UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE LICENCIATURA INGENIERÍA MECÁNICA

TESIS: ACOPLAMIENTO DE FUENTES DE POTENCIA EN UN BANCO DE PRUEBAS PARA VEHÍCULOS HÍBRIDOS

PRESENTA: MAURICIO VARELA ESCAMILLA

TUTOR: DR. LUIS AGUSTÍN ÁLVAREZ-ICAZA LONGORIA, II-UNAM

> CODIRECTOR: M.I. GUILLERMO BECERRA NUÑEZ

MÉXICO, D. F., MAYO DE 2015

JURADO ASIGNADO

Presidente: M. I. ANTONIO ZEPEDA SÁNCHEZ

Secretario: ING. MARIANO GARCÍA DEL GÁLLEGO

Vocal: DR. LUIS AGUSTÍN ÁLVAREZ ICAZA LONGORIA

1er. Suplente: M.I. JUAN CARLOS CEDEÑO VÁZQUES

20. Suplente: M.I. GUILLERMO BECERRA NUÑEZ

La tesis se realizó en el Instituto de Ingeniería, UNAM.

TUTOR DE TESIS:

Dr. Luis Agustín Álvarez-Icaza Longoria

AGRADECIMIENTOS

Gracias a mis padres por haber inculcado el deseo de superación, gracias a mi padre por estar al pendiente, pero sobre todo gracias mamá por haber sido tan dura conmigo, por hacerme entender que lo que vale la pena en la vida solamente se puede lograr con trabajo arduo y por ser la mejor mamá del mundo. A mi hermana Paulina por quererme y tenerme confianza. Héctor ... la persona mas importante de todas, la que nunca se rinde y siempre lucha.

Gracias a Guillermo por brindarme un tema de tesis, tenerme paciencia y atención en todo momento. Por el seguimiento y guía de este trabajo al doctor Luis Álvarez y su excelente atención.

También esta dedicada a mis primos hermanos Luis, Karen, Rocio, David, Víctor, Miguel, Rafa... somos muchísimos.

Muchísimas gracias a mis amigos que me acompañaron durante la realización de este trabajo: Javier Omar, Jonathan, Josue Sr. Pérez, Hermes, Andrea, Anaid, Tania, Luis Fernando, Joaquín, Gimmel, Ricardo... y muchas personas que me falta mencionar, he aprendido mucho de ustedes gracias por su ayuda y consejos como amigos y compañeros de clase, los quiero.

Gracias a Julieta por recorrer este camino conmigo, por demostrarme que es posible alcanzar un objetivo cuando estas inspirado debido al cariño incondicional.

Gracias abuelo Arturo, que aunque no estés con nosotros, siempre vas a ser mi modelo a seguir, voy a ser como tu.

A mi universidad, a mis profesores que fueron muy duros y aquellos que forjaron mi pensamiento crítico y brindaron conocimiento.

A todos ustedes gracias por hacerme disfrutar de la vida y sus desafíos.

RESUMEN

En esta tesis se presentó un diseño para los acoplamientos mecánicos de los motores en un banco de pruebas para vehículos eléctricos híbridos que se fabricarán en el Instituto de Ingeniería, el presente trabajo forma parte de un proyecto general que engloba previos desarrollos en diferentes áreas de la ingeniería, así como futuras lineas de investigación interdisciplinarias.

La tesis consta de teoría y antecedentes del diseño de detalle para saber como se seleccionaron los acoplamientos en una parte del banco de pruebas, cabe mencionar que el proceso de diseño se llevó a cabo de acuerdo con bibliografía y manuales consultados en Internet para obtener un diseño seguro y capaz de ser fabricado en el laboratorio. Se obtuvo un diseño funcional cuyas características son congruentes y acordes a las especificaciones de los motores presentes en el laboratorio de electromecánica.

Índice general

1	Intro	ducción	1
	1.1.	Motivación	3
	1.2.	Contribución de la tesis	4
2	Banc	co de pruebas para vehículos híbridos	5
	2.1.	Configuraciones de vehículos híbridos eléctricos	6
	2.2.	Acoplamientos mecánicos	8
	2.3.	Sistema de engranes planetario (SEP)	10
	2.4.	Descripción general del banco de pruebas	13
	2.5.	Configuración del sistema	14
	2.6.	Especificaciones	18
3	Teor	ía para el diseño de los elementos del banco de pruebas	21
	3.1.	Cálculo de árboles y ejes	21
	3.2.	Fuerzas de flexión producidas por correas y cadenas	21
	3.3.	Proceso de diseño	21
		3.3.1. Proceso de diseño para los ejes	22
		3.3.2. Carcaza	24
	3.4.	Materiales para fabricar ejes	26
	3.5.	Teorías de falla	28
		3.5.1. Tipos de cargas	28
		3.5.2. Análisis para cargas cíclicas	30
4	Ante	cedentes para el diseño de detalle	32
	4.1.	Diagramas de fuerza cortante y momento flexionante	32
	4.2.	Teorías de falla: Línea de Soderberg y ASME elíptica	36
	4.3.	Ecuación de Marin	39
	4.4.	Cálculo de esfuerzos máximos y mínimos	42
	4.5.	Velocidades críticas en ejes giratorios	45

Índice general

 5 Selección de los acoplamientos para el banco de pruebas 5.1. Diagramas de fuerza cortante y momento flexionante 5.2. Resumen del diseño de los ejes 5.3. Procedimiento y elección de rodamientos 5.4. Selección de los acoplamientos flexibles 5.5. Componentes diversos de los ejes 5.5.1. Chavetas 5.5.2. Anillos de retención 5.5.3. Retenes 5.6. Configuración final del banco de pruebas 	
6 Conclusiones	79
Apéndice	83
A. Diseño de detalle de los acoplamientos para el banco de pruebas	
A.1. Diagramas de fuerza cortante y momento flexionante	
A.2. Cálculo del diámetro mínimo del eie en el engrane solar	
A.2.1. Ecuación de Marin	
A.2.2. Cálculo de esfuerzos máximos y mínimos	90
A.2.3. Velocidades críticas en eies giratorios	
A.2.4. Resumen del diseño del eje solar	
A.3. Cálculo del diámetro mínimo del portaplanetas a la salida del sis	stema . 98
A.3.1. Ecuación de Marin	99
A.3.2. Diagrama de cuerpo libre, Diagrama de fuerza cortante	v Mo-
mento flexionante	101
A.3.3. Cálculo de esfuerzos máximos y mínimos	101
A.3.4. Velocidades críticas en ejes giratorios	104
A.3.5. Resumen del diseño del eje en el portaplanetas	108
A.4. Cálculo del diámetro mínimo del eje en motor eléctrico	109
A.4.1. Ecuación de Marin	109
A.4.2. Cálculo de esfuerzos máximos y mínimos	112
A.4.3. Velocidades críticas en ejes giratorios	114
A.4.4. Resumen del diseño del eje en el motor eléctrico	117
A.5. Sistema de transmisión por banda V	120
A.5.1. Bandas V	124
A.6. Selección de rodamientos	128

	A.6.1.	Selección de rodamientos para el eje en el engrane solar 130	0
	A.6.2.	Selección de rodamientos para el portaplanetas	2
	A.6.3.	Selección de rodamientos para el eje del motor eléctrico 134	4
A.7.	Selecci	ón de acoplameintos	5
	A.7.1.	Acoplamiento flexible para el motor de combustión interna 13:	5
	A.7.2.	Acoplamiento para el motór eléctrico	6
	A.7.3.	Acoplamiento para el dinamómetro	7
A.8.	Compo	nentes diversos de los ejes	9
	A.8.1.	Chavetas	9
	A.8.2.	Anillos de retención	9
	A.8.3.	Retenes	9
B Apén	dice B		0
B.1.	Figuras		0
	B.1.1.	Bandas V	0
B.2.	Planos		3
	B.2.1.	Detalles del Engrane y eje solar	3
	B.2.2.	Elementos de sujeción	4
	B.2.3.	Portaplanetas	5
	B.2.4.	Carcasa del portaplanetas	7
	B.2.5.	Ensamble	8
B.3.	Tablas		8

1. INTRODUCCIÓN

Las tendencias de las tecnologías sostenibles apuntarán a reducir el consumo de combustibles fósiles en la industria automotriz. Un problema que ésta enfrenta es la contaminación del aire que se produce cuando algunos gases tóxicos reaccionan con las partículas de la atmósfera, dañando la salud los seres vivos. La solución inmediata consiste en una transición de tecnologías que permite utilizar como fuente primaria la energía eléctrica. Mientras eso sucede la alternativa que la industria provee es el desarrollo de vehículos híbridos los cuales ya han sido fabricados con éxito para el mercado.

Los vehículos híbridos permiten la conversión de energía térmica y eléctrica en energia mecánica. La investigación en México aún es joven y da oportunidad a los vehículos eléctricos híbridos de ser la solución a los problemas de autonomía del vehículo. Lo anterior da lugar a nuevas investigaciones y desarrollos tecnológicos en diferentes sectores como es el de la industria automotriz. Para permitir dicha conversión de energía se utiliza en las cajas de cambio automáticas un sistema de engranes que es capaz de transmitir y distribuir la potencia a cada componente que conforma el motor híbrido.

El presente trabajo de investigació utiliza el proceso de diseño para ejes, el cual inicia al verificar los requisitos de potencia y par de torción, además finaliza con el resumen de los acoplamientos conectados al sistema de engranes planetario (SEP), los acoplamientos son los ejes y sus componentes que se ven reflejados como resultado en los planos del apéndice. La integración de este conocimiento servirá para la fabricación de elementos del banco de pruebas del laboratorio de electromecánica. Una parte del banco de pruebas consiste en un sistema epicicloidal el cual comunica a las dos fuentes de potencia (dos motores) con el dinamómetro, y se necesita diseñar los ejes y sus componentes conectados a los engranes del SEP.

El diseño comenzó a partir de la obtención de los parmetros geométricos de los motores y el dinamómetro del laboratorio acorde a sus especificaciones. Los trabajos previos realizados proporcionan cómo es que se distribuye la potencia en un vehículo híbrdo y la geometría de los engranes del sistema epicicloidal. La parte medular de la tesis

Fig. 1.1: Banco de pruebas para vehículos híbridos

consiste en calcular la geometría de los ejes con su respectivo material y componentes mecánicos.

Los elementos diseñados en esta tesis fueron los ejes, portaplanetas, carcasa y sistema de trasmisión por banda. Cabe mencionar que "componentes de los ejes"hace referencia a rodamientos, anillos de retención, cuñas, sellos y coples flexibles. El diseño de detalle se centra únicamente en la sección señalada de la propuesta del banco de pruebas con un ovalo en la figura 1.1 de la configuración propuesta, más adelante se explicará en qué consiste cada parte numerada del dibujo. No se pretende analizar el sistema de lubricación de los engranes y demás sistemas de acoplamiento (como el embrague, sistemas electrónicos e hidráulicos) que controlan el movimiento de una caja de transmisión automática epicicloidal.

Inicialmente el capítulo 2 trata de los componentes del SEP y su principio de funcionamiento, también se hace una descripción del banco de pruebas y se observa una configuración inicial con las dimensiones reales a escala de los motores, dinamómetro y el SEP. El siguiente capítulo proporciona la teoría de los elementos del banco de pruebas como el proceso de diseño de los ejes y las teorías de falla. Después son proporcionadas las ecuaciones utilizadas para el diseño de detalle, que son fundamentales para comprender parte de la memoria de calculo realizada a detalle en el apéndice, con ayuda de este capítulo se puede comprender que:

 Se realizó el cálculo del diámetro correspondiente a los ejes acoplados a los engranes solar, planetario y corona del sistema.

- Fue seleccionado el material de acuerdo a las recomendaciones de la bibliografía.
- Se calcularon las velocidades críticas de los ejes, las cuales nos indican el comienzo de las vibraciones en el banco de pruebas.

Finalmente en el ultimo capítulo se proporciona el resumen del diseño de detalle de los ejes acoplados a los engranes, la selección de sus componentes y la configuración final del banco de pruebas.

1.1. Motivación

Durante mi estancia de servicio social en el laboratorio de electromecánica del Instituto de Ingeniería enriquecí mi formación académica aprendiendo el uso de las máquinas-herramienta. En dicho laboratorio se encuentra un dinamómetro de corrientes parásitas que ha servido para realizar diversas pruebas para un proyecto que tiene como línea de investigación los vehículos híbridos eléctricos. Mi interés por dicha línea es compartido con el doctor Luis Álvarez y Guillermo Becerra, ambos tienen la idea de construir un banco de pruebas.

Como apoyo de investigación en el Instituto de Ingenieriía se pretende construir un banco de pruebas, donde el presente trabajo apoya en el diseño de ejes y sus acoplamientos para integrar un sistema de engranes planetario que acopla dos motores con la tracción para simular el comportamiento, la obtención de modelos y comprobación de los mismos.

Mi interés por el diseño en esta parte del sistema me ayudará a diseñar transmisiones en diversos tipos de vehículos (en este caso el proyecto está encaminado a el diseño de un autobús hibrido en el Instituto de Ingeniería de la UNAM).

Actualmente se tiene en el laboratorio un motor eléctrico, un motor de combustión interna y un conjunto de frenos que pueden ser empleados para realizar el banco de pruebas. La configuración del banco consiste en tener a la entrada el motor de combustión interna (MCI) y el motor eléctrico (ME) mediante un acoplamiento mecánico, y a la salida del sistema el dinamómetro de corrientes parásitas. El acoplamiento consiste en un sistema de engranes planetarios (SEP) cuyas dimensiones y requerimientos de potencia ya han sido calculadas y servirán como datos para obtener los diámetros de los ejes acoplados al SEP. "El diseño se inicia partiendo de una relación de transmisión en el planetario y conociendo los parámetros sobre los cuales trabajan los motores" (Martínez, 2014, p. 31).

1.2. CONTRIBUCIÓN DE LA TESIS

Objetivo general:

Proponer un diseño para el acoplamiento de los elementos que componen un vehículo eléctrico híbrido en un banco de pruebas. Diseñar el banco de pruebas en la sección que comunica al sistema de engranes planetario con el motor eléctrico, de combustión interna, y el dinamómetro de corrientes parásitas del laboratorio de electromecánica.

Objetivo particular:

Proponer la configuración de los acoplamientos que comuniquen al MCI y ME y realizar el diseño de detalle en la sección señalada de la configuración propuesta.

1.2. Contribución de la tesis

Se propone un diseño con el cual se pretende la continuidad y formalidad de futuras investigaciones en el laboratorio de electromecánica para validar los modelos matemáticos y compararlos con los resultados experimentales.

Debido a que el diseño tiene amplia posibilidad de llegar a la etapa de fabricación, como contribución se proporciona un diseño seguro cuyos componentes de las flechas son considerados los definitivos ya que son elementos comerciales que se pueden encontrar en nuestro país.

2. BANCO DE PRUEBAS PARA VEHÍCULOS HÍBRIDOS

En el presente capítulo se toma en cuenta, para el diseño, el tipo de acoplamientos y las configuraciones que existen en los vehículos eléctricos híbridos. El sistema de engranes planetario (SEP) forma parte de los acoplamientos por lo que se describen de manera somera sus componentes (sol, planetas, corona) y las relaciones que explican su principio de funcionamiento.

Mediante la descripción general y la configuración del sistema se puede visualizar de manera rápida como se acoplarán el motor de combustión interna (MCI) y el motor eléctrico (ME) con el dinamómentro.

Existe un conjunto de especificaciones que son tomadas en cuenta durante la fase de diseño y que son empleadas para seleccionar los acoplamientos flexibles y que también son utilizadas para realizar cálculos en los ejes debido a la transmisión de cargas en los engranes durante la operación de los motores.

Trabajos previos

Las investigaciones previas realizadas por Becerra (2010) resolvieron problemas relacionados con la distribución de potencia requerida en el SEP entre las dos fuentes de potencia (motores) para poder economizar la demanda del combustible, aunque fueron planteadas diversas soluciones. El tren epicicloidal fue la que se tomó en cuenta para la continuación de la investigación, y por lo tanto como trabajo previo se realizó la investigación de licenciatura que fue diseñar el sistema de engranes planetario mediante las especificaciones de potencia, par y velocidad angular, parámetros geométricos y el diseño para prevenir fallas Martínez (2014).

2.1. CONFIGURACIONES DE VEHÍCULOS HÍBRIDOS ELÉCTRICOS

2.1. Configuraciones de vehículos híbridos eléctricos

De acuerdo a Friedrichshafen (2014) existen tres tipos distintos de arquitecturas híbridas: paralela, en serie y de repartición de potencia. La estructura paralela acepta etapas de hibridización gradual. Además del sistema híbrido completo, también es posible tener microsistemas híbridos y sistemas híbridos intermedios.

Arquitectura híbrida paralela

En el caso de la arquitectura híbrida paralela, la transmisión del motor de combustión y la transmisión eléctrica están conectadas en paralelo. Se pueden usar juntas o por separado. El sistema híbrido paralelo puede funcionar con un solo motor eléctrico, lo cual representa un ahorro de costos. Además, el motor eléctrico se puede instalar en la caja de la transmisión para ahorrar espacio. Esto tiene la ventaja de que se pueden usar las transmisiones disponibles, con los beneficios que ellas aporten en cuanto a la dinámica de conducción.

Fig. 2.1: Arquitectura híbrida paralela

6

2.1. CONFIGURACIONES DE VEHÍCULOS HÍBRIDOS ELÉCTRICOS

Arquitectura híbrida en serie

La transmisión híbrida en serie no cuenta con unión mecánica entre el motor de combustión y las ruedas. El motor de combustión, conectado a un generador, tiene el objetivo único de generar potencia. La potencia propulsora se comunica del generador a los ejes de transmisión o directamente a las ruedas a través de uno o más motores eléctricos. Esto significa que el motor de combustión siempre funciona en el punto ideal, incluso si se requieren velocidades altas para el arranque y la aceleración.

Fig. 2.2: Arquitectura híbrida en serie

Arquitectura híbrida de repartición de potencia

La transmisión híbrida de repartición de potencia trabaja con dos motores eléctricos. Al igual que el tipo híbrido en serie, parte de la potencia propulsora de los motores de combustión se convierte a través de estos motores y es alimentada al eje de salida; otra parte se transfiere mecánicamente. La distribución de la potencia en las dos trayectorias depende de las condiciones de funcionamiento. Una transmisión planetaria sirve como interruptor para la distribución de la energía mecánica y eléctrica. Una unidad de control central emite las órdenes para esta complicada tecnología. Dentro de este

INGENIERÍA MECÁNICA

2.2. ACOPLAMIENTOS MECÁNICOS

sistema complejo, el motor de combustión puede funcionar en los puntos de operación favorables y se pueden diseñar los motores eléctricos de menores dimensiones en comparación con el sistema híbrido en serie.

Fig. 2.3: Arquitectura híbrida de repartición de potencia

2.2. Acoplamientos mecánicos

Los acoplamientos tienen por función prolongar líneas de transmisión de ejes o conectar tramos de diferentes ejes, estén o no alineados entre sí. Para llevar a cabo tales funciones se disponen de diferentes tipos de acoplamientos mecánicos, los cuales se clasifican en:

- Acoplamientos Rígidos: La conexión hace de dos ejes uno solo. Este acoplamiento no permite vibraciones ni movimientos axiales y radiales de un eje con respecto al otro.
- Acoplamientos flexibles: Son acoplamientos capaces de absorber pequeñas vibraciones y deslizamientos entre los ejes.

2.2. ACOPLAMIENTOS MECÁNICOS

- Acoplamientos especiales o articulados: Sirven para conectar a dos ejes que durante la conexión cambian el ángulo de alineación entre sí.
- Embragues: Son acoplamientos en los cuales el movimiento entre el eje conductor y conducido se puede acoplar y desacoplar, sin la necesidad de detener la marcha.
- Acoplamientos de engranes: Estos acoplamientos combinan dientes de engranes rectos externos y curvos con dientes internos. Suelen permitir un deslizamiento axial sustancial dependiendo de las formas de los dientes, también puede tolerar cierto desplazamiento angular. Debido a la cantidad de dientes actuando en forma conjunta pueden transmitir torque muy elevados de acuerdo a Piovan (2014)).

Acoplamientos de eje

Existen diversas clasificaciones de acoplamientos, una de ellas se refiere a el acoplamiento de ejes.

Fig. 2.4: Esquema de la clasificación de los acoplamientos de eje

2.3. SISTEMA DE ENGRANES PLANETARIO (SEP)

2.3. Sistema de engranes planetario (SEP)

Martínez (2014) señala que "El sistema de engranes planetario, también llamado epicicloidal, es utilizado en las cajas de cambio automáticas. Este sistema está accionado mediante sistemas hidráulicos o electrónicos que accionan frenos y embragues que a su vez controlan los movimientos de los distintos elementos. Los elementos de este sistema son:

- Sol (S)
- Planetas (P)
- Portaplanetas
- Corona (C)

En el interior (centro), el sol gira en torno de un eje central y a su vez los planetas engranan en el dentado del sol. Además los planetas pueden girar tanto en torno a su propio eje como también en un circuito alrededor del sol. Los planetas se alojan con sus ejes en el portaplanetas. El portaplanetas inicia el movimiento rotatorio de los planetas alrededor del sol; con ello, lógicamente, también en torno del eje central. Y la corona engrana con su dentado interior en los planetas y encierra todo el tren epicicloidal. El eje central es también centro de giro para la corona "(p. 25).

Fig. 2.5: Sistema de engranes planetario (SEP)

Estos tres componentes (sol, planeta y corona) del tren epicicloidal pueden moverse libremente sin transmitir movimiento alguno, pero si se bloquea uno de los componentes, los restantes pueden girar, transmitiéndose el movimiento con la relación de transmisión resultante según la relación existente entre sus engranes. Si se bloquean dos de los componentes, el conjunto queda bloqueado, moviéndose todo el sistema a la velocidad de rotación recibida por el motor.

Las relaciones de transmisión que se pueden obtener en un tren epicicloidal cambian si ante una entrada o giro de uno de sus elementos existe otro que haga una reacción. En función de la elección del elemento que hace de entrada o que hace de reacción se obtienen cuatro relaciones distintas. Por lo que el funcionamiento de un tren epicicloidal es el siguiente:

2.3. SISTEMA DE ENGRANES PLANETARIO (SEP)

Fig. 2.6: Funcionamiento del SEP (Martínez, 2014, p. 26)

- 1a relación: Si el movimiento entra por el sol y se fija la corona, los planetas se ven arrastrados por su engrane con el sol rodando por el interior de la corona fija. Esto produce el movimiento del portaplanetas. El resultado es una desmultiplicación del giro de forma que el portaplanetas se mueve de forma mucho más lenta que el sol o entrada.
- 2a relación: Si el movimiento entra por la corona y se fija el sol, los planetas se ven arrastrados rodando sobre el sol por el movimiento de la corona. El efecto es el movimiento del portaplanetas con una desmultiplicación menor que en el caso anterior.
- 3a relación: Si el movimiento entra por el sol y, la corona o el portaplanetas se hace solidario en su movimiento al sol mediante un embrague entonces todo el conjunto gira simultáneamente produciéndose una transmisión directa girando todo el conjunto a la misma velocidad que el motor.
- 4a relación: Si el movimiento entra por el sol y se fija el portaplanetas, se provoca el giro de los satélites sobre su propio eje y a su vez estos producen el movimiento de la corona en sentido contrario, invirtiéndose el sentido de giro y produciéndose una desmultiplicación grande.

2.4. DESCRIPCIÓN GENERAL DEL BANCO DE PRUEBAS

1	<i>ab.</i> 2.1. 1 unciona	unicitio dei dei bi	stema de engrand	is planetario.
Relación	Corona	Sol	Portaplanetas	Desmultiplicación
1^a	Fija	Salida de fuerza	impulsión	grande
2^a	Salida de fuerza	Fijo	Impulsión	menor
3^a	Fija	Fijo	Salida de fuerza	sin desmultiplicación
4^a	Impulsión	Salida de fuerza	Fijo	Inversión de giro

Tab. 2.1: Funcionamiento del del Sistema de engranes planetario.

 5a relación: Debido a la configuración del banco de pruebas establecemos ésta relación en donde todos sus elementos del SEP giran libremente, esta configuración surge de la necesidad de transmitir potencia a través de la corona.

Invirtiendo la entrada y la salida en las relaciones de desmultiplicación se obtendrían relaciones de multiplicación.

Estas relaciones se podrían identificar con las típicas marchas de un cambio manual, sin embargo, se necesitarían para ello distintos árboles motrices por lo que en la aplicación de un tren epicicloidal a un automóvil las posibilidades se reducen a dos marchas hacia adelante y una hacia atrás. La entrada del par motor se realizaría por el sol y la salida por el portaplanetas o la corona. La primera relación descrita y la tercera serían la 1a marcha y la directa respectivamente y la cuarta relación sería la marcha atrás.

2.4. Descripción general del banco de pruebas

El banco de pruebas para vehículos híbridos está en el laboratorio de electromecánica en el Instituto de Ingeniería. Inicialmente comenzaron las pruebas con el dinamómetro el cual tiene características adecuadas para realizar las mediciones de ciclos de manejo, pues el dinamómetro resiste el par correspondiente de los motores. Este elemento está fijo sobre unos rieles que permiten su desplazamiento axial en su eje de trasmisión. El sistema de engranes planetario comunicará en forma paralela el motor elélctrico y el motor de combustión interna con la finalidad de poder realizar las pruebas de flujo

INGENIERÍA MECÁNICA

de potencia. Es necesario idear un banco capaz de soportar las cargas dinámicas y las vibraciones. Sin embargo un análisis de vibraciones conlleva a un análisis más minucioso y por ende solo se calculará la velocidad crítica para tener un cálculo que haga seguro su diseño cuando el banco esté operando a los valores máximos y nominales del MCI o el ME.

2.5. Configuración del sistema

El banco de pruebas simulará el sistema de propulsión de un VEH con la configuración paralelo el cual utiliza el sistema de engranes planetario. Como ventajas permiten controlar los flujos de potencia del vehículo, reducir las pérdidas y aprovechar mejor la energía mediante el freno regenerativo.

La forma de conectarlos es la siguiente:

- El motor de combustión interna (MCI) se conecta al sol.
- El motor eléctrico (ME) se conecta a la corona.
- El diferencial se conecta al portaplanetas.

Mediante frenos y embragues se acoplarán los motores y el diferencial al sistema planetario, permitiendo esto acoplar y desacoplar el MCI cuando no se requiera, dejando en funcionamiento únicamente el ME.

Cabe mencionar que los embragues y frenos se manejan mediante un sistema de control que a su vez, permitirá obtener los datos del flujos de potencia en el tren de propulsión híbrido ahorrando combustible y obteniendo una mayor eficiencia del vehículo.

Propuesta inicial del banco de pruebas

Se pretende diseñar el banco de pruebas para contactar los dos motores utilizando elementos de transmisión de potencia como acoplamientos flexibles. El diseño de detalle se observará a medida que evolucione la memoria de cálculo.

2.5. CONFIGURACIÓN DEL SISTEMA

La figura 2.7 muestra la propuesta para el banco de pruebas de la arquitectura híbrida de configuración paralela. Con color amarillo se representa el motor de combustión interna junto con su eje que transmite la potencia a través del engrane solar (que está de color amarillo núm. 1). Por otra parte el portaplanetas es una pieza sólida que mantiene fijos los engranes planetarios (los tres cuyo color es azul), el eje de transmisión de potencia es el indicado de color azul, y a su vez se conecta con el dinamómetro de corrientes parásitas (pieza dibujada en color azul num.2). La corona del sistema de engranes planetario está dibujada de color verde, la potencia es transmitida a través del motor eléctrico (elemento en color verde núm. 3). El sistema de transmisión es un sistema de transmisión por banda debido a su amplia disponibilidad en el mercado, precio y principalmente es propuesto debido a que no requiere de un sistema de lubricación. Se emplean en el banco tres frenos electromecánicos (piezas dibujadas en color cafe) y un embrague colocado en el eje del motor de combustión interna. Los componentes diversos de los ejes como rodamientos, retenes, anillos de retención serán descritos con mayor detalle conforme avance el cálculo de los diámetros permisibles de los ejes. Otro aspecto importante es que al fondo del dibujo se ilustra de manera incompleta otra sección del banco de pruebas que consiste en representar la masa del vehículo híbrido por medio de unos volantes de inercia. Pero esta tesis se enfoca sólamiente al diseño de los acoplamientos alrededor del SEP.

2.5. CONFIGURACIÓN DEL SISTEMA

Fig. 2.7: Propuesta inicial general de diseño para incorporar todos los elementos en el banco de pruebas.

Las dimensiones de los elementos son aproximadas pero se puede empezar con el diseño haciendo estimaciones de la distancia entre centros para el cálculo de las bandas, las distancias adecuadas para colocar el ME y el MCI de acuerdo al tamaño indicado en sus respectivos catálogos, ademas de la geometría de los de los frenos electromecácnicos y otros elementos ya disponibles.

Dicha propuesta está sujeta a cambios ya que debe ser un sistema flexible. La parte medular consiste en diseñar una caja de engranes capaz de resistir los requerimientos del banco de pruebas, en este caso se necesitará calcular magnitudes escalares y vectoriales para tener un diseño seguro en los ejes a la entrada y salida del sistema.

2.5. CONFIGURACIÓN DEL SISTEMA

Primer propuesta de la caja de engranes. (Planetary Gear Box dessign).

Fig. 2.8: Propuesta inicial para la caja de engranes.

El SEP consiste en el engrane solar (amarillo), planetas (azul fuerte), corona (verde) y el portaplanetas que es la pieza de color azul claro. Dicha pieza debe ser capaz de soportar las solicitaciones y se pretende que soporte cargas radiales que ocasionan que el banco de pruebas esté sometido a flexión. Una polea o algún otro tipo de dispositivo tendrá que conectarse a la corona para emplear el sistema de transmisión por bandas. Los rodamientos junto con los retenes forman parte de los otros componentes y se colocarán sobre unas placas de metal que fijarán la carcaza del SEP para impedir el movimiento axial del banco. En la ilustración se puede observar de manera somera dichas placas en los extremos del SEP y la caja de engranes.

2.6. Especificaciones

Las especificaciones son datos o variables clave utilizadas en el diseño que consisten en una métrica y un valor o unidad de medida (por ejemplo; métrica: precarga, unidad: [N]). En esta tesis se presentan métricas y unidades en función de la información proporcionada por el fabricante y cálculos hechos durante investigaciones previas.

P		
Portaplanetas (salida del SEP)	Nominal	Máximo
Velocidad angular $\omega[rpm]$	2250	4437.5
Velocidad angular $\omega[\frac{rad}{s}]$	2235.619	464.619
Par $T[N.m]$	142.395	116.79
Potencia $P[KW]$	33.551	54.271
Potencia $P[HP]$	45.617	73.788
Relación de transmisión K	-5	-5
Velocidad angular de la llanta $\omega_{llanta}[rpm]$	750	1479.167
Velocidad angular de la llanta $\omega_{llanta} \left[\frac{rad}{s} \right]$	78.539	154.898

Tab. 2.2: Datos de la salida del planetario

La tabla de datos de salida del SEP corresponde a un conjunto de valores que fueron calculados en una investigación previa a partir de el diseño para prevenir fallas y la cinemática del engrane planetario (Martínez, 2014, p. 63). Es importante mencionar que existen valores nominales y máximos debido al régimen de opeación del MCI y el ME, sin embargo para los ejes se escoge el valor cuya magnitud sea mayor sin importar si es un valor máximo o nominal.

Tab. 2.3: Datos de operación del MCI

Motor de	Velocidad	Velocidad	Potencia	Potencia	Par
combutión interna	Angular $\omega[rpm]$	Angular $\omega[\frac{rad}{s}]$	[kW]	[HP]	[N*m]
Nominal	6000	628.319	21.551	29.301	34.299
Máximo	7250	759.218	2427.1 6	32.999	31.96.8

2.6. ESPECIFICACIONES

	100. 2.4. Dutos	de operación del mo	tor de creen	100	
Motor	Velocidad Angular	Velocidad	Potencia	Potencia	Par
Eléctrico	$\omega[rpm]$	Angular $\omega[\frac{rad}{s}]$	[kW]	[HP]	[N*m]
Nominal	3000	314.159	12	16.315	38.19.7
Máximo	5000	523.599	30	40.789	57.296

Tab. 2.4: Datos de operación del motor de eléctrico

A continuación se muestra información que se usa en la configuración del banco de pruebas.

D1105-T-	E3B	
GENERAL S	PECIFI	CATION
Model		D1105-T-E3B
Emission Regulation	1	Interim Tier 4 / Stage II A
Туре		Vertical 4-cycle Liquid Cooled Diesel
Number of Cylinders	i .	3
Bore	mm (in)	78.0 (3.07)
Stroke	mm (in)	78.4 (3.09)
Displacement	L (cu.in)	1.123 (68.53)
Combustion System		IDI
Intake System		Turbocharged
Maximum Speed	rpm	3000
	kW	24.5
Output: Gross Intermittent	hp	32.8
	ps	33.3
Direction of Rotation		Counterclockwise Viewed on Flywheel
Oil Pan Capacity	L (gal)	5.1 (1.35)
Starter Capacity	V-kW	12-1.2 [US] / 12-1.4 [EU]
Alternator Capacity	V-A	12-40
Length	mm (in)	497.8 (19.60)
Width	mm (in)	433.0 (17.05)
Height (1)	mm (in)	626.0 (24.65)
Height (2)	mm (in)	227.6 (8.96)
Dry Weight	kg (lb)	97.0 (213.8)
"Specification is subject to cha "Output: Gross Intermittent SA "Dry weight is according to Kut When specification varies, the	lice. Ispecification. y accordingly.	

Fig. 2.9: Especificaciones y dimensiones del MCI modelo D1105-T-E3B

Fig. 2.10: Electric Motorsport, DS-PMAC

Consultar datos importantes del dinamómetro en el laboratorio de electromecánica del Instituto de Ingeniería UNAM.

Fig. 2.11: Eddy-current dynamometer, Model Number: 8060

3. TEORÍA PARA EL DISEÑO DE LOS ELEMENTOS DEL BANCO DE PRUEBAS

3.1. Cálculo de árboles y ejes

Un árbol de transmisión, llamado también árbol principal, es el que recibe la potencia de una máquina motriz y la transmite a máquinas conectadas por medio de correas o cadenas, usualmente desde varios puntos en toda su longitud. Los árboles de corta longitud que son partes de máquinas se llaman husillos (Faires, 1987, p. 337)

3.2. Fuerzas de flexión producidas por correas y cadenas

En la ecuación de potencia existe una fuerza impulsora neta que se manifiesta como la diferencia entre la fuerza de tracción de la correa en el ramal tirante o conducción F_1 y la tracción en el ramal flojo o conducido F_2 . Si se suman ambas tracciones se obtiene la fuerza flectora, que no es constante en una transmisión, si no que depende de la razón $\frac{F_1}{F_2}$, la cual varía con factores como la potencia transmitida, la velocidad y la tracción inicial de la correa. La fuerza de flexión ejercida por cadenas y engranes se suele tomar generalmente como la fuerza impulsora neta.

3.3. Proceso de diseño

Si un eje tiene montado sobre él varias ruedas dentadas o poleas, las diversas secciones del eje estarán sometidas a momentos de torsión diferentes a causa de que la potencia total entregada al árbol se toma fraccionariamente en varios puntos (Faires, 1987, Página 338). Entonces, se estudia la distribución del momento flector trazando los diagramas de momento flector y esfuerzos cortantes.

Se determina la sección en la cual el momento flector es máximo y la sección en el que el momento de torsión es igual al máximo. Si estos máximos ocurren en la misma sección se determina el diámetro necesario para ésta. Si no es de este modo se determina el diámetro correspondiente al máximo momento flector.

3.3.1. Proceso de diseño para los ejes

(Budynas and Nisbett, 2008, p. 915) explica que no existe una "secuencia precisa de pasos para algún proceso de diseño", sin embargo propone una serie de pasos a seguir:

Requisitos de potencia y par de torsión

Las consideraciones sobre potencia deben abordarse en primer lugar, ya que esto determinará las necesidades globales de dimensionamiento de todo el sistema. Cualquier relación de par de torsión o velocidad necesarias de entrada o salida deben determinarse antes de abordar las dimensiones de engranes/poleas.

Especificación de engranes

A continuación pueden abordarse las relaciones necesarias de engranes y cuestiones de transmisión de par de torsión para la selección de los engranes adecuados.

Diseño del eje

Se debe especificar el diseño general del eje, lo cual incluye la ubicación axial de los engranes y cojinetes. Es necesario tomar las decisiones acerca de cómo transmitir el par de torsión desde los engranes hasta el eje (cuñas, lenguetas, etc.), además de cómo mantener los engranes y cojinetes en su sitio (anillos de retención, ajustes de presión, tuercas, etc.).

Análisis de fuerzas

Una vez que se conocen los diámetros de engrane/polea, así como las ubicaciones axiales de engranes y cojinetes, pueden elaborarse los diagramas de cuerpo libre, fuerza de corte y diagramas de momentos.

• Selección del material del eje

Debido a que el diseño de fatiga depende de manera importante de la elección del material, por lo regular es más fácil efectuar primero una selección razonable del material, para después verificar si los resultados son satisfactorios.

Diseño del eje para esfuerzo (fatiga)

Se conocen los diagramas de momento de flexión y fuerza de corte, pueden predecirse las ubicaciones críticas, además se utilizan junto con las concentraciones aproximadas de esfuerzo para las estimaciones de los diámetros del eje permisibles.

Diseño del eje para deflexión

Debido a que el análisis de deflexión depende de toda la geometría del eje, se reserva hasta este momento. Con toda la geometría del eje estimada, las deflexiones críticas en las ubicaciones de cojinetes y engranes pueden verificarse mediante análisis.

Selección de cojinetes

Ahora pueden seleccionarse cojinetes específicos de un catálogo para satisfacer los diámetros estimados de ejes. Los diámetros pueden ajustarse ligeramente, según sea necesario para satisfacer las especificaciones del catálogo.

Selección de cuñas y anillos de retención

Con los diámetros del eje configurados en valores estables, pueden especificarse cuñas y anillos de retención adecuados en tamaños estándar.

Análisis final

Una vez que todo se ha especificado, iterado y ajustado como sea necesario para toda parte específica de la tarea, un análisis completo de principio a fin proporcionará una verificación final, así como factores específicos de seguridad para el sistema real.

3.3.2. Carcaza

(Alec, 1992, p. 5) plantea el siguiente proceso de diseño para la carcaza:

Rendimiento del par de torsión del vehículo

El cálculo de este par se basa en obtener las cargas normales y el rendimiento general del automovil, obteniendo un valor estimado del engranaje corona o el tamaño mínimo de la rueda. Para los autos de carreras equipados con transmisiones manuales, el diámetro de la rueda de la corona no puede estimarse de forma segura basándose solamente en las curvas de desempeño, porque se ha establecido que con este tipo de vehículos, los pares de los engranajes que van de dos a cinco veces del máximo par calculado puede ser producido en las relaciones de transmisión más bajas, como resultado de un *chasquido en el embrague*. Esta fuerza de golpeteo en el embrague, junto con la transferencia de peso adicional a la conducción de las llantas y el coeficiente de fricción entre los neumáticos y la superficie, producen pares de deslizamiento casi iguales al par del motor completo. Por lo tanto, es esencial para este tipo de vehículo que los tamaños de los circulos de paso de la corona y piñón se comprueben mediante valores de par máximos en las fórmulas de diseño de transmisiones para el esfuerzo.

Determinacion de los refuerzos y la resistencia a la fatiga (scoring resistance)

Se realiza un diseño de los engranajes para prevenir fallas, utilizando los pares más elevados, se verifica para el par de engranajes su resistencia a la rotura en los dientes y la

falla sobre la superficie. La resistencia a la rotura de los dientes depende normalmente del esfuerzo de flexión que se produce en el área de la raíz del diente, y la falla sobre la superficie generalmente depende el esfuerzo de contacto que ocurren en las superficies de los dientes, mientras que la resistencia a la corrosión (scoring resistance) se mide a través de la temperatura crítica en el punto de contacto del diente del engrane.

Diseño de eje para el esfuerzo

En esta etapa del diseño, es fundamental decidir el tamaño de los componentes de la caja de engranes que cumpla con las especificaciones de par máximo a la entrada y salida de la carcaza con su respectivo factor de seguridad. Existen tres ejes que van acoplados a la carcaza, si la carcaza fuera el sistema, el diseño de cada eje se abordaría de la siguiente manera:

1. Eje interno a la entrada del sistema

El área de la sección transversal puede comprobarse tanto para flexión y par de torsión, así como para la cantidad de deflexión bajo carga total.

2. Eje intermedio.

En algunas cajas de engranajes (*planetary gearbox*) donde se incluye una relación de transmisión entre la entrada y ejes intermedios, se debe calcular la entrada de par para adaptarse a las especificaciones de acuerdo a Martínez (2014). La deflexión total en el eje debe calcularse utilizando las cargas en el par de engranajes interno más cercano a la mitad de las cargas del eje donde van montados los rodamientos (éstas cargas se utilizarán para calcular las cargas dinámicas básicas en los rodamientos).

3. Diseño del eje a la la salida del sistema.

El área de sección transversal debe verificarse para flexión y torsión, utilizando la relación de entrada de la caja de cambios multiplicado por cualquier reducción a la entrada, los ejes intermedios y ejes de salida.

3.4. MATERIALES PARA FABRICAR EJES

3.4. Materiales para fabricar ejes

Una parte importante en el proceso de diseño es la selección de materiales. Diferenciar y entender el comportamiento del material es indispensable para fabricar los ejes con el material adecuado.

MATERIAL DÚCTIL (características) (vea Hamrock et~al. (2000))

- Soporta grandes deformaciones unitarias antes de su ruptura
- Absorben choques (o energía)
- La concentración de esfuerzos se disipa parcialmente con las deformaciones
- % de alargamiento:

$$\% AL = \frac{L_{fr} - L_0}{L_0} 100 \quad \text{Donde}$$

$$\% AL \geq 5\,\%$$

El porcentaje de elongación reportado en un ensayo de tracción es definido como la elongación que una probeta experimenta después de la fractura (L_{fr}) con respecto a a su longitud original (L_0) .

MATERIAL FRÁGIL

- % de alargamiento \leq 5 %
- Ejemplo: cerámicos y vidrio a temperatura ambiente

Debido a las características de los materiales, se emplearán materiales dúctiles como los aceros para el diseño de ejes.

3.4. MATERIALES PARA FABRICAR EJES

Una flecha es un elemento rotatorio, por lo general de sección transversal circular, que se emplea para transmitir potencia o movimiento. La flecha que se empleará para transmitir potencia tendrá incorporadas elementos como engranes, poleas, volantes de inercia, manivelas, catarinas, y miembros similares. Un eje es un elemento no giratorio que no transmite par de torsión que se utiliza para soportar ruedas rotatorias, poleas y elementos parecidos.

En una transmisión, los engranes deben estar soportados por un eje rígido. Si este se flexiona demasiado, es decir, si es demasiado flexible, los dientes no se acoplarán en forma adecuada, y el resultado será un impacto excesivo, ruido, desgaste y por último se presentará una falla prematura, debido a la concentración de esfuerzos, cabe mencionar que todo esfuerzo variable con promedio distinto de cero se considera esfuerzo fluctuante (Budynas and Nisbett, 2008, p. 142).

Los análisis de deflexión y de pendiente no pueden hacerse hasta que se haya definido la geometría de todo el eje. De esta manera, la deflexión es una función de la geometría de todas partes, mientras que el esfuerzo en una sección de interés es una función de la geometría local. Por esta razón, el diseño de ejes permite primero una consideración de esfuerzo y resistencia. Una vez que se hayan establecido valores tentativos para las dimensiones del eje, se pueden determinar las deflexiones.

Materiales para fabricar ejes

Muchos ejes están hechos de acero de bajo carbono, acero estirado en frío o acero laminado en caliente, como lo son los aceros ANSI 1020-1050. Una buena práctica consiste en iniciar con un acero de bajo o medio carbono de bajo costo, como primer paso en los cálculos del diseño. Cuando están garantizadas, las aleaciones de acero típicas para tratamiento térmico incluyen ANSI 1340-50, 3140-50, 4140, 4340, 5140 y 8650.

3.5. Teorías de falla

Ya que conocemos los materiales adecuados para fabricar los ejes es importante identificar las teorías de falla para aplicarlas a dichos materiales durante la fase de cálculo para el diseño de detalle. Las teorías de falla generalmente aceptadas son las siguientes (Hamrock et[~]al., 2000, p. 500):

- 1. Materiales dúctiles (criterios de fluencia)
 - Esfuerzo cortante máximo (ECM)(MSST por sus siglas en inlés)
 - Energía de distorsión (ED)(DET por sus siglas en inlgés)
 - Mohr Coulomb dúctil (CMD)
- 2. Materiales frágiles (criterios de fractura)
 - Esfuerzo normal máximo (MNST, por sus siglas en inglés)
 - Mohr Coulomb frágil o tería de fricción interna (IFT, por sus siglas en inglés)
 - Teoría modificada de Mohr (MMT)

3.5.1. Tipos de cargas

El banco de pruebas experimetará una gran variedad de condiciones de carga. Para diseñar los ejes se debe establecer el diámetro mínimo del eje para soportar adecuadamente las cargas que actúan sobre éste y poder cumplir con las especificaciones de transmisión de potencia. Debemos identificar el tipo de carga que experimentan los acoplamientos durante la distribución de energía mecánica y eléctrica. Tenemos diferentes tipos de carga;

Carga Estática

Una carga estática es una fuerza estacionaria o un par de torsión que se aplica a un elemento. Para ser estacionaria, la fuerza o el par de torsión no deben cambiar su magnitud, ni el punto o los puntos de aplicación, ni su dirección. Budynas and Nisbett (2008) señalan que "Una carga estática produce tensión o compresión axial, una carga cortante, una carga flexionante, una carga torsional o cualquier combinación de éstas. Para que se considere estática, la carga no puede cambiar de ninguna manera".

Carga Cíclica

(Hamrock et[~]al., 2000, p. 432) meciona que "Las cargas cíclicas varían durante todo un ciclo en vez de permanecer constantes. Este tipo de cargas son aquellas que generan la falla por fatiga en los materiales".

Por tal motivo para hacer un análisis es necesario identificar el estado de las cargas mediante un par de coordenadas (esfuerzo medio y esfuerzo alternante) que determinan los condiciones con las cuales ocurrirá la falla.

1. MATERIALES DÚCTILES

- Línea de Soderberg para esfuerzo cortante
- Teoría del esfuerzo cortante máximo MSST
- Teoría de la energía de distorsión DET

2. MATERIALES FRÁGILES

Teoría del esfuerzo normal máximo MNST
3.5.2. Análisis para cargas cíclicas

Cuando un material es sometido a un conjunto de cargas variables experimenta deformaciones que pueden pasar del rango elástico al plástico. Siempre y cuando dicho material permanezca sin deformación plástica se puede aplicar el factor de concentración de esfuerzos. Este factor será utilizado para cálculos posteriores.

El comportamiento de un material sometido a diversas cargas puede ser analizado mediante un diagrama que contiene sus propiedades (resistencias) y en él se visualizan diversas curvas que representan los criterios de falla con sus respectivos componentes de esfuerzo al ser trazada una línea de carga desde la ordenada al origen.

Fig. 3.1: Diagrama de fatiga donde se proporcionan varios criterios de falla, de acuerdo a (Budynas and Nisbett, 2008, p. 297) para cada criterio los puntos en o *arriba* de la recta respectiva indican.

El diagrama de fatiga nos muestra las zonas en las cuales el material puede soportar cierta cantidad de esfuerzos de acuerdo a su resistencia y se observa la proporción de valores medios y alternantes de los valores límite. Por ejemplo, un punto A en la recta de Goodman proporciona la resistencia media S_m como el valor límite de σ_m correspondiente a la resistencia S_a , la cual, emparejada con σ_m , es el valor límite de σ_a (las magnitudes de los esfuerzos medios y alternantes se explicarán más adelante).

4. ANTECEDENTES PARA EL DISEÑO DE DETALLE

Cualquier diseño en la práctica requiere de la aplicación de principios científicos, y no siempre existe una solución y métodos correctos. La toma de decisiones depende del diseñador, pero esto es con base en los conocimientos teóricos adquiridos y experimentación. Es necesario conocer la teoría para poder crear elementos de máquinas con resistencia y rigidez adecuadas. Conocer la teoría de ingeniería es solo una pequeña parte del proceso de diseño, es necesario estar al corriente con los avances tecnológicos y poseer conocimiento de otras disciplinas.

A continuación se brinda la teoría necesaria para el diseño de ejes.

4.1. Diagramas de fuerza cortante y momento flexionante

Las cargas en el eje equivalen a las cargas radiales y tangenciales calculadas en los engranes del sistema de engranes planetario *SEP*.

Estas son importantes debido a que forman parte de las solicitaciones en el diseño de los ejes que conectan directamente el SEP a los motores. Las cargas radiales y tangenciales de los engranes ya se han calculado con anterioridad y proporcionan las magnitudes vectoriales para el diseño del eje que comunica al engrane solar con el eje de transmisión de potencia a través del MCI.

Las reacciones en los ejes en donde van colocados los dos rodamientos y engranes se pueden visualizar por medio de la figura 4.2 en las secciones marcadas con las letras A, B, G respectivamente.

Se diseñará el eje de acuerdo a (Design, 2005, p. 13, fig. 19). El esquema general con sus fórmulas se muestra en la figura 4.2.

Fig. 4.1: Diagrama para calcular las reacciones

 $R_1 = V_1 = \frac{Pa}{l} \qquad (4.1a)$

$$R_2 = V_1 + V_2 = \frac{P}{l}(l+a)$$
 (4.1b)

$$V_2 = P \qquad (4.1c)$$

$$M_{max}(\text{en } R_2) = Pa \qquad (4.1d)$$

$$Pax$$

$$M_x(\text{entre soportes}) = \frac{I \, dx}{l}$$
 (4.1e)

$$= P(a - x_1) \qquad (4.1f)$$

$$\Delta_{max}(\text{entre los soportes en } \mathbf{x} = \frac{l}{\sqrt{3}}) = \frac{Pal^2}{9\sqrt{3}EI}$$
(4.1g)
$$Pa^2$$

 M_{x_1}

$$\Delta_{max}(\text{en } x_1 = a) = \frac{I a}{3EI}(l+a) \qquad (4.1h)$$

$$\Delta_x(\text{entre soportes}) = \frac{Pax}{6EIl}(l^2 - x^2) \qquad (4.1i)$$

$$\Delta_{x_1} = \frac{Px_1}{6EI}(2al + 3ax_1 - x_1^2)$$
(4.1j)

La figura 4.1 provee un conjunto de fórmulas bajo condiciones estáticas de carga cuyo significado es el siguiente:

- E= módulo de elasticidad
- I= momento de incercia
- l= longitud del miembro flexionado
- M= Máximo momento flexionante
- P= carga total concentrada
- R= reacción de la carga en el punto de apoyo
- V= fuerza cortante

INGENIERÍA MECÁNICA

- Δ = Deflexión o deformación

Fig. 4.2: Primera configuración del eje solar

El sistema de referencia para el cálculo del diámetro mínimo de todos los ejes tiene la configuración según la figura 4.3

Fig. 4.3: Sistema de referencia

Se traza un diagrama de momento flexionante y fuerza cortante con respecto a los planos xy y xz. Después se obtiene la resultante entre la carga radial para obtener M_z y la carga tangencial para obtener M_y . Las resultantes de momentos y fuerzas nos ayudarán para obtener M_a (momento alternante) usado para un análisis posterior.

4.2. TEORÍAS DE FALLA: LÍNEA DE SODERBERG Y ASME ELÍPTICA

4.2. Teorías de falla: Línea de Soderberg y ASME elíptica

Los esfuerzos de flexión, torsión o axiales se manifiestan en componentes medios y alternantes. Generalmente, las cargas axiales son comparativamente muy pequeñas en ubicaciones críticas donde son más representativos los esfuerzos debidos a flexión y torsión, por lo que pueden ser despreciadas durante el análisis. Sustituyendo los esfuerzos de acuerdo con la teoría de falla por energía de distorsión, los esfuerzos de von Mises para ejes giratorios, redondos y sólidos, sin tomar en cuenta las cargas axiales, se obtienen los esfuerzos medios y alternantes equivalentes que al ser evaluados por una curva de falla apropiada sobre el diagrama de Goodman modificado, forman la expresión para obtener el diámetro mínimo del eje en el cual se acopla el sistema de engranes planetario (Budynas and Nisbett, 2008, p. 356).

Existen varios criterios de falla, uno de ellos es la línea de Soderbeg. Para calcular el diámetro del eje se tiene que expresar el criterio de falla en función de los diámetros permisibles y momentos. Sin embargo para simplificar el análisis se utilizarán factores de seguridad recomendados de acuerdo a los materiales para fabricar ejes.

Línea de Soderberg

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_y} = \frac{1}{n}$$

En esta ecuación *n* representa el factor de seguridad, σ_a el esfuerzo alternante, σ_m el esfuerzo medio, S_e el limite de resistencia a la fatiga y S_y la resistencia a la fluencia. Debido a que los ejes se van a fabricar con materiales dúctiles, (Mott, 2008, p.) recomienda los siguientes factores de seguridad:

1. n = 1,25 - 2,0 El diseño de estructuras bajo cargas estáticas, para las que haya un alto grado de confianza en todos los datos del diseño.

4.2. TEORÍAS DE FALLA: LÍNEA DE SODERBERG Y ASME ELÍPTICA

- 2. n = 2,0 2,25 Diseño de elementos de máquina bajo cargas dinámicas con una confianza promedio en todos los datos de diseño.
- 3. n = 2,5 4 Diseño de estructuras estáticas o elementos de máquina bajo cargas dinámicas con incertidumbre acerca de las cargas, propiedades de los materiales, análisis de esfuerzos o el ambiente.
- 4. n = 4,0 en adelante. Diseño de estructuras estáticas o elementos de máquinas bajo cargas dinámicas con incertidumbre en cuanto a alguna combinación de cargas, propiedades del material, análisis de esfuerzos o el ambiente. El deseo de dar una seguridad adicional a componentes críticos puede justificar también el empleo de estos valores.

Si en lugar del factor de seguridad se requiere conocer el diámetro más pequeño para un factor de seguridad específico se proporcionan las siguientes ecuaciones:

$$d_{S} = \left(\frac{16n}{\pi} \left(\frac{1}{S_{e}} \left(4\left(k_{f}M_{a}\right)^{2} + 3\left(k_{fs}T_{a}\right)^{2}\right)^{\frac{1}{2}} + \frac{1}{S_{yt}} \left(4\left(k_{f}M_{m}\right)^{2} + 3\left(k_{fs}T_{m}\right)^{2}\right)^{\frac{1}{2}}\right)\right)^{\frac{1}{3}}$$
(4.2)

Normalmente, los materiales se clasifican como dúctiles cuando su deformación es mayor o igual al cinco por ciento y cuando tienen una resistencia a la fluencia identificable la cual normalmente es la misma a compresión que en tensión y por tal motivo se pueden igualar las resistencias del material: $S_{yt} = S_{yc} = S_y$ (analizar la bibliografía (Budynas and Nisbett, 2008, p. 211)).

ASME elíptica

$$\left(\frac{\sigma_a}{S_e}\right)^2 + \left(\frac{\sigma_m}{S_{ut}}\right)^2 = \frac{1}{n^2}$$

Diámetro del eje usando ASME elíptica:

Si la ecuación anterior es modificada desarrollando los esfuerzos y las resistencias del material se obtiene

$$d_{ASME} = \left(\frac{16n}{\pi} \left(4\left(\frac{k_f M_a}{S_e}\right)^2 + 3\left(\frac{k_{fs} T_a}{S_e}\right)^2 + 4\left(\frac{k_f M_m}{S_y}\right)^2 + 3\left(\frac{k_{fs} T_m}{S_y}\right)^2\right)^{\frac{1}{2}}\right)^{\frac{1}{3}}$$
(4.3)

Los términos se obtienen de las siguientes expresiones: Esfuerzos debido a flexión (σ_a, σ_m) y torsión: (τ_a, τ_m) , los subíndices a y m significan alterante (o alternativo) y medio respectivamente. Las siguientes fórmulas son para un eje sólido de sección transversal redonda:

$$\sigma_a = k_f \frac{32M_a}{\pi d^3}$$
 M_a obtenido del diagrama momento flexionante total (4.4)

$$\sigma_m = k_f \frac{32M_m}{\pi d^3} \tag{4.5}$$

$$\tau_a = k_{fs} \frac{16T_a}{\pi d^3} \tag{4.6}$$

$$\tau_m = k_{fs} \frac{16T_m}{\pi d^3} \quad \text{empleando } T_m = T_{max}$$
(4.7)

Variando los valores de k_c =1 para flexión y para torsión k_c =0.59. M_a es el valor tomado del diagrama momento flexionante total M_{tot} a lo largo de la porción en dirección x del eje solar. $T_m=T_{MCI}=T_{max}$ considerado constante a lo largo del eje. Se menciona que en el caso de un eje giratorio, el momento flexionante constante creará un esfuerzo flexionante completamente reversible ($M_m=T_a=0$). Esta condición no es verdadera para el diseño del árbol de transmisión, así que M_m y T_a son obtenidos del despeje de las ecuaciones 4.6 y 4.7 respectivamente.

4.3. Ecuación de Marin

Joseph Marin identificó factores que cuantifican los efectos de la condición superficial, el tamaño, la carga, la temperatura y varios otros puntos. Ajustó el límite de resistencia a la fatiga por medio de correcciones sustractivas o multiplicativas que resolvió mediante un extenso análisis estadístico del acero 4340 (horno eléctrico, calidad de aeronave). El proceso que se toma para una carga simple completamente reversible es determinar S'_e a partir de datos de los ensayos o de la siguiente expresión:

$$S'_{e} = \begin{cases} 0.5S_{ut} & S_{ut} \le 200 Kpsi(1400 MPa) \\ 100 Kpsi & S_{ut} > 200 Kpsi \\ 700 Mpa & S_{ut} > 1400 MPa \end{cases}$$
$$k_{a} = aS_{ut}^{b}$$

Donde S_{ut} es la resistencia mínima a la tensión y los valores a y b se encuentran en la tabla 6-2 (Budynas and Nisbett, 2008, p. 280). Y obtenemos la ecuación de Marin:

$$S_e = k_a k_b k_c k_d k_e k_f S'_e$$

Donde:

- k_a = factor de modificación de la condición superficial
- $k_b = \text{factor de modificación del tamaño}$
- k_d = factor de modificación de la temperatura
- $k_e = \text{factor de confiabilidad}$
- k_f = factor de concentración del esfuerzo por fatiga
- $S'_e =$ límite de resistencia a la fatiga en viga rotatoria

 S_e = límite de resistencia a la fatiga en la ubicación crítica de una parte de máquina en la geometría y condición de uso.

Para aceros de baja aleación, incremente S_{ut} por 20Kpsi y calcule \sqrt{a}

Eje rotatorio para flexión o torsión,

$$k_b = \begin{cases} (\frac{d}{0,3})^{-0,107} & 0,011 \le d \le 2pulg\\ 0,91d^{-0157} & 2 \le d \le 10pulg\\ (\frac{d}{7,62})^{-0,107} & 2,79 \le d \le 51mm\\ 1,51d^{-0,157} & 51 < 254mm \end{cases}$$

Para carga axial

$$k_b = 1$$

Elemento rotatorio

$$k_c = \begin{cases} 1 & flexion \\ 0.85 & axial \\ 0.59 & torsion \end{cases}$$

Calculando k_d utilizando una temperatura $T_F F$

$$k_d = 0.975 + 0.432(10^{-3})T_F - 0.115(10^{-5})T_F^2 + 0.104(10^{-8})T_F^3 - 0.595(10^{-12})T_F^4$$

Factores de confiabilidad k_e de la tabla 6.5 (Budynas and Nisbett, 2008, p. 285)

$$k_f = 1 + q(k_{ts} - 1) \tag{4.8}$$

$$k_{fs} = 1 + q(K_{ts} - 1) \tag{4.9}$$

$$q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}} \tag{4.10}$$

$$\sqrt{a} = 0.245799 - 0.307794(10^{-2})S_{ut}$$

$$+0.150874(10^{-4})S_{ut}^2 - 0.266978(10^{-7})S_{ut}^3$$

$$(4.11)$$

Fig. 4.4: Factor de concentración de esfuerzos a flexión (k_t) . Eje redondo con filete en el hombro a flexión. $\sigma_0 = \frac{Mc}{I}$, donde $c = \frac{d}{2}$ y $I = \frac{\pi d^4}{64}$ (ver (Budynas and Nisbett, 2008, figura A-15-9))

Fig. 4.5: Factor de concentración de esfuerzos a torsión. Eje redondo con filete en el hombro en torsión- $\tau_0 = \frac{Tc}{J}$, donde $c = \frac{d}{2}$ y $J = \frac{\pi d^4}{32}$. (ver (Budynas and Nisbett, 2008, p. 1008))

donde k_{ts} es el factor de concentración de esfuerzos a flexión y K_{ts} es el factor de concentración de esfuerzos a torsión. Para hallar los factores de concentración de

esfuerzos necesitamos localizar la curva calculando la relación de diámetros mayor y menor. Calcular $\frac{r}{d}$ e interceptar el valor con la curva correspondiente. (ver fig. 4.4 y fig. 4.5)

Ahora es posible determinar

$$S_e = k_a k_b k_c k_d k_e k_f S'_e$$

4.4. Cálculo de esfuerzos máximos y mínimos

 M_m y T_a son obtenidos del despeje de las ecuaciones 4.6 y 4.7 respectivamente. Pero necesitamos determinar el esfuerzo medio en función de los esfuerzos máximo y mínimo.

Fig. 4.6: Diagrama del círculo de Mohr

Utilizando la teoría del círculo de Mohr para calcular el esfuerzo máximo y mínimo (de acuerdo al sistema de referencia de la figura 4.3 en el plano yz), y utilizando las cargas radiales y tangenciales como datos.

$$\sigma_x = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y}$$
$$\sigma_z = 0$$
$$I_{x,z} = \frac{1}{4}\pi c^3$$

 M_z y M_y son obtenidos del diagrama de cuerpo libre a partir de las cargas radiales y tangenciales respectivamente, que son transmitidas a través de los engranes a lo largo del eje y utilizando la ecuación 4.1e. La sección transversal tiene un radio de prueba c al igual que su segundo momento de área I. Se toma únicamente la distribución del esfuerzo normal sobre la sección transversal del eje (σ_x), la fórmula nos indica que existe un momento flexionante M_y actuando en el plano xz y otro momento M_z en el plano xy.

$$OC = CD = \frac{1}{2}(\sigma_x + \sigma_z)$$
$$tan(2\theta_p) = \frac{DX}{CD}$$

Esfuerzo cortante

$$\tau_{xz} = -\frac{16T_{MCI}}{\pi d^3}$$

$$\tau_{max} = R = \sqrt{\left(\frac{\sigma_x - \sigma_z}{2}\right)^2 + (\tau_{xz})^2}$$

$$\sigma_{max,min} = \sigma_{1,3} = OC \pm R$$

$$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2} \tag{4.12}$$

$$\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2} \tag{4.13}$$

$$\tau_m = \frac{\tau_{max} + \tau_{min}}{2} \tag{4.14}$$

$$\tau_a = \frac{\tau_{max} - \tau_{min}}{2} \tag{4.15}$$

$$\tau_{max} = \frac{\sigma_1 - \sigma_3}{2} \tag{4.16}$$

$$\tau_{min} = 0 \tag{4.17}$$

 τ_{min} es cero debido a a distribución del esfuerzo cortante en la sección transversal del eje. Las demás fórmulas son obtenidas del círculo de Mohr.

4.5. VELOCIDADES CRÍTICAS EN EJES GIRATORIOS

4.5. Velocidades críticas en ejes giratorios

El centro de gravedad de un cuerpo giratorio simétrico no coincide generalmente con su centro de rotación. La causa es que:

- 1. En la práctica es imposible que la masa esté uniformemente distribuida alrededor del centro geométrico del cuerpo.
- 2. El árbol sobre el cual gira el cuerpo se deforma flexionándose por efecto de la carga, desplazando al centro de gravedad fuera del eje verdadero, el cual pasa sobre la línea central de los cojinetes.

(Faires, 1987, p. 360) "A cierta velocidad , la fuerza centrífuga del centro de gravedad desplazado será igual a las fuerzas de deformación que actúan sobre el árbol; éste con los cuerpos que es solidario vibrará entonces violentamente, ya que la fuerza centrífuga varía de sentido cuando gira el árbol", esta velocidad es denominada velocidad crítica, y para calcularla se necesitan conocer los coeficientes de influencia.

Coeficientes de influencia

$$\delta_{ij} = \begin{cases} \frac{b_j x_i}{6EH} (l^2 - b_j^2 - x_i^2) & x_i \le a_i \\ \frac{a_j (l - x_i)}{6EH} (2lx_i - a_j^2 - x_i^2) & x_i > a_i \end{cases}$$
(4.18)

Donde el coeficiente de influencia, δ_{ij} es la deflexión en i debida a la carga unitaria j.

El cálculo de los coeficientes consiste en identificar dónde se encuentra una carga puntual entre los rodamientos y emplear las restricciones de acuerdo a su correspondiente figura (ver 4.5).

Fig. 4.7: Coeficiente de influencia δ_{ij}

Analizando la deflexión en los puntos con mayor concentración de esfuerzos. Según la figura 4.5 se analizarán las secciones E, F e I, tomando en cuenta sólo las fuerzas resultantes en para realizar el análisis sobre un solo plano.

Fig. 4.8: Ubicación de las cargas unitarias en el eje.

Nota: la reacción R_B tiene dirección opuesta.

En la figura 4.5, L es la distancia entre los rodamientos $A ext{ y } B$. W_1 , W_2 , W_3 son las cargas resultantes entre la carga radial y tangencial transmitidas por medio de los engranes. X_i es la distancia entre el rodamiento A las secciones críticas de los ejes 1, 2 y 3 donde se localizan mayores concentradores de esfuerzos.

Sustituyendo las distancias designadas mediante letras para el cálculo de los coeficientes de acuerdo a la ubicación de la carga unitaria (se tiene la sección y la longitud correspondientes):

Sección	longitud [m]
AB	0.054
BG	0.05
EJ	0.08
AE	0.039
FJ	0.05
AF	0.084
IJ	0.03
AJ	0.119
AI	0.089

Tab. 4.1: Tabla que indica las distancias de las secciones del eje acorde a la figura 4.5

4.5. VELOCIDADES CRÍTICAS EN EJES GIRATORIOS

A continuación se muestra a detalle como se obtienen los coeficientes δ_{ij} . Por ejemplo; si se quiere calcular δ_{11} para su respectiva carga puntual W_1 la distancia $a_j=x_i$ de la figura 4.5 se sustituye por la longitud AE, $b_j = EJ$ y L = AB de acuerdo a la figura A.10 La misma metodología es empleada con todos los demás coeficientes respetando la restricción de la ecuación 4.18. δ_{12} es la deflexion en la sección 1 debida a la carga W_2 ; ahora la diferencia es que $b_j = FJ$.

$$\delta_{11} = \frac{EJAE}{6EIl} (l^2 - EJ^2 - AE^2)$$
(4.19a)

$$\delta_{22} = \frac{FJAF}{6EIl} (l^2 - FJ^2 - AF^2)$$
(4.19b)

$$\delta_{33} = \frac{IJAJ}{6EIl} (l^2 - IJ^2 - AI^2)$$
(4.19c)

$$\delta_{12} = \frac{FJAE}{6EIl} (l^2 - EJ^2 - AE^2)$$
(4.19d)

$$\delta_{13} = \frac{IJAE}{6EIl} (l^2 - FJ^2 - AE^2)$$
(4.19e)

$$\delta_{21} = \frac{AF(l - AE)}{6EIl} (2lAE - AF^2 - AE^2)$$
(4.19f)

$$\delta_{23} = \frac{IJAF}{6EIl} (l^2 - FJ^2 - AI^2)$$
(4.19g)

$$\delta_{31} = \frac{AE(l - AI)}{6EIl} (2lAI - AE^2 - AI^2)$$
(4.19h)

$$\delta_{32} = \frac{AF(l - AI)}{6EIl} (2lAI - AF^2 - AI^2)$$
(4.19i)

En la siguiente tabla se muestra el resumen de los coeficientes. Nota: Para W_{ij} se realiza un sistema equivalente de cargas para trasladar la carga radial y tangencial a la sección I.

j i	1	2	3
1	δ_{11}	δ_{12}	δ_{13}
2	δ_{21}	δ_{22}	δ_{23}
3	δ_{31}	δ_{32}	δ_{33}

INGENIERÍA MECÁNICA

También es posible expresar el resultado en forma matricial:

$$\delta_{ij} = \begin{pmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33} \end{pmatrix}$$

Los siguientes valores son las cargas resultantes obtenidas del diagrama de fuerza cortante en la sección B del eje. (Ver figura 4.5, las ecuaciones están relacionadas con la fuerzas cortantes V_1 y V_2 en cada sección del eje. En este caso $V_n=W_n$

Calculando las deflexiones Y_1, Y_2, Y_3 .

$$Y_1 = W_1 \delta_{11} + W_2 \delta_{12} + W_3 \delta_{13} \tag{4.20}$$

$$Y_2 = W_1 \delta_{12} + W_2 \delta_{22} + w_3 \delta_{32} \tag{4.21}$$

$$Y_3 = W_1 \delta_{31} + W_2 \delta_{32} + W_3 \delta_{33} \tag{4.22}$$

Después de calcular las deflexiones, los términos $\sum W_i Y_i$ y $\sum W_i Y_i^2$ servirán para calcular la primera velocidad crítica ω_1 .

$$\sum W_i Y_i = W_1 Y_1 + W_2 Y_2 + W_3 Y_3 \tag{4.23}$$

$$\sum W_i Y_i^2 = W_1 Y_1^2 + W_2 Y_2^2 + W_3 Y_3^2 \tag{4.24}$$

Primera velocidad crítica (Ec. de Rayleigh)

$$\omega_1 = \sqrt{\frac{\sum(W_i Y_i)}{\sum(W_i Y_i^2)}}$$

Donde W_i [N], Y_i [m], g = aceleración de la gravedad o calculando la velocidad ω_{11} :

$$\frac{1}{\omega_{11}^2} = \frac{W_1}{g}\delta_{11}$$

Despejando las velocidades angulares, las cuales representan las velocidades en las secciones 1, 2 y 3 del eje se obtiene

$$\omega_{11} = \sqrt{\frac{g}{W_1 \delta_{11}}} \tag{4.25}$$

$$\omega_{22} = \sqrt{\frac{g}{W_2 \delta_{22}}} \tag{4.26}$$

$$\omega_{33} = \sqrt{\frac{g}{W_3 \delta_{33}}} \tag{4.27}$$

Calculando la primer velocidad crítica en función de las velociades angulares (despejando ω_1).

$$\frac{1}{\omega_1^2} = \sum \frac{1}{\omega_{ii}^2} = \frac{1}{\omega_{11}^2} + \frac{1}{\omega_{22}^2} + \frac{1}{\omega_{33}^2}$$
(4.28)

Otra forma para calcular las cargas es a partir de la siguiente ecuación:

$$\delta_{cc} = \frac{b_{cc} X_{cc}}{6EIL} (l^2 - b_{cc}^2 - X_{cc}^2)$$
(4.29)

que brinda la superposición de cargas equivalentes en el centro del eje (carga en el centro del eje).

Finalmente, otra forma de calcular las velocidades críticas es de acuerdo a las siguientes ecuaciones y nos brinda la misma velocidad crítica $\omega = \omega_1$.

$$W_{1c} = W_1 \frac{\delta_{11}}{\delta_{cc}} \tag{4.30a}$$

$$W_{2c} = W_2 \frac{\delta_{22}}{\delta_{cc}} \tag{4.30b}$$

$$W_{3c} = W_3 \frac{\delta_{33}}{\delta_{cc}} \tag{4.30c}$$

$$\omega = \sqrt{\frac{g}{\delta_{cc} \sum W_{ic}}} \tag{4.31}$$

Estas ecuaciones ayudan a identificar la proporción de las cargas a lo largo del eje.

INGENIERÍA MECÁNICA

5. SELECCIÓN DE LOS ACOPLAMIENTOS PARA EL BANCO DE PRUEBAS

En este capítulo se presenta la justificación y la selección de los elementos que intervienen para el óptimo desempeño del banco de pruebas. Un acoplamiento es un dispositivo empleado para trasmitir potencia a través de elementos rotatorios como flechas. Sin embargo en el presente trabajo la palabra eje es hace referencia al elemento de máquina a ser diseñado. El diseño de ejes se lleva a cabo de manera iterativa hasta encontrar el diámetro adecuado que pueda satisfacer los requerimientos y solicitaciones de diseño. Como primera aproximación se supone un diámetro inicial para calcular el factor de concentración de esfuerzos, además de otras constantes de acuerdo a la teoría de falla seleccionada, después obtendremos el diámetro mínimo d utilizando dos criterios de falla diferentes con la finalidad de comparar los resultados y conocer cual criterio es más conservador.

Para el análisis de los ejes se utiliza el mismo sistema de referencia en el cálculo los esfuerzos máximos y mínimos.

Debido a la incertidumbre de cómo es que va a fallar el eje del engrane solar y del planetario se realiza el análisis para prevenir la falla a flexión con un factor de seguridad adecuado. Por tal motivo se toman los valores más convenientes a nivel geométrico.

Recordando el proceso de diseño para los ejes

- Requisitos de potencia y par de torsión (Ver sección 2.6)
- Especificación de engranes. Recordar que se diseñaron de acuerdo a (Martínez, 2014, p. 63)

- Diseño del eje (Verificar el Resumen del diseño de ejes en la sección 5.2)
- Análisis de fuerzas (utilizar los diagramas de fuerza cortante y momento flexionante)
- Selección del material del eje (Ver en los resúmenes el material adecuado)
- Diseño del eje para esfuerzo (falla por fatiga)
- Diseño del eje para deflexión
- Selección de cojinetes (Verificar el proceso de selección en 5.3)
- Análisis final (Verificar en la sección de planos)

5.1. Diagramas de fuerza cortante y momento flexionante

Las cargas en el eje equivalen a las cargas radiales y tangenciales calculadas en los engranes del sistema de engranes planetario SEP.

Éstas son importantes debido a que forman parte de las solicitaciones en el diseño de los ejes que conectan directamente el SEP a los motores. Las cargas radiales y tangenciales de los engranes ya se han calculado con anterioridad (ver 5.2 y 5.1) y proporcionan las magnitudes vectoriales para el diseño del eje que comunica al engrane solar con la transmisión de potencia a través del MCI. Es importante mencionar que las unidades tienen valores máximos y nominales inversamente proporcionales debido a las curvas de operación de los motores que proporciona el fabricante.

a	10. 5.1. Datos relacionados con las carga tangenciales en el eje y los engrane						
	Carga Tangencial $W_t[KN]$	Sol	Planeta	Corona			
	Nominal	1.143316	2.373247	0.254647			
	Máximo	1.065613	1.946478	0.381971			

Tab. 5.1: Datos relacionados con las carga tangenciales en el eje y los engranes

T	Tab. 5.2: Datos relacionados con las carga radial en el eje y los engranes					
	Carga Radial $W_r[KN]$ SolPlanetaCorona					
	Nominal	0.416133	0.863791	0.092684		
	Máximo	0.387861	0.708460	0.139026		

Fig. 5.1: Primera configuración del eje solar

El sistema de referencia para el cálculo del diámetro mínimo de todos los ejes tiene la configuración según la figura 5.2

Fig. 5.2: Sistema de referencia

La siguiente tabla muestra los valores que son sustituidos en el conjunto de ecuaciones 4.1, cabe mencionar que son utilizadas las cargas radiales y tangenciales con mayor magnitud de las tablas 5.2 y 5.1.

Ē	20700000000	[Pa]
L	0.15	[m]
a	0.05	[m]
x	0.03	[m]
x_1	0.02	[m]
$\mathbf{P} = W_t$	1143.316	[N]
$\mathbf{P} = W_r$	416.133	[N]

Tab. 5.3: Variables utilizadas para el cálculo de las fuerzas cortantes y momentos flexionantes

Se traza un diagrama de momento flexionante y fuerza cortante con respecto a los planos xy y xz. Después se obtiene la resultante entre la carga radial para obtener

 M_z y la carga tangencial para obtener M_y . Las resultantes de momentos y fuerzas nos ayudarán para obtener M_a usado para un análisis posterior.

		0	1		
Componentes sobre el		Componentes sobre el		Valores	
plano xz		plano <i>xy</i>		resultantes	
V1	1059	V1	385.30	V1	1126
V2	1143	V2	416.13	V2	1217
R1	1059	R1	385.30	R1	1127
R2(-)	-2202	R2(-)	-	R2(-)	2343
			801.44		
M max (R2)	57	M max (R2)	20.80	M max (R2)	60.83
Mx (entresoportes)	41	Mx (entresoportes)	15	Mx	43.93
				(entresoportes)	
Mx1 (en voladizo)	34	Mx1 (en voladizo)	12.48	Mx1 (en	36.50
				voladizo)	
Dmax (x)	$0.17 \times ^{-6}$	Dmax (x)	$6.2 \times ^{-8}$	Dmax (x)	$1.8 \times ^{-7}$
Dmax (x1)	$1.57 \times ^{-6}$	Dmax (x1)	$5.7 \times ^{-7}$	Dmax (x1)	$1.8 \times ^{-7}$
Dx (entresoportes)	$1.5 \times ^{-7}$	Dx (entresoportes)	$5.6 \times ^{-8}$	Dx	$1.6 \times ^{-7}$
				(entresoportes)	
Dx1 (en voladizo)	$4.847 \times ^{-7}$	Dx1 (en voladizo)	$1.8 \times ^{-7}$	Dx1 (en	5×-7
				voladizo)	

Tab. 5.4: Resumen del diagrama de cuerpo libre

El resumen del diagrama de cuerpo libre (ver tabla 5.4) nos proporciona los valores de fuerza cortante V, reacciones en los rodamientos $(R_{1,2})$, momentos flexionantes, deflexiones D a lo largo de distancias x y x_1 . Los valores son los correspondientes a los componentes de las reacciones de las cargas localizadas sobre el plano xz y xy, son resultado de las ecuaciones 4.1 también se proporcionan los valores totales o resultantes para proseguir con los cálculos.

5.2. Resumen del diseño de los ejes

A continuación se muestra un esquema que brinda una guía rápida para saber que ecuaciones se utilizaron para calcular el diámetro mínimo. Las ecuaciones están en función de los factores de seguridad, resistencias, momentos y pares de torsión. Las flechas indican la dependencia de las fórmulas.

Ecuación del diámetro

Ec. (4.2)
$$d_s = f(n, S_e, M_a, T_a, k_f, k_{fs}, S_{yt}, M_m, T_m)$$

Ec. (4.3) $d_{ASME} = f(n, S_e, M_a, T_a, k_f, k_{fs}, S_y, M_m, T_m)$

La siguiente figura ilustra los ejes acoplados al SEP. En los planos de fabricación se observarán los demás elementos que hacen funcional al sistema.

Fig. 5.3: Configuración de los ejes acoplados al SEP

Resumen del diseño del eje acoplado al engrane solar

Eje solar	Valor Numérico	Unidad de medida			
Ka	0.913				
K_b	0.892				
K_c	0.59				
$K_d(248F)$	1.0250				
K_e	0.753				
K_f	1.602				
K_{fs}	1.200				
K_t	1.6				
K_{ts}	1.2				
S_e	113.125	MPa			
S'_e	190	MPa			

Tab. 5.5: Constantes para obtener la ecuación de Marin

Variable	Valor	Magnitud
S_e	113.1251568302	MPa
S_y	210	MPa
S_{yt}	210	MPa
K_f	1.6028795627	
K_{fs}	1.2009598542	
T_a	20.7248356508	N.m
T_m	31.968	N.m
M_a	43.9360811041	N.m
M_m	-11.3418221947	N.m
$d_{ASME_{min}}$	0.0255731665	m
$d_{Soderberg_{min}}$	0.0276650873	m
$\omega_{critica}$	13988.99	RPM
	Variable S_e S_y S_{yt} K_f K_{fs} T_a T_m M_a M_m $d_{ASME_{min}}$ $d_{Soderberg_{min}}$ $\omega_{critica}$	VariableValor S_e 113.1251568302 S_y 210 S_{yt} 210 K_f 1.6028795627 K_{fs} 1.2009598542 T_a 20.7248356508 T_m 31.968 M_a 43.9360811041 M_m -11.3418221947 $d_{ASME_{min}}$ 0.0255731665 $d_{Soderberg_{min}}$ 0.0276650873 $\omega_{critica}$ 13988.99

Tab. 5.6: Resumen del diseño para calcular el diámetro mínimo del eje

 M_m y T_a se obtienen despejando dichas variables de las fórmulas 4.6 y 4.7 respectivamente.

 K_f y K_{fs} dependen del diámetro del eje d. El enfoque que se usa es estimar el rango de diámetros del eje de acuerdo a la geometría del engrane solar y planetario. Como restricción se escojerá un diámetro menor al diámetro interior de dichos engranes.

Nota: Los valores M_m y T_a al ser sustituidos en las ecuaciones de diámetro no resultan tan representativos.

Análisis a flexón

Sol (Primera aproximación, diámetro de prueba: 22[mm]): $k_t=1.6$, $k_{ts}=1.2$

A continuación se muestran algunos diámetros con sus respectivos materiales utilizando el mismo procedimiento de cálculo:

Acero	E	\hat{S}_{ut}	S_y	diámetro[m]	diámetro[m]
	[GPa]	[MPa]	[Mpa]	Soderberg	ASME
1020 (HR)	205	380	210	0.0276650873	0.0255731665
1030 (HR)	205	470	260	0.0257708547	0.0238237729
1040 (HR)	200	525	290	0.0248401604	0.0229611558
1045 (HR)	205	570	310	0.024195845	0.0223423231
4140 TyR	200	1 250	1 140	0.0180557466	0.0171636169
(425 ° C)					
4340 TyR	200	1 720	1 590	0.0162229331	0.0154308627
(315 °C)					
4340 TyR	200	965	855	0.0197099583	0.0187110216
(650 °C)					

Tab. 5.7: Primer aproximación, diámetro de prueba: 22[mm]

Resumen del diseño del eje portaplanetas acoplando los tres engranes planetarios

El diámetro se obtiene con el mismo procedimiento descrito para el eje en el engrane solar, sin embargo ahora las cargas radiales y tangenciales alojadas en el centro del portaplanetas equivalen al triple de su magnitud debido a la configuarción del sistema en donde se albergan los planteas, en otras palabras se trasladan al centro del eje las cargas de los tres planetas.

<i>Tab. 5.8.</i> Constantes para obtener la cettación de Marin					
Eje solar	Valor Numérico	Unidad de medida			
K_a	0.9136838244				
K_b	0.8927501978				
K_c	0.59				
$K_d(248F)$	1.0250187802				
K_e	0.753				
K_f	1.6028795627				
K_{fs}	1.2009598542				
K_t	1.6				
K_{ts}	1.2				
S_e	113.1251568302	MPa			
S'_e	190	MPa			

Tab. 5.8: Constantes para obtener la ecuación de Marin

Tab. 5.9: Resumen del diseño para calcular el diámetro mínimo del eje en el portaplanetas

Variable	Valor	Magnitud
S_e	180.78	MPa
S_y	580	MPa
S_{yt}	580	MPa
K_f	1.7364	
K_{fs}	1.4944	
T_a	89.487	N.m
T_m	31.968	N.m
M_a	43.936	N.m
M_m	65.195	N.m
$d_{ASME_{min}}$	0.0293	m
$d_{Soderberg_{min}}$	0.03106	m
$\omega_{critica}$	6290.46	RPM

Acero (Porta-	E	S_{ut}	S_y	diámetro[m]	diámetro[m]
planetas)	[GPa]	[MPa]	[Mpa]	Soderberg	ASME
1020 (HR)	205	380	210	0.0390281078	0.0360590991
1030 (HR)	205	470	260	0.0363554937	0.033591616
1040 (HR)	200	525	290	0.0350430374	0.0323764117
1045 (HR)	205	570	310	0.0341392004	0.031515143
4140 TyR	200	1 250	1 140	0.0253659051	0.0240216145
(425 °C)					
4340 TyR	200	1 720	1 590	0.0227888834	0.0215939319
(315 °C)					
4340 TyR	200	965	855	0.0276955556	0.0261942735
(650 °C)					

Tab. 5.10: Primer ap	proximación, diámetro	de prueba:	22[mm]
----------------------	-----------------------	------------	--------

Resumen del diseño del eje acoplado en el motor eléctrico y el sistema de transmisión por banda

<i>Tab. 5.11.</i> Constantes para obtener la cedación de Marin				
Eje solar	Valor Numérico Unidad de m			
K_a	0.9136838244			
K_b	0.8927501978			
K_c	0.59			
$K_d(248F)$	1.0250187802			
K_e	0.753			
K_f	1.6028795627			
K_{fs}	1.2009598542			
K_t	1.6			
K_{ts}	1.2			
S_e	113.1251568302	MPa		
S'_e	190	MPa		

Tab. 5.11: Constantes para obtener la ecuación de Marin

Variable	Valor	Magnitud
S_e	183.147	MPa
S_y	580	MPa
S_{yt}	580	MPa
K_f	1.6569	
K_{fs}	1.22	
T_a	16.74	N.m
T_m	31.968	N.m
M_a	21.91	N.m
M_m	6.81	N.m
$d_{ASME_{min}}$	0.0255731665	m
$d_{Soderberg_{min}}$	0.0178	m
$\omega_{critica}$	19811	RPM

Tab. 5.12: Resumen del diseño para calcular el diámetro mínimo del eje

 M_m y T_a se obtienen de las fórmulas 4.6 y 4.7 respectivamente.

 K_f y K_{fs} dependen del diámetro del eje d. El enfoque que se usa es estimar el rango de diámetros del eje de acuerdo a la geometría del engrane solar y planetario. Como restricción, se escojerá un diámetro menor al diámetro interior de dichos engranes.

Nota: Los valores M_m y T_a al ser sustituidos en las ecuaciones de diámetro no resultan tan representativos.

Análisis a flexón del eje del motor eléctrico (Primera aproximación, diámetro de prueba: 22[mm]) : $k_t=1.6$, $k_{ts}=1.2$

A continuación se muestran algunos diámetros con sus respectivos materiales utilizando el mismo procedimiento de cálculo:

Acero (eje	E	S_{ut}	S_y	diámetro[m]	diámetro[m]
ME)	[GPa]	[MPa]	[Mpa]	Soderberg	ASME
1020 (HR)	205	380	210	0.0243893693	0.0217465667
1030 (HR)	205	470	260	0.0227188091	0.0202589384
1040 (HR)	200	525	290	0.0218991976	0.019525401
1045 (HR)	205	570	310	0.0218991976	0.019525401
4140 TyR	200	1 250	1 140	0.0157318246	0.0145948382
(425 °C)					
4340 TyR	200	1 720	1 590	0.0141310804	0.0131214078
(315 °C)					
4340 TyR	200	965	855	0.017183212	0.0159106719
(650 °C)					

Tab. 5.13: Primera aproximación, diámetro de prueba: 22[mm]

Esta tabla (al igual que la anteriores) muestra que conforme el material posee mayor resistencia, es posible decrementar el diámetro del eje. Las iteraciones son importantes puesto que ayudan a visualizar que el eje con mayor diámetro es el eje en la pieza portaplanetas que transmite potencia a la entrada del dinamómetro, seguido por el eje en el motor de combustión interna y el motor eléctrico. Se observa que criterio de las teorías de falla es más conservador comparando valores numéricos referentes a los diámetros mínimos, en este caso el diámetro mínimo indica que el criterio de ASME elíptica es más conservador que la línea de Soderberg. La misma tendencia es manifestada en las otras tablas.

5.3. PROCEDIMIENTO Y ELECCIÓN DE RODAMIENTOS

5.3. Procedimiento y elección de rodamientos

Los rodamientos son dispositivos normalizados y de precisión que permiten la rotación de los ejes. Lo que se hace es mediante un catálogo seleccionar el tipo apropiado de rodamiento acorde a la capacidad de las cargas y velocidades de operación.

El montaje de los rodamientos depende directamente de su aplicación y existen amplias gamas en el mercado. Para grandes cargas; rodamientos de rodillos o agujas, para grandes velocidades; rodamientos de bolas.

Rodamientos: Cargas radiales y de empuje combinadas (Diseño para el eje solar)

Se pudo haber seleccionado los rodamientos bajo sometimiento de únicamente cargas radiales. Sin embargo es posible que se desplace axialmente debido a las vibraciones que se generan cuando llegan a las velocidades críticas. Se consideraron las cargas de empuje debido a el chicoteo producido por la banda al momento de arrancar el motor eléctrico.

$$P = VXR + YT \quad \text{(Ecuación general)} \tag{5.1}$$

$$P = VR \tag{5.2}$$

- P= Carga equivalente
- V = Factor por rotación
- R = Carga radial aplicada
- T = Carga de empuje aplicada
- X = Factor radial Y = Factor de empuje

5.3. PROCEDIMIENTO Y ELECCIÓN DE RODAMIENTOS

Tipo de rodamiento	Capacidad de	Capacidad de carga	Capacidad de
	carga radial	de empuje	desalineamiento
Una hilera de bolas con ranura profund	a Buena	Regular	Regular
Doble hilera de bolas, ranura profunda	Excelente	Buena	Regular
Contacto angular	Buena	Exceiente	Mala
Rodillos cilíndricos	Excelente	Mala	Regular
Agujas	Excelente	Mala	Mala
Rodillos esféricos	Excelente	Regular a buena	Excelente
Rodillos esféricos	Excelente	Excelente	Mala

Fig. 5.4: Tipos de rodamientos

Para saber si es despreciable la carga radial, los fabricantes de rodamientos mencionan un factor llamado e. Si la relación satisface $\frac{T}{R} > e$ se debe emplear la Ec. A.53. si la relación $\frac{T}{R} < e$ se emplea la Ec. A.54.

Procedimiento para la selección de rodamientos

Utilizando el procedimiento para seleccionar un rodamiento con carga radial de acuerdo a el distribuidor de rodamientos de la marca **Motion and Control NSK**, en el presente diseño se obtuvo el análisis detallado de la presencia solamente por cargas radiales :

1. Especificando la carga dinámica:

$$P = VR\left(Lb_f\right)$$

- 2. Determinando el diámetro aceptable del eje:
- 3. Seleccionar el rodamiento de la figura (ver figura 3)
- 4. Especificando la duración de diseño de acuerdo a la figura 5.5
5.3. PROCEDIMIENTO Y ELECCIÓN DE RODAMIENTOS

Aplicación	Duración de diseño L_{10} , h
Electrodomésticos	1000-2000
Motores de aviación	1000-4000
Automotores	1500-5000
Equipo agrícola	3000-6000
Elevadores, ventiladores industriales, transmisiones de usos múltiples	8000-15 000
Motores eléctricos, sopladores industriales, máquinas industriales en general	20 000-30 000
Bombas y compresores	40 000-60 000
Equipo crítico en funcionamiento durante 24 h	100 000-200 000

Fig. 5.5: Duración de diseño de acuerdo a su aplicación

5. Determinando el factor por velocidad y factor por duración

Fig. 5.6: Factor de velocidad y duración

5.3. PROCEDIMIENTO Y ELECCIÓN DE RODAMIENTOS

• De acuerdo a la figura 5.6

$$f_n =$$
 Para una velocidad en [RPM] (5.3)
 $f_L =$ Para una duración en miles de horas

6. Calculando la carga dinámica básica:

$$C = P \frac{f_h}{f_n} [Lb_f]$$

7. Identificando el rodamiento: Después de calcular la carga dinámica se multiplica por el factor de temperatura f_t , tal como lo muestra la siguiente tabla, sin embargo el SEP opera a $120^{\circ}C$, por ende $f_l = 1$:

Temperatura del rodamiento °C	125	150	175	200	250
Factor de temperatura <i>f</i> t	1.00	1.00	0.95	0.90	0.75

Fig. 5.7: Factor de temperatura para los rodamientos.

Identificando el rodamiento para el engrane solar:

Es seleccionado de como valor mínimo, el número de rodamiento 6207 que cumple con las dimensiones del diámetro mínimo del eje solar y cuyo valor de carga dinámica supera al valor calculado en el diseño. La carga dinámica básica del fabricante es de $C=4450Lb_f$ de 35[mm] de diámetro interior.

Identificando el rodamiento para el portaplanetas:

El rodamiento con la capacidad de carga y diámetro adecuado es el rodamiento número 6208 de 40[mm] de diámetro interior.

5.4. SELECCIÓN DE LOS ACOPLAMIENTOS FLEXIBLES

Identificando el rodamiento para el eje del motor eléctrico: El rodamiento con la capacidad de carga y diámetro adecuado se encuentra en la tabla es el rodamiento número 6209 de 45[mm] de diámetro interior.

Resumen-Rodamientos

SEP	Num. Rodamiento	diám. int. [mm]	diám. ext. [mm]	ancho [mm]
SOL	6308	40	90	23
Planeta	6208,6309	40,45	80,100	18,25
Corona	6308	40	90	23

Tab. 5.14: Selección de rodamientos para los ejes en el SEP

5.4. Selección de los acoplamientos flexibles

De acuerdo a las especificaciones del fabricante se emplea una metodología para seleccionar el cople para el motor de combustión interna.

Como especificaciones principales tenemos los datos obtenidos de la curva de desempeño del nuevo motor de combustión interna:

- Velocidad máxima 3000[rpm].
- Potencia 25.4[kW]=32.8[HP]
- Par T=78[Nm]

Para la selección de los coples se tomarán en cuenta la velocidad máxima, par y potencia del MCI de la gráfica Performance Curve. El catálogo utilizado es BALDOR.Maska. Product Catalog en la sección Sec1:145.

Para el diseño de este banco de pruebas es necesario utilizar acoplamientos flexibles para evitar las vibraciones durante la operación de los motores y siguiendo el procedimiento planteado por el fabricante:

5.4. SELECCIÓN DE LOS ACOPLAMIENTOS FLEXIBLES

- 1. Calcule el número de serie del cople con su respectivo material
- 2. Calcule el factor de servicio adecuado
- 3. Calcule el par de diseño y potencia de diseño HP
 - *a*) Determine el par de diseño

$$Torque_{design} = \frac{(HP)(ServiceFactor)(63025)}{RPM}$$

b) Determine la potencia de diseño por cada 100RPM

$$HP_{per100RPM} = \frac{(HP)(ServiceFactor)(100)}{RPM}$$

- 4. Seleccione el tamaño del cople
- 5. Verifique el tamaño del los ejes motor y conducido

Seleccionando el cople

Es posible entrar a la página de Internet para obtener los bushings (bujes) compatibles directamente de la página de Baldor http://www.baldor.com/. Se selecciona la hoja correspondiente de especificaciones del cople MX 80.

La misma metodología se utiliza para la selección de los acoplamientos del motor eléctrico y el acoplamiento que comunica el portaplanetas con el dinamómero de corrientes parásitas.

Resumen-Acoplamientos

Tab. 5.15: Selección de rodamientos para los ejes en el SEP (ver en la sección del apéndice las especificaciones de los coples MX80 y MX60 en la B.11 y B.10)

Los bujes pueden ser cambiados de tamaño para ajustarse al diámetro de los ejes ya que se encuentran dentro del diámetro permitido (checar Bore max, Bore min de los coples).

SEP	Num. cople	Bushing size (driver-driven)	Bore
SOL	MX80	SHX1 - SHX1	1-3/4in = 4.445 [cm]
Planeta	MX60	SKX1 - SKX1	1-5/8in = 4.1275[cm]
Corona	MX80	SHX1 - SHX1	1-3/4in = 4.445 [cm]

5.5. Componentes diversos de los ejes

5.5.1. Chavetas

Selección de la chaveta de acuerdo a las dimensiones del buje del cople flexible (ver figura 5.8). Un análisis de fuerzas demuestra que dos chavetas fijas separadas 180° son preferibles a una sola.

NÚM. DE CHA-	DIÁME DE RECOME	ETROS EJE NDADOS	DE	IMEN NOMII LA (SIONES NALES CHAVET	A	DI	ALT E LA C	URA HAVET	A	DIST. DEF D CENT	ANCIA BAJO EL TRO *	ÁR D CIZA DU	EA E LLA- IRA
VETA							Cn	náx.	D	náx.	E	Ε		
	cm	pulg	$A \times I$	3 cm	$A \times B$	pulg	ст	pulg	ст	pulg	ст	pulg	cm*	pulg
204	0.79-0.95	· · · · · · · · · · · · · · · · · · ·	0.16 >	< 1.27		4.	0,515	0,203	0,492	0,194	0,12	3/04	0,030	0,194
305	1.11-1.27	110-12	0,23 >	< 1,58	1/1, ×	3/.	0,635	0,250	0,609	0,240	0,15	1/10	0,052	0,335
405	1,74-1,90	11/10-3/4	0,31 >	< 1,58	$1/_{\bullet} \times$	s/s	0,635	0,250	0,609	0,240	0,15	1/10	0,072	0,46:
506	2,06-2,38	13/10-13/16	0,39 ×	(1,90	3/32 ×	· */4	0,7 9 5	0,313	0,769	0,303	0,15	1/10	0,109	0,703
507	2,22-2,38	7/s-15/15	0,39 >	< 2,22	3/32 ×	7/8	0,952	0,375	0,927	0,365	0,15	1/14	0,129	0,832
608	2,54-3,01	1-1 3/18	0,47 >	< 2,54	3/18 ×	1	1,112	0,438	1,087	0,428	0,15	1/16	0,178	1,148
807	3,17-3,33	1 1/4-1 3/10	0,63 >	< 2,22	$^{1}/_{4} \times$	· 7/•	0,952	0,375	0,927	0,365	0,15	·/	0,198	1,277
809	3,17-4,44	1 1/4-1 3/4	0,63 >	< 2,85	1/4 ×	1 1/8	1,229	0,484	1,206	0,475	0,19	3/64	0,262	1,690
810	3,17-4,44	1 1/4-1 1/4	0,63 >	< 3,17	''/.×	14	1,389	0,547	1,364	0,537	0,19	5/44	0,296	1,910
812	3,81-4,44	1 1/2-1 3/4	0,63 >	< 3,81	1/4 ×	1 1/2	1,628	0,641	1,602	0,631	0,27	7/ 64	0,356	2,29
1012	4,60-6,35	1 13/15-2 1/2	0,79 >	< 3,81	- ⁵ /16 ×	14	1,628	0,641	1,602	0,631	0,27	1/14	0,438	2,820
1212	4,76-6,35	1 1/3-2 1/3	0,95 >	< 3,81	_³/, ×	$(1^{1})_{2}$	1,628	0,641	1,602	0,631	0,27	1/44	0,517	3,33

Fig. 5.8: Dimensiones de chavetas Woodruff (Faires, 1987, Tabla 10.1)

[H]

La cuña Woodruff, es de utilidad general, en especial cuando se debe posicionar una rueda contra un hombro de un eje, puesto que la guía ranurada no necesita maquinarse en la región de concentración de esfuerzo en el hombro. El uso de este tipo de cuña también produce una mejor concentricidad después del ensamble de la rueda y su eje, lo cual resulta especialmente importante a velocidades elevadas, como por ejemplo, con un rodete de turbina y su eje. Además, son particularmente útiles en ejes más pequeños donde su penetración más profunda ayuda a evitar la rotación de la cuña.

Fig. 10.11 Chaveta Woodruff. (Cortesía de Standard Steel Speciality Co., Beaver Falls, Pa.)

La falla de la cuña puede ser por cortante directo, o por esfuerzo de apoyo. La longitud máxima de una cuña está limitada por la longitud de la maza del elemento agregado, y por lo general no debe exceder 1.5 veces el diámetro del eje, para evitar la torcedura excesiva con la deflexión angular del eje.

Chavetas utilizadas para los ejes:

- 1. No. 807 (eje solar)
- 2. No. 809 (eje en el portaplanetas)
- 3. No. 608 (eje en el motor eléctrico)

5.5. COMPONENTES DIVERSOS DE LOS EJES

5.5.2. Anillos de retención

Con frecuencia se emplea un anillo de retención, en lugar de un hombro de eje o un manguito, para posicionar axialmente un componente sobre un eje o en un agujero de alojamiento. Para determinar los tamaños, dimensiones y capacidades, se deben consultar los catálogos de los fabricantes.

En las tablas A-15-16 (ver B.13) y A-15-17 (ver B.14) del apéndice se dan los valores de los factores de concentración de esfuerzo para ranuras con fondo plano en ejes, apropiados para anillos de retención. A fin de que los anillos se asienten adecuadamente en el fondo de la ranura y soporten las cargas axiales que se ejercen en contra de los lados de la ranura, el radio del fondo de la ranura debe ser razonablemente agudo, usualmente, alrededor de un décimo del ancho de la ranura. Esto es causa, comparativamente, de valores altos de los factores de concentración del esfuerzo, alrededor de 5 para el esfuerzo de flexión y axial y 3 para la torsión. Debe tenerse cuidado al usar anillos de retención, en particular en ubicaciones con esfuerzos de flexión altos.

Los anillos de retención están disponibles con su respectiva geometría y diferentes capacidades de carga axial. Los anillos de retención utilizados son listados y señalados en la sección de planos de fabricación. Para el diseño del banco de pruebas se utilizarán anillos internos como elemento de sujeción de los engranes. Los sellos se colocarán como indica la figura 7-8.

Selección de los anillos de retención

Para seleccionar los anillos de retención en cada eje se utiliza como dato la fuerza cortante V_2 ocasionada por las cargas radiales de los engranes. Consultar la páginahttp:

//www.beneri.com/prodotti.php?lingua=ENG&livello2=14&livello1=1 para obtener mayores
detalles.

Se observa la capacidad de cargas radiales y tangenciales que el anillo es capaz de soportar, incluyendo el diámetro interior del eje (note que en los catálogos para hacer

INGENIERÍA MECÁNICA

coincidir las dimensiones del eje con el reten y el anillo de retención se hace $A \leq d_1$).

Tab. 5.16: Resumen de los anillos de retención (dimensiones en *mm*). Verifique la figura B.1.1 para observar la geometría de la pieza

SEP	d_1	d_2	m	Num. DIN
SOL	40	37.5	2.65	471
PP	45	42.5	2.65	471DIN
ME	40	37.5	2.65	471DIN

5.5.3. Retenes

Para los retenes se utilizó el catálogo RIRSA en la con su respectiva página de Internet, vea Rodriguez (2006).

El cátalogo recomienda como datos sobre la flecha el acabado rectificado para mayor seguridad, con dureza Rockwell c 30-40. a una velocidad tangencial

 $Velocidad_{Tangenial} = \frac{m}{min} = diametro_{flecha}(mm)xR.P.M.x0,003$

Fig. 5.9: Como tomar medidas de un retén

Se analizaron las características de los materiales y se escogió reten hecho de fluorelastomero (viton) por su resistencia a los aditivos y altas temperaturas.

Fig. 5.10: Como tomar medidas de la flecha y caja

Tab. 5.17: Retenes Medidas en Milímetros (Material: Fluorelastomero (VITON))

SEP	Diám Flecha	Diám Caja	Altura	Código	Tipo
SOL	45	60	8	4560-8V	BASL
PP	45	62	10	4560-8V	BASL
ME	40	90	10	4090-10V	BASL

74

5.6. Configuración final del banco de pruebas

Fig. 5.11: SEP con soportes. Los soportes de la carcaza son una parte fundamental puesto que son los elementos que sirven como sujeción del SEP. Ahora las variables que se toman en consideración son la tensión inicial de la banda y la geometría de los tres ejes con el propósito de calcular las cargas radiales y tangenciales que se manifestarán durante la operación del ME, MCI y el dinamómetro.

Fig. 5.12: SEP tapas

Fig. 5.13: SEP tapas. Las tapas del SEP se fabricarán con acero inoxidable austenítico 303 por su fácil mecanización.

Fig. 5.14: SEP con el eje del engrane solar. La parte de la corona será fabricada con acero inoxidable AISI 303 por ser de fácil mecanizado y resistencia a la corrosión.

Fig. 5.15: Detalles del portaplanetas

El portaplanetas consiste en una pieza solida hecha de acero inoxidable que transmite la potencia a través los planetas a la corona y dinamómetro. Los rodamientos hacen que giren los planetas libremente dentro de los tres ejes que son equidistantes entre si. Se puede apreciar a detalle la configuración final del portaplanetas en el apéndice con sus dimensiones respectivas.

Fig. 5.16: Banco de pruebas

Fig. 5.17: Instalación del embrague electromagnético y el eje (para mayor información visitar: www.mayr.de o checar la referencia (ROBATIC, 2014, p. 22))

6. CONCLUSIONES

La propuesta de diseño de esta tesis se llevó a cabo en la sección del banco de pruebas para vehículos híbridos que comunica los engranes del SEP con los motores mediante los ejes y componentes. El diseño de detalle proporciona una configuración de los ejes cuyas distancias longitudinales son las mínimas para optimizar el espacio de la carcaza del SEP y sus soportes, ya que se pretende un diseño compacto.

Respecto a la configuración propuesta, se logró diseñar tres ejes con sus respectivos componentes. Los resultados numéricos ayudan a concluir que el diseño es seguro cuando los ejes son sometidos a flexión con las cargas ocasionadas por el MCI y el ME. Los cálculos indican que la configuración del eje con mayor diámetro está localizado en la pieza portaplanetas que transmite potencia a la entrada del dinamómetro, seguido por el eje en el motor de combustión interna y el motor eléctrico.

El cálculo de velocidades críticas sirvió para indicar que empezarán las vibraciones a mayor velocidad que las velocidades de las especificaciones de diseño y es posible operar el MCI y el ME a sus máximas revoluciones con los diámetros y materiales indicados. Por otra parte observé que si los ejes incrementan en longitud manifestaría el banco de pruebas mayores perturbaciones y se tendría que aumentar el factor se seguridad en el diseño en especial la pieza portaplanetas para evitar mayores deflexiones en partes donde existen mayores concentradores de esfuerzos.

El cálculo de la tensión inicial de la banda indicó que se manifiestará la reacción de una fuerza radial mucho más fuerte sobre el eje del ME que la de las cargas radiales de todos los engranes. Esta fuerza provocaría el inicio de las vibraciones y desalineamiento en el sistema de transmisión, además de que afectaría la vida útil de los rodamientos y demás componentes. Por esta razón opte por incrementar el factor de seguridad en la selección de los acoplamientos para los tres ejes en el SEP.

Por otro lado a nivel personal aprendí también que el proceso de diseño es un proceso iterativo que necesita ser verificado incluso cuando todas las variables, componentes y planos son concluidos, ya que tienen que actualizarse los componentes de un catálogo comercial. Que siempre puede ser mejorado un diseño de cualquier tipo y es necesario tener tanto conocimiento como experiencia para hacer una aportación funcional. Que no existe una metodología estricta para definir qué es lo que se debe hacer primero y que se debe tener mucha imaginación para realizar nuevas propuestas.

Trabajo a futuro

- Mejorar el diseño utilizando una banda dentada, puesto que se tiene un mejor agarre que con la banda V (encontrar un distribuidor que cumpla con los parámetros de par, potencia y velocidad).
- Fabricar el banco de pruebas
- Proponer el sistema de lubricación de los engranes (El sistema de lubricación por goteo no es suficiente si el SEP opera a mayor número de ciclos).
- Diseñar una estructura que permita incorporar más elementos como otros tipos de motores con sus elementos para la adquisición de datos.
- Realizar un análisis de vibraciones en los acoplamientos y la estructura que sostiene al MCI y el ME
- Automatizar el sistema
- Diseñar para la parte posterior del dinamómetro el sistema que sostiene los volantes de inercia.

Bibliografía

- Alec, S. (1992). Manual gearbox design.
- Baldor (2014). BALDOR MASKA PRODUCT CATALOG. http://www.baldor.com. [Online; accessed 02-02-2015].
- Becerra, N. n. G. (2010). Control de flujo de potencia en trenes de propulsión híbridos. Master's thesis, UNAM. No note.
- Budynas, R. G. and Nisbett, J. K. (2008). Diseño en Ingeniería Mecánica de Shigley. Mc Graw Hill, 8 edition.
- Design, B. (2005). Beam design formulas with shear and moment diagrams.
- Faires, V. M. (1987). Diseño de Elementos de Máquinas. UTEHA, Unión Tipográfica Editorial Hispano Americana, 4 edition.
- Friedrichshafen, F. A. (2014). Transmisiones hibridas para vehiculos de turismos e industriales. http://www.zf.com/eu/content/es/iberia/ corporate_iberia/products_services_iberia/highlights/ hybrid_drives_iberia/hybrid_drives_iberia.html. [Online; accessed 09-Febrero-2015].
- Hamrock, B. J., Jacobson, B. O., and Schmid, S. R. (2000). *Elementos de Máquinas*. McGraw Hill Interamericana, 2 edition.
- Martínez, O. A. (2014). Diseño del acoplamiento mecánico para el sistema de propulsión de un vehículo híbrido eléctrico. Master's thesis, UNAM. An optional note.

- Mott, R. L. P. (2008). *Diseño de Elementos de Maquinás*. PEARSON EDUCACIÓN, 2 edition.
- Piovan, M. T. (2014). PROYECTO DE ELEMENTOS DE ACOPLA-MIENTO. http://www.frbb.utn.edu.ar/frbb/images/carreras/ elementosdemaquinas/cap08-02.pdf. [Online; accessed 09-Febrero-2015].
- ROBATIC (2014). ROBATIC ROBA-quick ROBA-takt Electromagnetic Clutches and Brakes Clutch Brake Units, ca6000 edition.
- Rodriguez, R. I. (2006). CATALOGO DE RETENES. http://www. rirsa-myvisa.com.mx/retenes. [Online; accessed 12-01-2015].

Apéndice

A. DISEÑO DE DETALLE DE LOS ACOPLAMIENTOS PARA EL BANCO DE PRUEBAS

En este apéndice se presenta la justificación y la selección de los elementos que intervienen para el óptimo desempeño del banco de pruebas.

El diseño de detalle empieza considerando los requisitos de potencia y par de torsión, todos los datos están en la sección de especificaciones. Dichas especificaciones ya se obtuvieron de cálculos en otras investigaciones y los engranes han sido calculados para soportar los valores máximos y nominales del motor de combustión interna, el motor eléctrico y la entrada del dinamómetro.

El diseño general del eje consiste en un eje sólido que contiene dos rodamientos, dos retenes y sus respectivos elementos de sujeción para evitar movimiento axial. El engrane solar es colocado en un extremo del eje.

El primer cálculo importante involucró un análisis de fuerzas a lo largo de la sección del eje de acuerdo al sistema de referencia. Debido a que son conocidas las ubicaciones axiales de los elementos ahora es posible elaborar los diagramas de fuerza cortante y momento flexionante.

Se utilizan las fórmulas 4.1 para calcular las reacciones en los rodamientos, la fuerza cortante y los momentos máximo y alternante, además de la deflexión que sufre el eje a lo largo del eje x. El material es un acero preferentemente con tratamiento térmico y se hacen varias iteraciones para saber los diferentes diámetros con sus respectivos materiales.

Son seleccionamos dos criterios de falla para determinar el diámetro permisible del eje con el fin de comparar que tan conservadores son ambos criterios.

Como siguiente paso se realiza la selección de los componentes de los ejes los cuales

son los rodamientos, los coples flexibles, retenes, cuñas y anillos de retención. Con la geometría de los componentes es posible diseñar la carcaza que contiene el sistema de engranes planetario.

A.1. Diagramas de fuerza cortante y momento flexionante

De acuerdo al sistema de referencia la carga tangencial del engrane solar provocará un momento respecto al eje y y a carga radial un momento respecto al eje z.

El valor que interesa calcular es el momento alternante entre los soportes $(M_x=M_a)$, ya que en esta sección el par de torsión es mayor de acuerdo al diagrama de momento flexionante total. Esto se puede visualizar en la tabla para los valores los cuales $M_x \ge M_{x_1}$

Se diseñará el eje de acuerdo a (Design, 2005, p. 13, fig. 19).

Fig. A.1: Diagrama para calcular las reacciones

Fig. A.3: Sistema de referencia

Fig. A.2: Primera configuración del eje solar

El sistema de referencia para el cálculo del diámetro mínimo de todos los ejes tiene la configuración según la figura 4.3. Las secciones A, B y G son las partes donde se colocan los rodamientos A y B, G es la sección donde va montado el engrane.

El diagrama de momento flexionante y fuerza cortante con respecto a los planos xy y xz proporcionan la resultante entre la carga radial para obtener M_z y la carga tangencial para obtener M_y . Con los datos ingresados en la tabla anterior se obtiene el momento alternante ($M_x=M_a$) para futuros cálculos. Esta es la misma metodología utilizada para poder calcular los demás ejes.

E	207	[GPa]
L	0.15	[m]
a	0.05	[m]
x	0.03	[m]
x_1	0.02	[m]
$\mathbf{P} = W_t$	1143.316	[N]
$\mathbf{P} = W_r$	416.133	[N]

La tabla nos muestra los datos numéricos para calcular las reacciones, fuerzas y momentos obtenidos del diagrama fuerza cortante y momento flexionante

r	1				1
Componentes en plano		Componentes en plano		Valores	
xz		xy		resultantes	
V1	1059	V1	385	V1	1127
V2	1143	V2	416	V2	1217
R1	1059	R1	385	R1	1126
R2(-)	-2202	R2(-)	-801	R2(-)	2343
M max (R2)	57	M max (R2)	21	M max (R2)	61
Mx (entresoportes)	41	Mx (entresoportes)	15	Mx	42
_		_		(entresoportes)	
Mx1 (en voladizo)	34	Mx1 (en voladizo)	12	Mx1 (en	37
				voladizo)	
Dmax (x)	$0.17 \times ^{-6}$	Dmax (x)	$6.188 \times ^{-8}$	Dmax (x)	$1.809 \times ^{-7}$
Dmax (x1)	$1.577 \times ^{-6}$	Dmax (x1)	$5.7342 \times ^{-7}$	Dmax (x1)	$1.676 \times ^{-6}$
Dx (entresoportes)	$1.526 \times ^{-7}$	Dx (entresoportes)	$5.555 \times ^{-8}$	Dx	$1.62 \times ^{-7}$
				(entresoportes)	
Dx1 (en voladizo)	$4.847 \times ^{-7}$	Dx1 (en voladizo)	$1.764 \times ^{-7}$	Dx1 (en voladizo)	$5.158 \times ^{-7}$

Tab. A.1: Resumen del diagrama de cuerpo libre

El resumen del del diagrama de cuerpo libre nos proporciona los valores de fuerza cortante V, reacciones en los rodamientos $(R_{1,2})$, momentos flexionantes, deflexiones D a lo largo de distancias x y x_1 . Los valores son los correspondientes a los componentes de las reacciones de las cargas localizadas sobre el plano xz y xy, también se proporcionan los valores totales o resultantes para proseguir con los cálculos.

A.2. Cálculo del diámetro mínimo del eje en el engrane solar

De acuerdo a las teorías de falla se pueden obtener diferentes expresiones para calcular el diámetro del eje en función de diferentes constantes y magnitudes físicas. El primer paso para resolver la ecuación del diámetro fue encontrar el límite de resistencia a la fatiga S_e y el factor de concentración del esfuerzo por fatiga K_f mediante la ecuación de Marin. La expresión obtenida mediante la línea de Soderbeg nos proporciona protección contra la fluencia, razón por la cual se escogió dicho criterio con el fin de comparar el diámetro con la teoría de ASME elíptica que a diferencia, tiene un sesgo más amplio de valores que protegen a la pieza de la falla (ver la figura 3.5.2).

A.2.1. Ecuación de Marin

El proceso que se toma para una carga simple completamente reversible es determinar S'_e a partir de datos de los ensayos o de la siguiente expresión:

$$S'_{e} = \begin{cases} 0.5S_{ut} & S_{ut} \le 200 Kpsi(1400MPa) \\ 100 Kpsi & S_{ut} > 200 Kpsi \\ 700 Mpa & S_{ut} > 1400 MPa \end{cases}$$
$$K_{a} = aS^{b}_{ut} = 4.41(380MPa)^{-0.265} = 0.9136838244$$

Identificamos la resistencia mínima a la tensión S_{ut} , los valores a y b se encuentran en la tabla 6-2 de (Budynas and Nisbett, 2008, p. 280) ó en la figura B.12. Debido a que puestre material tiene una resistencia maner a los 1400MPa se amplea la

Debido a que nuestro material tiene una resistencia menor a los 1400MPa se emplea la primer subecuación, como primera aproximación una condición superficial de maquinado o estirado en frío.

Para aceros de baja aleación, incremente S_{ut} por 20Kpsi y calcule \sqrt{a}

Eje rotatorio para fexión o torsión,

$$K_b = \begin{cases} \left(\frac{d}{0,3}\right)^{-0,107} & 0,011 \le d \le 2pulg\\ 0,91d^{-0157} & 2 \le d \le 10pulg\\ \left(\frac{d}{7,62}\right)^{-0,107} & 2,79 \le d \le 51mm\\ 1,51d^{-0,157} & 51 < 254mm \end{cases}$$

 K_b se encuentra en el rango de 2,79 $\leq d \leq 51mm$, con un diámetro de prueba de 22mm:

$$K_b = 0.8927501978$$

Nuestro elemento rotatorio es más probable que falle por flexión que por torsión debido a la configuración del banco de pruebas.

$$K_c = \begin{cases} 1 & \text{flexión} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsión} \end{cases}$$

Calculando K_d utilizando una temperatura $T_F = 248F$

$$K_d = 0.975 + 0.432(10^{-3})T_F - 0.115(10^{-5})T_F^2 + 0.104(10^{-8})T_F^3 - 0.595(10^{-12})T_F^4 = 1.0250187802$$

Factores de confiabilidad K_e de la tabla 6.5 en (Budynas and Nisbett, 2008, p. 285)

$$K_e = 0,753$$
 confiabilidad del 99 %

 K_t y K_{ts} se obtienen identificando el diámetro mayor y menor con su respectivo filete de acuerdo a la figura 4.4 y 4.5. (En la primer iteración para obtener estas constantes no se utilizó el diámetro definitivo, empleamos el diámetro de prueba d = 22mm con D = 25mm, r = 0.10)

$$\frac{D}{d} = 1,36$$
$$r = 0,10$$
$$K_t = 1,6$$
$$K_{ts} = 1,2$$

$$K_{f} = 1 + q(K_{t} - 1) = 1,6028795627$$

$$K_{fs} = 1 + q(K_{ts} - 1) = 1,2009598542$$

$$q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}} = 1,0047992712$$

$$\sqrt{a} = 0,245799 - 0,307794(10^{-2})S_{ut}$$

$$+0,150874(10^{-4})S_{ut}^{2} - 0,266978(10^{-7})S_{ut}^{3}$$

$$= -0.2101593216$$

Donde K_t es el factor de concentración de esfuerzos a flexión y K_{ts} es el factor de concentración de esfuerzos a torsión y figuras 4.4 y 4.5, respectivamente.

Ahora es posible determinar el límite de resistencia a la fatiga

$$S_e = k_a k_b k_c k_d k_e k_f S'_e = 113,1251568302[MPa]$$

A.2.2. Cálculo de esfuerzos máximos y mínimos

 M_m y T_a son obtenidos del despeje de las ecuaciones 4.6 y 4.7, respectivamente. Pero necesitamos determinar el esfuerzo medio en función de los esfuerzos máximo y mínimo.

Utilizando la teoría del círculo de Mohr para calcular el esfuerzo máximo y mínimo (de acuerdo al sistema de referencia de la figura 4.3 en el plano yz), y utilizando las cargas radiales y tangenciales como datos. Los momentos respecto a los ejes y y z se encuentran en la tabla A.4 y para simplificar el análisis no se consideran cargas axiales y por lo tanto los esfuerzos normales respecto a la sección transversal son despreciables ($\sigma_z = 0$).

Con un diámetro de prueba de 22mm

$$\sigma_x = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y} = -\frac{20,80665 * 0,011}{1,14E - 008} + \frac{57,1658 * 0,011}{1,14E - 008} = 34,781,216,63[Pa]$$

INGENIERÍA MECÁNICA

$$\sigma_z = 0$$
$$I_{x,z} = \frac{1}{4}\pi c^3$$

 M_z y M_y son obtenidos del diagrama de cuerpo libre utilizando la ecuación 4.1e. La sección transversal tiene un radio de prueba c al igual que su segundo momento de área I.

$$OC = CD = \frac{1}{2}(\sigma_x + \sigma_z)$$

Esfuerzo cortante

$$\tau_{xz} = -\frac{16T_{MCI}}{\pi d^3} = -16262225[Pa]$$

$$\tau_{max} = R = \sqrt{(\frac{\sigma_x - \sigma_z}{2})^2 + (\tau_{xz})^2}$$

$$\sigma_{max,min} = \sigma_{1,3} = OC \pm R = (41, 200, 127, -6, 418, 911)[Pa]$$

$$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2} = 17390608, 3[Pa]$$
 (A.1)

$$\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2} = 11904759, 8[Pa]$$
(A.2)

 $\tau_{min} = 0$ debido a a distribución del esfuerzo cortante en la sección transversal del eje solido.

$$\tau_{max} = \frac{\sigma_1 - \sigma_3}{2} = 23809519, 6[Pa]$$
 (A.3)

$$\tau_{min} = 0 \tag{A.4}$$

$$\tau_m = \frac{\tau_{max} + \tau_{min}}{2} = 11904759,8[Pa]$$
(A.5)

$$\tau_a = \frac{\tau_{max} - \tau_{min}}{2} = 11904759,8[Pa]$$
(A.6)

UNAM

A.2. CÁLCULO DEL DIÁMETRO MÍNIMO DEL EJE EN EL ENGRANE SOLAR

Obteniendo el diámetro

De la ecuación 4.7

$$T_a = \frac{\tau_a}{\pi d^3} \frac{1}{16K_{fs}} = 20,72[Nm]$$

$$M_m = \frac{\sigma_m}{K_f} \frac{\pi d^3}{32} = 11,34[Nm]$$

Verificar el resumen del diseño del eje para observar los diámetros obtenidos a partir de sus respectivos criterios de falla. Ya que se ha determinado la resistencia a la fatiga S_e , T_a y M_m se calculan los diámetros del eje con las teorías de falla; utilizando las ecuaciones 4.2 y 4.3 obtenemos, respectivamente:

$$d_{Soderberg} = 2,7[cm]$$
$$d_{ASME} = 2,5[cm]$$

A.2.3. Velocidades críticas en ejes giratorios

Una vez definida la geometría de la pieza es posible calcular la velocidad crítica del eje giratorio. Se deben definir la ubicación de las cargas radiales a lo largo de las secciones del eje x (de acuerdo a el sistema de referencia).

Analizando la deflexión en los puntos con mayor concentración de esfuerzos, según la figura A.4 se analizarán las secciones E, F e I.

Tomando en cuenta sólo las fuerzas resultantes en para realizar el análisis sobre un solo plano.

Fig. A.4: Ubicación de las cargas unitarias en el eje.

Nota: la reacción R_B tiene dirección opuesta.

Donde L es la distancia entre los rodamientos A y B. W_1 , W_2 , W_3 son las cargas resultantes entre la carga radial y tangencial transmitidas por medio de los engranes. X_i es la distancia entre el rodamiento A y las secciones críticas de los ejes 1, 2 y 3 donde se localizan mayores concentradores de esfuerzos.

Fueron reemplazadas las distancias designadas mediante letras para el cálculo de los coeficientes de acuerdo a la ubicación de la la carga unitaria mediante las ecuaciones 4.19 y sustituyendo las valores de la tabla A.2 se llega a obtener los coeficientes de influencia δ_{ij} .

Sección	longitud [m]
AB	0.054
BG	0.05
EJ	0.08
AE	0.039
FJ	0.05
AF	0.084
IJ	0.03
AJ	0.119
AI	0.089

Tab. A.2: Tabla que indica las distancias de las secciones del eje acorde a la figura A.10

Nota: Para W_{ij} se realiza un sistema equivalente de cargas para trasladar la carga radial y tangencial a la sección I.

$$\delta_{ij} = \begin{pmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33} \end{pmatrix} = \begin{pmatrix} 1.9429 \times^{-9} & 1.2143 \times^{-9} & 9.2350 \times^{-10} \\ 1.2437 \times^{-9} & 2.32217 \times^{-9} & 1.3001 \times^{-9} \\ 1.7537 \times^{-9} & 2.56580 \times^{-9} & 1.4724 \times^{-9} \end{pmatrix}$$

Los siguientes valores son las cargas resultantes obtenidas del diagrama de fuerza cortante en la sección B del eje. (ver figura 4.5), las ecuaciones están relacionadas con las fuerzas cortantes V_1 y V_2 en cada sección del eje. En este caso $V_n=W_n$

$$W_1 = 1126,56[N]$$

 $W_2 = 1216,691[N]$
 $W_3 = 1216,691[N]$

Calculando las deflexiones Y_1, Y_2, Y_3 .

$$Y_1 = W_1 \delta_{11} + W_2 \delta_{12} + W_3 \delta_{13} \tag{A.7}$$

$$Y_2 = W_1 \delta_{12} + W_2 \delta_{22} + w_3 \delta_{32} \tag{A.8}$$

$$Y_3 = W_1 \delta_{31} + W_2 \delta_{32} + W_3 \delta_{33} \tag{A.9}$$

$$Y_1 = 5,80005856602708 \times {}^{-6} [m]$$

$$Y_2 = 7,34838436785244 \times {}^{-6} [m]$$

$$Y_2 = 5,34909801536757 \times {}^{-6} [m]$$

$$13 = 3,34303001330131 \times [m]$$

$$\sum W_i Y_i = W_1 Y_1 + W_2 Y_2 + W_3 Y_3 \tag{A.10}$$

$$\sum W_i Y_i^2 = W_1 Y_1^2 + W_2 Y_2^2 + W_3 Y_3^2 \tag{A.11}$$

INGENIERÍA MECÁNICA

$$\sum W_i Y_i = 0.0219830684$$
$$\sum W_i Y_i^2 = 1.38411284236055E - 007$$

Primera velocidad crítica (Ec. de Rayleigh)

$$\omega_1 = \sqrt{\frac{\sum(W_i Y_i)}{\sum(W_i Y_i^2)}} = 1246,315 \frac{rad}{s} = 11901,404 [rpm]$$

Donde W_i [N], Y_i [m], g = aceleración de la gravedad calculando la velocidad ω_{11} :

$$\frac{1}{\omega_{11}^2} = \frac{W_1}{g} \delta_{11}$$

Despejando la velocidad angular para las tres velocidades críticas.

$$\omega_{11} = \sqrt{\frac{g}{W_1\delta_{11}}} = 2113,789$$
$$\omega_{22} = \sqrt{\frac{g}{W_2\delta_{22}}} = 1860,510$$
$$\omega_{33} = \sqrt{\frac{g}{W_3\delta_{33}}} = 2336,488$$

Calculando la primera velocidad crítica

$$\frac{1}{\omega_1^2} = \sum \frac{1}{\omega_{ii}^2} = \frac{1}{\omega_{11}^2} + \frac{1}{\omega_{22}^2} + \frac{1}{\omega_{33}^2}, \omega_1 = 1198,763[rad/s] = 13988,988[rpm]$$

Utilizando la Ec. 7-24 de Budynas and Nisbett (2008)

$$\delta_{cc} = \frac{b_{cc} X_{cc}}{6EIL} (l^2 - b_{cc}^2 - X_{cc}^2)$$

Brinda la superposición de cargas equivalentes en el centro del eje (carga en el centro del eje).

INGENIERÍA MECÁNICA

UNAM

Otra forma de calcular las velocidades críticas fue de acuerdo a las siguientes ecuaciones y brinda la misma velocidad crítica. Utilizando las fórmulas 4.30:

$$W_{1c} = W_1 \frac{\delta_{11}}{\delta_{cc}}$$
$$W_{2c} = W_2 \frac{\delta_{22}}{\delta_{cc}}$$
$$W_{3c} = W_3 \frac{\delta_{33}}{\delta_{cc}}$$
$$\omega = \sqrt{\frac{g}{\delta_{cc} \sum W_{ic}}}$$

Las ecuaciones anteriores nos ayudan a identificar la proporción de las cargas a lo largo del eje.

A.2.4. Resumen	del diseño	del eje sola	r
----------------	------------	--------------	---

Eje solar	Valor Numérico	Unidad de medida
K_a	0.9136838244	
K_b	0.8927501978	
K_c	0.59	
$K_d(248F)$	1.0250187802	
K_e	0.753	
K_f	1.6028795627	
K_{fs}	1.2009598542	
K_t	1.6	
K_{ts}	1.2	
S_e	113.1251568302	MPa
S'_e	190	MPa

Tab. A.3: Constantes para obtener la ecuación de Marin

Variable	Valor	Magnitud
S_e	113.1251568302	MPa
S_y	210	MPa
S_{yt}	210	MPa
K_f	1.6028795627	
K_{fs}	1.2009598542	
T_a	20.7248356508	N.m
T_m	31.968	N.m
M_a	43.9360811041	N.m
M_m	-11.3418221947	N.m
$d_{ASME_{min}}$	0.0255731665	m
$d_{Soderberg_{min}}$	0.0276650873	m
$\omega_{critica}$	13988	RPM

Tab. A.4: Resumen del diseño para calcular el diámetro mínimo del eje

 M_m y T_a se obtienen de las fórmulas 4.6 y 4.7 respectivamente.

 K_f y K_{fs} dependen del diámetro del eje d. El enfoque que se usa es estimar el rango de diámetros del eje de acuerdo a la geometría del engrane solar y planetario. Como restricción se escojera un diámetro menor al diámetro interior de dichos engranes.

Nota: Los valores M_m y T_a al ser sustituidos en las ecuaciones de diámetro no resultan tan representativos.

Análisis a flexón

Sol (Primer aproximación, diámetro de prueba: 22[mm]) : k_t =1.6, k_{ts} =1.2

A continuación se muestran algunos diámetros con sus respectivos materiales utilizando el mismo procedimiento de cálculo:

Acero	E	S_{ut}	S_y	diámetro[m]	diámetro[m]
	[GPa]	[MPa]	[Mpa]	Soderberg	ASME
1020 (HR)	205	380	210	0.0276650873	0.0255731665
1030 (HR)	205	470	260	0.0261550459	0.0242653108
1040 (HR)	200	525	290	0.0254069934	0.0236104119
1045 (HR)	205	570	310	0.024889788	0.0231360316
4140 TyR	200	1 250	1 140	0.0198617647	0.018847502
(425 °C)					
4340 TyR	200	1 720	1 590	0.0198685232	0.0194555807
(315 °C)					
4340 TyR	200	965	855	0.0211467586	0.0202366847
(650 °C)					

A.3. CÁLCULO DEL DIÁMETRO MÍNIMO DEL PORTAPLANETAS A LA SALIDA DEL SISTEMA

Tab. A.5: Primer aproximación, diámetro de prueba: 22[mm]

A.3. Cálculo del diámetro mínimo del portaplanetas a la salida del sistema

Se sigue la misma metodología de diseño para determinar el diámetro mínimo del eje a la salida del sistema. El portaplanetas consiste básicamente en una sola pieza que sostiene a los tres engranes planetarios equidistantes concéntricamente respecto a el eje que transmite la potencia acoplado al dinamómetro. El diámetro se obtiene con el mismo procedimiento descrito para el eje en el engrane solar, sin embargo ahora las cargas radiales y tangenciales alojadas en el centro del portaplanetas equivalen al triple de su magnitud debido a la configuración del sistema en donde se albergan los planetas, es decir las cargas radiales y tangenciales se trasladan al centro del eje debido a los tres planetas.

A diferencia del análisis anterior, ahora se debe tomar en cuenta la tensión inicial de la banda para el cálculo de las cargas radiales a lo largo de la sección crítica del eje.

A.3.1. Ecuación de Marin

El proceso que se toma para una carga simple completamente reversible es determinar S'_e a partir de datos de los ensayos o de la siguiente expresión: e

$$S'_{e} = \begin{cases} 0.5S_{ut} & S_{ut} \le 200 Kpsi(1400 MPa) \\ 100 Kpsi & S_{ut} > 200 Kpsi \\ 700 Mpa & S_{ut} > 1400 MPa \end{cases}$$

$$K_a = aS_{ut}^b = 4,41(690MPa)^{-0,265} = 0,7800879698$$

Identificamos la resistencia mínima a la tensión S_{ut} , los valores a y b se encuentran en la tabla 6-2 de (Budynas and Nisbett, 2008, Página 280) ó en la figura B.12. Debido a que nuestro material tiene una resistencia menor a los 1400MPa empleamos la primer subecuacón. Empleamos como primera aproximación una condición superficial de maquinado o estirado en frío.

Para aceros de baja aleación, incremente S_{ut} por 20Kpsi y calcule \sqrt{a}

Eje rotatorio para flexión o torsión,

$$K_b = \begin{cases} (\frac{d}{0,3})^{-0,107} & 0,011 \le d \le 2pulg \\ 0,91d^{-0157} & 2 \le d \le 10pulg \\ (\frac{d}{7,62})^{-0,107} & 2,79 \le d \le 51mm \\ 1,51d^{-0,157} & 51 < 254mm \end{cases}$$

 K_b se encuentra en el rango de 2,79 $\leq d \leq 51mm$, con un diámetro de prueba de 22mm:

$$K_b = 0,8494814529$$

Nuestro elemento rotatorio es más probable que falle por flexión que por torsión debido a la configuración del banco de pruebas, el sistema de transmisión por bandas

A.3. CÁLCULO DEL DIÁMETRO MÍNIMO DEL PORTAPLANETAS A LA SALIDA DEL SISTEMA

ocasiona una fuerza que es mucho mayor que las cargas radiales de los engranes, tal fuerza es la fuerza de tensión inicial.

$$K_c = \begin{cases} 1 & \text{flexión} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsión} \end{cases}$$

Calculando K_d utilizando una temperatura $T_F = 248F$

 $K_{d} = 0.975 + 0.432(10^{-}3)T_{F} - 0.115(10^{-}5)T_{F}^{2} + 0.104(10^{-}8)T_{F}^{3} - 0.595(10^{-}12)T_{F}^{4} = 1.0250187802$

Factores de confiabilidad K_e de la tabla 6.5 en (Budynas and Nisbett, 2008, p. 285)

 $K_e = 0,753$ confiabilidad del 99 %

 K_t y K_{ts} se obtienen identificando el diámetro mayor y menor con su respectivo filete de acuerdo a la figura 4.4 y 4.5. (En la primera iteración para obtener estas constantes no se utilizó el diámetro definitivo, se emplea el diámetro de prueba d = 22mm con D = 35mm, r = 0.10)

$$\frac{D}{d} = 1,6$$

$$r = 0,10$$

$$K_t = 1,7$$

$$K_{ts} = 1,45$$

$$K_{f} = 1 + q(K_{t} - 1) = 1,7364582172$$

$$K_{fs} = 1 + q(K_{ts} - 1) = 1,494479088$$

$$q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}} = 1,05208316$$

$$\sqrt{a} = 0,245799 - 0,307794(10^{-2})S_{ut}$$

$$+0,150874(10^{-4})S_{ut}^{2} - 0,266978(10^{-7})S_{ut}^{3}$$

$$= -3,4653360$$

A.3. CÁLCULO DEL DIÁMETRO MÍNIMO DEL PORTAPLANETAS A LA SALIDA DEL SISTEMA

Donde K_t es el factor de concentración de esfuerzos a flexión y K_{ts} es el factor de concentración de esfuerzos a torsión y figuras 4.4 y 4.5 respectivamente.

Ahora es posible determinar el límite de resistencia a la fatiga

$$S_e = k_a k_b k_c k_d k_e k_f S'_e = 180,78[MPa]$$

A.3.2. Diagrama de cuerpo libre, Diagrama de fuerza cortante y Momento flexionante

A.3.3. Cálculo de esfuerzos máximos y mínimos

 M_m y T_a son obtenidos del despeje de las ecuaciones 4.6 y 4.7 respectivamente. Necesitamos determinar el esfuerzo medio en función de los esfuerzos máximo y mínimo.

Utilizando la teoría del círculo de Mohr para calcular el esfuerzo máximo y mínimo (de acuerdo al sistema de referencia de la figura 4.3 en el plano yz), y utilizando las cargas radiales y tangenciales como datos. Los momentos M_a y M_m respecto a los ejes y y z se encuentran en la tabla A.4 y para simplificar el análisis no se consideran cargas axiales y por lo tanto los esfuerzos normales respecto a la sección transversal son despreciables ($\sigma_z = 0$).

Con un diámetro de prueba de 22mm

$$\sigma_x = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y} = -\frac{129,3 * 0,0175}{7,36E - 008} + \frac{356 * 0 - 0175}{7,7,36E - 008} = 53790635[Pa]$$

$$\sigma_z = 0$$

$$I_{x,z} = \frac{1}{4}\pi c^3$$

 M_z y M_y son obtenidos del diagrama de cuerpo libre utilizando la ecuación 4.1e. La sección transversal tiene un radio de prueba c al igual que su segundo momento de área I.
A.3. CÁLCULO DEL DIÁMETRO MÍNIMO DEL PORTAPLANETAS A LA SALIDA DEL SISTEMA

$$OC = CD = \frac{1}{2}(\sigma_x + \sigma_z)$$

Esfuerzo cortante

$$\tau_{xz} = -\frac{16T_{MCI}}{\pi d^3} = -16915114, 8[Pa]$$

$$\tau_{max} = R = \sqrt{\left(\frac{\sigma_x - \sigma_z}{2}\right)^2 + (\tau_{xz})^2}$$

$$\sigma_{max,min} = \sigma_{1,3} = OC \pm R = (58667620, -4876985)[Pa]$$

$$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2} = 26895317,68[Pa]$$
(A.12)

$$\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2} = 15886151, 38[Pa]$$
(A.13)

 $\tau_{min}=0$ debido a distribución del esfuerzo cortante en la sección transversal del eje sólido.

$$\tau_{max} = \frac{\sigma_1 - \sigma_3}{2} = 31772302,76[Pa]$$
 (A.14)

$$\tau_{min} = 0 \tag{A.15}$$

$$\tau_m = \frac{\tau_{max} + \tau_{min}}{2} = 15886151[Pa] \tag{A.16}$$

$$\tau_a = \frac{\tau_{max} - \tau_{min}}{2} = 15886151[Pa] \tag{A.17}$$

Obteniendo el diámetro

De la ecuación 4.7

$$T_a = \frac{\tau_a}{\pi d^3} \frac{1}{16K_{fs}} = 89,48[Nm]$$

$$M_m = \frac{\sigma_m}{K_f} \frac{\pi d^3}{32} = 65,19[Nm]$$

INGENIERÍA MECÁNICA

UNAM

A.3. CÁLCULO DEL DIÁMETRO MÍNIMO DEL PORTAPLANETAS A LA SALIDA DEL SISTEMA

Verificar el resumen del diseño del eje para observar los diámetros obtenidos a partir de sus respectivos criterios de falla. Ya que se ha determinado la resistencia a la fatiga S_e , T_a y M_m se calculan los diámetros del eje con las teorías de falla; utilizando las ecuaciones 4.2 y 4.3 obtenemos respectivamente:

$$d_{Soderberg} = 2,4[cm]$$
$$d_{ASME} = 2,4[cm]$$

A.3.4. Velocidades críticas en ejes giratorios

Una vez definida la geometría de la pieza es posible calcular la velocidad crítica del eje giratorio. Se deben definir la ubicación de las cargas radiales a lo largo de las secciones del eje x (de acuerdo a el sistema de referencia).

Analizando la deflexión en los puntos con mayor concentración de esfuerzos, según la figura A.10, se analizarán las secciones E, F e I.

Tomando en cuenta sólo las fuerzas resultantes en para realizar el análisis sobre un solo plano.

Fig. A.5: Ubicación de las cargas unitarias en el eje.

Nota: la reacción R_B tiene dirección opuesta.

Donde L es la distancia entre los rodamientos A y B. W_1 , W_2 , W_3 son las cargas resultantes entre la carga radial y tangencial transmitidas por medio de los engranes. X_i es la distancia entre el rodamiento A y las secciones críticas de los ejes 1, 2 y 3 donde se localizan mayores concentradores de esfuerzos.

Reemplazando las distancias designadas mediante letras para el cálculo de los coeficientes de acuerdo a la ubicación de la la carga unitaria mediante las ecuaciones 4.19 y sustituyendo las valores de la tabla A.10 se llega a obtener los coeficientes de influencia δ_{ij} .

Sección	longitud [m]				
AB	0.054				
BG	0.05				
EJ	0.08				
AE	0.039				
FJ	0.05				
AF	0.084				
IJ	0.03				
AJ	0.119				
AI	0.089				

A.3. CÁLCULO DEL DIÁMETRO MÍNIMO DEL PORTAPLANETAS A LA SALIDA DEL SISTEMA

Tab. A.6: Tabla que indica las distancias de las secciones del eje acorde a la figura A.10

Nota: Para W_{ij} se realiza un sistema equivalente de cargas para trasladar la carga radial y tangencial a la sección I.

$$\delta_{ij} = \begin{pmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33} \end{pmatrix} = \begin{pmatrix} 1.9429 \times^{-9} & 1.2143 \times^{-9} & 9.2350 \times^{-10} \\ 1.2437 \times^{-9} & 2.32217 \times^{-9} & 1.3001 \times^{-9} \\ 1.7537 \times^{-9} & 2.56580 \times^{-9} & 1.4724 \times^{-9} \end{pmatrix}$$

Los siguientes valores son las cargas resultantes obtenidas del diagrama de fuerza cortante en la sección B del eje. (ver figura 4.5, las ecuaciones están relacionadas con las fuerzas cortantes V_1 y V_2 en cada sección del eje. En este caso $V_n=W_n$

$$W_1 = 2525,5566[N]$$

 $W_2 = 7576,6698[N]$
 $W_3 = 7576,6698[N]$

Calculando las deflexiones Y_1 , Y_2 , Y_3 .

 $Y_1 = W_1 \delta_{11} + W_2 \delta_{12} + W_3 \delta_{13} \tag{A.18}$

$$Y_2 = W_1 \delta_{12} + W_2 \delta_{22} + w_3 \delta_{32} \tag{A.19}$$

$$Y_3 = W_1 \delta_{31} + W_2 \delta_{32} + W_3 \delta_{33} \tag{A.20}$$

A.3. CÁLCULO DEL DIÁMETRO MÍNIMO DEL PORTAPLANETAS A LA SALIDA DEL SISTEMA

Y_1	=	0,000027395[m]
Y_2	=	4,0175884435216E - 005[m]
Y_3	=	2,54362868131334E - 005[m]

$$\sum W_i Y_i = W_1 Y_1 + W_2 Y_2 + W_3 Y_3 \tag{A.21}$$

$$\sum W_i Y_i^2 = W_1 Y_1^2 + W_2 Y_2^2 + W_3 Y_3^2$$
(A.22)

 $\sum W_i Y_i = 0,566309380$ $\sum W_i Y_i^2 = 1,90270E - 005$

Primera velocidad crítica (Ec. de Rayleigh)

$$\omega_1 = \sqrt{\frac{\sum(W_i Y_i)}{\sum(W_i Y_i^2)}} = 1246,315 \frac{rad}{s} = 11901,404 [rpm]$$

Donde W_i [N], Y_i [m], g = aceleración de la gravedad calculando la velocidad ω_{11} :

$$\frac{1}{\omega_{11}^2} = \frac{W_1}{g} \delta_{11}$$

Despejando la velocidad angular para las tres velocidades críticas.

$$\omega_{11} = \sqrt{\frac{g}{W_1\delta_{11}}} = 2113,789$$
$$\omega_{22} = \sqrt{\frac{g}{W_2\delta_{22}}} = 1860,510$$
$$\omega_{33} = \sqrt{\frac{g}{W_3\delta_{33}}} = 2336,488$$

INGENIERÍA MECÁNICA

106

UNAM

A.3. CÁLCULO DEL DIÁMETRO MÍNIMO DEL PORTAPLANETAS A LA SALIDA DEL SISTEMA

Calculando la primera velocidad crítica

$$\frac{1}{\omega_1^2} = \sum \frac{1}{\omega_{ii}^2} = \frac{1}{\omega_{11}^2} + \frac{1}{\omega_{22}^2} + \frac{1}{\omega_{33}^2}, \omega_1 = 539,050[rad/s] = 6290,46[rpm]$$

Utilizando la Ec. 7-24 de Budynas and Nisbett (2008)

$$\delta_{cc} = \frac{b_{cc} X_{cc}}{6EIL} (l^2 - b_{cc}^2 - X_{cc}^2)$$

Nos brinda la superposición de cargas equivalentes en el centro del eje (carga en el centro del eje).

Otra forma de calcular las velocidades críticas es de acuerdo a las siguientes ecuaciones y nos brinda la misma velocidad crítica.

$$W_{1c} = W_1 \frac{\delta_{11}}{\delta_{cc}} \tag{A.23}$$

$$W_{2c} = W_2 \frac{\delta_{22}}{\delta_{cc}} \tag{A.24}$$

$$W_{3c} = W_3 \frac{\delta_{33}}{\delta_{cc}} \tag{A.25}$$

$$\omega = \sqrt{\frac{g}{\delta_{cc} \sum W_{ic}}}$$

Las ecuaciones anteriores nos ayudan a identificar las proporción de las cargas a lo largo del eje.

Tab. A.7: Constantes para obtener la ecuación de Marin				
Eje PP	Valor Numérico	Unidad de medida		
K_a	0.9136838244			
K_b	0.8927501978			
K_c	0.59			
$K_d(248F)$	1.0250187802			
K_e	0.753			
K_f	1.6028795627			
K_{fs}	1.2009598542			
K_t	1.6			
K_{ts}	1.2			
S_e	113.1251568302	MPa		
S'_e	190	MPa		

A.3.5. Resumen del diseño del eje en el portaplanetas

Tab. A.8: Resumen del diseño para calcular el diámetro mínimo del eje en el portaplanetas

Variable	Valor	Magnitud
S_e	180.78	MPa
S_y	580	MPa
S_{yt}	580	MPa
$\check{K_f}$	1.7364	
K_{fs}	1.4944	
T_a	89.487	N.m
T_m	31.968	N.m
M_a	43.936	N.m
M_m	65.195	N.m
$d_{ASME_{min}}$	0.0293	m
$d_{Soderberg_{min}}$	0.03106	m
$\omega_{critica}$	6290.46	RPM

INGENIERÍA MECÁNICA

Acero (Porta-	E	S_{ut}	S_y	diámetro[m]	diámetro[m]
planetas)	[GPa]	[MPa]	[Mpa]	Soderberg	ASME
1020 (HR)	205	380	210	0.0276650873	0.0255731665
1030 (HR)	205	470	260	0.0261550459	0.0242653108
1040 (HR)	200	525	290	0.0254069934	0.0236104119
1045 (HR)	205	570	310	0.024889788	0.0231360316
4140 TyR	200	1 250	1 140	0.0198617647	0.018847502
(425 °C)					
4340 TyR	200	1 720	1 590	0.0198685232	0.0194555807
(315 °C)					
4340 TyR	200	965	855	0.0211467586	0.0202366847
(650 °C)					

A.4. CÁLCULO DEL DIÁMETRO MÍNIMO DEL EJE EN MOTOR ELÉCTRICO

Tab. A.9: Primer aproximación, diámetro de prueba: 22[mm]

A.4. Cálculo del diámetro mínimo del eje en motor eléctrico

Los cálculos involucrados para el diseño del eje acoplado al motor eléctrico describen el mismo procedimiento que el sistema acoplado al motor de combustión interna. Las cargas son transmitidas al eje del motor eléctrico a través de la corona. Sin embargo ahora no solo se transmite la carga tangencial de la corona, ahora se tiene que tomar en cuenta la tensión inicial de la banda que simula la trasmisión de potencia del vehículo.

Para el diagrama de cuerpo libre ahora la carga total es la suma de la carga tangencial de la corona que producirá un momento respecto al eje y y la tensión inicial de la banda.

A.4.1. Ecuación de Marin

El proceso que se toma para una carga simple completamente reversible es determinar S'_e a partir de datos de los ensayos o de la siguiente expresión:

$$S'_{e} = \begin{cases} 0.5S_{ut} & S_{ut} \le 200 Kpsi(1400 MPa) \\ 100 Kpsi & S_{ut} > 200 Kpsi \\ 700 Mpa & S_{ut} > 1400 MPa \end{cases}$$

$$K_a = aS_{ut}^b = 4,41(380MPa)^{-0,265} = 0,9136838244$$

Identificamos la resistencia mínima a la tensión S_{ut} , los valores a y b se encuentran en la tabla 6-2 de (Budynas and Nisbett, 2008, p. 280) ó en la figura B.12. Debido a que nuestro material tiene una resistencia menor a los 1400MPa empleamos la primera subecuación. Y empleamos como primera aproximación una condición superficial de maquinado o estirado en frío.

Para aceros de baja aleación, incremente S_{ut} por 20Kpsi y calcule \sqrt{a}

Eje rotatorio para fexión o torsión,

$$K_b = \begin{cases} \left(\frac{d}{0,3}\right)^{-0,107} & 0,011 \le d \le 2pulg\\ 0,91d^{-0157} & 2 \le d \le 10pulg\\ \left(\frac{d}{7,62}\right)^{-0,107} & 2,79 \le d \le 51mm\\ 1,51d^{-0,157} & 51 < 254mm \end{cases}$$

 K_b se encuentra en el rango de $2,79 \le d \le 51mm$, con un diámetro de prueba de 22mm:

$$K_b = 0.8927501978$$

Nuestro elemento rotatorio es más probable que falle por flexión que por torsión debido a la configuración del banco de pruebas, el sistema de transmisión por bandas ocasiona una fuerza que es mucho mayor que las cargas radiales de los engranes, tal fuerza es la fuerza de tensión inicial.

$$K_c = \begin{cases} 1 & \text{flexión} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsión} \end{cases}$$

Calculando K_d utilizando una temperatura $T_F = 248F$ $K_d = 0.975 + 0.432(10^{-3})T_F - 0.115(10^{-5})T_F^2 + 0.104(10^{-8})T_F^3 - 0.595(10^{-12})T_F^4 = 1.0250187802$ Factores de confiabilidad K_e de la tabla 6.5 en (Budynas and Nisbett, 2008, p. 285)

 $K_e = 0,753$ confiabilidad del 99 %

 K_t y K_{ts} se obtienen identificando el diámetro mayor y menor con su respectivo filete de acuerdo a la figura 4.4 y 4.5. (En la primera iteración para obtener estas constantes no se utilizó el diámetro definitivo, se empleó el diámetro de prueba d = 22mm con D = 25mm, r = 0.10)

$$\frac{D}{d} = 1,36$$
$$r = 0,10$$
$$K_t = 1,6$$
$$K_{ts} = 1,2$$

$$K_{f} = 1 + q(K_{t} - 1) = 1,6028795627$$

$$K_{fs} = 1 + q(K_{ts} - 1) = 1,2009598542$$

$$q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}} = 1,0047992712$$

$$\sqrt{a} = 0,245799 - 0,307794(10^{-2})S_{ut}$$

$$+0,150874(10^{-4})S_{ut}^{2} - 0,266978(10^{-7})S_{ut}^{3}$$

$$= -0,2101593216$$

Donde K_t es el factor de concentración de esfuerzos a flexión y K_{ts} es el factor de concentración de esfuerzos a torsión y figuras 4.4 y 4.5, respectivamente.

Ahora es posible determinar el límite de resistencia a la fatiga

$$S_e = k_a k_b k_c k_d k_e k_f S'_e = 113,1251568302[MPa]$$

INGENIERÍA MECÁNICA

A.4.2. Cálculo de esfuerzos máximos y mínimos

 M_m y T_a son obtenidos del despeje de las ecuaciones 4.6 y 4.7 respectivamente. Pero necesitamos determinar el esfuerzo medio en función de los esfuerzos máximo y mínimo.

Utilizando la teoría del círculo de Mohr para calcular el esfuerzo máximo y mínimo (de acuerdo al sistema de referencia de la figura 4.3 en el plano yz), y utilizando las cargas radiales y tangenciales como datos. Los momentos respecto a los ejes y y z se encuentran en la tabla A.4 y para simplificar el análisis no existen cargas axiales y por lo tanto los esfuerzos normales respecto a la sección transversal son despreciables ($\sigma_z = 0$).

Con un diámetro de prueba de 22mm

$$\sigma_x = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y} = -\frac{20,80665 * 0,011}{1,14E - 008} + \frac{57,1658 * 0,011}{1,14E - 008} = 34,781,216,63[Pa]$$

$$\sigma_z = 0$$

$$I_{x,z} = \frac{1}{4}\pi c^3$$

 M_z y M_y son obtenidos del diagrama de cuerpo libre utilizando la ecuación 4.1e. La sección transversal tiene un radio de prueba c al igual que su segundo momento de área I.

$$OC = CD = \frac{1}{2}(\sigma_x + \sigma_z)$$

100

Esfuerzo cortante

$$\tau_{xz} = -\frac{16T_{MCI}}{\pi d^3} = -16262225[Pa]$$

$$\tau_{max} = R = \sqrt{\left(\frac{\sigma_x - \sigma_z}{2}\right)^2 + (\tau_{xz})^2}$$

$$\sigma_{max,min} = \sigma_{1,3} = OC \pm R = (41, 200, 127, -6, 418, 911)[Pa]$$

INGENIERÍA MECÁNICA

$$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2} = 17390608, 3[Pa]$$
 (A.26)

$$\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2} = 11904759,8[Pa]$$
(A.27)

 $\tau_{min}=0$ debido a la distribución del esfuerzo cortante en la sección transversal del eje solido.

$$\tau_{max} = \frac{\sigma_1 - \sigma_3}{2} = 23809519, 6[Pa] \tag{A.28}$$

$$\tau_{min} = 0 \tag{A.29}$$

$$\tau_m = \frac{\tau_{max} + \tau_{min}}{2} = 11904759,8[Pa] \tag{A.30}$$

$$\tau_a = \frac{\tau_{max} - \tau_{min}}{2} = 11904759,8[Pa] \tag{A.31}$$

Obteniendo el diámetro

De la ecuación 4.7

$$T_a = \frac{\tau_a}{\pi d^3} \frac{1}{16K_{fs}} = 20,72[Nm]$$

$$M_m = \frac{\sigma_m}{K_f} \frac{\pi d^3}{32} = 11,34[Nm]$$

Verificar el resumen del diseño del eje para observar los diámetros obtenidos a partir de sus respectivos criterios de falla. Ya que se ha determinado la resistencia a la fatiga S_e , T_a y M_m se calculan los diámetros del eje con las teorías de falla; utilizando las ecuaciones 4.2 y 4.3 obtenemos respectivamente:

$$d_{Soderberg} = 3,9[cm]$$
$$d_{ASME} = 3,6[cm]$$

A.4.3. Velocidades críticas en ejes giratorios

Una vez definida la geometría de la pieza es posible calcular la velocidad crítica del eje giratorio. Se deben definir la ubicación de las cargas radiales a lo largo de las secciones del eje x (de acuerdo a el sistema de referencia).

Analizando la deflexión en los puntos con mayor concentración de esfuerzos, según la figura A.6, se analizaran las secciones E, F e I.

Tomando en cuenta sólo las fuerzas resultantes en para realizar el análisis sobre un solo plano.

Fig. A.6: Ubicación de las cargas unitarias en el eje.

Nota: la reacción R_B tiene dirección opuesta.

Donde L es la distancia entre los rodamientos $A ext{ y } B$. W_1 , W_2 , W_3 son las cargas resultantes entre la carga radial y tangencial transmitidas por medio de los engranes. X_i es la distancia entre el rodamiento A y las secciones críticas de los ejes 1, 2 y 3 donde se localizan mayores concentradores de esfuerzos.

Reemplazando las distancias designadas mediante letras para el cálculo de los coeficientes de acuerdo a la ubicación de la la carga unitaria mediante las ecuaciones 4.19 y sustituyendo las valores de la tabla A.10 se llega a obtener los coeficientes de influencia δ_{ij} .

AB0.054BG0.05EJ0.08AE0.039FJ0.05AF0.084IJ0.03AJ0.119AI0.089	Sección	longitud [m]
BG0.05EJ0.08AE0.039FJ0.05AF0.084IJ0.03AJ0.119AI0.089	AB	0.054
EJ0.08AE0.039FJ0.05AF0.084IJ0.03AJ0.119AI0.089	BG	0.05
AE0.039FJ0.05AF0.084IJ0.03AJ0.119AI0.089	EJ	0.08
FJ0.05AF0.084IJ0.03AJ0.119AI0.089	AE	0.039
AF0.084IJ0.03AJ0.119AI0.089	FJ	0.05
IJ 0.03 AJ 0.119 AI 0.089	AF	0.084
AJ 0.119 AI 0.089	IJ	0.03
AI 0.089	AJ	0.119
	AI	0.089

Tab. A.10: Tabla que indica las distancias de las secciones del eje acorde a la figura A.6

Nota: Para W_{ij} se realiza un sistema equivalente de cargas para trasladar la carga radial y tangencial a la sección I.

$$\delta_{ij} = \begin{pmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33} \end{pmatrix} = \begin{pmatrix} 1.9429 \times^{-9} & 1.2143 \times^{-9} & 9.2350 \times^{-10} \\ 1.2437 \times^{-9} & 2.32217 \times^{-9} & 1.3001 \times^{-9} \\ 1.7537 \times^{-9} & 2.56580 \times^{-9} & 1.4724 \times^{-9} \end{pmatrix}$$

Los siguientes valores son las cargas resultantes obtenidas del diagrama de fuerza cortante en la sección B del eje. (ver figura 4.5, las ecuaciones están relacionadas con las fuerzas cortantes V_1 y V_2 en cada sección del eje. En este caso $V_n=W_n$

$$W_1 = 1126,56[N]$$

 $W_2 = 1216,691[N]$
 $W_3 = 1216,691[N]$

Calculando las deflexiones Y_1, Y_2, Y_3 .

 $Y_1 = W_1 \delta_{11} + W_2 \delta_{12} + W_3 \delta_{13} \tag{A.32}$

$$Y_2 = W_1 \delta_{12} + W_2 \delta_{22} + w_3 \delta_{32} \tag{A.33}$$

$$Y_3 = W_1 \delta_{31} + W_2 \delta_{32} + W_3 \delta_{33} \tag{A.34}$$

$$Y_1 = 5,80005856602708 \times^{-6} [m]$$

$$Y_2 = 7,34838436785244 \times^{-6} [m]$$

$$Y_3 = 5,34909801536757 \times^{-6} [m]$$

$$\sum W_i Y_i = W_1 Y_1 + W_2 Y_2 + W_3 Y_3 \tag{A.35}$$

$$\sum W_i Y_i^2 = W_1 Y_1^2 + W_2 Y_2^2 + W_3 Y_3^2$$
(A.36)

$$\sum W_i Y_i = 0,0219830684$$
$$\sum W_i Y_i^2 = 1,38411284236055E - 007$$

Primera velocidad crítica (Ec. de Rayleigh)

$$\omega_1 = \sqrt{\frac{\sum(W_i Y_i)}{\sum(W_i Y_i^2)}} = 1246,315 \frac{rad}{s} = 11901,404 [rpm]$$

Donde W_i [N], Y_i [m], g = aceleración de la gravedad calculando la velocidad ω_{11} :

$$\frac{1}{\omega_{11}^2} = \frac{W_1}{g} \delta_{11}$$

Despejando la velocidad angular para las tres velocidades críticas.

$$\omega_{11} = \sqrt{\frac{g}{W_1 \delta_{11}}} = 2113,789$$
$$\omega_{22} = \sqrt{\frac{g}{W_2 \delta_{22}}} = 1860,510$$
$$\omega_{33} = \sqrt{\frac{g}{W_3 \delta_{33}}} = 2336,488$$

INGENIERÍA MECÁNICA

UNAM

Calculando la primera velocidad crítica

$$\frac{1}{\omega_1^2} = \sum \frac{1}{\omega_{ii}^2} = \frac{1}{\omega_{11}^2} + \frac{1}{\omega_{22}^2} + \frac{1}{\omega_{33}^2} = 1198,763[rad/s] = 13988,988[rpm]$$

Utilizando la Ec. 7-24 de Budynas and Nisbett (2008)

$$\delta_{cc} = \frac{b_{cc} X_{cc}}{6EIL} (l^2 - b_{cc}^2 - X_{cc}^2)$$

Nos brinda la superposición de cargas equivalentes en el centro del eje (carga en el centro del eje).

Otra forma de calcular las velocidades críticas es de acuerdo a las siguientes ecuaciones y nos brinda la misma velocidad crítica.

$$W_{1c} = W_1 \frac{\delta_{11}}{\delta_{cc}} \tag{A.37}$$

$$W_{2c} = W_2 \frac{\delta_{22}}{\delta_{cc}} \tag{A.38}$$

$$W_{3c} = W_3 \frac{\delta_{33}}{\delta_{cc}}$$
 (A.39)

$$\omega = \sqrt{\frac{g}{\delta_{cc} \sum W_{ic}}}$$

Las ecuaciones anteriores nos ayudan a identificar las proporción de las cargas a lo largo del eje.

A.4.4. Resumen del diseño del eje en el motor eléctrico

$$P = W_t + T_{banda_{inicial}}$$

INGENIERÍA MECÁNICA

Tab. A.TT. Constantes para obtener la ceuación de Ma				
Eje ME	Valor Numérico	Unidad de medida		
K_a	0.9136838244			
K_b	0.8927501978			
K_c	0.59			
$K_d(248F)$	1.0250187802			
K_e	0.753			
K_f	1.6028795627			
K_{fs}	1.2009598542			
K_t	1.6			
K_{ts}	1.2			
S_e	113.1251568302	MPa		
S'_e	190	MPa		

Tab. A.11: Constantes para obtener la ecuación de Marin

Tab. A.12: Resumen del diseño para calcular el diámetro mínimo del eje

Variable	Valor	Magnitud	
S_e	183.147	MPa	
S_y	580	MPa	
S_{yt}	580	MPa	
K_f	1.6569		
K_{fs}	1.22		
T_a	16.74	N.m	
T_m	31.968	N.m	
M_a	21.91	N.m	
M_m	6.81	N.m	
$d_{ASME_{min}}$	0.0255731665	m	
$d_{Soderberg_{min}}$	0.0178	m	
$\omega_{critica}$	19811	RPM	

 M_m y T_a se obtienen de las fórmulas 4.6 y 4.7 respectivamente.

 K_f y K_{fs} dependen del diámetro del eje d. El enfoque que se usa es estimar el rango de diámetros del eje de acuerdo a la geometría del engrane solar y planetario. Como restricción se escogerá un diámetro menor al diámetro interior de dichos engranes.

Nota: Los valores M_m y T_a al ser sustituidos en las ecuaciones de diámetro no resultan tan representativos.

Análisis a flexión del motor eléctrico (Primera aproximación, diámetro de prueba: 22[mm]) : $k_t=1.6$, $k_{ts}=1.2$

A continuación se muestran algunos diámetros con sus respectivos materiales utilizando el mismo procedimiento de cálculo:

Acero (eje	E	S_{ut}	S_y	diámetro[m]	diámetro[m]
ME)	[GPa]	[MPa]	[Mpa]	Soderberg	ASME
1020 (HR)	205	380	210	0.0243893693	0.0217465667
1030 (HR)	205	470	260	0.0227188091	0.0202589384
1040 (HR)	200	525	290	0.0218991976	0.019525401
1045 (HR)	205	570	310	0.0218991976	0.019525401
4140 TyR	200	1 250	1 140	0.0157318246	0.0145948382
(425 °C)					
4340 TyR	200	1 720	1 590	0.0141310804	0.0131214078
(315 °C)					
4340 TyR	200	965	855	0.017183212	0.0159106719
(650 °C)					

Tab. A.13: Primera aproximación, diámetro de prueba: 22[mm]

A.5. SISTEMA DE TRANSMISIÓN POR BANDA V

A.5. Sistema de transmisión por banda V

Las bandas son elementos de máquinas flexibles que son usadas para transmitir potencia. Su empleo simplifica el diseño de elementos de transmisión rígidos como los ejes, cojinetes, engranes, etc. Sin embargo, estos elementos tienen la implicación de tener que ser reemplazados al manifestar un mínimo de desgaste.

El empleo de bandas implica conocer la distancia entre centros de las poleas ya que de ésto depende la selección del tipo de banda. El primer análisis se efectúa utilizando las siguientes ecuaciones, las cuales describen la velocidad tangencial de la banda V_b en función de los diámetros de las poleas con sus respectivas velocidades angulares, la longitud de la banda L y demás variables que describen la geometría básica de una transmisión por bandas (ver figura A.7).

Fig. A.7: Geometría básica de una trasnmisión por bandas (Mott, 2008, p. 268)

Con el siguiente conjunto de ecuaciones es posible determinar a detalle la configuración geométrica del sistema que se implementa en el banco de pruebas. Sustituyendo las

variables en las ecuaciones se obtiene la tabla A.14.

$$V_b = D_1 \frac{\omega_1}{2} = D_2 \frac{\omega_2}{2}$$
 (A.40)

$$\frac{\omega_1}{\omega_2} = \frac{D_2}{D_1} \tag{A.41}$$

$$L = 2C + 1.57 + \frac{(D_2 - D_1)^2}{4C}$$
(A.42)

$$C = \frac{B + \sqrt{B^2 - 32(D_2 - D_1)^2}}{16}$$
(A.43)

$$B = 4L - 6,28(D_2 + D_1) \tag{A.44}$$

$$\theta_1 = 180 - 2sen^{-1} \frac{D_2 - D_1}{2} \tag{A.45}$$

$$\theta_2 = 180 + 2sen^{-1}\frac{D_2 - D_1}{2} \tag{A.46}$$

$$S = \sqrt{C^2 - \frac{(D_2 - D_1)^2}{2}}$$
(A.47)

De acuerdo a las especificaciones del motor eléctrico y las ecuaciones anteriores tenemos como resultado en la tabla algunas variables importantes como velocidades y longitudes:

ω_1	523.598775			
D_1	0.1			
ω_2	156.298141791			
D_2	0.335			
V_{b1}	26.17993875			
V_{b2}	26.17993875			
С	0.5641317			
$\frac{\omega_1}{\omega_2}$	3.35			
L	1.8356868519			
c (ver B.1.1)	0.5735900546			
В	4.685			
L _{estandar}	1.8542			
S	0.0993505992			
θ_1	156.3585475493			
θ_2	203.6414524507			

Tab. A.14: Configuración geométrica de la banda V

Para obtener C_L , C_{θ_1} y el factor de servicio, consultar las figuras B.1.1, B.1.1 y tabla B.1.1, y respectivamente. De acuerdo a (Baldor, 2014, p. 190) la longitud estándar de la banda 3V, al igual que su masa y el intervalo de valores de diámetros de paso de las poleas deben satisfacer la siguiente desigualdad:

$$D_2 < c < 3(D_2 + D_1)$$

$$0,335 < 0,5641317 < 1,305$$

Para bandas tipo 3Va 156 $^\circ$

A.5. SISTEMA DE TRANSMISIÓN POR BANDA V

Tab. A.15: En esta tabla se proporcionan los factores de longitud, de condición de angulo y de servicio junto con la potencia de diseño.

C_L (ver B.1.1)	1.04
C_{θ_1} (ver B.1.1)si	0.94
Factor de servicio (ver B.1.1)	1.3
Pot diseño	39
Pot corregida	29.328
N_b Num de bandas	1.329787234

$$Pot_{corregida} = C_L C_{\theta_1} P$$

A.5.1. Bandas V

Figuras para la selección de las bandas

	Tipo de impulsor						
Tipo de máquina impolsada	Motores de CA: par torsional normal ² Motores de CD: bobinado en derivación Motores de combustión: múltiples cilindros				Motores de CA: Alto par torsional Motores de CD: bobinado en serie, bobinado compuesto Motores de combustión: 4 cilindros o menos		
	<6 h por día	6-15 h por día	>15 h por día	<6 h por día	6-15 h por día	>15 h por día	
Agitadores, sopladores, ventila- dores, bombas centrífugas, transportadores ligeros	10		12		12	13	
Generadores, máquinas herramienta, mezcladores, transportadores	1.0						
de grava Elevadores de cangilones, máquinas textiles, molinos de martillos,	1.1	1.2	1.3	1.2	1.3	1.4	
transportadores pesados Trituradoras, molinos de bolas,	1.2	1.3	1.4	1.4	1.5	1.6	
malacates, extrusoras de hule	1.3	1.4	1.5	1.5	1.6	1.8	
Toda máquina que se pueda ahogar	2.0	2.0	2.0	2.0	2.0	2.0	

Fig. A.8: Factor de servicio para bandas V (Mott, 2008, p. 274)

Fig. A.9: Factor de correción por ángulo de contacto C_{θ} (Mott, 2008, p. 277)

Fig. A.10: Factor de correción por longitud de banda C_L ((Mott, 2008, página 277))

Sólo 3V 3V y 5V		3V y 5V 3V, 5V y 8V		Sólo 8V
25	50	100	150	375
26.5	53	106	160	400
28	56	112	170	425
30	60	118	180	450
31.5	63	125	190	475
33.5	67	132	200	500
35.5	71	140	212	
37.5	75		224	
40	80		236	
42.5	85		250	
45	90		265	
47.5	95		280	
			300	
165			315	
			335	

Longitudes de bandas estándar 3V, 5V y 8V (pulgadas)

Fig. A.11: Longitudes de bandas estándar (Mott, 2008, p. 277)

A.5. SISTEMA DE TRANSMISIÓN POR BANDA V

Cálculo de tensiones en la banda V

La tensión es originada por las fuerzas de fricción entre la polea y el material de la banda. Las poleas se denominan polea impulsora e impulsada, las cuales tienen diferentes velocidades angulares por tener diferentes diámetros y necesitan tener un lado tenso para poder funcionar correctamente por lo que es necesario conocer la tensión inicial en la banda la cual repercute en el diseño de los ejes.

La finalidad de obtener la tensión inicial de la banda es sumarla con la carga radial de la corona para el cálculo del diámetro del eje acoplado al motor eléctrico. (Procedimiento propuesto en (Budynas and Nisbett, 2008, p 833).

La potencia transmitida por la banda está regida por: $\Delta F = F_1 - F_2$, donde

$$\Delta F = \frac{63025H_d/N_b}{n(d/2)} \tag{A.48}$$

$$F_c = m_{banda} r_{polea}^2 \omega_{polea}^2 \tag{A.49}$$

$$F_1 = F_c + \frac{\Delta F exp(f\phi)}{exp(f\phi) - 1}$$
(A.50)

$$F_2 = F_1 - \Delta F \tag{A.51}$$

$$F_i = \frac{F_1 + F_2}{2} - F_c \tag{A.52}$$

A.5. SISTEMA DE TRANSMISIÓN POR BANDA V

10. Dutos necesarios para obtener la tension interar de la				
masa _{banda} [LB]	0.41			
radio _{banda} [m]	0.05			
Vel ang banda [rad/s]	523.598775			
F_c [Lb f]	63.1766117606			
H_d =potencia de diseño [HP]	52.299			
N_d =factor de diseño	1.3			
n_{polea} [RPM]	4999.988302139			
d _{diampoleamenor} [in]	3.937007874			
Delta F $[Lb_f]$	257.6069708901			
$\int f$	0.5123			
D [in] polea mayor	13.188976378			
d [in] polea menor	3.937007874			
$\phi = \theta_1 \text{ [rad]}$	2.7289714684			
$\exp(f \phi)$	4.0473084634			
$F_1 [Lb_f]$	405.3194850661			
$F_2 [Lb_f]$	147.7125141759			
$F_i [Lb_f]$	213.3393878604			

Tab. A.16: Datos necesarios para obtener la tensión inicial de la banda

Donde f es el coeficiente de fricción efectivo. La masa de la banda es obtenida del catálogo (Lb_m usando la velocidad angular de la polea menor en RPM.

- *F*₁: Tensión mayor
- *F*₂: Tensión menor
- *F_c*: Tensión centrifuga
- F_i : Tensión inicial

Resumen del diseño

- Entrada: Motor eléctrico, 30 [hp] a 5000 [rpm]
- Factor de servicio: 1.3

A.6. SELECCIÓN DE RODAMIENTOS

- Potencia de diseño: 52.29[hp]
- Banda: sección 3V, 1.8542 pulgadas de longitud, 1 banda
- Poleas: (de acuerdo al catálogo)
 - Motriz: 3.937 pulgadas de diámetro de paso, 3V
 - Conducida: 13.189 pulgadas de diámetro de paso, 3V
- Velocidad real de salida: 3000[rpm]
- Distancia entre centros: 0.5735[m] [pulg]

A.6. Selección de rodamientos

La selección de rodamientos sigue el procedimiento descrito en la sección 5.3. Recordando que para grandes cargas se utilizan rodamientos de rodillos o agujas y para grandes velocidades se utilizan rodamientos de bolas. Para el caso de rodamientos comerciales, consultar el catálogo de la marca **Motion and Control NSK** en la sección B10.

Se consideraron las cargas de empuje debido a el chicoteo producido por la banda al momento de arrancar el motor eléctrico. También recuerde la siguiente nomenclatura.

$$P = VXR + YT$$
 (Ecuación general) (A.53)

$$P = VR \tag{A.54}$$

- P= Carga equivalente
- V = Factor por rotación
- R = Carga radial aplicada

INGENIERÍA MECÁNICA

- T = Carga de empuje aplicada
- X = Factor radial Y = Factor de empuje

Para saber si es despreciable la carga radial los fabricantes de rodamientos mencionan un factor llamado e. Si la relación satisface $\frac{T}{R} > e$ se debe emplear Ec. A.53. si la relación $\frac{T}{R} < e$ se emplea ecuacion A.54

Antes de brindar el procedimeinto completo para cada rodamiento se propocionan los datos y resultados obtenidos.

Dato	Magnitud	SOL	Planeta	Corona
Velocidad Angular	$\omega[rpm]$	1750	4438	5000
Carga radial	P[N]	416	864	1038
Carga equivalente	$W_r = R_{nominal}$	93.54	864	1038
Duración de diseño	$L_h[Hrs]$	8765	8765	8765
Factor de velocidad	f_n	0.173	0.195	0.19
Factor de duración	f_h	2.5	2.5	2.5
Carga dinámica básica	C[N]	11134	4409	13657

Tab. A.17: Constantes para la selección de rodamientos

La siguiente tabla muestra la selección del número de rodamiento empleando la carga dinámica básica que es comparada con la carga dinámica del fabricante.

rus. 11.10. Selección de rodulmentos para los ejes en el SER						
SEP	Num. Rodamiento	diám. int. [mm]	diám. ext. [mm]	ancho [mm]		
SOL	6308	40	90	23		
Planeta	6208,6309	40,45	80,100	18,25		
Corona	6308	40	90	23		

Tab. A.18: Selección de rodamientos para los ejes en el SEP

INGENIERÍA MECÁNICA

A.6. SELECCIÓN DE RODAMIENTOS

A.6.1. Selección de rodamientos para el eje en el engrane solar

Siguiendo el procedimiento planteado anteriormente:

• En este caso se aplican las cargas radiales de los tres engranes planetarios en el extremo del eje. La velocidad angular es:

$$\omega_{max,MCI} = 7250 [rpm]$$

- Duración de diseño: 10 años = 17530[Hr]
- Diámetro mínimo del eje solar: El diámetro propuesto se encuentra entre el intervalo de valores 25mm ≤ d ≤ 54mm que son los diámetros mínimos de los rodamientos y el diámetro interior del engrane solar respectivamente.

$$25[cm] \leq diam_{Sol} \leq 54[cm]$$

$$W_r = R_{nominal} = 0.41613[kN]$$

Utilizando el procedimiento para seleccionar un rodamiento con carga radial:

1. Especificando la carga dinámica:

Sustituyendo los valores encontrados en la figura y calculando la carga equivalente P.

$$P = VR = 1,2(93,54) = 540,8[N]$$

2. Determinando el diámetro aceptable del eje: Se llevó a cabo un análisis previo y

se llegó al siguiente intervalo de acuerdo a el diámetro mínimo con las teorías de falla:

$$25[cm] \le diam_{Sol} \le 54[cm]$$

- 3. Seleccionar el rodamiento de la figura 3 Seleccionando el rodamiento: debido a las vibraciones que se generarán en el banco de pruebas se busca un rodamiento que soporte mucho más carga dinámica calculada y cuyo diámetro interior sea superior a los cuatro centímetros.
- Especificando la duración de diseño de acuerdo a 5.5. La duración según las especificaciones es de cinco años o más de 8000 horas de servicio.
- 5. Determinando el factor por velocidad y factor por duración
 - De acuerdo a 5.6

 $f_n = 0.173$ (Para una velocidad de 7250[RPM]) $f_h = 2.5$ (Para una duración de 8000 horas)

6. Calculando la carga dinámica básica:

$$C = 540.8 \frac{2.5}{0.173} = 7815[N]$$

7. Identificando el rodamiento:

Es entonces seleccionado como valor mínimo el numero de rodamiento 6208 que cumple con las dimensiones del diámetro mínimo del eje solar y cuyo valor de carga dinámica supera al valor calculado en el diseño.

A.6.2. Selección de rodamientos para el portaplanetas

Siguiendo la misma temática para seleccionar los rodamientos de la pieza portaplanetas:

Para la selección del rodamiento utilizamos los siguientes parámetros relacionados con las especificaciones de diseño anteriormente planteadas:

$$\omega_{salidadelSEP} = 4437,5[RPM] = 464,69\frac{rad}{s}$$

- Duración de diseño: 5 años=8765[Hr]
- Diámetro mínimo del portaplanetas:

$$33[cm] \le diam_{pp} \le 5[cm]$$
$$W^r_{Planeta} = R = 0.8637[kN] = 194[Lb_f$$

Utilizando el procedimiento para seleccionar un rodamiento con carga radial:

1. Especificando la carga dinámica:

$$P = VR = (1)(194[Lb_f]) = 194[Lb_f]$$

2. Determinando el diámetro aceptable del eje: Se llevó a cabo un análisis previo y

se llegó al siguiente intervalo de acuerdo al diámetro mínimo con las teorías de falla:

$$33[cm] \le diam_{pp} \le 5[cm]$$

3. Seleccionar el rodamiento de 3 tabla 14-1

Seleccionando el rodamiento: debido a las vibraciones que se generarán en el banco de pruebas se busca un rodamiento que soporte mucho más carga dinámica calculada cuyo diámetro interior sea superior a los cuatro centímetros, en este caso se selecciona

4. Especificando la duración de diseño de acuerdo a 5.5, (Mott, 2008, tabla 14-4)

La duración según las especificaciones es de cinco años o más de 8000 horas de servicio.

- 5. Determinando el factor por velocidad y factor por duración
 - De acuerdo a la figura 5.6

 $f_n = 0,194$ (Para una velocidad de 4437.5[RPM]) (A.55) $f_L = 2,5$ (Para una duración de 8000 horas)

6. Calculando la carga dinámica básica:

$$C = 864 \frac{f_L}{f_n} = 864 \frac{2.5}{0.194} = 11134 [N]$$

7. Identificando el rodamiento (Ver ??):

El rodamiento con la capacidad de carga y diámetro adecuado es el rodamiento número 6208 de 40[mm] de diámetro interior, aunque el rodamiento 6308 también puede ser escogido.

A.6.3. Selección de rodamientos para el eje del motor eléctrico

Siguiendo la misma temática para seleccionar los rodamientos del eje en el motor eléctrico:

Para la selección del rodamiento utilizamos los siguientes parámetros relacionados con las especificaciones de diseño anteriormente planteadas:

$$\omega_{ME} = 5000[RPM] = 523,598\frac{rad}{s}$$

- Duración de diseño: 5 años=8765[Hr]
- Diámetro mínimo del portaplanetas:

$$[cm] \le diam_{ME} \le [cm]$$
$$W_{ME}^r = R = 0.092684[kN]$$

Utilizando el procedimiento para seleccionar un rodamiento con carga radial:

1. Especificando la carga dinámica:

$$VR = (1)(20,8372[Lb_f]) = 20,8372[Lb_f] = 945,7[N]$$

La carga dinámica total en el rodamiento se verá afectada por la tensón inicial de la banda y la carga dinámica calculada anteriormente:

$$P_{totalenelME} = VP + Ten_{inic} = 92,6 + 945,7[N] = 1038,3[N]$$

2. Determinando el diámetro aceptable del eje: Se llevó a cabo un análisis previo

y se llegó al siguiente intervalo de acuerdo al diámetro mínimo del eje con las teorías de falla:

$$4[cm] \le diam_{ME} \le 6[cm]$$

A.7. SELECCIÓN DE ACOPLAMEINTOS

- 3. Seleccionar el rodamiento de 3 (tabla 14-1) Seleccionando el rodamiento: debido a las vibraciones que se generarán en el banco de pruebas se busca un rodamiento que soporte mucho más carga dinámica calculada y cuyo diámetro interior sea superior a los cuatro centímetros.
- Especificando la duración de diseño de acuerdo a 5.5 o la tabla 14-4 La duración según las especificaciones es de cinco años o más de 8000 horas de servicio.
- 5. Determinando el factor por velocidad y factor por duración
 - De acuerdo a la figura 5.6 para rodamientos de bolas

 $f_n = 0.19$ (Para una velocidad de 5000[RPM]) (A.56) $f_h = 2.5$ (Para una duración de 8000 horas)

6. Calculando la carga dinámica básica:

$$C = P \frac{f_L}{f_n} = 1038 \frac{2.5}{0.19} = 13657[N]$$

 Identificando el rodamiento: El rodamiento con la capacidad de carga y diámetro adecuado se encuentra en la tabla es el rodamiento número 6308 de 40[mm] de diámetro interior.

A.7. Selección de acoplameintos

A.7.1. Acoplamiento flexible para el motor de combustión interna

Como especificaciones principales tenemos los datos obtenidos de la curva de desempeño del nuevo motor de combustión interna:

• Velocidad máxima 3000[rpm].

A.7. SELECCIÓN DE ACOPLAMEINTOS

- Potencia 25.4[kW]=32.8[HP]
- Par T=78[Nm]

Para la seleccioón de los coples se tomarán en cuenta la velocidad máxima, par y potencia del MCI de la frágica Performance Curve. El catálogo utilizado es BAL-DOR.Maska. Product Catalog en la sección Sec1:145.

A.7.2. Acoplamiento para el motór eléctrico

La selección del acoplamiento flexible correspondiente al eje en el motor eléctrico se lleva a cabo de la misma forma que la selección del acoplamiento en el MCI. Repitiendo el procedimiento:

Las especificaciones en los parámetros mecánicos del motor eléctrico son los siguientes:

Unit	Parameter			
RPM	3000			
RPM	5000			
Lb-in	288			
Ft Lb	70 (94Nm)			
Lb-in	288			
	Unit RPM RPM Lb-in Ft Lb Lb-in			

Tab. A.19: Especificaciones para el ME (parámetros mecánicos)

Ahora tenemos que comparar los valores de a cuerdo a Martínez (2014)

A.7. SELECCIÓN DE ACOPLAMEINTOS

Tub. Th.20. Especificaciones de Verberdada y poteniera				
Parámetro	Unidad	Parámetromagnitud		
$Velocidad_{max}$	RPM	3000		
$Velocidad_{Nom}$	RPM	5000		
$Potencia_{max}$	kW	12		
$Potencia_{Nom}$	kW	30		
Par_{max}	Nm	38.197		
Par_{Nom}	Nm	57.295		

Tab. A.20: Especificaciones de velocidad y potencia

Se diseñará a partir de los datos parámetros mecánicos con el par máximo de 94[N.m], 5000 [RPM], 30[kW]~40.79[HP]. Sin embargo ahora se necesita determinar la nueva velocidad angular con los nuevos parámetros de diseño:

$$P = T\omega$$

$$\omega = \frac{30[kW]}{94[N.m]} = 319\left(\frac{rad}{s}\right) = 3047,64\left(\frac{rad}{s}\right)$$

Esta será la velocidad que buscaremos en el catálogo para seleccionar el cople.

A.7.3. Acoplamiento para el dinamómetro

El dinamómetro de corrientes parásitas tiene las siguientes especificaciones:

Las capacidades son de 75 HP=55.93 kW de potencia, 100 Lb.ft= 135.5750 Nm de par y 10 000 RPM=1047.2 rad/s.

Según los cálculos de Arodi para la salida en el portaplanetas:

Salida el planetario	ω [RPM]	ω [rad/s]	Potencia [kW]	Par [N.m]
Nominal	2250	335.62	33.55	142.39
Máximo	4437.5	464.69	54.271	116.79
A.7. SELECCIÓN DE ACOPLAMEINTOS

Sin embargo el dinamóemtro operaria a una velocidad máxima a la salida que sería de 4437.5[RPM].

- Potencia=55.93[kW]=76[HP]
- Par=142[N.m]=1256.9[Lb.in]
- Velocidad angular= 393.8732[rad/s]=3761.2[RPM]

En el banco de pruebas el SEP limita las capacidades del dinamómetro y por lo tanto no operará a su máxima velocidad (10,000[RPM]).

1. Determinar el tipo de cople adecuado con su respectivo material

Vefiricamos el tipo de comple a utilizar y el material en la unión en la sección Torque (in.Lbs).

Tenemos un torque de 142[Nm]= 1256.9[Lb.in] y la potencia es de 76HP/100rpm=0.76HP/rpm. En la sección 1:151 de la tabla Element Characteristics se escoje un elastómero NBR (Rubber) Nitrile Butadiene Rubber por su alta capacidad de amortiguamiento.

 Determiner el Factor de servicio adecuado Service Factor: Para un cople Maskaflex en Sección Sec1:148 P.148 Dynamometer.

Driver: SEP, en este caso sería un motor dinamómetro. Driver Service Factor=1

3. Par de diseño de torsión y HP de diseño

A.8. COMPONENTES DIVERSOS DE LOS EJES

a) Determine el par de diseño

$$Torque_{design} = \frac{(76HP)(1)(63025)}{3761,2RPM} = 1273,5eLb.in$$

b) Determine el HP de siseño por cada 100 RPM

$$HP_{per100RPM} = \frac{(76HP)(1)(100)}{3761,2RPM} = 2,0206HP/100RPM$$

4. Seleccione el tamaño del cople

Obteniendo el par máximo.

$$T_{max} = 2,5T_{nom} = 3183,8[Lb.in]$$

Nos ubicamos en la sección 1:183 Coupling Ratings & Misalignment e identificamos que tanto el torque como la velocidad satisfacen las especificaciones T_{max} =3183[Lb.in]@3761[rpm], con el número de cople MX 80. Las limitaciones serán que solo puede operara a la salida con una velocidad máxima de 3500[rpm].

5. Verificar los ejes impulsor y conducido

Para verificar las dimensiones requeridas del eje se utiliza del mismo catálogo:QD Bushing

- Bushing size:SKX1 P.17 Sec1:17
- Bore: 1-3/4in = 4.445cm

Para ver con detalle los planos consultar la sección de planos.

A.8. Componentes diversos de los ejes

A.8.1. Chavetas

A.8.2. Anillos de retención

A.8.3. Retenes

B. APÉNDICE B

B.1. Figuras

B.1.1. Bandas V

Figuras para la selección de las bandas

	Tipo de impulsor						
	Moto Moto Moto	ores de CA; par to res de CD: bobin res de combustió	orsional normal ^a ado en derivació n; múltiples cilir	Mo Mo ton Mo ndros o	Motores de CA: Alto par torsional Motores de CD: bobinado en serie, bobinado compuesto Motores de combustión: 4 cilindros o menos		
Tipo de máquina impulsada	<6 h por día	6-15 h por día	>15 h por día	<6 h por día	6-15 h por día	>15 h por día	
Agitadores, sopladores, ventila- dores, bombas centrífugas, transportadores ligeros	1.0	1.1	1.2		1.2	1.3	
Generadores, máquinas herramienta, mezcladores, transportadores de grava	1.1	1.2	1.3	1.2	1.3	1.4	
Elevadores de cangilones, máquinas textiles, molinos de martillos, transportadores pesados	1.2	1.3	1.4	1.4	1.5	1.6	
Trituradoras, molinos de bolas, malacates, extrusoras de hule Toda máquina que se pueda ahogar	1.3 2.0	1.4 2.0	1.5 2.0	1.5 2.0	L.6 2.0	1.8 2.0	

Súncronos, fase dividida, trifásicos con par de torsión de arranque o par de torsión al paro máximo menor que 175% de par torsional con carga total.
Monofásicos, trifásicos con par de torsión de arranque o par de torsión al paro máximo menor que 175% de par torsional con carga total.

Fig. B.1: Factor de servicio para bandas V (Mott, 2008, p. 274)

Fig. B.2: Factor de correción por ángulo de contacto C_{θ} (Mott, 2008, p. 277)

Fig. B.3: Factor de correción por longitud de banda C_L (Mott, 2008, p. 277)

Longitudes de bandas estándar 3V, 5V y 8V (pulgadas)						
Sólo 3V	3V y 5V	3V, 5V y 8V	5V y 8V	Sólo 8V		
25	50	100	150	375		
26.5	53	106	160	400		
28	56	112	170	425		
30	60	118	180	450		
31.5	63	125	190	475		
33.5	67	132	200	500		
35.5	71	140	212			
37.5	75		224			
40	80		236			
42.5	85		250			
45	90		265			
47.5	95		280			
			300			
165			315			
			335			

Fig. B.4: Longitudes de bandas estándar (Mott, 2008, p. 277)

Fig. B.5: Geometría del anillo de retención

B.2. Planos B.2.1. Detalles del Engrane y eje solar

B.2.2. Elementos de sujeción

Fig. B.6: Soporte del SEP

Fig. B.7: Detalles del portaplanetas

B.2.4. Carcasa del portaplanetas

B.2.5. Ensamble

B.3. Tablas

1	2	3	4	5	6	7	8
AISI núm.	Tratamiento	Temperatura °C (°F)	Resistencia a la tensión MPa (kpsi)	Resistencia a la fluencia, MPa (kpsi)	Elongación, %	Reducción en el área, %	Dureza Brinell
1030	TyR*	205 (400)	848 (123)	648 (94)	17	47	495
	TyR*	315 (600)	800 (116)	621 (90)	19	53	401
	TyR*	425 (800)	731 (106)	579 (84)	23	60	302
	TyR*	540 (1 000)	669 (97)	517 (75)	28	65	255
	TyR*	650 (1 200)	586 (85)	441 (64)	32	70	207
	Normalizado	925 (1 700)	521 (75)	345 (50)	32	61	149
	Recocido	870 (1 600)	430 (62)	317 (46)	35	64	137
1040	TyR	205 (400)	779 (113)	593 (86)	19	48	262
	TyR	425 (800)	758 (110)	552 (80)	21	54	241
	TyR	650 (1 200)	634 (92)	434 (63)	29	65	192
	Normalizado	900 (1 650)	590 (86)	374 (54)	28	55	170
	Recocido	790 (1 450)	519 (75)	353 (51)	30	57	149
1050	TyR*	205 (400)	1 120 (163)	807 (117)	9	27	514
	TyR*	425 (800)	1 090 (158)	793 (115)	13	36	444
	TyR*	650 (1 200)	717 (104)	538 (78)	28	65	235
	Normalizado	900 (1 650)	748 (108)	427 (62)	20	39	217
	Recocido	790 (1 450)	636 (92)	365 (53)	24	40	187
1060	TyR	425 (800)	1 080 (156)	765 (111)	14	41	311
	TyR	540 (1 000)	965 (140)	669 (97)	17	45	277
	TyR	650 (1 200)	800 (116)	524 (76)	23	54	229
	Normalizado	900 (1 650)	776 (112)	421 (61)	18	37	229
	Recocido	790 (1 450)	626 (91)	372 (54)	22	38	179
1095	TyR	315 (600)	1 260 (183)	813 (118)	10	30	375
	TyR	425 (800)	1 210 (176)	772 (112)	12	32	363
	TyR	540 (1 000)	1 090 (158)	676 (98)	15	37	321
	TyR	650 (1 200)	896 (130)	552 (80)	21	47	269
	Normalizado	900 (1 650)	1 010 (147)	500 (72)	9	13	293
	Recocido	790 (1 450)	658 (95)	380 (55)	13	21	192
1141	TyR	315 (600)	1 460 (212)	1 280 (186)	9	32	415
	TyR	540 (1 000)	896 (130)	765 (111)	18	57	262
							loontinúal

Fig. B.8: Propiedades de los aceros (Budynas and Nisbett, 2008, Tabla A-21)

Tabla A-21: Propiedades mecánicas medias de algunos aceros tratados térmicamente [Éstas son propiedades típicas de materiales normalizados y recocidos. Las propiedades de aceros templados y revenidos (TyR) son de una sola colada. Debido a las muchas variables, las propiedades listadas son promedios generales. En todos los casos, los datos se obtuvieron de piezas con diámetro de 0.505 pulg, maquinadas a partir de barras redondas de 1 pulg y la longitud de calibración es de 2 pulg. A menos que se especifique otra cosa, todas las piezas se templaron en aceite] Fuente: ASM Metals Reference Book, 2a. ed., American Society for Metals, Metals Park, Ohio, 1983.

1	2	3	4 Resistencia	5 Resistencia a	6	7	8
AISI núm.	Tratamiento	Temperatura, °C (°F)	a la tensión MPa (kpsi)	la fluencia, MPa (kpsi)	Elongación, %	Reducción del área, %	Dureza Brinell
4130	TyR*	205 (400)	1 630 (236)	1 460 (212)	10	41	467
	TyR*	315 (600)	1 500 (217)	1 380 (200)	11	43	435
	TyR*	425 (800)	1 280 (186)	1 190 (173)	13	49	380
	TyR*	540 (1 000)	1 030 (150)	910 (132)	17	57	315
	TyR*	650 (1 200)	814 (118)	703 (102)	22	64	245
	Normalizado	870 (1 600)	670 (97)	436 (63)	25	59	197
	Recocido	865 (1 585)	560 (81)	361 (52)	28	56	156
4140	TyR	205 (400)	1 770 (257)	1 640 (238)	8	38	510
	TyR	315 (600)	1 550 (225)	1 430 (208)	9	43	445
	TyR	425 (800)	1 250 (181)	1 140 (165)	13	49	370
	TyR	540 (1 000)	951 (138)	834 (121)	18	58	285
	TyR	650 (1 200)	758 (110)	655 (95)	22	63	230
	Normalizado	870 (1 600)	1 020 (148)	655 (95)	18	47	302
	Recocido	815 (1 500)	655 (95)	417 (61)	26	57	197
4340	TyR	315 (600)	1 720 (250)	1 590 (230)	10	40	486
	TyR	425 (800)	1 470 (213)	1 360 (198)	10	44	430
	TyR	540 (1 000)	1 170 (170)	1 080 (156)	13	51	360
	TyR	650 (1 200)	965 (140)	855 (124)	19	60	280

*Templado en agua.

Fig. B.9: Propiedades de los aceros (continuación)(Budynas and Nisbett, 2008, Tabla A-21)

Fig. B.10: Selección del cople incluyendo el buje

INGENIERÍA MECÁNICA

150

INGENIERÍA MECÁNICA

151

Acabado	Fac	Exponente	
superficial	S _{ut} , kpsi	S _{ut} , MPa	Ь
Esmerilado	1.34	1.58	-0.085
Maquinado o laminado en frío	2.70	4.51	-0.265
Laminado en caliente	14.4	57.7	-0.718
Como sale de la forja	39.9	272.	-0.995

De C. J. Noll y C. Lipson, "Allowable Working Stresses", en *Society for Experimental Stress Analysis*, vol. 3. núm. 2, 1946, p. 29. Reproducida por O. J. Horger (ed.), *Metals Engineering Design ASME Handbook*, McGraw-Hill, Nueva York. Copyright © 1953 por The McGraw-Hill Companies, Inc. Reproducido con autorización.

Fig. B.12: Factor de condición superficial

Fig. B.13: Gráficas de factores teóricos de concentración del esfuerzo K*. Eje redondo con ranura de fondo plano en flexión y o tensión. $\sigma_0 = \frac{4P}{\pi d^2} + \frac{32M}{\pi d^3}$

Fig. B.14: Gráficas de factores teóricos de concentración del esfuerzo K*. Eje redondo con ranura de fondo plano a torsión $\tau_0 = \frac{16T}{\pi d^3}$