to the source code.

Note This placement of Exit is not standard for Windows. Ar application tha
follows interface guidelines for Windows would place Exit as the fast item.on
the File menu.

From the Run menu, choose End.
Stop the applicution,
Select frmStartup in the Project Window and choose View Code

In the Object list box, choose the Exit menu Click event procedure, and place the
appropriate code there.

Add the following code:

End

Put this code on the blank line in the template.

100 Module 5: Connecling Forms

27, From the Run menu, choose Start.

. Test the Exit cbmmand on the Edit menu, and test the About box elements.
28, From the Run menu, choose End.
29. From the File menu, choose Save Project.

- Save this project as STARTUP.MAK in WALKTHRUASAMPLES,

Medule 5: Connecting Forms 10

Event Procedures

& "EMPD.FRM - . co '
Obiject: [Form B] Proc:[Load t]
Sub Form_Load () | - . { -’3

Forml .,Left = (Screen.Width - Forml.Width) 2
Forml.Top = {Screen.Height - Forml Height)

End Sub

n M AT R R B

s

ErehatatrpEs e Tt ot ¥ty o £

Syntax

Event Procedures

An event procedure is defined as a procedure invoked Iy a user or system-trigpered
event. Event procedures are always attached Lo a given form or control, and the
syntax for an event procedure looks like the foliowing:

Sub objeciname_evenmame
statementblock
End Sub

Examples of event procedures are: Command | _Click and Formy Click.

Loading a Form

A Form Load event occurs when a torm is loaded. [Coormally vceurs when an
application is run or as the result ol cither a Load stalcanent oran implictt load that
is caused by any reference to an unloaded form's properties or contrals,

Typically you place initialization code for a form in a Form Load cvent procedure,
For example, you would specify default settings for controls, initialize the contents
of 2 combo or list box, and initialize form-level variables iy o Form Load event.

104 Module 5: Connecting Forms

~ Summary

Form Management
Statements
Methods

Event Procedures

Setting the Startup Form

Objectives

In

hivimodale you learned to:

Uive the Unload statement 10 unload a form from memory.
Uise sie Load sttement to load a form into memory.
Uise the Show method 1o display a form.,

Use the Hide method 1o hide a form but not unload it from memory.

» Suibthe startup form.

—— . m

Module 5: Connecting Forms 105

Lab Time

Lab Time

Go 1o the Loading and Unloading Forms portion of you luby manual.

- -~ g P P 4 - 4 » r - E 4 r -#

-

Module 6: Using Controls

VI R Y B

e

Module §: Using Controls 109

v

Y Overview

= Types of Controls .

= Properties for Controls

Overview

The purpose of this module is to muke sure that you understand the general
purpose of control properties and ecvents as well as the essential properties for
each of the controls in the Toolbox.

This is not intended to be a comprehensive treaiment ot all the possible propertics
and events for all of the controls. In addition, this module covers only half of the

" total number of controls in Visuul Basic. The module 1ollowing this covers the
other half.)

The general approich here is Lo Jet you practice changing the propertices Tor each
control and actually sce how the change afTecis the contral,

Prerequisites

Prior to starting this module, you shoubd have o Fudinnemalinvareness of

s The functionality of Microsoltl Visual Basic

w The general use for each of the controls in the Toolhoy

n The general methods for setting properties on cantrals

[N

-

110 Module 6: Using Controis

Overall Objective
Avthe end ol this module, you will be able 1w use key properties on half of the
controls located in the Toolbox.

Learning Objectives

Al the end of this module, you will have set key properties for:
s Labels

s Text boxes

s Frnes

w Command buttons

s (heck boxes

s Oiphion butions

= {ombo boxes

s it boxes

s Tlorzontal and vertical seroll bars
s liers

e ['iciure hoxes

Module 6: Using Controls m

Types of Controls

Pointer {['x Picture Box
Label #A Text Box
Frame {™)|@] Command Button
Check Box ||@|@®]| Option Bution
Combo Box List Box
Horizontal Scroll Bar (== E} Verical Scroll Bar
Timer =)| Drive List Box
Directory List Box [P|@|| File List Box
Shape }@|~] Line
Image @8] Data Control
Custom Controls (*.VBX) I

This module covers the various clusters of controls tound in the Toolbox, their
most commonly used properties, and the events that are normilly used with them.
One of the first things you will see is that many of the controls have the same
kinds of attributes. In many cases, a property will be « 'wvered only once. even
though it shows up with almost every contral,

Controls will be discussed in order of placement in the Toolbox, with the
exception of the picture box, which will be covered last, and the drive, directory,

and file list boxes, which will be discussed in a sepurile moduie.
L

A good way to get a handle on propenties as they relare to comirols is 1o look
the very front of the Microsaft Visual Basic Language Reference, There you can
find a comprehensive list o controls and their propernes.

Adding Controls to The ToolBox

The graphic on this page disphays the defaudt ToolBox. You can add controls 1o the
Toolbax.

z To add a custom control to the Toolbox
I. -From the File menu choose Add File.
The Add File dialog is displayed.

2. From the Add File dialog, lociue the costoarcontred Tile that you wimt toiuhd,
For example, locate the file THREED.VBX. This tile should be in the
CAWINDOWS\SYSTEM directory. This is a custom control-provided by
Visual Basic.

3. Select the file THREED.VBX and choose OK.

The new controls are added 1o the Toodbox, You ey petanerror nessape il
THREED.VEX has already heen added tothe Toalbos,

"7 4. Usethis same process o add any custom control 1o the Toolbox.

V12 Module'6: Using Conltrols

2. Properties for Controls

Labels, Text Boxes, and the Masked Edit Text Box

= Regular and 3-D Frames, Check Boxes, and Option Buttons
» Regular and 3-D Command Buttons

= Combo and List Boxes

« Horizontal and Vertical Scroll Bars

= Timers °

= Picture Boxes

Module 6: Using Controls 13

Labels and Text Boxes

-

Labell
Text1
R PR .

Labels and Their Common Properties

Labels are most commonly used to display text that voncdon’t swant the user o be
able to change. Typically this would be a caption under o wraphic or caplions fo
drive, directory, and file list boxes,

Property

Default

Comments

Alignment
AutoSize

BackColor
BorderStyle
Caption

FontName -
FontSize
ForeColor
Height
Left

~ Name

Tabindex
" TabStop

Tag
. Top

0 - Left Justity
False

White
0- None
Labell

Helv
8.25
Black
500

Labell

Assigned by Visual
Basic

True

Determines whether o control adjusts to
fitits contenis.

Tatke for the control on sereen. The

caption is e deduall property tor this
centtral, Syt~ Labell = "Files™

In twips.

FFram letr bowder of form.,
Nie used s vode,

Use bl as o pretin,

Dreteretnie Hos vl vnder of the il

Dreteriines whcther use can use Tab ke

G ot e Lot et baon
Uher-debied valdu,

From top barder of form.

- 114

Module 6: Using Controls

Text Boxes and Their Common Properties
At bos conteol displays either information that is provided by the application
of tnbenmation thit the user can type. .

Typival uses ol 1eat boxes would include the box where users type the string.of
characters they want the application to find in a search function. If you were
creiting o front-end for a database, you could use a sequence of text boxes to
gather information about members of the database.

PPraperts Defauit Comments

;\lligllllwnl 0 - Left Justfy

FontiNime Helv

FontSize %.25

Heipht 300 In twips.,

(AT - From left border of torm.

NMaxd ength 0 Controls amount of user input. Ranges

from G to 64 characters,

Muhiihine Ialse Means no multiline capability.

 Name Text] Name used in code.

Use txt as a prefix.
PaseendClar Specifies the character 1o be displayed
when user types text in the text box,

Sorolifaes {1 - None

e Textl lFor none, assign . "This is the defaal
property for the conirol.
Syntux—Textl ="

Top From top border of form,

Widih Width of text box.

Module 6: Using Controls 115

Walk Through—Text Box with a Scro!l Bar

Z To use the text box wuh a scroll bar

From the Walk Throughs program group, start "Text Boa with a Scroll B

When you start the application, you will see i Fornn witle et box with
vertical scroll bar in the center of the form.

The purpose of this application is to demonstrate the behavior of a text box
with a scroll bar and how to create a text box wilh a scroll bar.

. Type some text into the text box.

Type enough text into the text box to cause it to start scrolling. Notice that the
text will automatically wrap at the right margin. Nuotice wlso that you can
select text and then cut and paste it just as in a sindard Windows-based texi
box. Use CTRL+C to copy, CTRL+V 10 inserl, CTREL+X 1o cut imd CTRL+Z (0 undo,

Double-click the Control menu.

Close the walk through.

4. Start Visual Basic.

5. Double-click the text box too!l in the Tooibox,

This will create a text box control.

In the Properties window drop-down combo box. mike these changes:
Height " 1000 {approximaiely) l

ScrollBars 2 - Vertical

Set the ScrollBars property ta 2 - Vertical. Notice thin yon don't see the
control change. There's a little problem hicre. Setting the ScrollBars property
for a text box only becomes cllective it the Multib.ine property for the text s
is also set to True, .

Set the MultiLine property to True,

Notice that a vertical scroll bar now appeirs on the 1ex1 hox,

From the Run menu, choose Start.

Test the behavior of the lext box 10 see if it behuves as it did in the demo.
From the Run menu, choose End.

Close the application.

).T\af-.'@":ﬁ;

116 Module 6: Using Controls : ~

‘Masked Edit Control . S

|)

Masked Edit Control .

This contred is a special form of the text box control. 1t is used to restrict user inpul

as well as o forma data outpult.

:\I.nk characters Description

Decimal placeholder
’ Thousands separator

Time scparator

/ Date separator

A Treal next character as a literal
& Character placeholder

A . Alphanumeric placeholder

! Letter placeholder

" ’ Digit placeholder

Walk Through —Validating User Input |

To monitor user input with the masked edit control
1. From the Walk Through program group, start Masked Edit.

The purpose of this walk through is (o demonstrate one of the rowtine uses of the
misked edit control—-displaying a text box that prompts for and monitors lhe
conrectness of a user-added telephone number,

[

Typeatelephione numiber.

Notice that the use of the parentheses and the underlining prompts the user on
Ahe tvpe and amount of infornanion w be typed. Notice also that the masked edit
fent boxautodaatically tabs the cursor 1o the next control as you Lype the '
telephane number. -

A Close the apphicion.

Module 6: Using Controls 117

. ' E To create the application
1. Start Visual Basic,
2. Resize the form and sct its propertics as Tolows:
Height 2850 (approximately)
Width 4560 (approximately)
3. Place a label control at the wip of the fora nd serits properties as Follows:
Alignment 2 - Cenlter

AutoSize Truc

Caption Customer's Telephone Number
4. Place the masked edit control in the center of the form and sel its properties as
follows:
Mask (K1) - Y
Width 1635 (approximately)

Visual Basic calls the parentheses and the hyplien "lierads.” ‘They are the visual
cues that tell the user the type of data that is expecied. and you type them as part
of the input mask. The number signs (#) are called ~digit placcholders.” and they
specify that a digit is required. As you have seen. when you run the application,
the control places an appropriate number of underscores that tell the user the

“ total number of characters in the number as well as e user's relative position
within the number.

5. From the Run menu, chonse Start.

Test the behavior of the masked edit control to see i i behaves as it did in the
demo.

. 6. From the Run menu, choose End.

ValidationError Event

If a user types an invalid character, a Validationrrar vyent oceurs, You can place
code in the ValidationError event o display an error messige. For example. you
might want to beep if the user types an Invalid characrer,

1. Place the following statcment in the MaskedEditl_VulidationEreor event:

Beep

2. From the Run menu choose Start. Type a letter in the masked edit Tield.

The system beeps.

3. Save the form and .MAK file with appropriate nimes in
\WALKTHRINSAMPLES.

e R e R A A

al:] Module 6: Using Controls

Regular and 3-D Frames, Check Boxes, and Option Buttons

Framel————
@ Check1 ,_
O Option2 [Checkz 3. !

T YR AT AR AL S e IR £e " LA AT

The friome. check box, and aption button controls provide a way to present users
“witha ser of options from which they can choose.

For example, if you start the Solitaire game in Windows, then open the Game
men, and then cheose Options, you will see a dialog box that contains two sets
of option butions. Inside the frame labeled Draw are the options affecting how
many cirds are drawn, Inside the other frame labeled Scoring are the options that
afect how the gume is scored. The arrangement on the screen and the use of
frames et the userpand the system that these are independent groups of option
buttons, A chaice made in the Draw group will not affect the Scoring group, and
VICC VOERNILL

Frames and Their Common Properties

Frames pravide a means for graphically and functionally grouping controls.
Framues are most commonly used 1o group two or more option buttans in a set of
mutually exclusive choices.

Note information presented in frames and option buttons can also be presented
n drop-down list boxes.

Property - Defuult Comments

Caption IFrame | On screen Jabel. This is the delault
property for this controt,

Syntus—Frame = "Definitions"
© MNatne Fravne | Ninne vsed o code,
Use [ra as a prefix.

Visiile True False hides the frame and any controls
inside it.

v <4 4 w w ¥

4

Modute 6: Using Controls 119

_ Events

' Visible True

Caution When Placing Controls on Frames

There are two methods for placing controls ona form The stimplest method s o
double-ciick a control icon. An instance of the controt will uppear in the center ot
the form, and you can position the control from there, This is a particularly usetul
approach when you are placing several controls on u single Torm,

The second approach is to single-click a tool in the Toolhox, move the cursor to
the form, and drag the control on the form until it is the size you want, This
second method is required for placing comrols on o frame, 11 you do pot use this
method, you will lose the controls when you ry to move The frume around on the
form. :

3-Dimensional Frames
Added property Delault Comments

Alignment 0 - Left Justify You cannot cemter- or right-justity frame
captions with the ather controls.

Caption This is the deranlt propeny for this control,
Syntax—Framed = "Definitions™

Font3D 0 - None Sets the wmnownt and direction of shading in
‘ the Caption.
'
Name Frame3D| Name used in cocle.

Use fraas prefin. -

Check Boxes and Their Common Properties

Property . Default Comments
" Caption ' Check1 Oni-sereen salae
Enabled ' True False disables aft user access,

Name Check| Nume used incode.
Use ¢hk as a prefis,

Value 0 - Unchecked i - Checked: 2 - Girayed.
(Fills box wily gray). This s the default
property for the conrol,

False Indeshe chieek box,

Click Normally a Click event indicates that the user lios made i selection, I the
case of a check box, the Click event acts as a toggle. ihere is an Xinside 1he
check box when the user clicks it, the X will be removed, I the check box s
empty, an X will be placed inside the check box afier the user clicks it. In either
case, the Value property will be reset, A typical use of i check box might be 1o
allow the user to choose between bold or norimad fom.

1

120 Module 6: Using Conlrols

Style Guidelines

Events

Option Buttons and Their Common Properties

Option buttons, as noted previously, are used to display an array of choices from
which the user may select only one. An example is found in the Microsoft
Windows Wrile Print Setup dialog box, where the user can select either the
defaule printer or o specific printer and either portrait or landscape page
arientation,

Properly Default Comments
Caplion Option| On-screen value,
Nane Optioni Name used in code,
Use opt as a prefix.
Viiitled True User has access 1o control.
Value False This is the default property for this control.

Syntax —Optionl = False

Always liave onc option button in a group selected as the default for the user
when the form is displayed.

Click When the user clicks an option button, the Click event actually invokes
several aclivities. It paints the dot on the selected option button, remaves the dot
froa any other option button within the frame, and resets the appropriate values

for all option buttons in the same group.

Walk Through—Option Buttons and Displaying Their
Vaiues '

To conmpare the cffect of the Click event for a check box versus an option
button ‘

I. Fronvthe Walk Throughs program group, start Check versus Option.

When you starl the application, you will see a form with three oplion buttons,
two check boxes, and a clear screen button on the right side.

The purpose of this application s to compare the effect of the Click event for
acheck box versus an option button,

2. Chick the Optiont option bution.
The values for all three buttons should be displayed on the left side of the form.
1. Click the Option2 option button.

The updated values for all three buttons should be displayed on the left side of
the lorm. ’

4. Click the Check | check box to place an X in it.
The value of Check 1. Value is printed on the form.

Campare the number that is printed for the value of a check box when it is
sclected (1) o the value that is pristed for an option button when it is
sehected (- 1), -

Module 6: Using Controls 121

5.

Click the Check2 check box to place an X in it.
The value of Check2.Value is printed on the form.

Compare the effect of the Click event for check hoxes versus option buttons,
Clicking one option button alTects the state of the ather option buttons in iis
group. Clicking a check box will not alfect the stine o) other check boxes.

Double-click the Control menut,

. Claose the walk through.

Z To code values for option and check boxes

1.
2,

If Visual Basic is not running already, start it.
Double-click the frame control tool in the Tootbux.

Add a frame to the form. Click and drag the sizing handles 1o make it big
enough to hold three option buttons. Place it near the lower-right cormer of the
form so that there is plenty of room 1o display the values tor the three option
buttons you will add.

3. Click the option button tool in the Toolbox.

b

% N o W

12.
13.

Move the mouse over the frame you just created on Farm 1,

Note that the mouse pointer has changed Irom an-arrow 1o a cross hair.
Click and drag inside the area of Frame |l to draw an option button there,
When the button is the size you want, release the mouse.

Draw two more buttons inside Framel,

Double-click the top option butlon.

This displays the FORMI.FRM Code window witi the Optionl_Click evem
procedure template.

Add the following code:

Print "Optionl.Value = *; Optionl.Vaiue
Print *Option2.Value = "; Option2.Vvaluo
Print "Optiond.value = "; Option3.value

This adds the code that prints the values for the bunons,

In the Objeet list box, select Option2 and locate the Click event template from
the Procedure list box.

. Add the following code:

‘Print "Optionl.Value = "; Optionl.value

Print ~OptionZ.Value = "; Optian2.Value
Print "Option3.value = ": QOption}.Value

This adds the same code that prints the values for the buttons to the Click
event for Option2.

Using the Copy command, place the code above inte the Clipboard.

In the Object list box, select Option3 and locate the Click event templite from
the Procedure fist box.

L N LA D

122,

Module 6: Using Controls

p— n

14, Using the Paste command, copy the contents of the Clipboard to this event
procedure template,

The code should look like this:

i'rint "Optionl.value = =; Optionl.Value
Prin' "0Option2.Value = *; Option2.Value
Print. "Optionld.value = *; Optionl.,Value

This adds the same code that prints the values for the buttons to the Click
event for Option3.

5. IFrom the Run menu, choose Start.
Fest vour code.

16 o the Run menu, choose End.

Close the application,

17, (o Visual Basic.

3-Dimensional Frames, Option Buttons, and Check Boxes

For the most part, these three controls are identical to the three controls just
discussed. However, there are a few subtle differences that need to be noted as well
as the procedures for setting the 3-D qualities for these controls.

3-Dimensional Option Buttons and Check Boxes

Adided property Default Comments
Name thor check Check3Dl| Name used in code.
bunest : Use chk as a prefix.
~Nane tfor option Option3D1 Name used in code,
buitons) Use opt as a prefix.,
Fom 3 3 - Inset with Light Sets or returns the three-dimensional style
Shading of the caption. For example, you can set

Font3D to have font appear raised or inset
with light or dark shading.

Module 6: Using Controls 123

.

Regular and 3-D Command Buttons

O
o
3
3
o
3
o
o

L Y T R R

Style Guidelines

Events

Command Buttons and Their Common Properties

A command button performs a task when the user presses it

Property Default : : Comments

Cancel False True—button activiied by ESC,

Caption . Command] On-sereen vabine,

Default ~ False True—bution activided by ENTER.

Enabled True IFalse disables the hartton For users.
- Height 500 '

left - Frowa Left bosder of tonan.

Name Commamnl! Nanne used iy conle,

Use cmd s i preling

Top - From top border af oo,
Width 1215 twips
Value Syntax — Command] = Fnabled

Place buttons in a group on a form, either horizontally along the hottom of the
form, or vertically along the right side of the Torm.

Click With command buttons, a Click event normally means that the user wants
some kind of action to take place. In the case of an OK button, for example, users
might want a form removed from the screen so that they can continue work. In
this case, you will be providing code.

q

124 -

Example

Module 6: Using Controls

When the user uses Lthe mouse pointer to choose a command button, the Click
event changes te color of the button (1o simmulate its being pressed) and execules
whatever code you have added to the Click event procedure. A user can also use
the keyboard to generate a Click event for a button by tabbing to the button and -
then pressing the SPACEBAR.

by, Creommandl_Click ()
#1ap all execution of the program
Fel !

Fnel 2t

3-DimensionaI‘Command Buttons

This form of the command button behaves in much the same manner as the other
comnand buttens, but there are a couple of interesting differences.

Property Delault Comments

Hevel Waidils 2 Specifies the thickness of the highlight
shadow arcund the button. Valid range is
from O to 10,

Natine Command3D1 MName used in code.

Outline True False disables the border or line edging the
button.

Pictine None Enables placing a picture or icon on a

cammand button.

Module 6: Using Controls 125

Combo and List Boxes

0 - Drop-down Combo Box 1 - Simple Combo Box

List Box 2- Drop-ddwn List Combo Box

There are actually four kinds of list box controls, cach of which has a slightly
different functionality.

Both drop-down styles of boxes are designed Lo save on the iniial amount of
screen space in use by the control.

Users can only add new items directly into either a drop-down or simple combo
box. With a list or drop-down list, they are limited ur the choices provided by the
application.

List Boxes and Their Common Properties ‘

List boxes display a list of items from which the user can select only one at’a
time. Through the list box control, users can vty sctect from the given list of
articles, but you can write code that allows them Lo add and delete ilems during
run time through some other control.

Automatic Scroll Bars

All list and combo boxes will automatically add a vertical scrall bar it the siwmbe
of items contained in the list is greater than what will lit in the maximum display
size of the control, which is sct by the Height properiy.

Property Deflault Comments
"Columns Detuult Enubles multiple-colunm display of daain
' single list box,

List : Accessible only il run time, Seis or retaros the

items contained in o conrol' s st siring arry.
ListCount Returns the number of itéms in the list,
Listindex Retumns the mdex ol the selecied e the hisd

'

126 Medule 6: Using Controls ‘ -
PFroperiy Delault Comiments
MutliSelect . 0-None Other options: 1 - Simple and 2 - Extended. None
' means that the user can select one within the list.
Simple means user can select multiple items
using the cursor. Extended means user can press
CTRL to select multiple items.
- Nam List] Name used in code.
Use Ist as a prefix,
Suortel False
Ten This is the default property for this control.
Syntax—Listl = "Item 1"
Events Click With any of the [ist boxes, a Click event occurs when users select an ilem
fronn the Fist o indicate their preferences.
DbiClick A double click normally is used as a shortcut that combines lwo actions:
the selfechion and the starting up of a process.
Methods These are used Tor list management,

Name Function Syntax

Adklhem Used to add individual items 1o Listl.AddItem "name”
list box. Seeding a list box is
done from Form_Load.

Remenveliem Used to remove items one at a Listl.Removcltem (ListCount)
time from u list box. .

Clear Used to remove all items in a list Listl.Clear
box in one stroke.

Walk Through— Adding and Removing List Items

To add and remove list items
i Fromthe Walk Throughs program group, start List Box.

* Wiien the application starts up, the cursor should already be placed in the text
hox.

The purpose of this application is to demonstrate a simple procedure for
adding items 10 and removing items from a list box.

2. "Fype Harwood, Gene in the text box.
Add i new name in the text box.
3 Chuose Add. '
Yo can do this with either the mouse or the ENTER key,
4. Sclect the text box,
Tab o or click the wext box,
5. Type Simens, Anna in the text box.

Add asecond e (o the Tist box, and a vertical seroll bar should appear on
Sy eisplay.

Module 6: Using Cantrols 127

e o

6. Choose Pfeiffer, Terry.
Single-click this list item.
7. Click the Remove button.
The list item is removed from the display.

The question here is this: How does all of this wark”!

To code list box handling
1o I Visual Basic isn't rannmg already, sttt

2. From the File menu, choose New Project.

Note If you want to do all of the work for this walk through, go (o the nest
step and start changing the properties [or the form. 5 you want o start from

. completed interface, you can also find a partially completed form calied
LISTMAK in \WALKTHRINSAMPLES. I you chease this option. skip
down to step 12, the paint where you start adding code w the Form_Load
event, .

3. Set the properties for the form as (ollows:

Caption Consultants

Name Forml

Height 3075 (approximatcly)
Width 3420 (approximately) -

4, Double-click the list box 100l in the Toolhox.
Add a list box to the form.
3. Set the following properties:

Name List]

Height 1005 (approximately)
Sorted False

Width 2775 (approximately) h

6. Double-click the text box tool in the Toolbox.
Add a text box to the form.

7. Set the following properties:

Name Textl

Height 5535 (approximately)
TablIndex 1

Text Blank

Width 2775 (approximalely)

8. Double-click the command button tool in the Toothax,

Add a command button to the form.

128

Modutle 6: Using Controls,

3

Y9,

i

I3
id,

Ly,

fY.

Set the following properties to create an Add button.

Caption Add

-

N Command]

RIAHI True

Hewgehi 555 (approximately)
Widih 1215 (approximalely)

Dawihle-click the command button tool in the Toolbox.

Add a second command button to the form:

. Set the lollowing properties to create a Remove button.

Caption Remove

Niune Command2

Heipht 555 (approximately)
Wadth 1215 {approximately)

| Nuow that you have created the interface, you need to add the code to make it
- Tunetion,

In tlic Project window, choose the View Code button.
Make sure that the Form is sclected.

[n the Object list box, select Form.

ln the Procedure list box, select Load.

Add the initiahzation code that foads the names into the list box when the form
is logded at run time. :

#ii! the list box at run time
inei L AddTtem “"Horton., Joan"
VicrtoheldTtem “White, Don”
Lrcr i hdd vem "Marshall., Lynn®
iigr 1 Addltem “pPlfeiffer, Terry”

I the Object list box, select Command | and locate the Click event procedure
i the procedure fist box.

Add the folliwing code:

" Lisr i AddIrem Textl.Text

Tins code takes whatever is in the Text property of the text box and adds it to
the Jist box.

1

I‘vonn the Run menu, choose Start.

Run your application,

. Type Harwood, Gene in the text box.

Type Gene Harwood's name in the text box and press ENTER or click Add. His
npme should be added to the list box but not deleted from the text box.

From the Run menu, choose End.

Anvander to elear the texi box, you need 10 add a second line to 1he Click event

" provedure here.

Module 6: Using Controls 129

20.

21.

22.

23.
24,

25.

26.

27.

29,

30.

3.

Add the following code to Command!_Click:

Textl.Text = =*

This takes care of the simple addition ol items 1o 4 st box.
From the Run menu, choose Start.

Try adding Gene Harwood's name-one more time. 1t should work just fine. bt
what about removing it?

From the Run menu, choose End.

Removing items from a list box is fairly strighiforward,
In the Object list box, select Command2_Click.

Add the following code:

Listl .Removellem Listl.ListIndex

This code removes the ilem indicated by the valiue of List] Listlndex. The
Removeltem methed removes items one ata time. Wil siall lists, this nivh
be suitable, With larger lists, you would use the Clear method,

The above code will cause an crror it no st iten is setected. You can avoid
this by modifying the code s follows:

If Listl.ListIndex = -1 Then
msgs = 'Plepse Selecl a Consultant ™
MsgBox msg$. 64, "List Selecticon®
Else
Listl.Removeltem Listl.ListIndex
End If
From the Run menu, choose Start.
Add and delete a couple of names to see Uit the conde works.
From the Run menu, choose End.
Close the application.

How about sorting this list? Don't you have o add a lot of code to sort the
items in the list? No, you don't! You simply set the Sorted property to True
for Listl, and all items inserted in the list will be sorted automatically.

Close the Code window,

From the Propertics st box, select Sorted for the Tist box.
Click the List!1 list box on the form.

Set the Sorted property to Truce.

From the Run menu, choose Start.

Note that the names in the dist are now sorted. Add and delete o couple of
names to see that the sorted order of the list is maintained.
From the Run menu, choose End.

Close the application.

Save your form-and MAK files with appropriate names in

AWALKTHRIWNSAMPLES. You can overwrite the Gle il adready exasis,

130

Module 6: Using Controls

Walk Through—Combo and List Box Differences

E To achd entries to combo and list boxes

5

Fronnthe Walk Throughs program group, start Combos.

- Type Fred i the drop-down combo box.,

11 yowr press the DOWN ARROW key, the list of names is displayed.

. PPress ENTER.

The naume Fred is added to the list. If you add several more names, a vertical
scrofl bar is also added to the list.

. Type Natasha in the simple combo box.

5. Press BNTER.

G,

The new name will be added to this list. Notice here that the scroll bar is also
athded.

Select the name Larry in the drop-down list box.

Thix name appears in the box at the top of the list, but users cannot add items
Lo the list direetly.

Ironn the Control menu choose Close.

Close the application.

-

Module 6: Using Controls 13

Events

—

Combo Boxes and Their Common Properties
Property Default ‘ Conunenis

Name Combol Nante used vis conle

i Use ehuo i o prelin,

Style 0 - Dropdown Combo |- Simiple Comdno
: 2« Drap-donwn List
Text Combol
Height) 300 ' Simple combo—"t'he height displayed
both i desiga tine and run fime,
Drop-doswn-Set height property al
desiga time (or i tine), bat Tull height
will not be displayed until the user
drops down the List at run time,
Text This is the defandt property for the
control.

Syntus - Combu| = "Nutasha'

Change A Change event indicates that the contents 1 s contred have changed. In
combo box, a Change event occurs whenever you edil the 1ext bux portion ol the
combo box or when you assign a new value to the Text property from code.

Orop-Down and Simple Combo Boxes

Drop-down combo boxes are an alternative 1o option butions within frames: that
is, they are designed to display a limited number of togically arranged choices
from which the user may select ane. A chissic example of i drop-down combao
box is found in the Windows Control Panel. IFrom the Settings menu, the user can
choose Ports and then set the baud rate for the moden atany one of eight pussible
values, or type a value into the text box portion of the control. The new value
typed can then be added to the list. The drop-down comnba box enables a
scrollable Iist that allows the user to review more choiees than can’be casily
presented on screen. The user's choice is displayed m the top hox.

_ Drop-Down List Combo Boxes

Drop-down list combo boxes are used (o present usees with a liited number of
choices, from which they may sclect only one.

Key Feature .

Both drop-down combo and drop-down list combo boxes display data from which
the user may select only one choice. But with a drop-dawn list users can only
select from the list; they cannot add to it.

132 Module 6: Using Controls

)

Scroll Bars

T SRR, A ke A S DI Wk ke R e

Events

Scroll Bars and Their Common Properties

Scroll furs are most commonly used to enable quickly moving across a long list
of itenis. such as a tong list of filenames. They can also be used for indicating the
currenl position on a scale, such as shades of coloring for customizing the look
and leel of the screen. Or, scroll bars might be used to indicate the volume of un
audio svstem. ' :

Property Default Comments
Larget hinge 1 (1-32.70T) Amount of change when user clicks scroll
bar shaft.
Moy 32,767 Maximum value of scroll bar handle in
bottom most position.
Min f] Minimum value of scroll bar handle in
topmost position.
N HScrolll "Name used in code.
—or- Use hsbr as a prefix.
Vscrolti Name used in code.

Use vsb as a prelix.

SmallClrange [(1-32,767) Amount of change when user clicks a scroll
drrow,
Value- 0 : : This is the default property for this control,

_ Can be set by user's direct interaction with
the control or through code in response to
other events.

Change Oceurs when tie contents of the control bave changed.

Module 6: Using Controls ~ 133

e ——

Walk Through—Scroll Bars, Properties, and the Change
Event L

To see scroll bars, propertics, and the Change event
. From the Walk Throughs program group, start Scroll Bars.
You will see a form with a vertical scroll bar on it

The purpose of this application is to demonstrate the behavior of a scroll bar
and the effects of the properties LargeChange and SmallChange on the Vaiue

property.

2. Click the arrows on both ¢nds of the scroll bar.
Note the change in the Value property.

3. Click on the shaft of the scroll bar both ubove and hetow the scroll box,
Note the change in the Value property.

4. Close the application.

5. Start Visual Basic.

6. From the File menu, choose New Project.
Start a new project.

7. Set the following form properties in the Properties window:
Height 4425 (approximately)
Width 5430 (approximately) .

8. Double-click the vertical scroll bar tood in the Toolbox.

Add a vertical scroll bar and change some ol ks properties:

Height 3495 (approximately)
LargeChange 20

Max 100

SmallChange 10

Width 375 Gappraximately)

Y. In the Project window, choose the View Code baiion,

Make sure that Forml bus been seleced.
0. Inthe Object list box, select VScroll_Change.

Locate the Change cvent procedure for the vertical scralt har.
11. Add the following code:

Print "VScrelll.value = *; VScrolll.Value
Display the Value property eacii time il chunges.

12. From the Run menu, choose Start.

Test the application you have written.

134 Module 6: Using Controls

13 From the Run menu, choose End.
Cluse the application.
L Qut Visual Basic,

15 Save your form and .MAK files with appropriate names in
\WALKTHRUASAMPLES.

Module 6: Using Controls 135

Timers

o E L RPN AR W R B e S e

T

Timers and Their Common Properties

Timers are used to run events at a specific time or within an inierval that you
specify. For example, within a scheduling application. timers would be used (o
enable alarms for the user.

A special characteristic of this control is that it is never visible at run time.

Property Default Comments
Enabled True This is the defaudt propenty Tor tis
' conlrol.

Syntax-- Tiner] = Fnabled

Interval t] Countdown inkerval for the limer.,
: mcasured we o thsceonds.,

Name Timerl Name used i conde,

Use e as o prelis,

136 . Module &: Using Controls -

A

Walk Through=Clock Application and the Timer Control

_ Z To use the timer control
b Fromy the Walk Throughs program group, start Clock (Timer).

When you start the application, you will see a form containing a digital clock
displisving the date and time. The clock will be updated every second.

The purpase of this application is 1o demonstrate the behavior and use ol a
thinger cimtrol.

2. Double-click the Control menu.
Close the walk through.
A0 Swant Visual Basic,
4. From the Fife menu, choose New Project.
Starl ;n. new project.
5. Sct the properties for the form as follows:
BackColor Yelfow
BorderStyle 3 - Fixed Double Also removes Min/Max buttons
Capion Clock |

Heigin 2235 (approximately)
Nt IrmClock
Widih 4345 (approximately)

6. Douhle-click the label toof in the Toolbox.
Add a Tubel to the torm,

7. Sct the properties for the label as follows:
sAhpnment 2 - Center

Backtwlor Red

Capiron {nong)

FomSize 12

FareColor ~ White L)
Flepht . 1340 (approximately)

lelt X0

Natowe IhIDateTime

Top 420)

Width 4015 (approximately)

N, Double-click the timer ool in the Toolbox.
Y, Sct the following properties: .
Niime tnuTimer]

Interval 1000

- Phace actimier on the Torm. Setthe properties [or it You can place it anywliere,
"7 Behind the label will be fine, because timers are not displayed on screen at run
time Co

Module 6: Using Contrels 137

¢

10. In the Project window, choose the View Code wiklow,
Make sure that frmClock has the focus.

11. In the Object and Procedure list boxces, locate the tiFimerl _Timer,
Locate the Timer event in the code.

12, Add the following code:

..1blDateTime.Caption = Format$ (Now, “mmmm o, ', ¢ Lmaniss am/pan®)

Add the code on the blank line in the Click cvent wimplate.
13. Double-click the Control menu.
Close the Code window.
14. From the Run meny, choose Start.
Test the clock application that you have just created.
I5. From the Run menu, choose End.
Close the clock.
16. Quit Visual Basic.

17.. Save your form and .MAK files with appropriate munes in
YWALKTHRINSAMPLES.

Using;a Timer to Initiate a Task at a Specific Interval

You.can use the timer to initiate a task after a specitic imerval. In the following

_ example, the timer event starts a backup procedure. The timer event occurs after al
least 60 seconds have elapsed. You could place code inthe Timwer event o check the
current time and start the backup rowine anly at certain nimes.

1 Sub Form_Load {)

2 Rem Timer will go off after 60 seconds.
3 timerl.Interval = 60000

] . timerl.Enabled = True

S End Sub

Sub Timerl_timer {}
x = Shell("c:\mybackup.bat"}
8 End Sub

~

142

Module 6: Using Controls

Lab Time

Goto the Adding Controls to Forms

portion of your fab manual.

- - - - - -~ -~ » F 4 » y» F r P " ‘ & ‘ k-

rd

Module 7: File Browsers and Other
Controls |

AR T A B B N S N s B B I R B BT NN RN S

- S

Module 7: Building a File Browser

3. File Browsing

= Scenario
. ... Properties and Events for File Browser Controls

= The Common Dialog Control

. 147

148 Module 7: File Browsers and Other Controls

2

Scenario '

File Name: Directories:

1 " ixt c\windows]
3270.1x1 e\ +
byle.txt @ .
networks.ixt =7 windows
printers. txt D system
readma.txt
Sysini.txl L]
sysini2, Ixt +:

List Files ol Type:' Drives:

Text Files (.7XT) ¥ ([=¢ i

R

File Browsers

A quick review of the workings of the file browser in Notepad shows that a number
of events occur when the user selects a different drive or directory. If the user
selects o new drive, the directories and files list boxes are automatically updated,
showing the current working directory for the system and any files (of the file type
specificd in the List Fites OF Type list box).

A 4 - - -y

Module 7: Building a File Browser 149

Style Guidelines

Walk Through—How File Browsers Work
Z To use file browsers '
1. In the Accessories group window, open Notepad.

All of you have used a file browser of one sort or another, bt you may not have
-looked closely at how it works.

2. From the File menu, choose Open.

Drives listbox The Drives list box is a special form of drop-down list hox. The
user can see options presented in the list but cannot add items o it

The more important element to notice at this point. however. is that when the
user selects a new drive, the change in sclection is reflecied in the directory and
fite list boxes as well as in the current working dircctory.

Directories list box The Directories list box is i special form of list box. I
behaves like a regular list box but displays only dirccrories and subdirectories.
Users cannot add items to or delete-items from the s

File Name combo box The File Name combo box is i special form of the fist
box that sends and receives messages from a text box. The text box allows users
- 1o add items to the list, something that cannot be done with u list box,

List Files of Type Combo Box Notice that this. ton. ix a drop-down list box.
Users can select items from it, but they cannot add irerms o it themselves,

Lurrent working directory Finally, notice that there is i Lubed that tells the user
the current drive and directory.

3. Choose Cancel, and close Notepad.
End walk through.

Typically, file browsers can be set to displuy only u given type of file in the
specified drive and directory. Because Notepad is designed 1o read fites that have
the . TXT extension, .TXT is the default file type and *.* is the second choice.

Because the Employee Database application s destened 1o focate BMP and WNE
files, they will be the default file types.

150 Md&ule 7. File Browsers and Other Controls

Taw AET AR e PR L N e B -

Properties and Events for File Browser Controls

T

consi2.txt
constant.ixt
decomp.dll

form1.frm

readme.ixt

ch
vbelass

|

- Example

| N
B

.. Drive, Directory, and File List Boxes

All three ol these controls are special forms of list boxes. They have many of the
same characteristics, but there are also a number of special properties that they use
1o enihle navigating through a file system.

Drive List Boxes and Their Common Properties

The first of these controls is the drive list box. It is a special form of the drop-down
list box. Initally it only shows the current drive for the form. However, if the user
clicks the drop-down arrow, the control will display all of the other drives currentiy

aviilable on the system.

Properdy Default Comments.
MNumie Drivel Name used in code,
Use drev as a prefix.
Drive Accessible only at run lime, this property

Synchronizing the Drive Property

::‘1|'I I il _Change ()

wihen Jdriue is changed,

bitl.Path = Drivel.Drive

kel al

returns the selected drive. This is the default
property for this control.

rescel the directory list box path

Module 7: Building a File Browser 151

Example

Example

Directdry List Boxes and Their Common Properties

Property Default Comments

Name Dirl “Name used in cinde.
Use dlir as i prefin,

Path . Accessible only gt ron times tis property
returns the abaolune path tor the selecied

directory. This is the default property for this
control.

Synchronizing the Path Property

Sub Dirl_Change ()
' When directory is changed, reset the file lisi. brx path
Filel.Path = Dirl.Path

End Sub

File List Boxes and Their Common Properties

Property Default Comments
Archive True Displays all files with archive bit on,
Name Filel Name used in cade,

Use Fil as a prelia.

FileName Sets or retorns the selecied file from she list

pertion of afile list box, Aceessible unly at
rus ine. This is the delunlt property Tor thas

conitrol.
Hidden False Does not disphiy Bidden files.
List Accessible only at run Hime: weturns the dlems

contined in a hist box,

ListCount i Accessible only at run time: returns the fotal -
number of iteins in the list box.

Listindex - Accessible ondy s run time: returns the index
of the current]y selected item.

Normal True Dhisplays all (18 witli wchive it set on,

Path Accessible only b run teme.

Pattern ** Display all files.

ReadOnly True

System False

Accessing the FileName Property

Sub Filel_Dblclick ()
Labe,ll‘.Caption = Filel.FileName

End Sub ’

152

Module 7: File Browsers and Other Controls

Events

T,

Click 1‘or all three ol the basic controls, a Click event indicates that the user has
muade o selection. That is, the user is selecting or changing drives, directories,
subdirectories, ur Ilenames.

Double-click The only time that a double click is routinely used in a file browser is
when the user uses the File Name combo box. 'In this case, the double click

~indicales that the.user has located a specific file of interest and wants the

application that uses the file browser to actually open that file.

Change The real workhorses of a file browser are the Change events. Code that :
you add 1o the event procedure template keeps the three controls synchronized
whenever the user selects a new item in one of the list boxes.

PathChange This event occurs when the selected path has been changed by setting
the FileNume or Path property from code.

PatternChange This event occurs when the pattern has been changed by setting the
FileNinme or Paltera property [rom code.

Module 7: Building a File Browser - 153

-~ 2 Change Events

= Change Event
= PathChange Event

Jodt

154

Moduie 7: File Browsers and Other Controls

B T T T T] PR

-

The Change Event

Dirl_Change ()

auloexec.bat
autoexec.bak [T discover
command.com E‘j dos ’ - '
conl!g.bak] Im.dos Drive 1_Change (}
config.sys [} imdos.old ' -
[C7] windows '
I_E] c: IEf

e

Example

Example

Changing the Path for Differing List Boxes

Change Events Change events indicate that the contents of a control have changed.

Change events are associated with a wide variety of controls including combo
boxes, harizontal and vertical scroll bars, labels, and picture boxes. For our -

purposes. this madule focuses on the Change events for directory and drive list,
hoxes only.

Direclory List Box The Change event is invoked when the user clicks a new

directory or when the Path property is changed from the code. It indicates that the
contents of the control have been changed.

=ub, biri_cChange {)

" When directory is changed, reset the file path
Filel.Path = Dirl.Path
£nd Suls

Drive List Box The Change event is invoked when the user selects a new drive or

when the Drive property is changed from the code. It resets the path for the
dircctory list box.

vih Drivel_Change ()

* Wilwen drive is changed, reset the directory's path
biri fath = Drivel.Drive

Frod St

s 2 2 39 2 83 8 " N

-

" Module 7: Building a File Browser 155

Walk Through Drawing and Codmg a Flle Browser

E To draw and code the file browser
. From the Walk Throughs program group, stait Browser.

When this application starts, you will see a simpiified form of the file brawser
used in the Employee Database. This form has file. divectory, and drive list
boxes only.

Chck a new directory and notice the file list is updined.

The purpose of the application is to demonstrate the Path and Drive propertics
ard the Change events that are used to synchronize controfs.

. Close Browser.
. Start Visual Basic.
. From the File, choose New Project.

h K oo

. For Farml, set the following properties in the Properties window:
Height 3930 (approximately)
- Width 4290 (approximately)

Lrh 6. Double-click the file list box wol in the Tonihox,
*fi 7. Set the following propenies:

Height 2760 (approximately)

Wiﬁth 1455 (approximately)
8. Double-click the directory list box tool in the Toolhox.

9. Set the following properties:
Height 2175 (approximaicty)
Width :1455 {approximately)
10. Double-click the drive list box tool in the Toolbox.

11, Set the following properties:
Width 1455 (approximately)

The first step of implementing a file browser is to add the Change event code
that synchronizes changes in the statc of the drive and directory list boxes. Todo
this, you need to:

12. Double-click the drive list box.
This displays the Code window with the Pivive] Clhappe evend procethiee i i
3. Add the following code:
Dirl.path = Drivel.Drive
This code resets the Path property of the directory list box 1o that of the Drive
property of the drive list box.

Now the directory list box will be kept cosent wllh clanges in the drive fist hoy.
But what about the lile fist box?

14. Front the Object tist, sefect Dirl,

" The Code window with the Dirt_Chunge cvent temphate is Jisplayed.

156 Module 7: FI|(! Browsers and Other Conlrols

I5.

10,

I8
B 2
20

Add the following code:

FFil«d . Path = NDirl.Path

Click Form] to display the interface.

The code added above resets the Path property of the file list box to that of the
Path property of the directory list box.

The characteristics of the Path property of a directory list box vary depcndmg on
whether the user's current working directory is the root directory.,

It the user selects the root directory, the path will be "\"-—that is, a path (in this
case the root), which is a backslash. If the user selects any other directory, the
path will end in the current warking dirgetory, with no backslash at the end.

This is important when a program needs to build a fully qualified filename. The
conde mast check to see if a backslash must be added to the current value of the
Padt property before concatenating it to a filename.

The code Lo handle this requires a knowledge of conditional processing. To see
how this is done, inspect the cmd OK_click procedure in the AddPhoto.FRM
code inASOLUTIONWPRINTING.

Fro the Run menu, choose Start.

Test to see if your code works.

From the File menu, choose Save As.

Save the file as BROWSER.FRM in \WALKTHRUABROWSER.
Save the project as BROWSER.MAK in \WALKTHRUNBROWSER.

s IR

n o e e ———

Module 7: Building a File Browser 157

PathChange

Filel_PathChange ()

Dirl_Change {)

=7 en
. =7 windows
{77} system

L

argyle.bmp Path: c:\windows

bootlog.ixt

) S T s 2o o e el

e AR

PathChange | o

_ The event occurs when the selected path changes by sctting either the FileName or

Path property from code. !
These two examples are from Visual Basic Help. . ‘ :
1
Examples Sub -Dirl_Change () ! '
. Filel.Path = Dirl.Path b
End Sub Lok
o
‘PathChange Event Examplea i - ’!
Sub rilel_?athchunﬁe {) r E
Labell.Caption = *Path: " « Dirl.paih - P
End Sub bl
B
Notice in this example that the PathChange event is geacrated by code in a Change e
event in the directory list box contro to synchronize the value of the Filel .Path R
property to the new value for Dirl Path. E :
For further examples using the PathChange event, see the filiowing. i,
ki
Further Examples Application - Form Procedore A
1
IconWorks VIEWICON.FRM File_Filel.isi _MathChange t
¥ .
.
[

158

Module 7: File Browsers and Other Controls

The Common Dialog Control

File Kame:

Directories:
c:\vb

Save Fite as 1ype:

2 bitmaps

] cdk

he (] Read Only
£ icons

] metalile S

Diives:

=

a

c:

Example

The Common Dialog Control

The common dialog control is a versatile tool provided as a standard part of the
Prafessional Edition of Visual Basic, The most common use for it is as a file
hrowser, but as you will see, it has many other possible uses.

b mnuFileOpen_Click ()

CHMbiatogl, Action

el Sah

2

Below is u tist of the Action propenty settings and their associated dialog box type.

Action sctling

Type of dialog box

No action

File open dialog box
File save dialog box
Color dialog box
Choose font dialog box
Printer dialog box
lnvoke WINHELP EXE

Module 7: Building a File Browser 159

~

> More Controls -

= Grid Control |
.= 3-D Panel Controls and Group Push Button

This final portion of the module deals, briefly, with cacit of the remaining tools in
the Toolbox.

160 Module 7: File Browsers and Qther Conlrois

Using the Grid Control to Display Output

Gridl.Col =1

Gridl.Row =1
Gridl.Text = "Name"

The Girid control allows you o display output on a grid.

The Culs and Rows propenties set the total number of columns and rows you want
in the prid. Thesc properties are available at design time or at run time.

The Col and Row properties set or return the current cell in the grid. These
properties are aviailable at run time only. The Text property sets or returns the text
in the current cell.

Iab o cmelheldText _Click () .
‘het the current cell: remember that the first row and
‘vl Are O
‘Gridi.col = i
Gridi.Row = 1
Gridl.Taxt = "Name"

BEod Sty

The Clip property sets or returns the contents of the grid's sclected region—for
example:

tiridl Clip = "ABC*

You can inciude Lubs and carriage returns in the string expression to indicate new
cotumns and new rows, respectively.

-~

"

Module 7: Building a File Browser 161

Example

The following example places text in a two-by-1wo range of cells.

Sub emdClipText_Click {

1

2 Gridl.
3 Gridl.
4 Gridl.
5 Gridl.
6 ths =
7 ers =
a as =
9 Gridl.
10 End Sub

SelStartCol
SelEndCol =
SelStartRow
SelEndRow = 3
Chr$(9)
Chrs(13)

Joe J° + th$
Clip = a$

LS]

i

“Tah Charo-ter

‘Carriays i+=turn

+ "123" + cr$ + "Sux bk o+ *h3 + =456"

The grid control is used to display output. However, you can simulate inpul on a
grid with code. The following example updates a grid cell when the user types into a

text box:

Sub Textl_cChange ()}
Gridl.Text = Textl.Text

End Sub

Some of the key propertics that you will need in order 1o use this control arc as

follows.
Property Defanlt Comments
ColAlignment 0 - Left Justify Sets or returns the alignment of data in a

Cols, Rows
ColWidth

FixedCols,
FixedRows

GridLines

Picture

.= 1-True

column

Sets or returns the total number of rows or
columns in the prid

Sets or returns the widih {in twips) of o
specified column

Sets or returns the totad number of {ixed
columns or sosws Tor i grid
Detenmines whether lines between cells we
displayed ‘

Sets o retuarns o praphic for the current cell

162 Module 7: File Browsers and Other Controls

‘ 3-D'Pane|

This control has a number of possible uses. It has, however, two primary uses—the
first is to provide greater three-dimensional (3-D) quality to another control or
group of controls. For example, you can place other controls on the panel; it can be
used in place of a frame. You might also use this control as a background for the
entire form. The three-dimensional panel, because it has FloodPercent and

I-lood Type properties, can be used as a status or progress indicator.

Some ol the key properties that you will need in order to use this control are.

PProperty Default Comments
Alignmeng 0 - Left Justifiecd Top Caption alignment for this control otfers nine
possible choices.
Bevellnner {}- None Sets the style of the inner bevel of the punel:
) none, inset, or raised.
BevelOwer 2 - Raised Sets the style of the outer bevel of the panel

HevelWidih |

I loodColoy
IFloodPercent

FloeI Type 0 - None

Sets or returns the widih of both the outer and
inner bevels of the panel.

Sets or returns the color used o paint the area
inside the panel's inner bevel when used as a

status indicator,

Sets or retumns the percentage of the painted
arca inside the inner bevel when used as a
status indicator,

Determines whether and how the panel.is
uscd as a status indicator.

.

Module 7: Building a File Browser 163

Walk Through—Creating a Percent Meter

Z To sct the Percent Meler at work

t. From the Walk Through program group. chouse Pereenst Meter,

The purpose of this walk through is to demoastrate the status reporting

capability of the three-dimensional panel control.

2. On the Percent Meter application, choose Start.

In a‘few seconds the panel will progressively change color. indicating along the
way the percentage completion of the process.

3. Open the Control menu on the Percent Meter application, and choose Clase.

z To create the Percent Meter application

. Start Visual Basic.

2. From the File menu, choose New Project.

3. Set the properties for the form as follows,

Property Setting
Caption Percent Meter
Height 4425 (approxiniiely)
MaxButton False
. MinBution False
Width

2535 Gapproximaiely)

4. From the toolbar, double-click the 3-ID Punel tool and set its prnpcnic_s as

follows,

Property Sctting

Bevellnner 1 - insct
BevelOuter 2 - Ruised
BevelWidth 3

BorderWidth 2

Caption

FloodColor Yellow

FloodType 4 - Bottom to Tup
Height 2655 (approxinitely})
Left 240 (approximaicly)
QOutline True

Top 240 {approximaely)

Width

1935

164

Module 7: File Browsers and Other Controls o - .

5. From the tooibar, double-click the Command bulton and set its properties as
lollows, . '
Property Setting
Cuption Start
FomSize 135
Heigh 495 (approximately)
Lath 430 (approximately}
Yo ’ 3240 (approximately)
. Duouble-click the Command bution in design mode in order to open the Code
window,
Visual Basic displays a Code window with the Command 1_Click event
procedure templae it
7. Vlace the following Tines of code between the two parts of the emplate:
Panel il FloodPercent = 0
bor iho= 1 To 100
bPanel3dl.FloodPercent = i% * 1
thewt 9%
%. 1rom the Run menu, choose Start.
Test your application.
’ Y. From the Run menu, choese End.
10, Save-your torm and MAK hie with appropriate names in
WALKTHRUSAMPLES.
Ph Close Visual Busic.

-

Module 7: Building a File Browser 165

Group Push Buttons

- Toolbar Demo . - - "

Group push buttons work like combination command buttans ind option buttons,
They are like command buttons because when the user clicks the buttan, something
happens—a file is opencd or saved, or text is right-justified. Group push buttons.
“however, are also like option buttons because, with the properties set properly.
selecting one option can automatically remove the selection [rom anather aption,

Some of the key properties that you will need in order 1o use this control are as

follows,

Property Delault Comments

GroupAllowAllUp ~1-True Determines whethier all buitons in a logical
"'.'I\I'!“',‘I-.‘ e e e

Lituupivuinber | Sets o returns the group number for i given
group push butten. This property is used 1o
create logical groups ol buttons.

Qutline Sets or returns whether the button las o
bopder arouml .

PictureDisabled None Specities the bitmap (o display on the 3D
group push button when it is disabled.

PictureDn None Specilies the hitinap 1o ase when the buiton
is depressed.

PictureDnChange 0 Determines how the PictareUp bitmap is to

' be used o create the Pweore D bivnap: 2

merely mverls the PietureUp bitmap,

PictureUp None Specifies e binmap 1o uae when the button

is up.

166 Module 7: File Browsers and Other Controls

Walk Through—Creating a Toolbar

2

2

-

‘v see Lhe interface you will be crealing
From the Walk Throughs program group, choose Toolbar.

Thix liwde application doesn't do very much. What it does show is that the user
can select any or all of the first three options, whereas they can only select one
of the secand three. More 1o the point, it is an example of how you would go
about drawing a toolbar like the one found in Microsoft Word for Windows or
Microsolt Excel.

Froan the Control menu on the Toolbar form, choose Close.

o ereate the toolbar .
- Opwen Visual Basic,
. From the File menu, choose Open Project,

Locite TOOLBAR.MAK. It should be located in \WALKTHRWNSAMPLES.
This form already contains the basic form—TOOLBAR.FRM with all of its
properties already set. In order to add the toolbar, you need to complete the
lollowing steps:

3. Plice seven group push buttons on the toolbar panel at the top of the form.
4. Use the mouse pointer and the control key to select all seven of the group push
© buttons, and then sct the following properties for all of them.

Propuerty Setting -

Height 420

L

Top 30

Widih _ 450
5. Place thiee of the push buttons side by side on the left end of the pancl.

These will become the ext formatting butions for Bold, latic, and Underline.

Module 7: Building a File Browser 167

6. Select the first button in this group and set the properties as lollows,
Property Setting
GroupNumber : 0 o -
PictureUp ‘ BLD-UP.BMP located in \WHABI TMAPS\TOOLBAR 3
PictureDn BLD-DWN.BMP

These changes create the first button on the toolbar and make use of 1wo
separate bitmaps to indicate ihie status of the button 1w 1he user.

7. Select the second button in this group and set the propertics s follows.
Property _Setting
GroupNumber 0
PictureUp ITL-UP.BMP
PictureDn ITL-DWN.BMP
8. Select the last button in this group and sel the propedics as Tollows.
Property Setting
GroupNumber (]
PictureUp ULIN-UP.BMP
PictureDn ULIN-DWN.IMP

* Notice that all three of these buttons have the sume number <0, A group

number of O means that they are not part of a logicul group. and therefore
changing the state of one will not change the state of others. After all, your user
may want to have bold and italic and underlining. Clusters of controls with any
other group number will act just like option buttons— only ane will be in foree
at any one time,

For purposes of contrast, we will take a slightly different approach on the second
group of push buttons. Here you are giving the user the option of formatting (eal
as either left-, centered-, or right-justified. ln this case, you will want these
buttons to work as a group because any one bit ol text can have only one of
these three states.

. Create the second group of buttons side by side toward the middle of the panel.

In all likelihood, you will not be able (o keep the buttons in pelect top-lo-boltom
alignment. Donr't let that bother you. You can select the entine group at the end of
this walk through and set the Top property for all of them in one step, as you did
above.

10. Select the first button in this group and set the properies as follows,
Property Setiing
GroupNumber 2
PictureUp LET-UP.BMP
PictureDnChange 2 - Invert PictureUp Bimap

Notice what we have done hiere? We have crcated e PichneDown biinap by
inverting the image using the property PictureUpChange.

168

Module 7: File Browsers and dlller'Conlrols‘ ’

Select the seeond button in this group und set the properties as follows.

I'roperty Setting
GroupNumber 2
PictureUp CNT-UP.BMP
PictureDnChange 2 - Invert PictureUp Bitmap
12, Sclect the third button in this group and set the properties as follows.
Properly Setting
GroupNumber 2
PictureUp RT-UP.BMP
PictureDnChange 2 - Invert PictureUp Bitmap
Wha this example emphasizes is that the property GroupNumber is your way of
ielling Visual Basic how you want individual sets of buttons to be grouped.
F3. A litde extra challenge, you set the properties for the last control. It's

14 Save your work in WALKTHRINSAMPLES.

supposed to represent a printer, so you will need to use the PRT-UP.BMP.

E To Code The Toolbar

=1t you want 10 implement the toolbar so it functions properly, you can add the
{ollowing code.

~2, .

Double-click the bold bution to open the code wmdow for GroupPush3Dl Click
event and add the following code: :

ililMessage.FontBold = Value !

Double-click the italic bution lo open the code window for
GroupPush3D2_Click event and add the following code:

IblMessage. FontItalic = Value

. Double-click the underline button to open the code window for

GroupPush3D3_Click event and add the followmg code:

lhitessage.FontUnderline = Value

. Double-click the lefi-jusiify button to open the code window for
- GroupPush3D4_Click event and add the following code:

it-14:ssage.Alignment = 0

Danble-click the center button te apen the code window for
GrouplPush3D5_Click event and add the following code:

Ihllessage. . Alignment = 2

. Double-click the right-justify butten 10 open the code window for

CoroupPushID6 Click event and add the Tollowing code:

Lhad Mg A Lignmeny = 1

Suve your work in \WALKTHRU\SAMPLES.

s & & % 4%

Module 7: Building a Fite Browser

169

Summary

= File Browsing
= Grid Contro!l

= 3-D Panel Controls and Group Push Button

Objectives

In this module you learned to:

® Design and develop a form that lets users browse drives. directories, and files.

® Use the Change and PathChange events.
® Use the grid control.

" ™ Use 3-D panel controls and the group push button.

Module 8: Using Visual Basic Data
Types o

Module 8: Using Visual Basic Data Types 173

>, Overview

Key Terms
= Using Variables and Constants

= Scope

Additional Visual Basic Data Types

Overview

The overall purpose of this module is to introduce already knowledgeable
"programmers to the data types of Visual Basic and their scoping rules. This module
is designed as the first of a series of modules on the implementition of Basic within
Visual Basic. '

Prerequisites
Prior to starting this module, you should already be Familiar with:
» Data types and scoping rules within some other procedural Tinguage

= The general Visual Basic programming system

Overall Objective

. At the end of this module, you will be able w correctly and cificiently use abmost all
of the Visual Basic data types.

Learning Objectives
Al the end of this madule, you will he able 1o
s List and describe the seven variable dita types in Viseal B,
» Correctly identify the six type declaration character symbols.
s Use the contents of CONSTANT.TXT. '
» Distinguish among the various levels of scope in Visual Basiv.
m Fxplain the rules for using cach level of N(‘HIN'...
a Declare and use a user-delined dala type.

m Declare and use simple arrays.

174 Module 8: Using Visual Basic Data Types :

Key Terms

= Variables
= Constants
. .Procedures
= Statements
s Scope
Module

Variables Changeable values that the program manipulates
Constanls Unchanging values that the program manipulates
Procedures Activities that the program performs

Statemenls Subactivities within procedures

Scope (Accessibility) Which part of a program can access specitic data or
procedures

Module File containing code and data not attached to a form

Module 8: Using Visual Basic Data Types

175

2. Using Variables and Constants

--w - Data Types of Variables

= Data Types of Constants

176 Module 8: Using Visual Basic Data Types

Data Types of Variables

= Integer %
= Long &
; = Single !
E
L = Double #
]
|
E = Currency @
|
= String $
! » Variant (none)
There ane seven fundamental dita types of variables that you can use in Visual
Hasic.
Type name Description Type-dcclaralion. Range
: character .
i .
; Integer Twao-byte integer %o =-32,768 0 32,767
b ' hang Four-byte integer & -2,147,483,648 10
: . 2,147,483,647
Single Four-byte tloating- ! -340E+38 w0
. point number 3.40E+38
' _ Duoube Eight-byte {loating- # -1.79D+308 to
T point number 1.75D+308
ol Curreney Eight-byte number @ -9.22E+l4 to
with a fixed decimal 9.22E+14
o PO
Ly " String String of characters $ 010 65,500 characters
‘ b (approximately)
. f : : Variant (Default) Date/time, loating- (none) Date values:
i ! peint number, string January 1, 0000, to '
i L December 31, 9999;
. numeric values same
") as double; string
| : values same as string
i !
|
i
¥ '
i
i !
i
i

e e e ——

LR N B R R I

Module 8: Using Visual Basic Data Types 177

Declaring Variables

In polite society you always formally introduce strangers 10 cach other the first time
they meet. Visual Basic is no exception. You should iniraduce your variable to
Visual Basic by declaring the name of your variable before you use it. You do this
in one of two ways: by using the Dim statement, or by using une of the two
keywords— Global and Static. As you will see in a couple of pages, not declaring .
variables can be risky business in some situations becanse the detault data type in
Visual Basic is Variant. '

You have two choices on how to explicitly declare variahle data types.

Using As Using the type-declaration character
Dim I As Integer Dim I%

Dim Amt As Double Dim Amyw

Dim YourName As String Dim YourH.ree 5

Dim BillsPaid As Currency Dim Billsioide

In order to make compound variable declarations, you merely state:

Dim X as Integer, Y as Long

Caution If you declare three separate variables with the following statement. you
will get K$ as a string and I and J as variants, not as strings,

. Dim.%, J, K$

Explicit Declarations

To require explicit dectaration of variables in all of your code. place the following
statement in the General Declarations section of any form or module.

Option Explicit

If you want to require that all variables be explicitly declared in alb of your projects.
{rom the Options menu choose Environmentand set the Require Vartable
Declaration option to YES.

178 Module 8: Using Visual Basic Data Types

Variable-Length Strings

Sometimes you may need a variable that can hold strings of different lengths at
different times. This is called a variable-length string variable. You declare it like
this: ’

bim Message As String

Fixed-Length Strings

At other times you know that the strings that will be assigned to a certain variable
will never have more than a certain number of characters. In this case, you can
declire i fived-length variable like this; ’

Yo Fysedi.englhString As String * 50

I this example, you are declaring a string variable with the name
FixedlengthString, and you are telling the application that the variable may contain
up to 50U characters.

You cin take this one step further. For example, set the length using a Global
constant with the name FixedLength, set the value of the constant to 50, and then
[t to that constant name using the following syntax:

tilobal Const FIXEDLENGTH = 50
Global FixedString As String * FIXEDLENGTH

Rules When Working with Variables
t. Variable names can be up te 40 characters long.
2. Names can include only letters, numbers, and underscores.
3 The Tiest character in the name must be a letter.

4. You cannot use Visual Basic reserved words. See the list of programming topics
in Visual Basic Help for a partial list of reserved words.

4}

As the chart above shows, the Variant duta type is the defitult. The Variant data
type c¢an store numeric, string, or date/time information. You don’t need (o convert
between these kinds of data when assigning them to a vuriant variable: Visual Basic
automatically performs any necessary type conversions for you,

Rules for Using Variant Variables

If you perform arithmetic operations or functions on i viriani, it must contain i
number. If you want to test a variant to see il it contains numieric data, use the
IsNumeric function.

2. Normally, when you concatenale two strings you would use the plus (+) sign. To

6.

avoid ambiguity witl variant dita, use the ampersand (&) 10 indicate
concalenation.

Nole When concatenating, be careful to leave a space between a varitable name
and the ampersand. If you don’t, Visual Basic assunies il you are typecasting
the variable into a Long data type.

. When passing a Variant variable as an argoment. check the procedure

prrameters. If the corresponding argument is wi explivin dittan type, you iest piess
the Yariant variable with parentheses arownd it in order to pass it by vilue,

Dim V As Variant
V= "Testing”
Debug.Print PrintString((V)) EXLEa palopl poses To pass by Vel

Sub PrintsString{S As String}
'Do something
End Sub

. To determine the internal representation for a variant variahie, use the VarType

function. See documentation for specific return virlues.

. A variant variable has the Empty value before it is ussigned a valoe, The

Empty value is a special value, different from a zero, i zero-length string, ora
NULL value, To test your Variant variable for an Fanply vidue, use the
IsCmpty function. To reassign o Variant vaciable hack to ihe Kmpty valoe.
you must assign another cmply Variant variable o i,

To test for a Variant variable containing NULL, use the IsNULL function.

Note For a listing of the string conversion functians for the Yartant dat type.
see the appropriate table at the end of the Visuul Basic code module.

|
|

SimlTo T Sat

¢ g

e e = e

ke IR

CUilstdile

L Modulel.bas
Objecl: | (general) i!‘l Proc: l{declarations) [Fff

" Alignment {label)}
Global Const LEFT-JUSTIFY-
Global Const RIGHT_JUSTIF
Gloiral Const CENTER = 2

1 - Right Justify
Back{] 2 - Center
BackStyle 0 - None
BorderStyle | a

Caption (none)
Draglcon 0 - Manual
Enabled True

WA

Example

What Are Constants?

Constants are just thay, entities within your program whose value you need, but
‘which will not be changed during the running of the program. For example, if your

program needed to work with circles, you would probably need a constant like
Pi=13.1459,

xanmipies of typical constants can be found in CONSTANT.TXT. If you look at
this ke, vou will lind several constant values declared that are familiar to you from

- the overview of properties for controls.

"Hhrder Style
R NONE = O)
vomet FIXED_SINGLE

=1
" Craist SIZABLE = 2
ronst FIXED DOUBLE = 3 !
How Are They Declared?

Visuill Basic contains a CONSTANT.TXT file, which lists all the common
canstants, You can copy and then maodify this file 1o meet the application's specific
needs. You can then load CONSTANT.TXT into the General Declarations section
ol amodule (CBAS) to be used by the application. Following is a partial listing ol
the peneral categories of constants defined in CONSTANT. TXT.

tam

cam

-

> 55533833333

Module 8: Using Visual Basic Data Types

181

2. Scope

Scope of Data
Declaring and Using Local Variables

Deélaring and Using Form-Level and Module-Level Variables

Declaring and Using Global Variables

182 Module 8; Using Visuat Basic Data Types

Scope of Data

Form.FRM Module1.BAS
i
FormoooDim A Globals»Global C
Modulecse Dim D
Declarations Declarations
Sub X Sub Pl
Localﬁ Dim B i Localc’3DimE
'Sees A,B,C 'Sees C,D,E
Procedure : Procedure
Sub Y H Sub P2
*Sees A,C ‘Sees C,D
Procedure ' Procedure

‘What Is Scope of Data?

The scope of a data variable or constant is its level of visibility within an
application. Scope of data falls into three levels of visibilily: local variables, form-
and mdule-level variables, and global variables.

Scope of Data— An Analogy

Scope of data basically deals with who can use what. The casiest way to think of
this is by analogy.

Say you had a refrigerator/treezer full of all kinds of goodies—-candy, soft drinks,
ice cream: Almost everyone likes these goodies and would like to get to them. Your
job as the manager of these resources is to make sure that the right people get to
them and the wrong people don't.

I you put these goodies out where everyone can get to them, they will be used,
right'! W that is what you want, then fine, make them globally available. In Visual
Basic tenminology, declure and deline variables that ali functions will nced access
to using the Global keyword in the General Declarations section of a module

(. BAS), not a form,

Far those poodics that you only want sume people 1o gel to, tor exampie, just the

“miembers of your work group, then put the refrigerator/freezer where only they can
gt o it— for example, in your work group area. In Visual Basic, declare and
deline these variables using the keyword Dim in the General Declarations section
of either the form or the module. You'll see an example of how this is done in just a
few mnes,

Module B: Using Visual Basic Data Types 183

Finally, for those goodies to which only you should have aceess, put the relrigermor
in your office. That is, declare and define those variubles locally —inside
procedure. Again, you'll see examples of this is just a minuie.

Variable Declaration Keywords and Their Scope

The table below details how the different variable decluration keywords are used.

Scope Declaration

Local Dim, Static. or ReDim twithin a procedure)

Module Dim (in General Declarations section of a form or a cude
module).

Global Globai (in Generul Declarinions sevtion of o module}

A simple example of data declarations can be found this way

1,

o v s wN

Start Visual Basic.

From the File menu, choose Open Project.

Go to the C:A\VB\SAMPLES\CALC subdirectory.
Double-click CALC.MAK.

Click CALC.FRM in-the Project window.

Click View Code in the Project window,

“Visual Basic displays the form-level variable declarations Tor the caleulator

application. Notice the declaration of seven variables ind the Option Explicit
statemnent. ’

Note When you are writing code and you want to ereate module- or form-ievel
variables, make sure that you are really in the generul declarations section of the
code:before you make changes or additions. '

Always be sure that the top of your form window has these twao options selected.

Bl I ICONWRKS.FRM

General ‘ Declarations

Object: { (general) Proc: [{declarations) [¥]

T vngar o4t

v G P T R R R

184 Module 8: Using Visual Basic Data Types

Style Guidelines

z FFor i more complex listing of glabal declarations

. Frown the File menu, choose Open Project.

Gio o the C:AVBASAMPLESUCONWRKS subdirectory.

. Double-click ICONWRKS. MAK.
. Click ICONWRKS.GBL in the Project window.

. Click View Code in the Project window.

Scroll down o the General Declarations section of ICONWRKS.GBL and inspect
the various values declared and defined.

Rules for Using Local Variables

A local variable is recognized and declared only within the procedure in which it
appears'using the keywuord Dim. The variable is re-initialized to zero or a
NUL.L string when the procedure begins, unless the local variable is declared as
Static. A local variable is a good choice for any kind of temporary calculation.

It you use a variable without declaring it, then Visual Basic assurnes it is local
and assumes Variant as the data type. However, this technique may waste
storage space and is not as reliable as declaring the variable in the appropriate
procedure. It is also not as efficient.

..Rules for Using Form- and Modute-Level Variables
I

A lorm-leve! variable is declared in the General Declarations section of the
form, using the keyword Dim. A form-level variable is available to any
procedure on that form and only that form.

A muodule-level variable is declared in the General Declarations section of the
module, using the keyword Dim. A module-level variable is available to any
procedure in that module and only that module.

Rules for Using Global Variables

L.

A ghobal variable or constant is shared throughout an application. Multiple
forms and modules can use a global variable, They are declared in the General
Declarations section of a module using the Global keyword for variables and
Glabal Const [or constants, .

Global variables are persistent; they retain their value throughout the entire.
application.

Good programming practices when using variables and constants include:

Use Jorm-level and module-level constants and variables as opposed to glabal-
level it possibie.

Dectare the varable or constant with the Dim statement rather than acccpung
Busic automatic variables.

w Use Integer declarations instead of default Yariant declarations whenever

wossible, Tnteger declarations take less space, avoid rounding errors, and
constme less CPU time tun Yarianl declarations.,

- a @

- o owm w M W %M e W W W W % % & %6

Fale

Module 8: Using Visual Basic Dala Types 185

Declaring and Using Local Variables

EMPREC.FRM . | = "i:0

T

Sub AddEmp {...)

T B

>Sub AddEmp ()
Dim CurrentLocation As Integer

=3

ST R, e RPN

Example

Example

- SO

Local variables reset to value zero (0) or an empty string when the local procedure
begins.

To declare a local variable, place the Dim duta declaration stisement inside the
local procedure.

1 Sub Form_Click ()

2 "The local variable below disappears upway procainre exit

3 ‘and is reinitialized to zero when Line ploenedure s Fezeenlned
4 Dim EmployesRumber As Integer

5 EmployeeNumber = val (Textl.Text) .
6 Print "The Employee Number is: " + 3t (Hmployeclumber)
7 End Sub

In the example above, EmployeeNumber is declared as an Integer. How waould the
code be different if you handled it as a Variant?

1~ Sub Form_Clicki}
Dim EmployeeNumber

EmployeeNumber = Textl.Text
Print °"The Employee Number is: " & EmployasNumber
5 End Sub

Note Notice the use of the ampersand to concatenate the Iiteral String and the
Variant in the Print statement above? :

186 Module 8: Using Visual Basic Data Types

\

I you want a local variable Lo be persistent, declare it as Static. Static local
variables will refain their data vatue when the procedure performs @ return.

Example I b Statichemo ()
: 'The -stati¢ variable below will retain its value across
calls and is used to keep track of how many times
B * StaticDemo is called,

b Static RunCount As Integer ' Create a persistent variable
. RunCount = RunCount + 1 * Use it to keep run count.

? ' Msg$="The RunCount for the StaticDemo procedure is: *

B Msg$ = Msg$ + Str${RunCount)

‘ Print Msg$ ‘' Display message.

0 End Sub

» <

- > @ &5 & b

Module 8: Using Visual Basic Data Types 187

Declaring and Using Form-Level and Module-Level Variables

DEMO.FRM

Example

Use form-level variables or module-level variables when sharing data only within :

form or a module. The data remains persistent within the torm vr moduole b is
accessible to procedures in other forms or modules.

To declare a form-level or module-level variable, place the Dim statement in the
General Declarations section of the corresponding form or moditle.

The declaration below appears in the General Declarations section of the module
DEMO.BAS:

Dim UserName As String

When the procedure below is called, it can aceess this module-level variable. For
example, suppose that a text box is supplicd for the user o type his or her name:

UserName = txXtUserName.Text

Then the appropriate vilue for UserName will be printed when the Sab procedure
WelcomeDemo is calied:

1 Sub WelcomeDemo (}

* variable declared in module's Declarations section can bhe
+ referenced here ‘

Print "Welcome " + UserName
End Sub

ok W b

188 Module 8: Using Visual Basic Data Types ;
The module-level variable is also available to all other procedures defined in
DEMO.BAS. -
Example ! sih Véri[yUserName {)
b ﬁsgs = "UserName = *
i

Variable declared in module's Declarations section can
i " nlso be referenced here

: MsgBox Msg$ + UserName

‘- Fitirl Sub

" Module 8: Using Visual Basic Data Types 189

Declaring and Using Global Variables

MODULE1.BAS - .

prytcry

Global GlobalNumber As Integer

pam

FORM1.FRM

ket

FORM2.FRM

Pty

= 3 e T e 17 WA, ¢ AR EA A PR B it

GlobaiNumber GlobalNumber Also
Accessible Here Accessible Here

Example ~1 .

Example 2

Use global variables and constants when sharing data throughout an application.
The data remains persistent and accessible from all forms and modules within the
application,

To declare a global variable, place the Glohal statement in the General
Declarations section of a module—that is, a .BAS file:

' Global GlobalNumber As Integer

The variable GlobalNumber can now be referenced throughaut the applicition,

i * Code for Forml
2 Sub Form_Click)
3 ' Global variables can be referenced here
q GlobalNumber = Globaltlumber - |
5

End Sub

* Code for Form2

Sub Form_Click ()

*Glubal vartlabiles can also be velotenoo] o
Print = "GlobalNumber " + Str$(GlobalNumirr)

End Sub

(7, B R S A

Load any constants you want declared for an entire program into the General
Declarations section of a module.

190

Module 8: Using Visual Basic Data Types :

Walk Through-—Scope

2 To demonstrate the concepts of scope of data in Visual Basic

0.

Fromn the Walk Throughs program group, start Scope.

When the application starts, you see two forms. Form 1, on the left, contains a
Cotvmand! button: Form?2, on the right, contains a Command! button,

The purpose of this walk through is to demonstrate the concepts of scope of data
in Visual Basic. .

Click Form] (on the form, not the cormmand button).
The Form_Click event will display values of data items as their scope permits.

The plobal and form-level data values are displayed. Note, however, that the
Form2 module-level variable and the Formi1.Commandl_Click and
Form2.Commandi_Click local variable values are not displayed. Remember,
you just requested a Form_Click event, so the Command1_Click variables are
nal yet in scope and Form2 variables are not in scope until Form2 has focus.

. Click Form?2 (on the form, not the command button).

The Form_Click event will display values of data items as their scope permits.

The global and form-level data values are displayed. Note, however, that the
Fuorm] module-level variable and the Form1.Command1_Click and
Form2. Command 1 _Click local variable values are not displayed either.

*Remember, you just requested a Form_Click event, so the Command2_Click

variable is not yet in scope and Form| variables are not in scope until Form! has
fucus.

. Click the Command1 button on Forml.

The Compmandi _Click cvent will display values of dala items as their scope
permils.

Yuu have just generated a Forml.Command | _click event, and this places the
Foom | .Commandl_Click variable in scope. Form1 still has focus, though, so
Form2's variables are not accessible.

. Chek the Command] buiton on Form2.

The Command | _Click event will display values of data items as their scope
permits.

You have just generated a Form2.Command1 _Click event, and this places the
Form2.Command |_Click variable in scope. Form2 still has focus, though, so
Form!'s variables are not accessible,

Pauble-click the Control menus on both forms to close them. -

F 2N

Module 8: Using Visual Basic Data Types 19

Additional Visual Basic Data Types

= User-Defined Data Types
= Arrays -

Syntax

Example

User-Defined Data Types

Earlier in this module standard Visual Basic data types were discussed. Visual
Basic also allows you to create your own data types. User-defined data types, calied
records or structures in some other programuning languages, must he declired in the
General Declarations section of a module, using the Type stacment.

Type usenybe

clementname As lypename

[elementname As typename]

End Type

This feature allows you to create new variables that can be customized Lo fit the

needs of your application. For example, you might want 1o define a data type w hold
customer information as follows:

' Place this declaration in a modutle
Type CustomerRecord

CustNum As Long

CusthName As String * 38

CustAddress2 As String * 38 ' City, Btale
CustZip As String * 10

1
2
3
4
5 CustAddressl As String * 38 ' Street Adddioss
6
7
8 End Typs

LA

192 Module 8: Using Visual Baslc Data Types .

Example’

Example

Example

v

You can then declare and use variables of this new type in your application
wherever you need them. To refer to a particular element, use the syntax
variablename.elementname.

I " sub GelCustomerInfo ()
heclare a variable of your user-defined type
im NewCustomer As CustomerRecord

! " Use contents of various text boxes on a form to fill in values to
. ‘ 1he elements (fields) of your new CustomerRecord variable

. NewCustomer .CustNum = Val {(txtNumber.Text)

K NewCustomer .CustAddressl = txtAddrl.Text

o NewCustomer ,CustAddressZ = txtAddrl.Text

“ NewCustomer , CustZip = txtZip.Text

4

1 Fned Gnb '

Arrays

Visual Basic, like many other programmmg languages, allows you o creale arrays
An array is a group of variables of the same data type that share a common name.
Fach separate element of the array is identified by a unique index number.

DeclAare an array
him ArrayName (UpperBounds) As DataType
Iim TestScores(23) As Single

Note By defuult, the first element in the array is referred to with the index 0 (zero).
This creates an array of 24 (not 23) single-precision numbers in wh:ch you could
store the scores [or 24 students. .

I you wanted to print this score out to the form, you would use the following:

Print "The test score for the first student is: -,
i'rint’ TestScores (0}

There is an alternate syntax for declaring arrays that allows you to specify the lower
(beginning) and upper (ending) indexes, or bounds, of an array You could declare
an array 1o hold 24 1est scores like this:

im TestScores!(l To 24) ks Single
You would then reler to the first element in the array as TestScores(1).

I you dide't have arrays, you would have 1o create 24 separate variables, named
something like Scorel, Score2, Score3, and so on.

In the module on looping structures, you will dlSCOVCI‘ that loops are a very useful
toal for accessing clemenls In an array.

Note 'l'o change the detault lower bound to |, place an Option Base statement in
the General Declarations section of the module, fike this:

et g Meysger

Module B: Using Visual Basic Data Types 193 .

Variations on Array Declaration Syntax

Depending upon where the array is declared and the special necds of your prograns,
the syntax to declare an array may vary a bit, Here is a wable that summirizes ihe
rules,

Scope of veriable declaration Keyword to use

Application-wide Global (Used only in the General Declarations section
of a . BAS module.) -
Form or module level Dim (Used in the General Declirations section of a

form or module.}

Within a procedure Static (11 the entire provedure has been declured Stafiv,
then you may use the waond Im to declare the array.)

Multidimensional Arrays

The array described in the last section, TestScores, is an example of 4 one-
dimensional array. You could think.of it us representing i single column (o row) ol
numbers. You can also declare an array of several dimensions, The maximum
number of array dimensions allows in a Dim statement is 60. For example, to
represent a table of numbers you can declare i two-dimensional array as follows:

Sub GetNumbers ()
Static Table{d4, 23) As Single

=0Or-~-

Static Table{l To 5, 1 To 24} As Single

End Sub

This would create an array of five rows of 24 test scores cuch wnd provide room to
hold five scores for each of 24 students.

Dynamic Arrays

There are times when you want to use an array, but the size needed will change at
run time. Visual Basic allows you to create dynamic. or variable-tength arrays by
doing the following:

Declare the array without declaring its size with either the Dim siatement (for a
form- or module-level array) or the Global statement (for a global array). To do
this, just place an empty set of parentheses to the right of the wrray nime:

‘ Place in General Declarations section of a furm or mxiule
Dim DynArray() As String * 25

—Or-
Global DynArray{) As String * 25 * Place i1 BODULET L BAS
.Here is another example:

C o lobnl DynlntArray(} As lnuteger

194 Module 8: Using Visua! Basic Dala Types
Then inside a procedure, when you know the size you need for this array in some
particular circumstance, redimension the array to the size you need:

Example

1 Sub UseArray ()

MNovice yeu can use a variable from your program to set the size
i Hepim DyniArray{ Listl.ListCount)

A “nd Snh Y

“Important Each {ime you use the ReDim statement, all the values currently stored

int the array are jost, and cach element is reset to zero or a NULL string depending
on Lthe type of the elements in the array. If you want to preserve the values during
re-dimensioning of the array, use the Preserve keyword,

Felnm Preserve MyArray (UBound (MyArray) + 10)

In this case, you are re-dimensioning an array called MyArray to be 10 elements
lurper while maintaining existing data.

Control Arrays

Visual Basic has a special type of array called a control array, which has spec:al
features and does not follow all the rules of standard arrays.

You will learn to use control arrays in the course that follows this one in thc
Microsoft University Visual Basic curriculum,

Module 8: Using Visual Basic Data Types 195

Summary

a Key Terms

-Using Variables and Constants

Scope

Additional Visual Basic Data Types

Objectives
In this module you learned to:
» List and describe the seven variable data types in Visual Basic,
= Correctly identify the six type declaration characier symbaols,
= Use the contents of CONSTANT.TXT.
. " D.':st'mguish among the various levels of scope in Visial Basic,
s Explain the rules for using cach level of scope.
x Declare and use a user-defincd data type.

» Declare and use simple arrays.

196 Module 8: Using Visual Basic Dala Types

Lab Time

Go o the Using Constants and Variables portion of your lab manual.

.o .m W R

Module 9: Writing Visual Basic Code

Module 9: Writing Visual Basic Code 199

> Overview

» Visual Basic Procedures
= Scope of General Procedures
n Writing Code in Visual Basic

» String and Numeric Conversion Functions S s

Overview ;
This is the "Everything You Ever Wanted to Know About Writing Code...But Were

“-='Afraid to Ask” module. It gives you the background and pracedures needed to bepin
writing the Visual Basic code that implements the interfaces.

Prerequisites :

To successfully complete this module and its ussociated b, you should have o
detailed understanding of forms, controls, and praperties as they are implemented in
Visual Basic.

Knowledge of any block structured progrmuning Lipuage is required.

4
:
;
.
;
i
1
i
;
N
-
!
'

Overall Objectives -

There are two overall goals for this module:

1. To quickly review mest of the fundamental proceduses of Busic as it is used in
the Visual Basic product

2. To show students the first sieps required Tor completing the code for an
application

Learning Objectives
At the end of this module, you will be able 1o

s Define important characteristics of Functions and Sub procedures and write
code that correctly uses both. '

» Deline and correctly code Tor appropriate scope of data,

‘& Write code that uses any of the common Basic dati types.

200 Module 9: Writing Visual Basic Code

Sample Code

The best way for you to learn how to write Visual Basic code is to read it. Sample
code fur a four-function calculator application can be found in the
WEBASAMPLESVCALC subdirectory,

Module 9: Writing Visual Basic Code 201

—

Y. Visual Basic Procedures

» Sub Procedures - ' .
= Functions

= Arguments and Parameters

®» Procedures

Event Procedures - ' | f
General Procedures
Methods -

Syntax

Syntax

‘What Are Procedures?

A procedure is a block of Visual Basic statements thal are called as a logical unit

Two Types of Procedures — A First Pass

Sub Procedures

After the Sub procedure completes its work (executes its codey, it returns 1o the
procedure that called it.

Sub SubName ()
statemernyblock

v

End Sub

Functions

A Function is similar to a Sub procedure. In addition. i has o data type just as a
variable does. After it completes its work, it returns a value of that type to the
procedure that called it.

Function FunctionNeame() As SomeDataTvpe
stetementblock

FunctionNanie = SomeValue

End Function

202 Module 9: Writing Visual Basic Code

Calling a Sub Procedure with Arguments

Event Procedure
Sub Commandl_Click {)

_:% DisplayError "MyError"

| 4
End Sub

B e E

™ AT e

Sub Procedure

| -
t> Sub DisplayError (ErrMsg As String)
1blError.Caption = ErrMsg

End Sub

L A g e e I A S S IR PN N L N D e ot v g

Arguments

Any procedure can be defined to receive data when it is called. A piece of data sent
to a procedure is called an argument; and an argument is matched to its equivalent
parameter entry in the procedure list. Each parameter is declared to be of a specific
itla Lype.

The fallowing is o Sub procedure that receives two arguments:
Syntax Subs SeneSuh (HParam ! As Integer, Param2 As Single)
statementblock
End Sub

When you call this procedure you must make sure o pass it the same number and
Lype of irguments in the same order they appear in the Sulby definition.

Syntax SonmeSub Argument I Argument2
-0r-

Call SomeSub (Argument |, Argtument2)

s F F ¥ €

4

Syntax

Syntax

Example

The following calls a Function procedure with arguments.
Dim Result As Integer
Result = SomeFunction (Argument , Argithient2)

Function SomeFunction (Param! As Integer, Param?2 As Single)
A As Integer

StatementBlock
SomeFunction = ReturnValue

End Function

Note The argument names used when you call the procedure do not have 1o martch
the argument names used in the definition of the procedure s they do in the above
example. The number, data type, and order of the arguments must match in the
procedure definition and call. '

An alternative notation for the function returs vilue dutiype is as Tollows,
Function Somefunction% (Param! As Integer, Param2 As Single)
StatementBlock
SomeF unclio:n = ReturnValue

End Function

Note Function procedures with an explicit return value dati ty pe are maore
efficient than these with a Variant return value datiotype.

Remember what we said about Variant datictypes carlier? H your argument is i
Variant and its corresponding paramelter is not, the Variant argament must be
passed by value, This is accomplished by putting a sct of extra parentheses around
the Variant argument.

You can accomplish the same objective by using the By Val keywuord when you
declare your parameter in the procedure.

Function Reverse (8§ As String, ByVal N As Integer} As Variant
2 '...SomeStatements

3 End Function

4 Dim U As Variant, V As Variant, W As Variani
5 Vv = "Testing*

6 W =10

? U = Reverse ({V}. W)

Module 9: Wriling-Visual Basic Code =~ 203

204 Module 9; Writing Visual Basic Code

Passing Arguments by Value

Visual Basic passes arguments by relerence as a default. What this means is that
the procedure can modify the values of the arguments in the procedure list because
it knows the address for the data. This in effect allows you to pass back more than
one villue merely by changing the arguments within the procedure.

In contrast, you can pass an argument to a precedure by value, which means that the
procedure receives only a copy of the data and cannot modify the value of the actual
argumient. Any changes made to the argument within the procedure are local and
hive no elfect on the actual data.

To piss an argument by value, use the keyword ByVal in the parameter list or put a
sel ol parentheses around the argument in the calling statement.

Module 9: Writing Visual Basic Code 205

Types of Procedures

a Event Procedures

= General Procedures

Types of Procedures—A Second Pass

Visual Basic applications have twa categories of procedures: event and peneral,
Event Procedure
An event procedure is a procedurc invoked by a user- or syslcm—lriggered event,

Event procedures are always attached to a given form ur control. The first part nl an
event procedure's name indicates which ohject it is attached 1o,

Syhtax Sub ebjectname_cvenmame ()
statementblock
IEnd Sub

Examples of event procedures are: Command| _Click and Form_Click. It the user
clicks on the command button nwmed Command 1, the event procedure
Command1_Click will be called; but if the user clicks on the furm, the event
procedure Form_Click will be called.

206

-

Module 9: Wriling Visual Basic Code

Creating the Event Procedure

.Procedure Name Determines
What Event to Respond To

= FOR|11.FRM ‘ §
Object: IHelIoBurlon I,&"é Prog: | Click é

Sub HelloButton_Click (}
Readout .Text = "Hello, Worldt!®
End sub

Example

Templates (Sub and End Sub staiements) are supplied.for all the events Visuul
Basic automatically recognizes.

Adl vou need to dois Gl in the code:

1. Open the Cade window,

L)

in the Object list box, select the appropriate object.
. Inthe Procedure list box, select the appropriate event.

3
4. Type code into the template provided by Visual Basic,

Calling the Event Procedure

You don't have to do anything 10 call the event procedure, Visual Basic
autoimatically recognizes all the events for all Visual Basic objects (forms and
controls). As soon as a user or the system triggers an event for an object, the code in
the appropriale event procedure will be run by Visual Basic,

Scope of Event Procedures

Event procedures are only available on the form where they were defined.

Note Livent procedures may only be Sub procedures, not Function procedures,

The following is a Click event procedure for a command button,

1 sab Commandl _Click ())

» ' This value can be found in CONSTANT.TXT

! anskt RED = &HFF&

Bl et e dwekgronnul color of Lhe focm Lo sred
Sarml e ECnlor = BEDR ‘

N et Sah

> ry r 5 » .~

-

References

Module 9: Wriling Visual Basic Code 207

- - %

Event Procedures in Visual Basic

A large number of event procedures are available for your use in Visual Basic, The
ones set in italic type below are covered in this course, and the remaining cvent
procedures are covered in the Progranuming in Microsoft Visuead Basic 3.0 course.

Action

Eve:_lt \

Change to control

Drag and drop

Dynamic data exchange
(DDE)

Keystroke
Mouse

Shift in focus
Timer interval

Forms and picture

Change

DropDown (combo box only)

PathChange, PatternChange (lile hist box only)
DragDrop, DragQOver

LinkClose, LinkError, LinkExecute, LinkOpen

KeyDown, KeylUp, KeyPress

Click, DoubleClick. MouscDown. MouseUp.
MouseMove .

GutFocus, LostFacus
Timer

Paint, Resize, Load, Unload

Use the online Help or the Micrasoft Visual Basic Languange Reference w find
descriptions of the event procedures in Visual Busic.

208

Module 8: Writing Visual Basic Code

General Procedure

. New Procedure

Type

@ sub () Function

Name: [NewProc

S f R A

Example

A general procedure is a procedure executed only when explicitly called by another
procedure,

Creating the General Procedure

L. Open the Code window.

2. Fromthe View menu, choose New Procedure. _

3. Type the name or the procedure, and choose either Sub or Function.

4. Add the code 10 the procedure template provided by Visual Basic. if you are
creating a new function, remember to define the return type of the function and
terinclude a statement in the code assigning the value you want returned to the
function name.

Function StockValue (NumShares As Integer, SharePrice As Single)
~ he Single
StockValue = NumShares * SharePrice

=

Fiel Punction

5 Sub TotalStock ()

3 Print "Total value of all stock is: *
W Print StockValue (10, 123.25) + StockValue(200, 19.75)
K tnel Sub ’

Calling the General Procedure

You must explicitly cull a general procedure, or the code will never be run.
Typically, you place a call to a gencral Sub or Function inside an event procedure
or insude another general procedure.

Module 9: Writing Visual Basic Code 209

Scope of General Procedures

A

CNNGE | Texct1_Change

return

ook mmmmp| Cmai_ciicx |™™ % [DisplayBarChart
return

Exljglr(u memp| Cmd2_Click

BRI AT

return

Syntax

Form-Level Scope of Code (.FRM)

The scope of a general procedure depends on where it is delined. I you Tollow the
steps listed above while you are in the Code window fur one ol your forms, then
that procedure is available from anywhere on that form unly.

Global Scope of Code (.BAS)

‘I you have a muliiple-form application and need 10 be able to call certain

procedurés from anywhere in your apphicition, you will necd to create a separie
.BAS module to hold those procedures.

Note, for example, if DisplayBarChart is delined as o general procedure for Forml
then Text], Cmd], and Cmd2 must adl be controls on Form . 1 however,

DisplayBarChart is defined in a scparatc .BAS muoduie, Textd, Cmdl, and Cmd2
could each be on a different form and still he able to call DisplayBarChart,

Private Scope of Code (.BAS)

In some cases, you will want to limit the accessibility of a1 procedure contained
within a module, In order to do this, use the Private keyword in front of Sub or
Function definitions.

Declaring a Private Sub Procedure
Private Sub SomeSub ()

SomeStatements

End Sub

A

210 Module 9: Writing Visual Basic Code

Syntax

References

Declaring a Private Function
Privale Function SomeFunction () As Integer

SomeStatements

End Function

Method

A method is a special type of procedure provided for you by Visual Basic for
specilic objects but not associated with a specific event.

Special Characteristics of a Method
1. You cannot creale a method; you can only call it.
2. You cannot view or change the code for a method.

1. The sames ol all Visual Basic methods are keywords. You cannot create a
peneral procedure of your own with the same name as a Visual Basic method.

The following calls o method [vom an event procedure attached to a form:

Sule Feam ek () ' Form Click event for Formi
A o m2 . Show ' Display Form2
Fnd B[uls

Methods in Visual Basic

A large number ol methods are available for your use in Visual Basic. The ones set
m italic type below are covered in this course.

Drawing and graphics Circle, Cls, Line, Point, Pset

Printing . EndDoc, NewPage, Print, PrintForm, TextHeight,
: TextWidth

DDE LinkExecute, LinkPoke, LinkRequest, LinkSend

List box management . Addltem, Removeltem, Clear

Clipboard Clear, GetData, GetFormat, GetText, SetData,

SetText .
Maving controls Drag, Move
Form management Hide, Show, Refresh, Scale, SetFocus

Use the online Help or the Microsoft Visual Basic Language Reference 10 find
descriptions of the methods available for Visual Basic objects.

. Module 9: Writing Visual Basic Code 21
{
A .
¢ Writing Code in Visual Basic
e .
‘ m 080 gUA DaAsiC {aaBIf | a
File = View Run Debug Options Window Help
;
4 do
" Redo
Cut Ctrl+X
® Copy Ctrl+C
Paste Clil+V
. Pasi Link
Delete Del
9 Find... Ctri+F
Find Next F3
Py Find Previous Shift+F3
Replace... Ctri+R
L] Bring to Front Clrl+=
Send to Back Clrl+-
) Align to Grid
'Y
‘ There are several facilities built into Visual Basic that muke writing code casy. All
4 of the search and replace procedures discussed below lel you search in the current
procedure only, in the current module only, or in all modales,
' s Cutting, copying and/or pasting code
) Edit menu, Cut or Copy, and Pasle
L] "= Finding strings (variable names, for example) in code
3 Edit menu, Find
» Finding the next instance of a string in code
\ . .
Edit menu, Find Next
' s Finding the previous instance of a string i code
) Edit menu, Find Previous .
\ » Finding and replacing a string in code
Edit menu, Replace
A = Loading text from the hard disk
' File menu, Load Text
L) s Saving code as text out to the hard disk
) File menu, Save Text
' Note Visual Basic offers a usefu! feature for peaple writing code. By default it
4 checks the syntax of your code as you are writing it. This is good news because you
get constant feedback on the correctness of the syntax. Because there might be
[: times when some people find this intrusive, this option can be disabled.
]
¢
1
'
)
o R —T T ST e [V

P O L L

212 Module 9: Writing Visual Basic Code .

Y. String and Numeric Conversion Functions

UCase$ Function

T

Visual Basic pravides a number of prewritten functions that make your work with
strings o 1ot easier. Below is a partial list of prewritten functions, The focus here is
on what many feel are the most important library functions. For a more detailed
listing of ltbrary functions, see Table 1, "Functions, Statements, and Methods by
Progranuning Task™ in the Microsoft Visual Basic Lang:\mge Reference.

Returns Variant Returns String Meaning/syntax, example, note

Chr Chrd Returns a one-character string for an ANSI
code argument. For example, Chr$(13) +
Chr$(10} is a carriage return and line feed,
which creates as new line.

t

Formal Format$ A powertul function that displays a number in
the format you request.

1.Case L.Case$ Returns the lowercase instance of an uppercase
character.

ekt Lelts Returns a specificd number of the leftmost

characters of a string. LeltS(stringexpression,
n&) See online Help tor an example.

Len Returns the number of characters in a string or
the number of storage bytes required by a
variable.
L'Trim L'lrim$ Returns a copy of a string with lefimost spaces
, removed.
Mid NidS - Recturns a string that is part of another string.

Mid$(stringexpression$, start&, flength%))

Right Right$ Returns a specified number of the rightmost
characters in a string.

RightS(stringexpression, nd)

RTrim RTrim$ Returns a copy of a string with the rightmost
spaces removed.

Module 8: Writing Visual Basic Code b3

Returns Variant Returns String Meaning/syatax, example, note
Str " Str$ Converts a number o a string of digits,
Trim Trim$ ‘ Removes leading and trailing spaces from a
string.
UCase UCasc$- Returns the uppercase instance of i lowercise
character.
Val Converts a siring of digits to a number.

String Conversion Functions in the Employee Database

Function : Sub procedure. IFarm

Chr$ (not used)

L.Case$ (not used) -

Left$ " (notused)

Len FillFields EMPDE . FRM

LTrim$ (not used)

Mid$ FillFields EMPDRIRM

Right$ - emdOK_Click ADDPHOTO.FRM

RTrim$ FillFiclds EMPDRRM

Str$ Form_Load EMPDIERM
FillFiclds

UCase$ (not uscd)

Val - cndView_Click EMPDBIIFRM

-

Numeri¢ Conversion Functions

“There are a number of functions available within Visual Basic that will convert data

types.

Function Comments

CCur Convents a numeric eapression foa Curreney vadue,

Cbil ' Convents i nuimeric eapression o i double-precision number,

Clnt . Convens a numene expression to an Integer by rounding the
fractional part of the expression,

CLng Converts & numneric eapression 1o Long (4-byte imeger) by
rounding the fractionad part of the eapression.

CSng Convers o numeric eapression fo a single-precision vidue,

CStr Converts a numeric expression toa String valuc.

CVar Converts a4 numeric expression or String t a Varinnt,

CVDate Converts an expression o w Variant of Varlype 7 (Date).

1

=

214

Module 9: Writing Visual Basic Code

Format$ Function

- .. Form1.frm
_?} Proc: ICIick

QObject: [Commandi1

Sub Commandl_Click ()}
‘Textl.Text = FPormat$ (Now, "d mmmm yyyy")}
Encl Sub

e

*‘f'Today's:‘DateEl 11 February 1992

09:16 AM

Synlax

This Tunction converts o number to a string and formats it according to instructions
contained in a format expression,

Formal${numeric-expression{, fm$}])

fmt$

A Tormat expression is a string of Visval Basic display-format characters that detail
low 1the numeric expression is to be displayed,

Here are several sample Tormat expressions and how the output would be displayed.

Formats{hnt$) Posilive 5 Negative S Decimal .5
(LU} 5.0 -5.00 0.50

H A0 5 -5 l
$HAHODDSH #0000 $5.00 ($5.00) $0.50

The Now lunction cun be used 1o return the current system date/time as a serial
number. Date/time serial numbers can then be formatted with date/time or numeric
formins rhecause date/time serial numbers are stored as floating-point values),

3

Module 9: Writing Visual Basic Code

215

Example

Further Examples

The following are examples of date and time formats.

Format Bisplay
midlyy 1207/5%
d-mmmm-yy 7-December-58
d-mmmm 7-December
mmmm-yy PDecember-38
hh:mm AM/PM 08:50 PM
h:mm:ss a/p ' R50:35p
h:mm 20:50

h:mm:ss 20:50:35
m/dlyy himm F2/T/58 2050

Sub cmdDisplayDate ()

txtTodaysDate.Text = Format$(Now,

End Sub

“mmn/dd/yy)

A complete description of the Format$ function can he found in Visual Basic Help.

Application Form Pracedure

IconWorks ABOUTBOX.FRM Form_Luoad
COLORPAL.FRM TXC_RGB_ Changpe
COLORPAL FRM Bisplay_New _Color_and_Elements
ICONEDIT.FRM Save_Scttings _To_INI_File
ICONEDIT.FRM Paste_ClipBourd_Contents
JCONEDIT.FRM sSave_Caolors To_INI_File
ICONEDIT.FRM Prepare_For_New_lcon
ICONEDIT.FRM Display_Maouse_Coordinates

VIEWICON.FRM
VIEWICON.FRM
VIEWICON.FRM
VIEWICON FRM

Form_Laad
Lo _All_lcons
FFile_FileList PathChange

Form_Unload

lconWorks makes extensive use of the Forawath lunction. The above table is only o

partial listing.

- ———————r e e e s n

216 - Module 9; Writing Visual Basic Code

Summary

a Visual Basic Procedures

= Scope of General Procedures

Writing Code in Visual Basic

String and Numeric Conversion Functions

Obijectives

In this moduie you learned to:

s Deline important characieristics of Functions and Sub procedures and write
code that correctly uses both, :

o [Jefine and correctly code for appropriate scope of data.

» Wrnile code that uses the common Basic data types.

Module 9: Writing Visual Basic Code 217

Lab Time

Go to the Writing Procedures portion of your Lib manual.

I i ety

Module 10: Using Conditional Logic
‘and Loops

Module 10: Using Conditional Logic and Loops yrg

> Overview

= Control Structures
If...Then Blocks
Select Case Statements
Do While Loops
Do Until Loops
For...Next Loops

GoTo Sialements

Overview

Control structures are a crucial part of any computer Janguage because they enable
systematic decision making within the code. In this madule you will leam how 1o
control the logica! flow of your program. You will also lecarn how to mark off
blocks of code that are to be executed if a specilied condition is truc or false. You
will also learn how 1o specify the number of times that u given block of stutements
is to be executed.

Prerequisites

This module assumes a fairly detailed understanding ol coding mechanisims in
Visual Basic. You will also nced proficiency in desipning aid building the user
interface for software applications. You shoubd alreidy be Tumiliar with;

» Forms and propetties

» Stalements, Sub procedures, and Function procedores

» General and event procedures, as well as methods

= Visual Basic data types

» Variables and constants

a Use of the MsgBox$ stalement and concatenating sirings

= String handling functions

Overall Objective

At the end of this module, you will be able 1o write code that provides systematic
decision making within an application. ' s

-

~1

W,

2 Module 10: Using Conditional Logic and Loops

Learning Objectives

At the end of this module, you will be able to use:

s 1. Then..Else blocks
s Sclect Case statements
s Do While loops

s Do Until foops

s For Next loops

s Golostatements

P

.o

L=

Module 10: Using Conditional Logic and Loops

2. Control Structures

\

= [f...Then Blocks
= {f...Then...Else Blocks

= Select Case Statements

223

e T ek

224

Module 10: Using Conditional Logic and Loops

if...Then Blocks

If condition Then statement

If condition Then
stalements
End It

Example

The ot shows that there are two possible arrangements for If...Then blocks. You
cin use cither a single fine or multiple lines containing multiple staternents. If you
hive illiple stements, you need 1o use End IF,

Cperators

There are six operators that you can use in the condition portion of the If...Then
block.

Operator Meaning

= Egual

<> Not ecual

< Less than

<= Less than or equal to

> Greater than

>= . Greater than or equal to

Note In this case the = operator is nor being used for an assignment statement,
such as: Readout.caption = -o0.-; instead it is being used for a conditional test.

If optFuliTime.Value = TRUE Then PositionType = "Full Time"

Examples in the Employee Database Code

For a list of example If... Then blocks, If...Then...Else blocks, and Select Case
stalerents in the Employee Dutabase code, see the listing at the end of this moduie,

% % % -

- %

Module 10: Using Conditional Logic and Loops 225

If...Then...Else Blocks

IF condition1 Then

statementblock1

ELSEIF condition2 Then

statementblock2

ELSE

statementblockn

ENDIF

Here you get a chance to test for several different sitwations and react appropriately
to each one. Adding Else to the If...Then statement provides much more (lexibility
in the response.

Walk Through—If...Then...Else Example
> To use the If...Then...Else statement '

5.

From the Walk Throughs program group, start IfElse.

When the application starts, there will be o form with a check box labeled Bold
with an X in it and a command button lubeled Print Something, |

The purpose of the application is 1o show wexaniple af where i
If...Then...Else block might be used,

Click the Print Something command bution,

The word “Something" will appear an the form in hodid

. Ciick the Bold check box.

_ This removes the X from the check box.

Click the Print Something command butien,
The word Something will appear on the form with the bold Tormat removed.
Close IfElse.

Z To create the If...Then...Else example

1.
2

Start Visual Basic.
From the File menu, choose New Project.

Stit a new project.

o’

226

Module 10; Using Conditional Logic and Loops

0O,

10,
7.

Select FontBold on the Properties list box.

View the Form property FontBold. Note that the default value is True. This
means when the chkBold check box is created, its value should be set to
Checked, :

Double-click the check box tool in the Toolbox.

Create a check box on the form.

. Set the following properties for the check box:

Name chkBold

Caption BBoid Fom

Value | - Checked
Dauble-click the command button tool,

Create a conmkind bution.

. Sethe tollowing properties for the command button:

Name cmdPrintSomething
Caption Print Something

Nuw that you have created the interface, you need to add the code 10 make it
function. .

From the Project window, choose View Code.

. In the Object.list box, select chkBold_Click.
140,

Add the following code:

Conust CHECKED = 1

1{ rhkBold.Value = CHECKED Then
Forml . FontBold = TRUE

Else
Forml .FontBold = FALSE

Entl If

This will cause the font 1o be ‘set to bold or not, depending on how the user has
sel the check box.

b the Object list box, select cmdPrintSomething_Click.

- Adid the Folkowing:

Print “"Something”

This will print the word Something 1o the form. Depending on the value of the
check hox, it will be in bold Tormat or not.

C From the Run menn, choose Start.
144
I5.

From the Run menuy, choose End.

FFrom the File menu, choose Save As,

Save the form as IFELSE.FRM in \WALKTHRU\LOGIC.
Nave e project as TFELSEMAK in \WALKTHRUWLOGIC.

Module 10: Using Conditional Logic and Loops 227

Select Case Statements

Select Case testexpression
Case expressionlist1
statementblock1
Case expressionlisi2
statementblock2

Case Else
statementblockn
'End Select

Select Case statements look a lot like If...Then...Else blocks, and there is a good
reason for this; Select Case statements offer the same Kind of functionality but ina
much more efficient—Ior both the code and the coder manner. As you can see
from the example, Select Case statements work particalacly well as a means [or
handling structured choices offered to the user,

e ——— e b e S

228 Module 10; Using Conditional Logic and Loops

Walk Through—Coding a Message Box with a Select Case
Statement
In anether module. you created a message box that prompted users to save their data

prior o closing the application. This message box allowed users three choices: Yes, '

Na, and Cancel.

This module has pmwded the tools needed to write code to detect whlch button lhe

user clicked: the Select Case statement.

To code a message box with a Select Case statement:

1. Start Visual Basic,
2. From the File menu, choose Open Project.
3 Open MSGROX2 MAK.

This file is located in \WALKTHRWNLOGIC and should alrcady contain the
following:

Sub Uommandl_Click ()
* The values for MsgBox constant declarations
* come from \VB\CONSTANT.TXT
MsgBox parameters

Const YESNOCANCEL = 3 ' Yes, No, & Cancel btns
Const JCONQUESTION = 32 ' Warning gquery
Msy$ = “"Have you saved all your work?"

] MsgBox Msy$%, YESNOCANCEL + ICONQUESTION, "MsgBox WalkThru®
lnel Db ' -

I ancler ' get the buttons 1o respond appropriately, you need to add 4 number of

statciments to this. Do that by declaring a variable and several constants.

< dindesign mode, double-click the command button on the form.

Jhis apens the Code window with the event procedure code in it.

5. Add the following code to the Code window:

Const CANCEL = 2 '
Cang' YES = 6 -
Cunzt, NO = 7

Dim 1B _Response As Integer

The Cancel, Yes, and No declarations define more meaningful names for the
valies that are returned for cach of the buttons. For example, if the user clicks
the No button on the imessage box, the value 7 is returned by the system. For
conde readability and maintainability, you should place Const declarations in
your code and use the constants in the Select Case statement. Remember, you
cun find the correct values to declare in \WWBACONSTANT.TXT or by searching

online Help Tor the topic MsgBox function and checkingsthe table of return
vilues,

'

Module 10: Using Conditional Logic and Loops 229

- In the earlier message box example, you created a messuge box by calling the
MsgBox statement. Even though you crested a message box with three buttons.
you had no way to tell which button the user clicked. Another way to creaie
message box is to call the MsgBox function. In this case, you need o deckire i
Integer variable to receive the value the MsgBox function retumns.

Next, you need to alter the MsgBox statement, makiig it into i function call.
Remember, when you call a function you must assign its return value o the
appropriate type of variable. If you pass the function .my arguments. the
argument list must be enc]osed in parentheses.

6. Edit the original MsgBox statement so that it reads:

MB_Response = MsgBox{Msg$, YESNOCANCELsICONQUFSTION,
A"MsgBox WalkThru*) .

Now you need to add the Select Case statement. You may want to add only the
actual! code and leave the comments oul.

7. Add the following code:

* When an integef value is returned by MsgBos rupet i
Salect Casea MB_Response
1f it matches the value of the rcons:, Va7 061,
Cane YES
'indicate that Lhe usier o lickeed Dl Vo Taar oy
Print *"User clicked Yes"
* if it matches the value of the Const 1. /),
Case NO
' indicate that the user clickad the Mo hutton
Print "User clicked No*
if it matches the value of the- Const ANCRL 40
Case CANCEL
* indicate that the user clicked the cancel botten
Print "User clicked Cancel®
End Select

8. From the Run menu, choose Start.
Test the code of your application.
9. From the Run menu, choose End.
Close the application.
End the walk through.

Examples in the Employee Qatabase Code

Form Procedure/Routine Caniral structure type
EMPDB.FRM FillFiclds 11 Then
' ‘ ... Then.. Else
cnigl Delete _Click CoNeleet Case shilenient
FillIFields Sclect Case statement

ADDPHOTOQ.FRM B el QXK _Click 1L Then FBlse

« Do While
= Do Until

L] For.'..Next

b

Module 10: Using Coﬁditional Logic and Loops Xl

DomLoop

Do While condition
statements

Loop
- Or_
Do

statements

Loop While condition

Use a Do...Loop to execute a block of statemeats an indefinite number of times,
{By contrast, For loops let you specify how many times a set of statements are
executed.) In Do... Loop While loops the number of times the loop is executed is
controlled by a True/False condition. When some other event switches the value ol

" the condition from True to False, the looping stops.

What's the Difference?

The location of the While condition is the key difference between the two examples
of syntax above, but what does that mean? II' the While condition is at the top of the
block, the statements within the loop will nut be executed it the condition is false o
begin with. The block of statements will always be exccuted at least once it the
While condition is placed at the bottom of the loop,

e

232 Madulé 10: Using Conditional Logic and Loops

Walk Through—Coding a Do While Loop

E To code a Do While loop

1.

0.

Stan1 Visual Basic,

From the File meny, choose New Project.
Double-click the command button tool in the Tooelbox.
A command button appears on the form.

Domible-chick the comimand button on the form,

This will open the command bution Code window.
A the following code to Formi.frm:

sul- commandl _Click () /
im 1T A luinger
! 1
'Do While I <= 5
Print I
I=1-1
Loop
End iab

. From the Run mwenu, choase Start,

. Runahe applicaion.

Fronn the Run menu, choose End.

End the walk through.

- s A A A A s.t‘ LE‘ Lg‘ Lm ‘i"

at
I

Module 10: Using Conditional Logic and Locps 233

Further Examples

!
t

Do...Loop

Do...Loop Until loops are almost identicat 1o o Loop While. but they tesn o see

if condition is false rather than true.

For further examples of ...Loop While, sce the followiig.

Application ‘ Maodhle/Form I'rovedure/Rontine

IconWorks ICONWRKS .HAS Help File_In_Path

Walk Thrbugh—Do...Loop While with Lists

To use Do...Loop While with lists

3

From the Walk Throughs program group, start Do Wihite with Lists.

When the application starts, a form with a list box wnd i command button
labeled Add To List appears.

The purpose of the application is to show an exampic ol using o Do..d.oop
While structure.

Choose the Add To List button.
An input box will appear prompting the user o add o itenn 1o the list box,
Type some text and choose OK.

The text just typed in the text box will be added asan ilem 1o the List on the loap
example form.

Repeat the above step several times.

Note that if you add more items to the list than can be displayed at onee in ihe

list box, a vertical scroll bar will automuatically be added to allow you to view)

items. In the case of this exaumple, you must add at least seven tems Lo thie liseio
" make a scroll bar appear.

Quit the application.

To use Do While loops in list processing

I
2.

Start Visual Basic.
From the File menu, choose New Project.

Start a new project.

. Set the following properties:

Caption Do Loop While Example

Height 4035 (approximately)
Width 3870 (approximalely)
Lelt 5565 (approximalely)
Top " 1290 (approximaiely)

Double-click the list box tool in the Toolbos.

Create a list box on the form.

234

Module 10: Using Canditional Logic and Loops

0.

9.
10).

.

. Set Lhé following properties:

Height 1455 (approximately)
Width ‘1215 (approximately)
Left 960 (approximately)
Top . 360 (approximately)

Double-click the command button tool in the Toolbox.
Create a commuand button.

Set the following properties:

Name cimdAddToList

Caption Add to List

Height 375 (approximately)

Width - 1215 (approximately)

Left - 1080 (approximately) !
Tup 1920 {approximately)

Now that you have created the interface, you need to add the code to make it
lunction.

From the Praject window, choose View Code.
in the Object list box, sclect cmdAdd ToList_Click,
Add the following code:

Cim Response As String

Do A
Response = InpputBox${"Item to add:", "Add Item*, *", 0, 1000)
1f Response <> ** Then Listl.AddItem Response

Lunp While Hesponse <> =*

By creating @ While loop with the test at the bottom, you ensure going through
the loop once 1o prompt for input, before any conditions are tested.

An input box is similar to a message box, except it contains a text ficld for user
input. The arguments for the input box are:

Argl = Prompt

Arg2 = Tille bar caption

Argd = Default value for text box
Arpd = X-position for input box
Arg5 = Y-position for input box

An Il est s added so that the empty string that indicates the user wants to exit
the loop will not be added as an item in the list.

Keep this project open, because in just a moment you are going to add a Do
Until loop.

Test your code.

- B the walk hirong .

- o ® & & & & o' -

-

Module 10: Using Conditional Logic and Loops 235

Do Until

Do Until condition

statements

Loop

~Or-

Do

statements

Loop Until condition

Do Until is the opposite of Do While, The statements in a Do Until loop are
executed only while the condition is False. A Do Until condition is the equivalent
of a Do While Not condition.

Walk Through—Do Until Example

To use Do Until

i

From the Walk Throughs program group, start Do Uatil.

This is an enhanced version of_lhé previous Do While example. When the
application starts, a form with a Jist box, a command bution labeled Add To List,
and another command button labeled Clear List appear.

“The purpose of the application is 1o add an example of using 4 Do Until

structure.

Choose the Add te List bution.

An input box will appear prosmpting the user 1o add an item to the Hist box.
Type some text and choose OK.

The text just typed into the text box will be added as an item to the list on the
Loop Example form.

Repeat the above step several times.

Add several items to the list.

. Choose the Clear List button,

All items will be cleared from the list box.

Quit the application.

236 Module 10: Using Conditional Logic and Loops

z To create the Do Until example

I. Start Visual Basic.
Make sure that you are still working on the Do While walk through.

2. Sel the following properties {or the form:
Caption Loop Example

‘3. Double-click the command bution tool in the Toolbox.
Creite another command button.

4. St the following properties of the command button:
Nime cmdClearList
Caption Clear List

Fleight 375 (approximately)

Width 1215 (approximately)
et 1080 (approximately)
Fop 2520 (upproximately)

- Now that you have created the interface, you need to add the code to make it
lunction.

5. From the Project window, choose View Code.
0. it the Object list box, select cmdClearList_Click.
7. Add the following code:

Lo Until Listl.ListCount = 0
Listl.Removeltem 0

leewps

A Do Until loop can be used to keep removing items from List1 until the list

box is empty. The ListCount property keeps track of the number of items
currently in the list.

Inside the loop is a statement to call the Removeltem method. When you pass a
Zero to Removeltem, you are telling it to remove the top item in the list.

Rather than setting up a loop, you can clear an entire list box with the clear
method.

Listl.clear

8. From the File menu, choose Save File As.

Save this file as DOUNTIL.FRM and the project as DOUNTIL.MAK in the

WALKTHRULOGIC subdirectory. You will need these files in the For Loop-
lab.

End the walk through,

. Module 10: Using Conditional Logic and Loops 237

For...Next

For counter = start To end [Step increment]
[statements]
[ExitFof] .
[statements]

Next [counter]

For...Next loops are used to execute a block of statements a fixed number of times.
The key difference between a For...Next loop and a Do..L.oop is that a For...Next
loop includes a counter that increases or decreases with each repetition of the loop.

Complete the demonstration for an example of For...Next loops.

Walk Through—Using Visual Basic For...Next Loops

To use For...Next loops

1. Start Visual Basic.
Open Visual Basic. Open a new form.

2. From the File menu, choose New Project,

3. Double-click the command button tool in the Toalbox.
This will open the command button Code window.

4. Add the {c’lowing code in the Code window:

5. Add the appropriate code 10 the Command | _Click event:

Sub Commandl_Click ()
Dim I As Integer
Tor I = 1 to 6
Print I
Next I
End Sub

6. From the Run menu, choose Start.

Test the application you have created. The default value for Stepis 1. The
application prints the numbers [through 6 an the form.

238 Module 10: Using Condltional Logic and Loops

7. Fromithe Run meny, choose End.
In the Code window, change the Step value to 2.

4, From the Run menu, choose Start.
Test \he application again.
How has the oulput you are getting changed?
How would you change the For...Next loop to display only even numbers?

10. From the Run menu, choose End.
End the walk through.

A more suphisticated use of the For...Next loop can be found in Visual Basic Help.

Exampie] 'For. . .Next Statement Example
Sulr Forfexthemo ()

t NLS = Chr5{13) + Chr$i{l0) * Define newline,

4 For Rept = 5 Toe 1 Step -1 * Ser up five repetitions,

5 Equate alphabet to numbers.

6 For Indx% = Asc("A") To Asc("Z") ,

7 ' Append each letter to string.

2} Msg$ = Msg$ + Chr$(Indxs)

9 Next Indx$%

10 . Msgs = Msg$ + NL$ *"add newline for each rep.

11 Neaxt Rept '

12 MsgBox Msg$s ' * Display results.

13 End Sub

[}

Notice thut one For.. Next lcop is "nested” inside the other in this example? This is

. a powerlul ool for processing multiple rows or columns in arrays.

I you want {o sce this code running, foitow the directions detailed above and make
the uppropriate moditications to the code so that it executes as the result of a
command button being clicked.

[P

Module 10: Using Conditional Loegic and Loops 239

Walk Through—Another For...Next Loop Exampie

Z To use another For...Next loop
1. From the Walk Throughs program group, start ForlLoop to Clear List.

This is an enhanced version of the previous Do While example, When the
application starts, a form with a list box. ;i command button labeled Add To List.
and another command button labeled Clear List appear.

The purpose of the application is to change the example to use a For...Next loop
to clear the list,

2. Choose the Add to List button.
' . An input box will appear prompting the user to add an item to the list box.
3. Type some text and choose OK.

The text just typed into the text box will be added as un item to the list on the
loop example form.

4. Repeat the above step several times.
Add several items to the list.
. 5. Choose the Clear List button,
All items will be cleared from the list box.

6. Quit the application.

E To create the For...Next loop example
1. Start Visual Basic.
2. From the File menu, choose Open Project.
3. Open DOUNTIL.MAK.

Open the project from the Do Until Walk Through. It is locaied in the
\WALKTHRW\LOGIC subdirectory. '

4. From the Project window, choose View Code.
5. In the Object list box, select cmdClearList_Click.
6. Replace the existing code with:

Dim I As Integer

For I = 0 To Ljstl,ListCount-1
Listl.Removeltem 0

Next I

You can use a For...Next loop to keep removing items From List] until the dist
box is empty. In this case, the runge for the loop will be rom O (the top item in -
the Jist) to ListCount—1 (thec fast item in the list).

Inside the loop is a statement ta call the Removeltem method. When you pass a
zero to Removeltem, you are telfling it 1o remove the lop itent in the st

Further Examples For further examples of a For...Next loop see:

Application _ Moduwle/Form Provedire/Raoutine

Lmployee Database LMPLBFRM Form_Load

240 Modute 10: Using Conditional Logic and Loops

The GoTo Statement.

= i EMPREC.FRNM
Ob;ecl [general) [¥] Proc:

Sub AddEmp ()
- If PrintIt Then GoTo PrlntLabel

Exit Sub
PrintLabel:
Print "Made It ToHere!"
End Sub

GoTo causes execution o jump from the GoTo statement to another location
marked by a label or line number.

Fven though the GoTo statement doesn't enjoy much favor these days, Visual Basic
supponts it and there are several places where there is an obvious use for it. Error
handling is a particularly good example.

Note GaoTos are nol like procedures; there is no standard return from a GoTo as
there is from a procedure.

Style Guidelines = Each fine label must begin with an alphabetic character.
w Lo dine label muost end with o colon,
s Lach line Label miust be unidgue within its own module,
s Eocl line Libel cian have o more than 40 characters.
. = Duoonaoluse Visual Basic keywords in line labels.
s Linc lubels are not case sensitive,

= A line lubel must start with the first nonblank character on a line, but it need not
be in the first column. Visual Basic forces it to the leftmost column.

Examples
Additional sample code is located in Visual Basic Help,
For further examples of GoTo statements see the following.

Further Examples Application ' Module/Form Procedure/Routine

fconWinky ICONWRKS.BAS Yalidate_FileSpec
Employee Database EMPREC.FRM AddEmp

Module 10: Using Conditional Logic and Loops

241

Sunﬁméry

» Control Structures

Iif...Then Blocks

Select Case Statements
Do While Loops

Do Until Loops
For...Next Loops

GoTo Statements

Objectives

In this module you leamed to use:

If...Then...Else blocks
Select Case statements
Do While loops

Do Until loops
For...Next loops

GoTo statements

242 Module 10: Using Conditional Logic and Loops - oo .

Lab Ti_me

Go o the Conditional Logic and Loops portion of your Jab manual.

- Module 11: Debugging Code in
Visual Basic

PR A I B B B B |

Module 11: Debdgging Code in Visual Basic 245

Y Overview

= Debugging Terms
» Debugging Code in Visual Basic
Using the Call Tree

Using Walch Variables to Monitor Program Execution

Overview

Visual Basic offers programmers of all skill fevels a set of robust tools w use during
application development. '

Prerequisites

Prior to starting this module, you should already be familiar with:

" = Controls, forms, and propertics

= Function and Sub procedures

= General and event procedures

Overall Objective

The overall objective of this module is to introduce you to sume of the most useful
debugging tools available in Visual Basic. This is not mtended 10 be comprehensive
treatment of debugging techniques in gencral.

Learning Objectives
At the end of this module, you will be able 10
n Distinguish among run, design, and debup maodes in Visual Basic.

w Use the Watch window to display the current values of variables within a
program.

m Set breakpoints within code.

= Single step through application procedures.

~

s

246 Module 11: Debugging Code in Visual Basic

Debugging Terms

= Watch Expressions
= Watch Point Variables
. ' Watch point—break when true

Watch point—break when changed
» The Debug Window

The Immediate pane (?, =)

Watch pane

Watch Expressions

A walch expression is a variable whose value is displayed in the Debug window
whenever a program enters break mode.

You can set a wakch expression by opening the Debug menu and choosing eithe:
Add Watch or Edit Watch command. This can be done in either design mode or
break mode. :

Watch Point Variables

A watch point variable will cause a program to enter break mode whenever the
wilch paint condition is satisfied.

You can set a watch point variable by opening the Debug menu and choosing either
the Add Watch or Edit Watch command. This can be done in either design mode or
hreak mode,

Watch Point—Break When True

This watch point variable will cause a program to enter break mode whenever the
variablke s value becomes true.

Watch Peint—Break When Changed

This winch pomt variable will cause a program to enter break mode whenever the
| variable's value changes. '

The Debug Window

| The Debug window is broken into two parts: the Immediate pane (the lower half of

: : the window) and 1lie Watch pane (the upper half). The Immediate pane is where you

' ' can have an interactive conversation with the debugger using either the question
mark (7) or the equal sign {=). The Watch pane is where the watch variables are
displayed during break mode.

Module 11: Debutiging Code in Visual Basic 2497

Debuggihg Code in \fi.sual Basi;:“_

' Shiﬂ+F9

Instant Watch...

Edit Watch... Clrl+W
Calls Ctri+L
Single Step F8
Procedure Step Shiti+F8
Toggle Bremguoin! P
Clear All Bieakpont, -

\')(b r\J(_’ bR frelesrvigerd
Show r"ﬂ xd rNc semic

Using the Visual Basic Debugger

This module is actually made up of a number of walk throughs that introduce you to
the varjous tools available within the Visua! Basic debugger.

Walk Through--Using the Call Tree .

To see the first sample application work -

1. From the Walk Through program group, start Debug 1.

2. Click the Call Procedures command bution.

3. Observe the output generated on the form.

Debug - Call Liat Exerclse i

This iz Procedure A

Calling Pyocedwe D
This is Proceduie B
Calling Procadime C

Start Calling Pmcedures Commandl Click

This is Pracedue {
Reluining fiom Piocedure U
Reluining liom Procedwe B
Relurning from Proceduie A
Astumning irom Commandl ~Chich

Note that Command1_Click calls Procedure A, Procedure Acalls ProcedureS,

- and then ProcedureB calls ProcedureC.
4. Choose End.

248 Module 11: Debugging Code in Visual Basic

3T

T
very uselul: the Cull window and single stepping through code.
| . .

2
3.
4
5

O,

9,

o examine the code for the walk through

he purpose of this walk through is to introduce you to two tools that you will find

Start Visual Basic.

. Open the DEBUG|.MAK fiie located in \WALKTHRU\DEBUG.
Select MODI.BAS in the Project window and click View Code.

. From the Procedures drop-down list box, select ProcC.

. Examine the code for ProcC.
As il stands, this procedure prints two statements at column 49 on your form.
The other three lines are “commented out.”
Remove the three comment marks in front of the Stop and Print statements.
What will happen when you do this? You have added three new statements to
the application. The first one prints a message to the form at column 40 that tells
you the application is going into break mode. The second statement actually
stops that application using Step. The final statement prints a message o the
Form that tebls you that you have entered single-step mode afler pressing F8
twice.
Fromn the Run menu, choose Start.
Chick the Call Procedures command button.
If you move the Code window from on top of Forml, you will see that the oulput
is slightly changed. Now it should look like this.
[=] - Debug - Cali List Exercise &

Stail Calling Procedwes - Command}_Click
Thin is Piocedure A
Calling Procedwie B
Thas is Piocedure B
Calling Procedure C
This in Procedws C
Going Indo Broak Modo

Command)_Click

Notice that the calls are listed with the most recently called at the top.

O B B .

B

B

é‘- I3 |

por—

10.

11,

12

13.

14.

15.

16.
i7.

20.
2L

22.
23

Module 11: Debugging Code in Visual Basic 249

Click the Show command button,
This returns you to MOD|.BAS.

You should sec the code for ProcC with a box around the code line containing
the Stop statement.

Single step by pressing F& once.

This will start you single stepping through the rest ol the procedure, This makes
Print "Going inte Single Step Mode® lhe next slalement to execute.

I
If you position both windows so that you can see almost all of them, you will see
Visual Basic work as you single step through the application.

Press F8 one more time.

This executes the current Print statement and makes print "Returning from
procedure C- the next stalerment to execule.

Press F8 a third time.

This executes the current Print statement (check the output on the form) and
makes the End Sub statement the next stalement to execule,

Press F8 a fourth time.

This executes the End Sub of ProcC and takes you to the next statement o
execute in ProcB, which is the print *Returning from Procedure B*
statement.

From the Debug menu, choose Calls or press CTRL+L..

. Note the most recent procedure is now Procedure B.

Doing this verifies that the call list has ch:mﬁ'cd since the return from ProcC.

_Click the Show command button to returs Lo ProcB,

Press F3 a fifth time and then a sixth time.

This takes you through the remaining two Procedure I3 staiements and takes you
to the next statement in ProcA—pPrint "Returning from Procedure A”.

Press IR twice more.

This single steps you through (he remaining Procedure A statements and lakes
you to the next statement in Commuandi_Click—priar "werurning from
Ccommandl_Click".

Press Fg twice more.

This takes you through the remaining the Commund 1 Click event procedure.
From the Run menu, choose Break.

From the Debug menu, choose Calls.

Natice that no calls are listed. That is because no Sub or Function procedure is
currently "open” and your application is in idle waiting for the user to do
something.

Choose the Close cormmand button on the Calls dialog box.
From the File menu of Visual Basic, choose Exit.

I you want to try this exercise a second time, do nol sive the changes 1o the
files.-

250

Module 11: Debugging Code in Visual Basic

Walk Through—Using Watch Variables to Monitor
Program Execution

.Debugging Applications
Debugging applications is somewhere between a science and an art. By careful use

ol your debugging tools, such as breakpoints, watch variables, single stepping, and
procedure stepping, you can zero in on the logical bugs existing in your code.

This walk through applies breakpoints and watch expressions to locate a number of
fogical errors contained within the code.

Z To sce the second debugging appliéation run

I. From the Walk Through program group, start Debug?2.
2. Click the Print File command button.

Yo get output that fooks like this.

=1 “DEBUG2 -

i 20 30 40 50 Tolal = 150 Average = 30
12345 Total = 165 Avoiage = 16
100 5D 25 75 200 Total= B15 Averdpe = 41
109876 Total = 655 Averags = 32

11 22 33 44 55 Total= B20 Aveiage = 32

[Sum of afl lotals = 0
Avg ol all tolals = 0

FefiPyint FielidE] |2 Cloar 235

This progran lists five numbers, their total, and their average. It does this for
five sets of dia. A the end, it prints the total of all the numbers and the average
for all the numbers.

3. Buol examine the output carelully. I isn't giving you what you want: The totals
an averages aren’t correct.

It the application were coded correctly, final output should look something like
this.

DEBUGZ.FRM

10 26 30 40 S0 Totale 1500 Averags = 30

12349 Total= 15 Average= 3
100 50 25 79 200 TVotal= 450 Averagas 90
w9876 Tolal = 43 Average = 8
22 33 44 5% Total = 165I Average = 33

5

Sum of all totals = 820
Avg of all lolals = 32

P Riel] (BRECiEansEE|

xF

You need 1o correct the logic, but where do you begin?

4. Double-click the Control menu on the Debug2 form 1o close the application.

" Module 11; Debugging Codeé in Visual Basic 251

2 To analyze the variables used in the sample application

1.
. From the File menu, choose Open Project tu locate and start DEBUG2.MAK,

If Visual Basic is not running already, start it.

located in \WALKTHRUNDEBUG.
Note that there are two files to this project: DEBUG2ERM and MOD2.BAS,

What are the global-leve! variables, and where they are located?

If you inspect the General Declarations section of MODZ.BAS, you will sev
x(5), an Integer array, and sumcounter declared as an Integer.

There is also a String variable called Filename$ in MOD2.BAS.

What are the form-level variables, and where they ure Jocated?

¢

If you inspect the General Declarations section of DEBUG2.FRM, you will find
Sum declared as an Integer. But, be careful here. Visually inspecting the
General Declarations section doesn’t tell you all you need to know, and (his will
come back to haunt you a little later on.

Why do you need to know this? Awareness of the Lypes and scope of the
variables within your application will help in the analysis of the code.

z To anaiyze the procedures used in the sample application ' i

1.
2.

In DEBUG2.FRM, examine the cmdPrintFile_Click event procedure.

Which general procedure is called in this proceduie”

If you said the Readfile procedure from MOD2BAS, you were correct.

Examine the ReadFile general procedurc in MOD2.13AS.

To display the source for the ReadFile geacral procedure, plice the cursor in the
word ReadFile in the cmdPrintFile_Click procedure and press SHIFT + 2

Note the outer For...Next loop is controtfed by J. whereas the inner For...Next
loop is controlied by . These two loops control part of the cilcuiations in your
application.

———

-
k'_ S
Pl

252 Module 11: Debugging Code in Visual Basic N

Y. Touse breakpoints and watch expressions to observe program behavior

In urder to observe the logic flow and I and J's values, we will use two watch
expressions and a breakpoint. '

I. Set a breakpoint on the next 1% line.

Place the cursor anywhere on the next 13 line and press Fo.

2. Highlight the 1% variable on the For 14 line.
3. From the Debug Menu, choose Add Watch.

A Torm will uppear on screen that looks like this. 2

Add Watch
Expiession: _
& | [EEEorEE
. mContext %Cm
! ® Proceduie [Headlile]3]
O Foim/Module [MOD2.BAS 53
O Glabal :
Wolch Typu
® Walch Expression
O Break when Expression is Tiue
O Break when Expression hat Changed

r

4. Muake sure that the values for the Add Watch window are as follows.

Control Setting
Expression 1%
) Procedure Readfile
; Form/Module MOD2.BAS
‘ Waich Type Watch Expression
: 5. Chuose OK.
6. Repeat the above steps (1 thorough 5) for J% to create a watch expression for
T,

You now have two watch expressions. Each time your program enters into break
_ mode, the current values of these two variables will be displayed at the top of
. the Debug window. '

Module 11: Debugging Code in Visual Basic 253

Z To observe your watch expressions in action
1. Start your program by pressing F5.

2. Arrange the windows so that you can see DEBUG2.EFRM, the Debug window,
and MOD2.BAS code window.

You might want to arrange them so that they look like this,

DEQUG2 il |lwml Debug Window IDEBUGZ.FRM

MOD2.BAS
[#]:®ioci: [Readiie

. Open Filenamed For Input As fnumll

For Jt = 1Te s
Input RFnunil, %(1), x{(2), x(3), x(n8), x(5)
Form1.Print

3. Choose the Print File button.

Because you have set a breakpoint, your application will stop execution on Lhe
line Next 1%.

4. Note the values of 1% and J% in the Debug window,

Right now they should each be at] because you are in the first iteration of both
loops. If you look at the output of DEBUG2.FRM, you will see that the value 150
has been printed there. :

5. Continue execution by repeatediy pressing £s until J% equals 2 and 19 cquals 5.

Each time you press Fs, your application enters break mode and the current
values of 1% and)% are displayed in the Watch pune.

At this point you know that 1% and J% are behaving correctly. [tis time to
pursue analysis in a different direction.

6. From the Run menu, choose End 1o stop execution ol your program.
7. Press F9 to clear your breakpoint on the Nexe 1% line.

The vext 1% line in the Readfile procedure of MOD2.3AS should atready be
selected; so press F9.

To this point, you have seen what we wanted (o demonsirate about watch points and
watch expressions. If that is all you need from this exercise, then quit here. If,
however, you want to sharpen your debugging skills, continue on with the exercise.

The question here is this: What is going wrong with the application? First, it doesn’y
scem to be calculating the individual totals properly. You are ending up with a

- value of 165 Jor the second setof numbers when it should be 15 Wiy don't you
next set a waich point on Total%?

-

e e e A

254

L

Module 11: Debugging Code in Visual Basic

Z To use watch polnts—breaic when expression has changed (Total %)

[3

in the Code window for MOD2.BAS, locate the procedure Readfile and
highlight the variable Total% within the For 1% loop.

2. From the Debug menu, choose Add Watch.

]
. Make sure that all the controls for the watch point are as follows.

3
Cuontrol Setting
Expression Total%
Provedure . Readfile
FormvModuie MOD2.BAS
Waeh Type Break when Expression has Changed
4. Choose OK to close the Add window.

: Z T'o observe your watch variable in action

]

!J

From the Run menu, choose Start to run your program,

Note the entry added to the top of the Debug window, This will cause the
progeam to enler into break mode whenever Total% changes,

You mity need 16 expand the Watch pane display area in order to see the
additional walch variable.

Click the Print File command button to enter the Readfile procedure.

What is the first value for Total9%?

I you said 10U, you were correct.

. Press F5 six more tirmes (so that 1% equals | and J% equals 2).

5. Now. what is the value of Total%?

6.

If your said 151, you were correct; but what should the value of Total% be at this
pomt, and what docs that tell you?

Thw value for Total% at this point should be |, because that is the first value for
the second pass through the J% loop. What this tells you is that you need to reset
the value of Total% before each entry into the 1% loop. ‘

From the Run menu, choose End.
Add the following line just before the For 1% = 1 to s line:

Total% = @

Module 11: Debugging Code in Visual Basic' 255

-

8. Test your change by running the code again. Notice that the uual is correct.

You will'notice that the averages for the fast four sets of numbers have the
values 1, 30, 2, and 6. That is, they are still wrong, To lix this problem, what
other variable must you zero out before recmering the 1% loop?

If you said counter%, you were correct.

9. From the Run menu, choose End.

10. Add the following line just before Ihe For 1% = 1 to 5 ling!

Countery = 0

I'l. Test by running the program again.
12. - Inspect the Total and Average for each of the five sets of dat.

Total and Average for each set of numbers should now be correct. Compare
them with the correct output displayed earlier in this walk through.

13. Inspect the values'displayed for the overall sum and average values.
They are both 0. That can't be right.

14. From the Run menu, choose End.

Z To clear all watch variables and all breakpoints
1. From the Debug menu, choose Edit Watch: - ,
2. Choose Delete All to delete all watch points you may have sel.
3. Choose Close to close the Edit Watch diulog box.

4. From the Debug menu, choose Clcar All to clear all breakpoints that are sct.

Z To use watch points—Dreak when expression becones True (Sum)

At this point you have fixed the calculation of individual totals and averages, but
the calculation of the overall total and average is still wrong. For this reason.
closer examination of the Sum variable is warranted.

1. From the Debug menu, choose Add Watch.

2. Fill in the following entries:

Expression Sum>0
Form/Mod DEBUG2.FRM
Procedure cmdClear_Click

Break when Expression is True
Choose OK
3. From the Run menu, choose Start.
4. Note the entry added to the top of the Debug window.

" This will cause the program Lo enter into break mode whenever Sum > ()
:becomes True,

256

Module 11; Debugging Code in Visual Basic

2 To observe your watch variable in action

2

Press the Print File command button to run the program.

. Did you ever enter Break mode?

Your progrmh should not have entered break mode because the variable Sum
was never greater than 0.

Fram the Run menu, choose Break. Notice in the debug window it specifies Sum
<Nuot in Context>. This is because Sum is a local variable and you are not
currently running the procedure that contains Sum.

From the Run menu, choose End.

2. Tofix the code—using debugging and logical analysis to correct the code

l.

(B

First of all, how many variables named Sum are in this application?

Remember at the start of this walk through that we asked that question and said
that there was only one. Well, there are really two. If you said two, you were
correct. '

.ok in the General Declarations section of DEBUG2.FRM. Notice that it
contains an explicitly declared form-level integer variable called Sum. This
variable is not available outside this form.

. Now look at the code in MOD2.BAS. Is the variable called Sum there, the same -

one as in DEBUG2.FRM? No, this is an implicit variable local to the Sub
procedure Readfile. This is the source of your problem.

How can you make sure that the variable called Sum in cmdPrintFile in
DEBUG2.FRM and the one referred to in Readfile are the same?

I you said delete the local variable declaration and make it Global, you were
right.

Delete the dechration in DEBUG2.FRM.

Add the Tollowing declaration to MODULEZ2.BAS:

Ginhbal Sum As Integer

z To test your scoping changes

Run the program again.

Alter making these changes, you'll discover that the sum of all 1otals is 2025 and
average of all totals is 81. They're still not right.

Choose End from the Run menu.

Module 11: Debugging Code in Visual Suzi 257

3.

Set the breakpoint on Next 1% and the watch expressions on 1% and J% in the
Readfile procedure. (Follow the guidelines outlined carlicr in the walk through.
if you need to.):

To single step through your program

1.
2.

From the Run menu, choose Start.
Click the Print File command button.

The next line of code to be executed should be next 1%.

. Now.'query for the current value of Sum by placing your cursor in the Debug

window and typing:
7Sum
Then press the ENTER key.

Observe that the value 10 displayed in the Immediaie pane of the Debug
window, Thal's the current value of Sum,

Step through the 1% Joop again, stopping w 1he sime point as before, and query
the value of Sum.

. Observe that the value 40 is displayed. However, 10 + 20 docs not equal 40).

What's the problem?

If you said the line: sumt = Total + sum nceds to be moved below the line: nesxt
13, you're correct.

Cut and paste the line sumt = Total « sum (0 just below Next 1% .

To test your logic changes

1.
2.

Start and test the application again to see if it's working properly now.

Compare your cutput with the desired final cutput shown below,

10 20 30 40 5Q Total = 150 Average = 30
12345 Total= 15 Average = 3
100 50 25 75 200 Total= 450 Average = 80
109876 Total= 40 Average= 8

11 22 33 44 55 Total= 165 Avetage = 33

Sum of all totals = 820
lAvg of all totals = 32

3. Close the appliciation and give yoursel! a pat on thie back.

258+ Module 11: Debugging Code In Visual Basic

Summary

= Debugging Terms
= Debugging Code in Visual Basic
Using the Call Tree

Using Watch Variables to Monitor Program Execution

Objectives
T this anodule you learned Lo
o Dastinguish among run, design, and debug modes in Visual Basic.

s Usc the Walch window to display the current valucs of variables within a
program.

A

s Set breakpoints within code.

= Single step through application procedures.

-

Module 12: Printing to Forms and
 Printers | |

T ——
-

. ‘—-'”i' L

M

o P TP P N~

o

Module 12: Printing to Forms and Printers 261

Y Overview

Scenario

Methods for Printing

Print-Related Functions

Using PrintForm

Overview

Printing to forms and printers can be as comptlicated or as simple as you want to
make it. This module shows you some of the simple tricks that you can use 1o
prepare text for printing.

Prerequisites
To succeed in the module, you should already be familiur with:

= The general syntax for methods.

& Sclect Case statements zmd If...Then...Else blocks.

Overall Objectives

The purpose of this module is to give you an introduction tu printing using Visual
Basic, This module is split into two topics; printing 1o 4 form and sending that form
to a printer.

Learning Objectives

At the end of this module, you will be able ta:

m Use the Print method to create output directly onto a form.,

= - Describe how the AutoRedraw property rebates to printing divectly o a form,

» Use the CurrentX and CurrentY properties of a formi and the Spe and Tab
functions to control the placement of autput printed to i form.

» Use the Cls method to clear a forin.

= Usce the PrintForm method 1o send i bit-lfor-bit image of a Tora to the printer.

e

i

262 Module 12: Printing to Forms and Printers

Scenario

~

= Printing a Form

The specification for the Employee Database requires that users be able to print out

d

n individual employee's personnel information.

individual Reports

You have determined that users want the individua! report 1o include the following
" informition on individual lines:

-3

(. ST |

Last name, st name, and middle initial
Electronic mail alias and department code
Position type

Deduction inlermation

Employee phaoto centered at the bottam of the page

After much work, you have determined that a workable individual report form

would look like this.

]

Employee Record Details

Employee: Richardson, Barbara, J.
Email: barbarar Dept: SAL
Category: Full time

Deduct: ESPP 401 (k) United Way J
X X

ﬂ

*

=

. P S S N

A AT A A A AW Al Al e e

P T S, S S . S N

P U "

el

Module 12; Printing 1o Forms and Printers 263

Methods for P_rinting

Form1 frm

ovjt (Fom B Proc: | x-

| Sub Form_Click () '
Dim I As Integer
ForI=1¢to6
" Print I

D DI IDES e o

i L
Next I , §
End Sub] %
aShhats 2 ‘ 5
3 :
) 4 :
i
q mwm#mwwmmmmzwm%ﬁé
2
A .
Overview
° There are a number of different methads, functions, and propertics you will need to
(Y understand in order to print to a form and then send that form to o printer.
[y Methods Functions Propertics
8 Print . Spe CurrentX
kS
Cls Tab CurrentY
o PrintForm Format AutoRedraw,
- Fontsize, and so on
(Y . , .
\ The Printer Object
b The Printer object is a predefined object in Visual Basic. You can send output.to the
Printer object using the Print method. When you are finished plicing information
" on the Printer object, you usc the EndDoc method to send the output to the printer,
* The output will print on your default printer.
Printer.Print “Here is some informaticn on Page one.”
Printer.NewPage 'This causes a page break
" o . rhis < . -
rinter.Print Here is some more information
Y Printer.EndDoc | ‘This sends the output tu the printer.
\ The Print Method
' The Print method is used to put a text string on a form, a pictare box, or Printer
4 object using the current color and font. This portion of the module will discuss the
Print method by first talking about it in general and then discussing the
& implications of printing to a form and printing tv a picture box.
] Syntax . [abjectPrint[expressiontist)[{1 1] ' .
N , " _ - C L Ihe object can be either a Torm, a picture, o i printer o which the expression list
' © 7 will be printed.
(]
)
4
}

o e . o S e

264 Moduie 12: Printing 1o Forms and Printers

v

The expression list is either text or numbers that you want to print. Multiple
expressions can be separated with a semicolon, a comma, or a space. If the
expression list is omitted, Visual Basic prints a blank line.

The scmicolon and the comma are used to specify the location of the text cursor for
the next character displayed. A semicolon means the cursor is placed immediately
after the last character displayed. The comma means the cursor is placed at the start
of the next print zone, Print zones begin every 14 columns.

Note A form does not need to have the Visible property set to True to be able to
send output to it

Walk Through—Printing with For...Next Loops
z To print with For...Next loops
I. From the Walk Throughs program group, start Fancy Priﬁt.
2. Click the form.
This displays the output from the code contained on the next page.

1. From the Control menu, choose Close.

The [vllowing example is available in Visual Basic Help.

Example 1 "Print Method Example
: 2 Suby PrintDemo ()

3 Const BLUE = 1

4 Const MAGENTA = §
5

Const BRIGHTWHITE = 15

[Cls ' Clear form.

) wWidth = 7200 * Set form width,
! Height = 5000 * Set form height.
9 BackColor = QBColor (BLUE) ' Set background color.
10 For 1% = 1 Te 3

11 Selout, Case I

iz Case 1 ' First time.

13 'Set foreground color.

14 ForeColor = QBColor {MAGENTA)

It K% = 1: L% = 9: M% = 1

16 Msg$é = "Visual-" ' Set message.,”

17 CX = 0 ' Set position variable.
18 Case 2 ' Second time.

19 Kt = 1: L% = 9: M% = |

20 Msg§ = "Basic"

21 CX = ScaleWidth

22 Case 3 ‘* Third time.

23 ForeColor = QBColor (BRIGHTWHITE)

24 Kt = 9: L% = 1: M% = -1

25 ' Msg$ = "Visual Basic-

26 CX = ScaleWidth / 2

27 End Select

Module 12: Printing to Forms and Prinlers

265

v o o € 9 @ @9 @ -

-

Further Examples

e RORat

28 For J% = K% To L% Step M%
29 Select Case J%

30 Case 1: Fontsize = 8
31 Case 2: Fontsize = 10
32 Case J: Fontsize = 12
33 Case 4: Fontsize = 14
34 Case 5: Fontsize = 18
35 Case 6: Fontsize = 20
36 Case 7: Fontsize = 24
a7 Case B: Fontsize = 16
38 Case 9: Fontsize = 48
39 End Select

40 I1f I% = 1 Then

411 Offsety = ©

42 ElseIf I% = 2 Then

43 Offsett = TextWidth(Msg$5)
44 Else

45 ' Text in center.

46 Offset% = TextWidth(Msg$)
47 End If

48 CurrentX = CX - QOffsett
49 Print Msg$

50 Next J%

51 CurrentY = 0

52 Next I%

53 End Sub

' Change font size,

CoTaxt on left.

' Texl. on right,

/2

Print mnessaye.

.

Reset to top of form.

For further examples using the Print method, sce the following.

Application Form Procedure

IconWorks ICONEDIT.FRM DisplayMouseConrdinates
ICONEDIT.FRM Pic_StatusArea_Paint
VIEW]CON.FRM Load_All_Icons
VIEWICON.FRM Pic_Setectedlconi.abel_Paint

Employee Database EMPREC.FRM cmd AddDeleteUpdate_Click

[P g wapr——

266 Module 12; Printing to Forms and Printers

2. Print-Related Functions

= Spc Function

» Tab Function

Module 12: Prinling to f utins and cimers + 267

) - Spc Function

e, Form1.frm =~
Object: | Form] Proc: [Ciick

Sub Form_Click ()
FontName = "Helv"
FontSize = 12
Print "Skip 1 space and print a"; Spc(l} 1"
Print Sk:Lp 2 spaces and prlnt: " Spe(2)y "2

Print

Print di

Print { Skip 1 space and printa 1

Print | Skip 2 spaces and printa 2
Skip 3 spaces and printa 3

End Sub

Skip 4 spaces and prinl a 4
Skip 5 spaces and print a 5
Skip 6 spaces and print a

&
R RN R G AT T N R AR R R S AR

Syntax

Example

Further Examples

This function inserts a specified number of blunk characters ina Print method.
starting at the current print position.

Spe(number)

The number argument must be an integer between O and 32,767 inclusive.

Important When using fixed pitch fonts (where the space allowed for each
character is the same size), Spc is not complicated to use: but with a proportionally
spaced font (such as Times New Romane), the width of the spice is always the
average width of all characters in the point size of that font.

'Spc Function Exampie

Sub Form_Click'({}

FontName = "Courier”

Print * i 2 3 4 5
Print =12345678%012345678901234507 0123456770001 2 401067190
Print "I'll skip some spaces then print an =-; Spci{l); *=n"
End Sub

-~ L s W N

For other examples using the Spc function, see the following,

Application Form Procedure

Employec Database EMPREC.IFRM cidAddPrintUpdate_Click

IO o TR v - ar A v -

268 - Module 12: Printing to Forms and Printers

~

Tab Function

= Form1.frm

Cbject: |Forrn ﬁ_! Proc:|CIick &'|
Sub Form_Click ()
FontName = "Helv"
'FontSize = 12
Print "Tab to"; Tab(10); "10"
Print "Tab to"; Tab(20); "20*"
Print "Tab to"; Tab(30); "30*

Syntax

‘+

The Tab lunction moves the text cursor to a specified print position when used with
the Print method.

Tab{column%)

The parameter column% is an Integer expression that is the column number of the
new print position. The leftmost print position on an output line is always 1.

For forms, the only limit to the rightmost print position is the range of the Integer
data type. :

For a caomplete description of the Tab function, see Visual Basic Help.

@ @ 9 -

@ @

- o o> v o s g PP

-

Module 12: Printing 1o Forms and Prinlers - 269

v

Using PrintForm

{form.)PrintForm

Syntax

Example

Further Examples

PrintForm

Once you have finished formatting all the owput (o a form, you can use the
PrintForm method to send a bit-by-bit image of the form o a printer.

[form.]PrintForm

This example is available in Visual Basic Help. If your machine is correctly
connected to a printer, this code will send the current form to L.

1 'PrintForm Method Example

2 Sub PrintFormDemo ()

3 On Error GoTo ErrorHandler ' Set up error handler.
4 Printrorm ‘ Print form.

5 Exit Sub

6 ErrorHandler:

7 Msg$ = "The form could not he printed.

8 MsgBox Msg$ ' Display massage,

9 Resume Next

10 End sub

Application Form I'rocedure

Employee Database EMPREC.FRM emdAddPrintUpdate_Click

Remember, the Print method is used to place the data on the form. The PrintForm
method is used to send a bit-by-bit image of the form o the defuudt printer.

You should set the AutoRedraw property ol a form to True il you will print it using
the PrintForm method. If AutoRedraw is not True, graphics drawn directly on the
form using Print, Line, Cirele and other graphic statciments will not appear an the

printer. ' .

270 Module 12: Printing to Forms and Printers

\

Walk Through—Effects of AutoRedraw

Z To see the effects of setting the AutoRedraw Property

2

o

(s,

From the Walk Throughs program group, start PrintForm & AutoRedraw.

Click the Draw command button.

_ This draws lines on the form.

/
. From the AutoRedraw menu notice that AutoRedraw is set to False.

Drug the minimized Program Manager icon onto the form and then move it
away. : .

Nautice the form now has a gap where the Program Manager icon erased the
lines. The lines are not redrawn. If you had printed this form using the
PrintForm method, the lines would not appear. :

Fram the AutoRedraw menu choose True to set AutoRedraw to True.
The code in this menu selection invokes the Draw button for you.

P the mininized Program Manager icon onto the form and then move it
away.

Nutice the Torm automatically redraws the lines i necessary. If you had printed
thns form using the PrintForm method, the lines would appear.

Module 12: Printing to Forms and Printers

2N

Summary

Scenario
Methods for Printing
Print-Related Functions

Using PrintForm

Objectives

In this module you learned to:

Use the Print methed to create output directly onta a Jorm.
Describe how the AutoRedraw property relaes to printing directly to a form.

Use the CurrentX and CurrentY properties’of a form and the Spe and Tab
functions to control the placement of output printed 1o i form.

Use the Cls method to clear a form.

" Use the PrintForm method to send a bit-for-bit image of i {form to the prinier.

e i e e A e e

272 Module 12: Printing to Forms and Printers

)

Lab Time

- Goo the Getting Output portion of your lab manual.

Module 13: Data Access Using the
Data Control

-

-

-

- w ¢ v @ € W @€ € v v W

Module 13: Data Access Using the Data Control 275

Y Overview

= Overview of a Database

= How.Does Visual Basic Access Databases?
= The Data Control

= Binding Controls to the Data Control

= Data Control Walkthru

Data Control Methods and Properties

Objectives

At the end of this module, you will be able 10:

m Describe how Visual Basic accesses databasces.

a Use the data control to view the contents of a Microsoft Accesse database.

4\

276

\

Overview of a Database

Module 13: Data Access Using the Data Control

Employee ID I3 Order ID mﬂ:ﬂc Customer ID
Last Name Customer ID = Company Name §
First Name mployee ID Contact Name

Employees .Orders Customers

NWIND.MDB

Overview of a Database

The loliowing infurmation will help you understand some of the terminology and
concepts associated with database structure and design.

Relational Database Objects

Visual Basic provides a relational interface to database files. Basically, a relational
database is one that stores data of tables, made up of columns and rows. In Visual
Basic, columns are referred to as fields and rows are referred to as records.

Tables

A rable is a logical grouping of related information. For example, the Northwind
Traders database has a table that lists all the employees and another table that lists
all the customers. :

~d
~i

Module 13: Dala Access Using the Data Control 2

Overview of a Table

Employees Table

Example

Employee [D | Last Name First Name
135 Leverling Tim)
284 Buchanan B.L.

Rows

{records)

g T T : *‘;'ﬂmwmunm«“"~‘ 'ﬁéi
Cotumns (fields)y
Fields

Each column or field in a table contains a single piece of information. For example.
the Employees table has fields for Employee 1D, Last Name, and so forth,

Records

" Arow or record in a table contains information about a single entry in a table. For.

example, a record in the Employees table would have information on a particular

. employee. Generally, you do not want two records in a table to have the exact same

data. You would not want to have two Employees with the same name and the same
ID number. Most tables have a field or combination of fields that must be unigue.

indexes
To make access to the database faster, most databases use indeves. Database labie

"indexes are sorted lists that are faster to search fhan the tables.

Structure Query Language (SQL)

Once the data is stored in the database, retrieving it is nuide casier by using an
English-like language called Strucrured Query Language, or SQL. SQL has
evolved into the most widely accepted means to "converse™ with a database. The
user submits a query and the database returns al} the rows thai maich that query.

Seléct [Last Name), Title From Employees Where Title = 'Sales Rep'
Sample Databases

In this course you will the Northwind Traders sumple database. This database is
included with Microsoft Access.

278 Module 13; Data Access Using the Data Control

How Does Visual Basic Access Databases?
| C_ D

i - Microsaf
Visual Basic rosal
| DB
oDbBeC
QoBeC QDBC

SGL ORACLE |- oqher
Driver Driver ODBC

Drivers

How Does Visual Basic Access Databases?
There are three types of databases that you can access from Visual Basic:

= “Native” Microsoft Access databases. These databases are accessed directly
by Visual Basic.

» Indexed sequential access method (ISAM) databases— for example dBASE,
Paradoxe, and Btrieve® databases. Visual Basic reaches these databases
through user-installable drivers that link Visual Basic 1o the specific
databases. '

» Open Database Connectivity (ODBC)-accessible databases. These include
cliem-server database management systems (DBMSs), such as Microsoft
. SQL Server and ORACLEe. Visual Basic reaches these databases through
the appropriate ODBC drivers. ,

There are various gateways that are available to connect to a mainframe database.
This is 1ypically implemented through an ODBC driver.

e A AR

Module 13: Dala Access Using the Data Control 279

The Data Control

Move Previous _ Move Last
Move First ' : Move Next

Data Control

The data control allows you to link a Visual Basic form to a database. With the data
control, you can create an application that displays and updates data from a
database — without writing a single line of code!

_Adding the Data Control to the Toolbox

If the data control is not visible in the Toolbox, add the llowing line at the end of
the [Visual Basic] section in the VB.INI file in the CAWINDOWS directory:

DataAccess=1‘

The DatabaseName Property ,

The data control locates the database through the DatabaseName property. If you
- . are connecting to a dBASE, Paradox, or Btricve, database, set the DatabaseName
property to the directory that contains the database files.

Datal.DatabaseName = =c:\walkthru\nwing.mdb*

The RecordSource Property

The RecordSource property indicates the naine of a lable, query or it contains the'
text of an SQL string.

The following example connects the data control Lo the Employees table:

Datal.RecordSource = "Employees”

The following example retricves a subsct of the Employees table.

'_'»;Dafa;.necordSource = "Select * from Employees where [Last Name] > 'M'"

v

280 ' Module 13: Data Access Using the Data Control

Joining Two Tables

The lolowing example joins two Lables. Thc brackets are used with fields that have
a space in the name;

Datal ,RecordSource = "Select customers.[Customer Id}.
AlContact Kame], [Order Id]
AFrom Customers, Orders
svWhere Customers.[Customer Id} =
AOrders. [Customexr Id)"

Ordering the Records S

The following example selects only some of lhe fields in the Employees table and
orders the records by last name:

Datal.RecordSource = “Select [First Mame], [Last Name] from
ABnmployees Order by [Last Name)*

bt i .

Modute 13: Dala Access Using the Data Control

281

Binding Controls to the Data Control

. .DataSource = Datal
LastName: | Qe Dataricld = Last Name

IRET

Example

Binding Controls to the Data Control

The texi, picture, image, check box, masked edit, 3D panel, and 3D check box

controls can be bound to a data control. When a contro! is bound to a data control,

the data from the database is automatically displayed in the bound control. In
addition, if the user changes the data in the bound control, those changes are
automatically posted to the database as the user moves to another row,

~To bind a contro! to a data control, set the DutaSource property to the data control

name and sct the DataField property to a field name from-the data control's table.

‘*The DataSource property must be set at deslyn :ipe:
Textl.DataSource = Datal

'The DataFlield property can be set-.at -design or run time

' Textl.DataField = *[Last Name)* - e

e ———

Y e ST

[N

o e

282 - Module 13: Data Access Using the Data Control

Data Control Walkthrough o .

Last Name:

L

First Name:

Data Control Walkthrough

“To get a quick overview of the data control, let’s create a simple application that

* connects to the_:'Microsofl Access Northwind database and browses the Employees
table:

1. Start with a new project and add the data control to the form; leave the default
name Datal.” "' : ' C
2. Sctthe fo]loivﬁm properties for Datal:

DatabaseName = cawalkthru\nwind.mdb
RecordSource = Employees

Note When you set the DatabaseName at design time, Visual Basic attempts to
connect to the database. If it successfully connects to the database, it will display a
list of possible values for the RecordSource property. Notice when you set the
RecordSource property, you can type data in directly or choose the DOWN ARROW o
display a list of possible selections.

3. Addtwo text boxes to the form; leave the names Text1 and Texi2.
4. Set the following propenties for Texul:

DutaSource = Datal
Ditalield = Last Name

' 5. Set the following properties for Text2:

DBataSource = Datal
DataField = First Name

6. Run your application!

{continued on following page)

— e —

Module 13: Data Access Using the Data Control 283

7. Click the right acrow button to move forward, left arrow button to move
backward,

8. Change a last name, ciick the right arrow button to move forward, and then click
the left arrow button to move back. The record should be updated.

9. Notice you have not written a single line of code!

e e — e e -

284 Modulé 13: Data Access Using the Data Contro!

Data Control Methodé and Propertie§ |

» Refresh Method
=« Connect

. Exclﬁsive) _
ReadOnly | -

Refresh Method

The data control reflects modifications to existing data by other users but does not
reflect records deleted or added by other users, The Refresh method updates the
data control with the latest information from the database.

Datal. l Refresh.

Connect Property

The Connect property indicates the type of database that will be opened. The
Connect property doces not need to be set if you are connectmg to a Microsoft
Access database.

Database format Database name Connect

Microsult Access drive\path\file.mdb {none)

dBASE _ drive:\path\ "dbase IIL;" or "dbase TV;"

Parackox drive:\pathy - "paradox;”

Birieve éJrivc:\pa:h\ : © "birieve;"

opBC Registered data source "odbe;dsn=darasource:vid=
name (server) user,pwd=password"”

(Professional Edition only)

Exclusive Property : -

- 1f you set the Exclusive property to True and then open the databasg, no other
application will be allowed to open the database until you close the database. If
another application has the database open and you attempt.to open the database
with Exclusive set to True, your application will receive a run-time error,

.- ~ReadOnly Property
- S 77" you set the ReadOnly property to True, your application will not be. allowed to
-wrile to the database.

* . - Module 13: Data Access Using the Data Control i 285

A Sample Application

= §] h applicatio <;f 9‘,‘3
ID Number - ;its innaE] [ENet
I R v M cerree
[Davofiod e

© ([Foseied] [reE]
Firet Name)

poncrs =) [eang] [

fifiqJ0atal . It'_]‘m ‘

A Sample Application

Here is a sample application that adds, finds, updates and deletes records from u
database.) " : -

The details on how to code this application are beyond the scope of this'class.
However, you may find this application useful as an exampie.

The demonstration program DBSAMPLE . MAK is located in the
\WALKTHRWUDBSAMPLE directory.

286 Module 13: Dala Access Using the Data Control

>, Summary

e 1E k- I y
st "
DI) Overwew of a Database . , §

How Does Visual Basnc Access Databases"
The Data Control

.) Bmdmg Controls to the Data Ccmtrol 2
. Data Control Walkthru
= Data Controi Methods and Properties
ITIRNN ,‘?1-\ i
i i

