-

FAC,UI.Z*“!;AD{DL: J_&\AGEMlEH;A u N.A.M.
DIVISHON I DE - t;z,ﬂpﬂag CACION CONTINUA

A LOS ASISTENTES A LOS'CURSOS:DE LA DIVISION DE' EDUCACION CONTINUA

. las autornidades; de. L4, Facuftad. de;lrgenieria, pox conducto. delf Jege de Za Dwux.én

"*de Educeelén Cantegum oZongon una:conslanela de uq.tehw a quienes cwrrp!;ah con

~ 08 nequisitos e;smpteu.doa para, c,ada curso.

< EL comvwﬂ de apistencia-se Llevard a..cabo a mua de ta pe.Mona ‘que Le entregd:
J:u notas . ~olak Anasistencias serdn. compwtadcm pozt. Los: cuu’:audndu de La Divisidn,
con el fin. de.entregarfe constancid sdfdmente a loa cu.’,umnba quz ungan 0 m—wm

s de.t §0% de.gslstencdas. X,

- Peddimos a £os @Mtentu necogenr su constancia ef dia de 8a clawsura.. Estas Az

b Jtcaendmn -pox el pertodo de. wr.ang, pasado este &ggmpo L, ﬁ‘ECFI no se hcwimu-

*

~»panmb£e de.reste documento..

© Se recoméandi'a;los- asistantes -papticdpar activamente con sus. ideas y experiencdds,
-pues £0870uns04.:Que Ofrees La v.q,uuwn»,e,at&n p&auea.dab Pargi que Los” pfwﬁumu -

prongan una. t8448 ;. perg-sobae. Lodo; para que coon.d,‘.nen &u opa.ru.onu da zodoa Loy

1 Antencsadosy: ,gqmwuyendo wudadma@ SEMLNEALO,,

ey
A

.
- L

Es muy impontante que todos Los 'uutemtu 2eenen y emeguen su hoja de inscrip- .

QsLLLenles, que d8: e.n.taegmd apon,tunamen,tm

Con el objete de mejonan !;os Sdervicdos: que La Divigiln de Educacddn Comunua oaracc,
al ginal dek cuMo« debem‘;,n ULULQQM Lo ﬁua,tuauc‘:m amu% de U cr.guaonmo dise~
Aado pana: :emitin, fudlcigs: andnimos. A

Se. necomienda LLenar idicha evaluanibn conforme Los profusorcs imparntan sus clases,
a-efeci: de no.Lfenan en fa. u.Ltum agsdidn Las euam.m.w*wy ¥ con ds20 sean mas
fehacientes susd apreciacionis..

i GRACTAS !

Palacio de Mineria ~ Calle de Tacuba 5 Primer pisc Deleg. Cuauhtemoc 06000 México, D.F. APDO. Postal M-2285
Teldfonos: 512-8955 5125121 §21.7335 521-1887 Fax 510-0573 521-4020 AL 26

b

SRPLLE
f\n-nl r

\‘\
- e

f "
R
&
L

‘&ﬁ!\f'ilpﬁ A

.)A,‘:; A S S \.{f“‘

Dol Y DTl e wh

W e

264

PRV R T SN T IS L
W .

L Spe
. . . et
c ' f
L
,

’ ‘.
) - ', P |
. :,.wun*.) BT WA
. o . P
, . i« ';) ',_,"._1. -) b.__-’)b-..u. 11, 2.
ek ;
: iy T .
- - * -
- ' Sy -
s e Yy, - 0+ f""f s .. =
C e WD BRI vrm,‘; . L5

-)
1w Bh L OB
¥ '

Coonry mbanatst Joshe sk ash o lomdks’
S L;.-»«--‘ei.‘.“ HEUCLN
CRRREI TR TRy an v

-

‘.'J‘_ ..\'l'eJ--" hl. &
b’i JS1 R, I o

.".NL]'}'\;..‘."O i
SRARGE G ALER-D DL

ol A8
~ : &
3

H

. 4

GUIA DE LOCALIZACION
| — ACCESO 3

2 —~ BIBLIOTECA HISTORICA
3-LIBRERIA UNAM

4—-CENTRO DE INFORMACION Y DOCU-

MENTACION "ING. BRUNO
MASCANZONI"
5-PROGRAMA DE APOYO A LA

TITULACION ¥
i AULAS

6 —OFICINAS GENERALES

7 —ENTREGA DE MATERIAL Y CONTROL

'] - DE ASISTENCIA.
: -] | — i .

Eari ! b Loy b e A &l m- 8 -SALA DE DESCANSO

I a a :)

| J | GALERIA DE] ACADEMM [T @ ’—l'—""’—l’—l Y SANITARIOS '
EXRECTORES INGRIA. |

L..—.n_-._nu—-_.l N — AR — N - -

Jer. PI‘SO P l

.

R

b]

-~

———

’
3

g I W

T

PALACIO DE
MINERIA

lr - '.E - “ .
ighiginy (N TN AU M i g

PLANTA BAJA

A 48 DIVISION DE EDUCACION CONTINUA
TH PN FACULTAD DE INGENIERIA U.N.AM.

g CURSOS ABIERTOS e
¢ Ly . :

-
-
-
o
¥
.
“w -
v

e

FACULTAD DE INGENIERIA U.N.A_.M.
DIVISION DE EDUCACION CONTINUA

CURSOS INSTITUCIONALES

INSTITUTO MEXICANO DEL PETROLEO

YISUAL BASIC

Del 7 al 18 de Noviembre

Ing. Andres Monterrubio
Palacio de Mineria
1994

Palacio de Mineria Calle de Tacuba 5 Primer piso Deleg. Cuauhtemoc 06000 Meéxico, D.F. APDO. Postal M-2285
Telefonos: 5128655 512-5121 5217335 5211987 Fax 510-05673 521-4020 AL 26

M 2
e -

' -K/I_—ddulﬂe_ 1: Using Visual Basic

Module 1: Using Visual Basic 17

Z' OVEI‘ViéWi ' ' T

= Visual Basic Tools
= Building a Simple Visual Basic Application

= Visual Basic Menu Commands

T
Overview | '
The purpose of this module is to introduce you 1o the Key clements of Visual Busic.
This is not intended to be an exhaustive review of all functions and tools: rather. it
is designed to get you up.and running on the product. Later modides will flesh ou
all of the details that you need to know to become Visual Basic progranmumers.

The best way to learn about Visual Basic is to review the individual functions in
each major portion of the Visual Basic interfuce and then walk through the steps
you should follow to develop an application.

The module is divided into three major sections. The [irst major seclion is a leclure
about the elements of the Visual Basic application that you use i the ereation ol
applications. The second is a demonstration where the trainer wilks you through ihe
application design process and you end up with i compited exceutable lile. The
{inal section is a Tab that gives you hands-on practice usinge some ol the tools thi
you have just been introduced 1o,

Prerequisites

There are two key skills that you need for suceess in this mudule:

® Practice in using a mouse

= Understanding of graphically based applications

Overall Objective

At the end of this module, you will have stccesstully created vour first Visual Basic
application.

T m——— e — et e ——

18 Modute 1. Using Visual Basic

Learning Objectives

At the end of this module, you will be able to:

w Désipn an application user interface using the Form window, Toolbox, toolbar,
and Property window. i -

w Nime and save the application’s forms and project files.

s Sttt and stop an application from the Visual Basic menu and/or the toolbar.

o Create an executable file and add it to a Windows group.

Module 1: Using Visual Basic

Y Visual Basic-Tools ——

= Form and Project Windows
= The Toolbox and Properties Window
» The Toolbar and Code Window

e — et e S i e

20 Module 1: Using Visual Basic

Form and Project Windows

File Edil Yiew Run Debug Qptions
wEaE] [Ele]

9*
SR
o) [
EIBE
EBjee]
(B (i)
=R} RO

{1]am

~1|

& CMOIALDG.VEX
4% GRAPH.VBX

- Properties -,

Foimi Foim b4
T
+

Bi9E

—
1
»

i
E

2 EIEIR 2] Dlle)

What Isa Form?

Forms are the heart of a graphically based application. They are what the user sees
and interacts with in order to sccomplish some task. They are also the place where
vou begin to build applications; on them you place controls—command buttens, list
hoxes, aption buttons—that present the vser with the choices that they have.

What Is the Project Window?

The Project window is a list that Visual Basic uses to keep track of the forms that
you e using for your application. You will have as many .FRM files listed in the
Project wmdow as you have forms in your application. In addition you may have
other les— . BAS and .VBX files—but we will hold off talking about those for a
littke wihile.

Module 1: Using Visual Basic 21

The Toolbox and PFoperties-Window —

——————-

Pointer R ré Picture Box
Label]| A TJext Box
Frame ™)1 Command Bution
Check Box - @ {®| Option Bution
) Combo Box List Box
Horizontal Scroli Bar |em| || Vertical Scroll Bar
. Timer i3] Drjve List Box
Directory List Box || File List Box
Shape (@[~ Line
: image Bl Data Control
- Custom Controls (*.VBX) [

What's in the Tooibox?

As the name suggests, the Toolbox is where you go o et the basic elements of
every Windows-based application you create in Visual Busic.

There are two ways that you can place controls on a tforni, cither by double-clicking

 the control tool in the Toolbox or by clicking and dragging the control. For the maosi

part, either method has the same result. When you double-click iool, the control
shows up in the middle ol the form; so you then have 1o sdrag the control o the
correct position on the form.

Each control that you place on a form has a set of properties it you cun se in
order to get the right "look and feel” for your application. For the time heing, all you
need to know ts that there are propertics to cach contrel. [Later modules you will
get a much closer look at the most commanly used properties for most ol e tools i
the Toolbox,

Custom Controls

You can add controls to the Toolbox. Some third partivs have created custom
controls that you can purchase separately. The Professional edition of Visual Basic
contains various custorn controls,

z To Add a Custom Control

I. From the File menu, choose Add File,
2. Select the appropriate file. Custom Control liles huve i . VBX extension,
3. Choose OK.

Module 1:El!Jsing Visual Basic

2

[mel Fram

Gar b Coden

BenrlmiStyle
Caplion
Cipl, ontinls
Ltz
Diravitdrw)e
(v tute
Thawi2uith
Ervatedad
FilC.edden

Al otolm
fedlloh]

1 enitdtahe
Forit b ymne
FradTizm

Fentnl stbgy

Fead branegoer Jrue

Falie
AHE0I00005]
2 - Sizable

Tre
Tue
13- Copy Pay
0. Transpaie
1

True
SHOENH R
1+ Teanegra:
e
Falte
Halv
B 25

False

'

B

o sel propertics

~What Are Properties and How Are They Set?

Propueities for a control are set using the Properties window:

™ Properties bl

t. Click the contro] whose propertiés you want sl;_t.

vou want to set and select it

2 ‘Seroll the Properties list on the Properties window until you find the property

. . L .- Bl
3. Place the value Tor the propetty in the Settings ¢ombo box.

4. Click the check box o the left of thc'Sénings-cpmbo box.

What Is the Toolbar?

The toolbar provides quick access to comimon commands or functions. These
functions —like suving projects and starting the application during the design phase
¢ Visual Busic menus as well as through access and

—=are also avaitable from th

shoreur keys.

: '::‘lmsnﬂ\ﬂsual Baslc [design] -
indow Help

1

2 1 vy !:3!

13013

[if]

137 1560 600

Nine of the relevint items on the wolbar are.

Tollear

News Form

Ve path

Shorteut keys

New Moduole

SOpen Projea

Save Project

From the File menu,
choose New Form.

From the File menu,

choose New Maodule,

Frons the File mena,

chovse Open PProject.

From the File menu,
choose Save Project.

nfa

n/a

n/a

n/a

Module 1: Using Visual Basic 23

—pas

Toolbar Menu Path Shorteut Keys

Menu Design window From the Window menu, CTRE « M

“choose Menu Design,

Properties window From the Window,menu, I

choose Propenties. -

Start From the Run mienu, I:§
choose Run.

Break [Froun the Run menn., CTRE y BREAK
choose Break.

End From the Run menu, ufi
choose End.

Note The rest of the functions deal with debugging qnd will be covered duging tha
module.

Position and Size Coordinates

Visual Basic displays the coordinates for the upper-left corzer for each comirof on
the form relative to the inside upper-teft corner of the torm. [t also displays the
width and height of the control. You can set these vatues by plicing the form or
control approximately where you want it, or you can specily Left and Top
coordinates from the Properties list. The unit of measurcment is in twips (there are
1,440 twips in an‘inch), You will find out later that you can change this unit of
measurement to something you are more familiar'with.

What Is a Code-Window?

- Code. windows display the code that implements your applicasion. At first Code

windows only contain the template for procedures and functions: you will add mere
code to them as you develop your application. There ure several ways (o open a
Code window. The easiest way is (o double-click the object whose code you wint 1o
view. For example, to locate the Click event template for a command button.
doubie-click the command button on the form during design timw,

v Formidrm -
Object: | Command? [#] Proc: | Click

sub Commandl _Click ()

End Sub '

24 Module 1: Using Visual Basic

Building a Simple Visual Basic Application

R A R

TR AT

he—
Ty e ™ = — - r —

Walk Through—Building a Visual Basic Application
2, Tostart WORLD
[. Front the Walk Throughs program group, start WORLD.

The purpose of this litte application is to give you a chance to walk through
most of the major steps needed for developing a Visual Basic application.

Huww does the application work?

It has one text box and two command buttons.
2. Chuoase the Fill button.

When the user clicks the button, text is revealed in the text box.
X Choose the Clear button.

Wihen the user clicks this button, the text in the text box is ¢leared.
4. Quit the WORLD application. .

I-rom the Control menu, choose Close.

Module 1: Using Visual Basic

2, To start Visual Basic IR
1. Double-click the Visual Basic icon. . -

Visual Basic will start with a blank form on the screen.

W i Sop $En FREIIA L W e At g 1

2. Resize the form to:
Height 2700
Width 4065

Z To design the base form

The lirst step in designing the user interlace is o set the properties for the
application's basc form. In this case, set the properties for the Hello, World!
form. '

1. Inthe Properties window Properties list, select BackColos,
2. Click the ellipsis (...) at the end o the text box.
3. Select a shade of grecn.

The background of the form turns green. Selecting any color will automaticaliy
hide the color. palctte,

4. In the Properties list box, select Caption.
5. Inthe text box, type Hello, World!
The Form title bar will contain Fleilo, World!
6. In the Propertics window Propeities list, select Name.

In the text box, type frmWorld

z To add controls and set propertics
To create the form's controls, double-click the appropriate buttons in the Toolbos.
}. Double-click the commuand button tool in the Toolbox.

2. Set the following properties: -

Caption Fill
Nanw cnnlbill
FontSize]

3. Move the Fill button to the upper-right coener of the Torm,

26

Module 1: Using Visual Basic

)

0.

Z ‘To add the Basic code to enable the controls

Prauble-click the command button tool in the Toolbox,

Set the following propertics:

Cuption Clear

Nume cmdClear

FomtSize (]

Maove the Clear button to the lower-right corner of the form.
auble-click the text box tool in the Toolbox.

Setthe following propertics:

Name txtBox!

Text Delete any text in the text box for this property.

In this step. code will be added to activate the functionality of the controls in the
Torm, The code will enabie the text box to be filled with the words Hello World!
whoen the user clicks the Fill button and enable the text box to be cleared when the
user clicks the Ciear button,

L
Doeebie-click the Fill button that you just created to open the Code window. |

When you double-click this command button, Visual Basic brings you directly to
ihe templale for a procedure that responds to a Click event for this control. The

-names of event procedures follow the pattern:

suty objectname_eventname |)

lir this case the procedure ts numed:

sury emelFill_Click ()
Also note that Visual Basic provides the statement that ends the subroutine:
Ena Siub

v the graphic below, notice that the object name shows up in the Object list box
on the left, and the event name shows up in the Procedure list box on the right.

- frmWorldd frm
Object: [cmdFill I’fﬂ Proc: lﬂck

Sub cmdF111l_Click ()

|

End Sub

Module 1: Using Yisual Basic 27

2. Add the following code:

T txtBoxl.TexXt = "Hello, Worldl™

Add a line of code between the two lines ol the templiste forthe Click even
procedure. This code gives the application the target for the action (Ilhiag the
text box) and the contents that you want assigned to the text box. In this case.
"Hello, World!" is the contents.

In the Object list box, select cmdClear.
4. Add the following text:
txtBoxl.Text =
Inside the template for this Click evenl procedure. wdd o line of code 1o give the
application the target for the action (clearing the text baxyand the contents thi
you want assigned to the text box. In this case the contents is an empty
string ("").
2 To save your work

Before you create an executable version of this Visual Busic application that vou
can run directly in Windows, you should save the source code to disk. You will <o
“ this through two actions—saving the form and saving the project.

I. From the File menu, choose Save File Ax.

- Save File As
File Name: oK
*.FRM

.1
cwalkthrulssamples

Directories:

. G, 43

[pERreTNT

(] 3
2] ;
[-c-] y
[-d-] :
[-2-] &

‘ *
#

[y i AR A § S AL

Make the current directory CAWALKTHRUASAMPLILS.
Save the file as WORLD.FRM. |

Choose OK.

From the File menu, choose Save Project As.

Save the file as WORLD . MAK.

Choose OK.

N o v s WP

Mo

il

Mudule 1. Usmg Visual Basic

z Tomiake an exceutable file

Tocreate an exeeutable hlL ke sure the source code for the project is open in
Visual Basie,

r=2

Isronn the File menu, choose Make EXE File.

Muke the current directory CAWALKTHRINS AMPLES.

Save the tile as WORLDEXE.

. Choose OK.

Minimize Visual Basic.

Z To start the executable from Windows

You can start an executable tile from Windows in two ways: 1} create a program
grovp, and add the name of the file to the group: or 2) start Program Munager, open
the File menu, and choose the Run command. We'll use the first method.

0.

[,

Froa the Program Manager File menu, select New,
‘Fhie New Program Object dialog box appears.

Sclect the Program Group option,

. Choose OK.

The Program Group Properties dialog box appears.

Inihe Group Properties Description control, name the group something like
SANMPLES.

In the Group File control, lype SAMPLES

. Choose QK.

A blank window will appear.
From the Program Manager File menu, choose New.,

The New Prograim Object dialog box appears with the Program Item option
selected,

. Choose QK.

‘The Program liems Properties dialog box appears.

. Name the application.

ln the Description control, name the application WORLD or another name that
reflects its function,

Now comes the tricky part. You need to help Windows locate the exccutable file
it you created,

. Chek the Browse button.

The Browse window will appear,
Setect drives and directories to locitie WORILD.EXFE,
It shonld be i CAWALKTHRINSAMPLES.

' Module 1: Using Visual Basic 29

11, Choose OK— - T o e

The Program Items Properties diadag box appears with WORLD EXE in the
Command Line text box.

12. Choose OK.

The SAMPLES Program Group will appear contiining WORLD and o prograns
icon.

Z To run your appiication
. Double-click the World icon.

The Hello, World! application will startin the same sereen location where e
form was created.

E To stop your application
1. Click the Control menu in the upper-telt comer of the Hello, World! form.
A menu will appear.
2. Choose the Close commiand.

Windows closes the application for you.

Ju Module 1: Using Visual Basic

Visual Basic Menu Commands

Managing Forms and Projects: The File Menu
Editing Visual Basic Code: The Edit Menu

Testing Applications During Development: The Run Menu

Visual Basic Window Management: The Window Menu

Getting More Information: The Help Menu

i ocder tocdevelop the simplest of applications, there are a number of Visual Basic
cormmands that you need Lo know about. Below is a brief listing of these commands.
The list is not exhaustive; there are a couple of topics that have been left to a later
meslule, ’

A

Managing Forms and Projects: The File Menu
s Adding a New 1'orm
File menu, New Form:
= Adding an Existing Forin to a Project
I\tle menu, Add File
= Detering a Form from a Project
File menu, Remove File
a - Making an Exccutable File
‘e menw, Make EXE File
s Printing Code
File menu, Print, sefect Code option
w Prnting Forms
File meny, Print, select Form option
w Saving a File and Naming It
FFile menu, Save File As
s Saving a Form
File mena, Save File

Note Saving i file does not mean that the project is also savedd,

= Saving i Project
File menu. Save Project

o Saving a Project and Naming it
e menu, Save Project As

Module 1: Using Visual Basic N

Note A Walk Through showing you how to save a teal version of the code is
located at the end of this portion of the module.

Editing Visual Basic Code: The Edit Menu
w Scarching Code for a Text String
Edit menu, Find

s Searching and Replacing a Text String -
Edit menu, Replace

» Cutting and Pasting Text
Edit menu, Cut, Copy, and Paste

s Undoing Changes
Edit menu, Undo

Testing Applications During Development: The Run Menu
= Starting the Application
Run menu, Start

Notice the change in the title bar when you select this option o indicate that vou
are now in Run mode. t

» Stopping the Application
. Run menu, End

Visual Basic Window Management: The Window Menu
s Displaying the Propertics Window
Window menu, Properties

n Displaying the Toolbox
Window menu, Toolbox

» Displaying the Project Window
Window menu, Project Window

w Displaying the Color Palette
Window menu, Color Palette

Getting More Information: The Help Menu

n Using the Help Table of Contents
Help menu, Contents

s Searching for a Specific Topic
Help menu, Search

» Locating Product Support Information
Help menu, Product Support

32 Module 1: Using Visual Basic

Walk Through—Saving a Text Version of Code

Procedural progrivcnmers are used to seeing all of their code in one place.
Remember, however, that the code is not executed in the order it appears in the text
e you ereate here. 1Lis still event-driven code, and the flow of execution still
depends on user and system events.

Z To save a text version of code

0.

Restore Visual Basic.

From the File menu, choose Open Project.

Open WORLD.MAK, focated in WALKTHRUNSAMPLISS.

Choose OK.

i the sample project that you have just completed, but do not run it.
From the Project window, select WORLD.FRM.

Mahe sure that you select the correct file. When you load a project, the first file
an the list is selected by default,

Fronn the File menu, choose Save Text.

Visual Basic will give your text file the same name as the form, in this case
WOREDTXT. That will probably do in most cases. Make sure that you save
the Hle to the WALKTHRWNSAMPLES subdirectory,

Choose OK.

Minimize Visual Basic,

Rueturn to Propram Manager.

i the Accessories group window, open Notepad.
rom the File menu, Choose Open,

Use the Open dialog box to locate WORLD. TXT.

. Choose OK.

This loads WORLD.TXT into Notepad so that you can review the code.

I you want Lo print code directly o a printer, choose the Print command from
the Visuul Basic File menu,

You can print just the form or code or both for the current file, or you can print
all forms or code or both for your entire application. Remember, iowever, that
BAS files do not have a Torm associated with them, so in this case you will only
be able to print code.

Z To save a text version of propertics and code

Yo can also save the form with the properties and code in a text file.

{4,

From Visual Basic, open the project WORLD MAK in
WALKTHROUGHAS AMPLES.

Froo the Projeet window, select WORIDFRM

Fioan the File menn select Save File As,

Seleet the check box Save As Text and choose OK,

The formis sived 10 text format. The extension FRM is used.

tise Notepad 10 compare the two text files.

Module 1: Using Visual Basic 35

Walk-Through—Using-Visual-BasicHelp -
2 To use Help
I, From the Visual Basic Help menu, choose Contenta.

The Visual Basic Help window appears, This window provides o bricfwopicai
tour of the major components of Visual Basic.

A topical list that might be of interest to you is Proernmming Language.
2. Choose the Programming Language topic.
Information on that topic appears in a window,
3. Choose the Beep Statement.
Language reference material on the purpose, use. il svntiy of this statement
appear on screen.
z To use the Search command

Like standard Windows Help. the Visual Basic Flelp system has a Search comnyisnl
on the Help screen. To use Search, simply iype in the tenm vou are looking for,

|, From the Visual Basic Help window, choose Scarch.
2. Type Toolbox in the text box.
The text box is located at the top of the screea.
3. Inthe Search dialog box, sclect Show Tapics.
4. Select the topic Toolbox.
5. Choose Go To.
Visual Basic opens a window with information en the werm “Toolbox.”
6. From the Help screen, choase Back.

Visual Basic returns you to earlier topics,

z To use the History command

Use the History command to return o topies that you ave covered carlier inilie
session. Topical lists in this option are arranged in reverse chromological order.

1. From the Visual Basic Help window, choase Fistory.
The Windows Help History dialog box appears.
2. Double-click the topic of your choice.

The Help screen for that topic appears,

34 Module 1: Using Visual Basic

2, Ta cut and paste sample code into your code

The most powerful part of the Visual Busic Help system is the large number of code
sitniples that you can pasle into a project and run.

The totlowing procedures allow you to copy and paste sample code for a Click

Cyent.

I

0.

[hY
i

Viswatl Basic should already be running.
Muke sure there is a new form on the screen.

From the Help menu, choose Search.

. Type Click in the text box.

Click the Show Topics butto.
Click Tivent should be highlighted,

. Choose Go To.

At the top of tlie Help form, click the word “Example.”

Thies brings up sample code o window.

From the Event_Click exsimple window, choose Copy.

This brings up another window with all the sumple code in ir.
Hiyhlight_thc code you win,

I this case, take only the lines starting piccurel .Move. ..
Click the Capy button.

This copies the selection to the Clipboard and hides the copy form.
Lixit Visual Basic Help.

Double-click the picture box tool at the top of the Toolbox.
Dirag the picture box to the lower-left corner of the screen.
Double-click the picture box on the form.

The Code window will open.

From the Edit menu, choose Paste.

aste the samiple code from the Clipbourd to your form.
I'ron the Run menu, choose Stait.

Click the piciure box once.

Iwill move (oward the upper-right corner of the screen.

- Conttnue clicking the picture.

[wHll disappear into the upper-right corper,
Froo the Run meau, clivose End.

Muanize Visual Busic,

Module 1: Using Visual Basic 35

-~ Summary

e ———— - - L

= Visual Basic Tools

= Building a Simple Visual Basic Application

= Visual Basic Menu Commands

Objectives

In this module, you learned 1o

Design an application user interlace using the Form window, Taolbox. tonihar,
and Property window.

Name and save the application’s forms amd project Hles,
Start and stop an application from the Visval Basic mena and/or the 1ookbar,

Create an executable file wrd add it to o Windows prong,

36 Moduie 1: Using Visual Basic

Lab Time |

Goto the Creating ‘An About Box portion of your lab manual,

/44

L

Module 2: Designing and Building
Visual Basic Applications |

Module 2: Designing and Building Visual Basic Applications 39

S Overview

Event-Driven vs. Procedural Programming

Microsoft Visual Basic Terminology

Application Development Process

User Interface Design Guidelines

Configuring Your Environment

Overview

The purpose of this module is to introduce you 1o severil relited concepts that hetp
you make the transition from the procedural world to the event-driven world. This
module creates the logical framework for much of the vest ol the course. 1t contrusts
programming for Microsoft Windows with MS-DOS and ather chavacter-based
applications.

It also pravides a high-level overview ol and establishies relationships between
objects and events.

This module also outlines the pencral process that is used 1o develop Visual Basic
applications and some general suggestions for overallappheation design,

Prerequisites

None.

Overall Objective _
At the end of this module, you will understand the paradign shilt [rom procedural te
event-driven programming.

Learning Objectives
At the end of the module, you will be able to:

a Explain the key differences between graphical and characier-based applications
a Provide high-level detinitions for some key Visual Biasic erms.
o Outline it basic application design and development procedie,

= Lxplain several Fundanwentad principles o ser wderbace desigen

) Maodule 2; Designing and Building Visual Basic Applications '

Event-Driven vs. Procedural Applications

Procedural Event-Drj no]

T Smm—

Programmer-Driven [] User-Driven
% ;

Character-Based |%| Graphically Based {i

i? i

Single Tasking g Multitasking
Programmer Control ’" Windows Control :
of Environment |5 of Environment -

S R b LB R e ot AR umfg" oty S e SR e R P .‘;ﬁs‘&%

Example

References

Traditional programming is lincar. It has a top-down sequencing that is controlled
by the programmer.

Windows-based programming is event-driven. Windows-based cvents can be
trigeered in ane of two ways. They can be either user-triggered or system-triggered.

Bulow. in pseudocade, ts a very general summary of the structure of an event-driven
program lor the Windows operating system:

Hegrin MAIN PROGRAM
fereging Laoog
Ask Windows to pass messages Lo yOour program
) about what events have occurred
Case Statement GETEVENT

_CASE Click
Tou can cheoose to insert code to respond to
click events for the appropriate objects.

CASE Change
You can choose Lo inserl code te respond to
change events for the appropriate objects.

CASE ...

CASE Default:

' VB will handle other events internally
without giving your program access.

' One of the default cases is the "end
application” message that causes an exit

e Uy Tonsp and zausos your applicalion
Cer Lermnt o

el Case SLaloment
ek Lo
Pred MATH PlOnRAM

ents that Visual Basic recognizes, see the Introduction

w the Micrasaft Visueal Basic Language Reference.

Module 2: Designing and Building Visuaf Basic Applications 41

~Notice_that there_ts.not.a lincar flow to-the-prograny-becinse tie {Tow depends-on- -

what events are generated and the order in which they are reporied to your prograns
by the Windows operating systeni.

Applications that run in the MS-DOS environmentare progrinnmed to be the only
application running. MS-DOS —based applicitions do not handle multitasking vers
well, '

Window applications are multitasking. They can share screen space and compuiing
time. -

MS-DDOS - based applications are charscter-bised . Wisdows-based applicidions i
graphically based and typically use proportionully spaced tonts,

Applications programmed to run in the MS-DOS enviromment are able w control
the environment the user operates within. The program can have controb over the
sequencing and appearance ol where the user will go next in the application.

Applications programmed to run under Windows give control of the environment o
Windows. How the user moves between events is contridled throggh the Windows
operating system itself rather than through the Windows-hased application.

A7 Module 2: Oesigning and Building Visual Basic Applications

Visual Basic Terminology

Application
Fo- -

] Form1 e: Form2

I pee—— prerprrvirsadtt)

| i l |

' Control |;| Control |4 Control |4 Control ¢ | Control

| il .2 JI 3 1 2

| CETT e T e Er T S T

! 1 | |

: ' Property|{{Property||Property{i [Property
Event Event |L_' 3 _2 {l 3 | !

Procedure|[Procedurel:

Tlie terms on this foil depict two major components ol the Visual Basic
developient environment: the graphical side of it and the code side. Put in tabular
torm. they ook like this:

Application
Forms
Propertics
Fvents
Controls
I'ropertics
Lvents

What Is an Object?

Consider this example: The dashboard of your car offers users a variety of gauges,
dials, ind aiccessories that lake input and give output. The thermostat tells you how
ot the engine is. The steering wheel lets you change direction. Each one of these
"objects” pertforms a specific purpose, and you use it to attain a given goal or
objective. Users learn how to use these objects.

I'or the most part, users do not learn how to install, maintain, or troubleshoot these
thinps. They do non learn how these things function, The user only needs to know
that these objects work and what to expeet from them. Tonoa like manner, Visual
BasicolTers programimers objects — forms and controls—that they can use to build
applications. For the most part, the programmer need only use the object without
necessarily having a detailed understanding of how the object does what it does,

The Graphical Side" - — — ——

Module 2: Designing and Building Visual Basic Applications 43

g

—_—— e

Objects

Components of an application, usually forms aind controls.

Forms

Forms are the building blocks of applications. They are the windows that tisers see
wihen they run your application; they are the nijor stroctursd anits that ke up
your application. Visual Basic s made up of several forms, The Toolbox, the
Properties window, the Project window ., and tie Save Project As dialog Doy e abi
examples of forms.

Walk Through—Forms and What You Get Free

To open a blank form
I Starg Visual Basice.
A blank Torm should be on the screen,
2. From the Run menu, choose Start.
Notice all of the things that Visual Basic gives vour form, .\'-uch HES
» Sizing border
o' Control menu
* Minimize button
+ Maximize butlon

You don't need to write any of the code for painting any «f these features ol yom
application. You also don't need to write any of the code for managing these
features.

3. From the Run menu, choose End.

Controls

Controls are the tools you place on Torms that provide users with application
functionality. Examples of controls are the command beons and Tubcels,

Properties

Forms and controds have properties Gutribies) thar you can chinge during desien
and run tme. An exiimple of o property s the captivn i appears o contiend
button. Generally speaking. you set the values Tur contral und form propertics when
you are designing your application.

Event Procedures

Event procedures are code internal to Visual Basic and Windows that is written ter
you and provides your application with somce ol its busic functionality. For example
when a user clicks a check box, the Click cvent knows how to paintan X in the
square. However, you must place code inside 1he Click event for that check box e
cause your application to react appropriately when w wser places an X an oremoves
an X from the check box,

44 Module 2: Designing and Building Visual Basic Applications

The Code Side

Project

Your development project is made up of more than graphical forms and controls; it
alsor has Basic code in it This is managed and accessed through the Project
window,

Walk Through— Visual Basic View of Your Project
To view vour project
Lo s already started, Start Visual Basic,
2. tonrthe File menu, choose Open Project.
3o doad the ICONWRKS.MAK file,
This File is located in '\VH'\S/‘\Ml’l.iiS\lCON\VRKS.
4. Fromthe Run menu, choose start to run the application.

Waork with the application for a minute, but the point here is that this application
is made up of a number of different forms.

5. From the Run menu, choose End to stop the application.

0. Avcess the Project window.

The Project window keeps track of the forms and modules that make up your
appheation.

For our purposes, Visual Basic tieats each of your forms as a scparate
component.

Visual Basic Keeps track of the number and kinds of files that you are using in
your application in the \MAK file and loads them when you want to start
working on your project.

7. un Visual Basic,

Medule 2: Designing and Building Visual Basic Applicatons 45

Module

“In Visual Basic a moduie is 1 file that contains only code. One example of a BAS
file that you could sec at the 1op of 4 Project window is MODUEETBAS.

Another way of showing the refationship ainong forms, controls. propertics, and
event procedures is this:

FORM1.FRM

Graphical Elements
Data and Code

MODULE1.BAS
Data and Code

BRI adRA

— Pro;ect

FORM2.FRM
Graphical Elements

e

Data and Code

BRI P

9 T A SR N e R RN VA W e he

(MAK N

- CRAEIYE L G

The .MAK file contains names of both the .FRM and the .BAS tils i the project,

R ————t s ¢ g e g

48 Module 2: Designing and Building Visual Basic Applications

Application Development

- Calculator

Creating an Application
2. Tocreate an application in Visual Basic, follow this suggested sequence
I, Openanew project (or use the new project created when you start Visual Basic)
o organize the pacts of your application.
2. Create i form for each window in your application.
Ao Dwaw ahe controls Tor each torm,
o Create the mien’bar Tor e muin form.
5. Sctthe form and control properties.
0. Write event procedures and general procedures.
7. Sive vour work,
8. Dcebug your code.

9. Create an exceutable file to turn the project into an application.

Distributing the Application

Wiien you distribute the exccutable of your application to users, you need to
distribute u copy of the Visual Basic dynamic-link library VBRUN300.DLL with it,
This dynamic-link library (DLL) is a part of the Visual Basic installation files, and
you cin distribute it royalty free. [f you build your application using any of the
aviilable custom controls, you will also need 10 ship all appropriate .VBX files, and
m some cases .DLLL files. The product documentation for the custom controls will
(eIl yamn whid these files we.

Finally, during design time, you nuy decide o move the forms for the application to
another machine, In this case, you will probably need to rebuild the MAK file,
because it Keeps track of all the files that make up your application as well as the
lully qualilied path o them. To do this, copy all the liles to the new machine, then
updiane ihe paths in the .MAK file by using the Remove File command from the File
mea. and then the Add File command.

Module 2: Designing and Building Visual Basic Applications 47

User Interface De'sign

General Guidelines
» Design Basics
n Color

s Fonts

User interface design guidelines are an agreement to creale consisien user -«
interfaces.

User interface guidelines are important for case of learning by the user. They also
prevent programmers and developers from "reinventing the wheel.”

They are guidelines—suggesiions an the way you mipht want to design the wser
interface. There are no hard and fast rules.

General Guidelines

s Design basics

e Design for the user, not the system

Composition and functionality

s User control

s Dircctness

» Coasistency

e Clarity

* Aesthetics

+ Feedback

» Forpiveness
a Color

s Color as an atientien-getter

» Complementary versus circus colors
w lonls

o Scril versus sans-sent

» Size

’ s Number (varicly)

48

Module 2: Designing and Building Visual Basic Applications

- . - —— . PR

e ———

For More Information
For more detaifs on user interface design guidelisies, see:
» T Windows lterfuce: An Application Design Guide

w Viswal Desipn Guide contained within Visual Basic

Walk Through — Designing the User Interface

As you walk threugh this application, look at the property listed and answer the
guestion that follows,

2. Print Utility 41

. Fronethe Walk Throughs program group, start Print Utility #1.

FFirst inpressions are impuostant. Are the function and purpose of the application
apparent from a fest look at the interface?

2 Hitle Bar t

The title bar should contain the niue of the application. Does it?

A Menus

The menu structure should reveal something about the contents of Uie
application. Does it?

[Joes the first mienu item follow user interface guidelines?

[« the Telp combmand in the stundard pluce?

Is the Quit command handled suitably?

Where does the About connind normally appei?

- » B 5 B B

Modute 2: Designing and Building Visual Basic Applicalions 49

4, Scroll bar

Is this the most effective way Lo ask users for the number ot copies they witlh e
wanting?

Are the size and location of the scroll bar approprie given the overall purpose
of the application?

Options

How many sets of options are there really on this torm?

Are the check boxes presented inred, the best way 1o get information from the
user?

How should the header, footer, and page numbering questions be implemented”

FileName text box Y

If the user wants to find a file und print it, what ather rools docs the user newed
besides this simple lext box?

Stop and Print buttons

Are these buttons appropriately sized for this form wnd ils tunction?

Exit

Close the application.

50 Module 2: Designing.and Building Visual Basic Applications— ——— . — - ---

Y Print Utility #2

i

5

X

From the Walk Throughs program group, start Print Utility #2.
Open the second version of this application.

Is 1he overall layout of the torm effective? How does the luyout suggest how the
user anght work with the form?

Flow dao the friames help siructure the user's decisions?

Flos is the menu structure consistent with user interface guidelines?

Why were the header and footer options dropped from the form?

Why was the Percent Done lubel added?

it the application.

Module 2: Designing and Building Visual Basic Applications 51

User Interface Design Guidelines

Device Input

Getting Input from a Mouse
There are a limited number ot things that users can Jo wih i mouse:

I. Single-click with cither the prinry or secondigy tielt araight top or botlain,
buiton.

[

Double-click with cither the primary or secandary batton,
Drag normally with the primary button.

3
4. Drag and drop.

For example, a single click with the primary mouse button normadly indicates 1thit
choice such as a bold, italic, or underline text formal option his been made o the
ribbon of a text editor. Selection of a {ile (o be opened s normadly indicared by o
single click.

Double-clicking selects the object 1o be acted upon and initates the action. hat s
if you want to select and open a file. you simply double-click a lilename. The same
thing happens when you double-click an icon,

Dragging is used to resize a window, move the window 1o i new location, or
reposition an icon. Drag and drop is normally used o select an ubject. for example.
the name of a file, and then place it over another object. Tor example, i prinier. so
that the file can be printed.

52 Module 2: Designing and Building Visual Basic Applications

e

—

Keyboard and Mouse Functions

Whenever possible, all mouse actions should be duplicated with an equivalent
keyboard action. Keyboard shorteuts and access characters should also be used to
reduce the aumber of keystrokes and potential for errors by the user.

For example, in most cases you will want to give.a keyboard shorteut for the most
commenly used commands, If possible, use the first letter of a menu or control as

theaceess character. If there is a conflict, use another letter in the menu or control
.

When von design (he application and its Torms, specify the shorteut keys.

et e g

Module 2: Designing and Building Visual Basic Applications 53

Configuring Your Environment

Setting:

Cancel

Requite Varable Declaration
Syrtax Checking He Meset
D efault Save As Format Binary
Save Pioject Belore Rin

it

Reset All

Breakpoint Test
Breakpoint Background
Comment Text

Ha

| S |

]
fiext Statement Backgiound e ———

[—

]

You can configure much of the look and feel ol the deselopment environment. Froni
the Options meny, choose Environment Options. From this window you cun sei
everything from the default tab stop in code to the foreeround and background
colors of comments in code. -

Sctting : . Deluuli
Tab Stop Width 1
Require Variable Declaration Nuo
Syntax Checking . No
Default Save As Format Binary
Save Project Before Run N

Selection Text
Sclection Background
Next Statement Text
Next Statement Background
Breakpoint Texi
Breakpoint Background
Comment Text
Comment Background
Keyword Text

Keyword Background
Identifier Text

Module 2: Designing and Buiiding Visual Basic Applications *

C Scfting - C Delault

tdentitier Background
Cowde Window Text

Code Window Background
Debug Window Text

Debig Window Background

Grid Widih 120 Twips
Grid HHeipeb 120 Height
Show Cirid ~Yes
Align 1o Grid Yes

For a list of the colors available, see the Colors section of CONSTANT. TXT
located o the WH subdirectory.

Note Changing to a larger grid size and then aligning the controls to the grid may
chimge the size of your controls.

Automatically Loading Visual Basic Extensions at Startup *

You can control which of the VBX or Visual Basic Extensions are loaded when
starting up a new project by editing AUTOLOAD.MAK with-a text editor. This file
1s Tocuted in the \WB subdirectory. The default settings are:

GRID.VBX

g MSOHLE2. VBX
ANIBUTON.VEBX
CMDIALOG.VEBX
CRYSTALVEBX
GAUGE.VBX
GRAPHVBX
KEYSTAT.VRX
MSCOMMVEBX
MSMASKED.VIIX
MSOUPFLIN VR
PHCCTIPVIEX
SPINVRBX
THREED.VEBX
PyojWinSize=152402.248,215
MrogWinShows=Yy

Module 2: Designing and Building Visual Basic Applications 55

Summary

Event-Driven vs. Procedural Programming
Microsoft Visual Basic Terminology
Apﬁlication Development Process

User Interface Design Guidelines

Configuring Your Environment

Objectives

In this moedule you learned Lo

n
]
]
.

Explain the key diffcrences between graphical and character-based applicaion-
Provide high-level definitions Tor some key Visual Basic werms,
Qutline a basic applications design and development procedure.

Explain several fundamental principles of user intertacee design,

56 Module 2: Designing and Building Visual Basic Applicalions

Lab Time

Lt

Cioto the Banployee Databise Application Specification portion of your ki imanual.

Module 3: Working with Forms

> Overview

Forms and Their Properties

Message Boxes

Starting the Forms of the Employee Database

Multiple Document interface Applications

Overview

The purpose of this module 1s to introduce you to the Visoal Basie progranmimer’s
fundamental tool — the form.

FEven though this is a relatively bricl modale, o intradnees some key teems it ae
required for a tulb understanding ol the progranuming convoomment. This iaodule
primarily focuses on the various propertics associated witl Torms, sepausie from the
discussion of comtrols and propertics. This module slso onches oo event procedures
and methods associated with forms. A more detiniled discussion of (hese issues will
be found in a separate module.

This module also serves as the introduction to the main clements of the class
application and walks you thyough creating, naming. and saviny these forms.

Prerequisites

Prior to starting this module, you should have o fundamental awareness ol

» Windowing technology rom the user perspective

a The Visual Basic programming environmeni

. Overall Objective

At the end of this module, you will understand the tundamentals of working with
forms in Visual Basic.

60 Module 3: Working with Forms

Learning Objectives

Al the end of this module, you will have:

Set cuptions on furms,

Set the Name property for a form.
Added a form to u project.

Saved all of the forms in a project.

Saved the project itself.

Properties for Forms

e —— - [— -

L ———— T

R] D A R

Module 3: Working with Forms 61

Forms and Their Common Properties

Forms are the central element of Visual Basic, They are the design of your
sipplication;, they are the thing that your user interacts with. They are where you
place the controls for your application,

You will notice that many of the properties for forms have the same names as those
[ound for contrals, but on forms they have a different use.

Property

Default

Comments

HorderStyle

Cipion
ConrolBox
FonitSize
FosNanwe
Nitme

Height
leon

KeyPreview

lent
:

MaxHutton

2 - Sizable

Lo
True
§.25
Helv

Formli

4425 twips

False

True

Set BorderStyle to *3- Fixed Double” o create o modal
form (used Tor dialog boxes).

Appeurs at the top of the form,

Enables the Control menu. '

Used in printing to a form,
Used in pricting 1o a form,
The name in code.

Also appears on Progect [ist.

Defuult icon for your exccutable.

Determines whether the form keyboard events oceur
before control keyboard events.

From lcit edge of screen.

Disable for amedal dialog box,

62 Module 3: Working with Forms

Property Default Comments

MinButton True Disable for a modat dialog boy,

Also see BorderSiyle.

MousePointer 0 Default Sets cursor shape on form— 13 possible choiees. See
the Microsaft Visial Basic Lenigiage Keference,

Top - From top edye of screen.

Visible True False is equivalent to calling the Hide method.

Width . 7485 twips

Events

Load A Load event occurs when a formiis loaded. Normally, vou will nse a Forn
Load event Lo set initial values Tor the controls on o Torm

Example - Sub Form_Load {)
Top = 1500
Lefr = 1000
End Sub

Unload An Unload event occurs when i form is about to be removed from memory.
This event is normaily triggered by the user closing the Torn nsing 1he Control
menu.

Methods ,

Hide This method is used to remove a form from the screen without unloading it
When you use the Hide micthod, the Visible property of the lerin is set to False,

- Show The Show method is used to display o hicdden form,

Examp!e Sub mnaPrintOptions _Click ()
{rmPrincOptions. Show
End Sub

i e P b ——— vy g e —

Module 3: Working.wilh.Forms

Message Boxes

.- Microsoft Visual Basic -

B

] 1 %

Q Save changes to 'Form1.frm'? |
“ Yes ¥ Hcancelr g

What Are Message Boxes?

For the maost part, Visual Basic applications are made up of forms. You will find
sevenil places i your applications where you want to convey fairly routing kKinds of
information (o users and you really don’t want to design and build a form to deliver
il

Visual Basic has a convenient tool that displays a kind of form—called a message
hux—where all you need to do is to provide the message string and, optionally, a
number that indicates the number and types of buttons and icons to be displayed on

the form, and a title for the dialog box.

I you wanled to make sure that users had saved all of their new data prior to
closing an application that you are writing, you could create a whole new form, or
you could use the Msgliox function.

Walk Through—Coding Message Boxes

‘To inspect the message box sample application
I. From the Walk Throughs program group, start MsgBox.
20 Chick the Exitbutton on Forml.
This displays a dialog box that queries users about the status of their data.
X Choose Yes, No, or Cancel. . _
Any one of these choices closes the dialog box. Implementing code that
difterentiates them will beadded ieanother madule,

A4 Openhie Control menu un Formd, and choose Close.

This closes Forml,

64 Module 3: Working with Forms

z To code the message box sample application

1.

b

Al

If Visual Basic is not running, start ii.

Double-click the command button tool in ihe Tanlbox,

 Place it in the lower-right corner of the {form, ar any other out-of-the-way place.

In the Properties window Properties st for the comminid button, change the
following propenty:

Caption: Exit

Click anywhere on the form.

This puis the focus back on the form.
Double-click the command button,

This will automatically open the Code window Tor the fonmimd take vou to 1w
Command1_Click event template.

Add the Tollowing code:
Msg$ = "Have you saved all your work?"

MsgBox MsgS$S, 3 + 32, “MsgBox Walk Thru”

What does the code do? First you create a string variahle with the message vou
want Lo display, and then you call the MsgBox statement. You can pass the
MsgBox statement three arguments. Although the secomd and third arguments

. are gptional, in this case we have you include them.

The first argument is the message string that is displayed inside the message
box.

The second is a sum of values that indicates to Visual Basic the tvpe of message
box you want. More about these numbers in o minute.

The third argument is the title of the message box.
From the Run menu, choose Start.
Test the dialog box.

Use the mouse pointer to choose the Exit command button. The dialog box will
appear in the middle of your display.

To close the Message WaikThru dialeg box. choose the Chimeel butten.
From the Run menu, choosc Iznd.
In the Code window, highlight MseBox.

Use the mouse pointer to highlight this word in the cude.

Module 3: Working with Forms 65

LY Press Fl
Make sure you arc in the design mode, not the run mode.

By adding the appropriate key values listed in the second table in the Visual
Help tapic for the MsgBox statement, you can control the number and type of
buttons, control thd icon displayed in the message box, und even set a delault
[stton,

T this walk through, you add the value 3 (1o request a message box with Yes,
Na,and Canced buttonsy and the number 32 (Lo request o message box with u
Warning Query or question mark icon).

There are more sophisticated ways of implementing and using message boxes,
but this gives you a start,

Did you notice that the Yes, No, and Cancel command buttons do much, yet?

I you read further down in the Help window, you see that cach of the different
buttans returns a different value. You will use those values a little later in the
course, ilong with some conditional logic 1o code the three butions on the dialog
box. For the time being...

th Mianimize Help.

5, Fromothe File menu, choose Save File As. v
* Save this form in \WALKTHRUNSTUDENT! as MSGBOX.FRM.

[oo Fromvihe File menu, choose Save Project As.,

Save the project in the same subdirectory as MSGBOX . MAK.

Select the Visual Basic Control menu, and choose Close,

Quit Visual Basic and Help.

66 Module 3: Working with Forms

Modal and Modeless Dialog Boxes

Open ProJect :
File Name: Divecloties:
[-.mak] e

project!.mak » = e\ +
P vb
£ bitmaps
0 cdk
T he
s] icons

] metalile

List Filet of Type: Drives:

Iﬂloiecl Files[". MAK] [EJ [c: IE]

Modal, Modeless, and System Modal

You can designate a form as being either moadeless or modal. "Fhe delaalt s
maodeless, which means ihat the user can open the form and sull get o ather forms
within the application 1o do work. Modal forms. i conirast. require that the user do
something—click a button, check to make sure they really do want 1o delete all
those files—before they can do any work,

Walk Through—Modal Dialog Boxes
2 To use a moda! dialog box)

1. From the File menu, cheose Open Project,

Bring up the Open Project dialog bax.

2

Access the Project window,
Place the cursor on any other portion of the Visuasl Basic interlaee. Press cither
one of the mouse buttons,

A beep sounds and the cursor continues to tlash in the teat box, In s case the
user must choose one of the three choices presented: Locule the mame of a
project using the list boxes, input & valid project mume. and choose OK or
Cancel.

3. Click the Cancel button.
Close the dialog box.

Module 3: WorkingwithForms 67

- . - —— ————

- r—

e —————

Application Modals and System Modals

Muodul dialog boxes do have a limit; they only guide the user within their own
application. They have no effect if the user switches 1o Windows or o another
application. In order to matke a form system modal, all you need to do is to use the
sivieto parianeler for both MsgBox statements and functions.

The syntax looks like this:
Jorm | Show |sevle]
Inaddition, you would need to dectare three global constants:

bl Const MODAL = 1
bl Const MODELESS = 2
¢ lobal Const SYSTEMMODAL = 40945 A

Walk Through—Making the Forms of the Employee
Database Application

To make the forms of the Employee Database application

I If Visual Basic isn't already running, start it.

2. Setthe following properties for the form:

Caption Employee Database

Name frmEmpDB

Height 5760 (approximately)

feon \WEBACONS\MISCOMISC28.1CO
Width 7600 (approximately)

MNole When you set the Tcon property lor a form, you will need to know the full
path 1o the source file, but the Visual Basic interface will only tell you that you
have an icon by displaying the property as (Icon).

A from the IFile menu, choose Save File As.

Make sure that you save the file in the appropriate subdirectory. If you don't, the
MAK Hile will not be able o find this part of your project. This first pass at the
application should be suved in \STUDENTI\FORMS.

4. Name the tile EMPDB.FRM.
5. Chaose OK.

This saves the form.
0. Chck the Project window.

Notice that the filename is in the left coluimn on this Nist, and the name of the
form is in the right eodumn,

Sofar, you have given the form the names that are known to the file system and
to Viseal Basic.

7. From the Control menu for the Employee Database form, choose Close.
Close EMPDB.FRM.

K. Fram the File menu, choose New Form.

Add u second form to the application.

68

Module 3: Working with Forms

9.

12.
13

18.
1.

Set the following properties for the form:
Caption Employec Record

Name frmEmpRec

Height 4545 (approximaiely)
MaxButton False

Width 5485 (approximately)
From the File menu, choose Save File As.

Now, rename and save the file. making sure that you save it in
\STUDENT NFORMS,

. Name the file EMPREC.FRM.

Choose OK.
From the Control menu on your newly created form. choose Close,

Close the form, and notice that the name of this form has been added to the list
in the Project window.

User interface guidelines suggest that applications have i About box —a Torm
that indicates that the application is copyrighted. You hive alrcady created an
About box; now you need to add it to this application.

Note You will also want to make some changes to the About Torm, but the

- directions for doing this ar¢ not included here. You would, tor example, change

the caption for the About box so that it contained the naime of the application,
but doing that here distracts from the point of this walk through.

Copy ABOUT.FRM {rom \STUDENTRABOUT 10 S TUDENTNFORNMS.

Before you add the About box form to the project Hist. you should make o copy
of the About box form that you have already completed and place that m
\STUDENTINFORMS. - :

From the File menu, choose Add File.

ABOUT.FRM should appear in the \FORMS subdirectory. so all vou need to do
is select the name so that it appears in the text box,

. Choose QK.

The mame ol the added Torm shoald appean nethe Propect Tea
From the File menu, choose Save Project As.

Now that you have made most of the basic forts Tor the Fanplovee Databise
application, you need to rename and suve the lile that heeps track of the Tiles i
the project.

The Save Project As dialog box should appewr center screen, with the correct
subdirectory already listed in the current working directory and w suggested
filename with the appropriate file cxtension.

Name the project as EMPLOYEE.MAK.
Chouse OK.

This saves all of your current build information.

oy

Module 3: Working wilh Farms 69

L]

) Fromthe Run menu, choose Start,

I you want 1o test the application, you should see the Employee Database form
appear on screen. This form appears only because that was the first form you
created. If you try to open the Employee Record form, you will see that you have
not implemented code for that task yet.

21, From the Run menu, choose End.

220 Quit Visoal Basic.

70

Module 3: Working with Forms

Multiple Document Interface Applications

I: -~ Child ani
=] __ Child . 3

Placing Forms Within Forms

-Visual Basic allows you to write applications thal ciin ereule suliiple copies ot u
form and display all the forms within a single contatiner forim. Microsolt Ward for
Windows and Microsoft Excel are both applications that ullow users 1o do this,

Walk Through— Creating MDI Applications

Z To sec the final version of your MDI application

I. From the Walk Throughs program group, sturt MDI.

For the most part, in this course, we will focus attention on placing controls on
forms. However, Visual Busic has the cuapacity to place torms on forms and
multiple instances of forms on forms.

The purpose of this walk through is to give vou the fundinnenials of
implementing an MDI application. We don't include all the enhancements tha
you might want to implement. Detnled coverage can be tonnd inthe follow-on
Programming in Microsoft Visual Basic 3.0 course. '

From the File menu, select New.

Do this three times. You may not see much hippeniirg ar lirst, but cach time you
select New, anather instance ol the child window s bBeg deawn an screen., one
atop the other.

. From the Window menu, choose Tile.

This organizes and displays all of the child windows thae you fave cocated.
From the Control menu on the Parent torm, choose Close,

In order o create this application frinnework, Tollow the steps helonvs but there 1
a warning required here. You will be typing in o number of things that baven’t
been explained yet. Don't worry: they will be. For the time heing, aceept that

“things work and that the details will follow.

2, o

Module 3: Working with Forms n

create a simple MDI application
Start Visual Busic,
A new, blank form will appear on sereen.

From the Frie menu, choose Add File.

. Else the browser o add PARENTILLFRM located in WALKTHRINFORMS.

Note Under normal circumstances, you wouldn't go this route. You'd select the
New MDI Form command. 16 you did that, a second tornmy would appear on
sereen, the entry aamed MDIFORMILFRM would e added to your project list,
and the New MDI Form command on your File menu would be disabled. From
there, you would need to add all the menu items; but since you haven't done that
vel, we widl give you the completed form, so that you can concentrate on the
MDD capabilities.

Nuow you should have two forms in your project.
Inn the project list, put the focus on FORMI.FRM.

That is, make sure that you see FORML.FRM on top of all the other lorms
within Visual Basic.

From the File menu, choose Save File.

Suve the fife us FORMI.FRM.

From the Window menu, select Properties.

This displuys the Properties window for FORM1LFRM.

In the Propertics window Properties list, locate the MDIChild property.
The delinlt value Yor this property is False,

Pouble-click the value in the table.,

This toggles the value to True.

Select the Control menu for the Properties window and choose Close.
In the Project window, highlight PARENT1.FRM and choose View Form.
This places the focus on this form.

Crpens the File menu on the Parent Form and choose the New commind.

This is the shorteut for setting from the form to the code that supports it You
shauld now be in a Code window that looks like this.

Objeci: [monk debew T8 Pioes [Ther

Sub mnufilenew Click ()

Eng Sub

72

Module 3: Working with Forms

12.

I5.
16.

7.
18.

Place your cursor on the line between the Sub ind End Sub fines and add this
code:

Dim NewDoc As Naw Forml
NewDoc . Show

That's all there is to i, Your questions aboul Tor and Ness and Show wilf all be
answered in a little while.
From the Object drop-down combe box, choose General.

This moves you to the General Declirations seciion ol the code, where you can
declare a couple of constants that Visual Basic needs Tor arminging the windows
that your application creates.

Add the following code:

Const CASCADE = 0

Const TILE_HORIZONTAL = 1

From the Object drop-down combao, select mnuWindow iscade.

Add the following code on the blank line between the Suby ind 1nd Sub lines:

MDIForml . Arrange CASCADE

From the Object drop-down cambo. select the mnuWindow e,
Add the following code on the blank line:

MDIForml .Arrange TILE_HORIZONTAL

That should doit. Now all you need to dois to ran your spplication,

Z To run your new application

2
3.
4

Choose the Run icon on the toolbar.

From the File menu on the Parent form, choose New.

Do this a couple of times so that you have several windows to work wigh,
From the Window menu on your application, choose Tile.

This tiles all of your windows.

From the Window menu on your application, choose Cuscinde,

This re-arranges all of the windows.

From the Run menu, choose End.

Erom the Visual Basic File menu, sclect Save Project As

Now that you have the [ramewaork for an MDI applicaten Hinished. save your
work. !

Save the project as MDLMAK and make sure that itis i
WALKTHRWNSAMPLES.

Module 3: Working with Forms 73

Summary

= Forms and Their Properties

Message Boxes

Starting the Forms of the Employee Database

Multiple Document Interface Applications

Objectives

It this module you learned to:

e Sctcuptions on forms, _

s Setthe Nume property for a lorm.
» Adda form to a project.

o Save all of the forms in o project.

s Save the project itsell,

- —~ —— - - - -

Module 4: Laying Out Menus

Module 4; Laying Out Menus 77

Y Overview

= Menu Guidelines

= Microsoft Visual Basic Implementation

Qverview

Previous modules gave you a chance to see and use the processes you should [ollow
for developing Visual Basic applications. In those madales you developed o single-
form application. [n another module, you developed all the Torms that we needed o
implement the database front-end, but there wis a puri that was missing—the |
menus on some of the forms. This module beging with a discussion of the general
layout of menus and the uscr interface specilication. Hends with
demonstration/walk through ol the Mena Desipn window

Prerequisites

To successiully complete this module, you must be abic 1o use a mause. Expericnee
with Windows-based applications is useful but not required. You should alse be
able to start Visual Basic and create a torm.

Overall Objectives

The overall objective of this module is to teach you how to design user-friendly
menus and create them using Visual Basic.

78

Module 4: Laying Out Menus

Learning Objectives

At the eod ol this medule's Tab, you will be able o

Pistand explain the use and vilue ol all of the key menu elements:
s Access or hot keys

* Shuirtcut keys

* Moenu biw

* Separator bar

[:Hipsis

Create an application that uses at least one menu on an application window and
uses more than one form. 1t should include a least one functionality menu as well
s Hetp oieno that ineludes choices to display a simple Help form and an
Abuout box.

- Menu Guidelines . S

Undo .. CtrZ.|
Cut Clri+ X
Copy trl+G
Paste Curl+V

Paste Special...
Paste Link

Links...
Object
Insert Object...

Move Picture
Size Picture

Style Guidelines

Menus and Their Standard Properties o

Under user interface guidelines, menus are one of the primary ways for
programmers to structure application functionatities for users. Normally, menus do
one of two things: explicitly invoke a commund, stch ux closing an application
using Exit, or invoke a dialog box that offers users mare options, such as the bold
and italic text-formatting options.

Menu Structure

Under normal circumstances, most applications will start out Life on the
development side with three main menus— File, Edit, and Help, The File menu
normally will contain comminds that are relied 1o [ile nunipukation:

= New

= Open

. Save

= Save As

= Primt

= Print Setup
= Repaginate
s Exit

Quitting the application, by convention, is done [rom the bollom of the (irst menu.
Help is normally the last menu on the right. .

B Madule 4: Laying Oul Menus

Style Guidelines

1+ i e
B s W Y

The general Edit menu normilly containg at least these four commiinds:

s Undo
= Cul

Copy
LI SHISTE

[may contain several other commands as they are needed for specific functions
within the application.

N

Fally. Help is normally implemented with at least these four choices:

w Comtents—Table of contents for Help
s Scarch for Help on...—Index to Help
s How 1o Use Heip—Directions for using Help

s Ahout application nanme—Copyright notice

Special Features of Menus :
Period Ellipses '

The three dots ad the end of a command on a menu indicate that a dialog box will
appear offering you more choices relaied to the command. A lack of three dots
indlicates that as a result of choosing the command, an action will be carried out.
Forexample, il you choose Centered from the Paragraph menu, all highlighted
piragraphs will be centered on the page.

Checking Options
A check mark next to a menu item indicates to the user that the option is currently
invaked.

Separating Clusters of Related Commands
Scparator s are used o visually cluster related commands so that the user sees @
short hist of related items, raiher than a long list of seemingly unrelated items.

Access or Hot Keys

Avcess keys are marked by an underscore beneath a single letter in the menu item
or command. Access keys are the keyboard (as contrasted with the mouse) input
device for the menu. Access keys are invoked by pressing the ALT key and then the
underscored letter in the command. For example, pressing ALT+F opens the File
menet. Pressing ALT+F+0 opens the File menu and then chooses the Open command.

lFor aceess keys, you should try to select the letter that will be most memaorable for
maost users. Nornally this is the first letter in the word, but that might not always
work. Far example, Minimize end Maximize bath begin with "M." so a better set of
aptions night be o use the "n from Minimize and the "x" from Maximize for the
iccess kevs,

Module 4: Laying Out Menus 81

Style Guidelines

e
Shortcut Keys
Shortcut keys are a second form of keybourd access to the memn. To use shorteu
keys, the user need only press a function key or some ather kev combinatanm isuch
as CTRL+A) In order to execute a command.

Some examples of standard shortcut keys are as follow s

Fl ' Help

CTRL+X Cuiting selecied text

CTRL+C Copying selected text
CTRL+V Pasting sclected text

CTRL+Z Undao

iy o ¢ s £ o e

T T s o T P M A R 0 1 e Rt AT ey avd e ‘-qﬁ:._.m--wm
82 Module 4: Laying Oul Menus ' .
Visual Basic Implementation

| 2
" Capton [. !
Home! i j { Caneal l i
Indlep: {: Sharicul: %
:
D Window List UelpLontextlD: E:} ‘
[ghacked & Enabled (2 visibla . 3

e] [imen_] (ociete] 4
T . sV

i i B RO i, b e e S B Wk AR, § MR

The Menu Design Window ,

Frong sthe Window menu, choose Menu Design window, [1'the Menu Design
window command 1s unavailable (dimmed), click any of the forms in your Visual
Rusic application. You will then be able to access the Menu Design window, The
Monu Desien window dialog box appears.

The remainder of this topic divides the Menu Design window into two units—
Menu Layout Ttems and Layout Manipulation Items.

Menu Laybut Items
Item Default

Desceription

Cigntion Name that appears on the menu.

MNunmwe . Nane used in code. Use o as o prelix,

lilex
Shaortent

Window st
Helplontex D
(‘h.ct'knl
Lnabled

Vinible

Not checked

Checked

Checked

Used for adding menu items dynamically.
CTRL + shortcut keys.

Specities whether a menu controf will include a
list of open MDI child Tfors.

Specifies an identifier for the menu itlem in
Help system.

Indicates whether a check mark will be
displayed to the left of a menu choice.

Indicates whether a menu choice is available to
the user (disabled choices are dinnned).

hcicates whether a menu item is visible (o the
user.

Layout Manipulation Iltems

[ordes to use most of the Layout Manipulation [tems on the Menu Design window,
you must fiest select the control (menu) and then press the manipulation item to alter
the controd

Module 4: Laying Out Menus 83

Style Guidelines

Item - Function-———"—""—"— 7" T

LEFT ARROW Raises a menu item one level —Tor example. makes o
submenu into i nuin mens

RIGHT ARROW Lowers a menu item one level foresample, mikes a
main menu into a submena.

UP ARROW Moves the menu e up otk position e the menu list

DOWN ARROW © Moves the menu e dosw n one postiion i the e Jist.

Next - Moves the cursor down one nem i the mena st Also.

clears the Capricon ad Noone s thin you g add e
mes em,

Insert Inserts a Blank line i the Bse ol mienees sotha vou o
anew menu item.

Delec Deletes the sctecied menu deas rom the Tist,

In order to implement access or hot keys, place an ampersand (& in front ol the
letter to be used in the ALT+ combinalion. For exampie. to mmplement ALT+F as the
access key combination for the File menu. you would type &File in the Caption
control of the Menu Design window,

Separator bars are implementcd by entering 4 single hyphen (- as a Caption,

Note You must assign a menu name to the separator ¢ven though it is not realiy
acting as a control.

Walk Throughs — Startup Application with Menus and
Click Events '

To sce the [inal version of the menus Walk Through
I. From the Walk Throughs program group, start Startup.

This sample application serves two purposes, [Cinroduces yon to the methods
for implementing menus in Visual Basic applications, and it gives you o simple
example of how Click events work in Visual Basic. Incidentially, this sample
application also shows you how to use the Shell fusctaon,

2. Choose the Cardfile command button.
This application starts up Cardlile or Windows Panthrash™,
Close Cardfile.
From the Edit menu, choose Colors.

The application shows the implementation ot menus, casciding menus
checked menus. It also uses the ampersand for het hewvs,

5. From the Colors cascading menu, choose Red.

Finally it shows the usc of a Click event to reset the hackground color of the
application.

Now, the question is; How did we do all of that?

6. Close the Stirtup application.

84

Module 4: Laying Qut Menus

}_, Torimplement menus on the Startup application

(1.

N

I Visual Basic isn't running alfready, start it,
A new blank form should be on the screen.
From the File menu, choose New Project.
Slart anew project.

Set the telfowing properties for the form in the Propenties window:

Nane frmStartup

Caplion Startup Applet
Hewht 2860 (approximately)
Width 2670 (approximately)

Open the Menu Design window,

Make the foltowing changes.

Menu item Captien Name Indentation
(BT &Edi mnuEdit 0
Colimy &Colors mnuColors 1
Red &Red mnuRed 2
White &White mnruWhite 2

. Select the Checked
opiion,

Rlue &Blue mnuBlue 2
- mnuSepl 1
b E&xit mnuExit 1
Help &Help mnuHelp 0
Ahuoug &About... mnuAbout 1

Deselect the
Enabled option.

Nole Notice that the menu names include only the pretix and the menu
Tunction, We shortened the names for this exercise o facilitate completing the
walk through.

Chiese QKL
Pouble-click the command bution tool in the Toolbox nwice.
Add two convmand buttons and place them appropriately on the form.

sethe foltowing properties for the command buttons.

Batton Name Caption
Candlile cmdCardlile &Cardfile
Paint Brush emdPaintBrush &PainiBrush

From the Trosject Wimlnw', chouse View Code. _
Make sure thut STARTUP.FRM is in the toreground.

In the Object drop-down combo box, choose General Declarations.

Module 4: Laying Qut Menus 85

i7.
18.

9.
20.

Add the following'code: T o
Const RED = &HFF&

Const WHITE = &HFFFFFF Make sure you type six Fs.

Const BLUE = &HFF0000 Make sure you type four zeros.

Set the hexadecimal values for the colors that you wanl, You can lind these
colors and several oihers in CONSTANTTXT.

Note . There is a second method for completing the siep above: Open
CONSTANT.TXT, and capy and paste the appropriide lines into the General
Declarations section of the form,

In the Object drop-down combo box, select ermdCardiile and locate the Click
event template.

When the user clicks this command bution, use the Shelb funciion to start
Cardtile in a regular window. Add the following code

x% = Shell{“c:\windows\cardfile.exa", 1)

In the Object drop-down combo box, select condPaintBrust and locate the Click
event procedure template.

When the user clicks this command button, use the Shell Tunction to stt
Paintbrush in a regular window. Add the tollowing code:

v% = Shell{"c:\windows\pbrush.exe", 1!

In the Object drop-down combo box, select mauRed ind locite the Click event
procedure template. Add the following code:

frmStartup.BackColor s RED
mnuRed.Checked = True
mnuWhite.Checked = False
mnuBlue.Checked = False

In the Object list box, sclect mnuWhite and tocate the Click event procedure
template. Add the following code:

frmStartup.BackColor = WHITE

mnuRed.Checked = False

mnuwhite.Checked = True
mnuBlue.Checked = False

In the Object drop-down combo box, select mnulilee and locate the Click event
procedure template. Add the following code:

frmStartup.BackColor = BLUE

mnuRed.Checked = False

mnuWhite.Checked = False

mnuBlue.Checked = True

From the Run menu, choose Start and test your applicatiom.
From the Run menu, choose End.

Close the application. Yon may notice thit the Exitand Ahoat commimds e
not implemented yet. You will complete those functions in the nexiamedule

Save the form as STARTUP.FRM in \WALKTHRUASAMP ES.
Save the project as STARTUP.MAK in \WALKTHRINSAMPLES.

86 Moduie 4: Laying Out Menus

Summary

. Menu Guidelines

= Microsoft Visual Basic Implementation

Objectives

in this medale you learned to:

o List and explain the use and value ol all of the key menu elements:
e Access or hot keys
+ Shorteut keys
o Menu bar
e Separator bar
e |:llipsis

o Create an application that uses at least one menu on an application window and
uses more than one form. It should inciude a least one functionality menu as well
as a Help menu that includes choices to dispiay a simple Help form and an
Abuon hox,

Module 4: Laying Out Menus

La_b Time— . T Tl T

Go to the Creating Application Menus portion of your kib manual.

,,,,,..,,.,,,'.J.JJJJJJJJ-JP)éd

Module 5: Connecting Forms

3%

v r 9y » .';9-)-;.--'.’@1%“"’@‘"3

Module 5: Connecting Forms 91

> Qverview

a Form Management
Statements
Methods
Event Procedures

= Setting the Startup Form

Qverview

This module has two broad goals. First, it provides an introduction to the concepls
of event procedures and methods as they relute 10 managing the forms of your
application. Second, it reviews all the important eveals and methods, and therefore
is a crucial lead-in to the controls modules, and the general discussion of functions
and statements as they are implemented in Visual Basic.

This module also contains the first actual hands-on experience you will gel in

writing code that will be implemented by user uctions with the application interface

Prerequisites

Prior to starting this module, you should already he Luniliar with these terms:
u Controls '

» Forms

= Properties

Overall Objective "

The primary objective of this module is to present the notion ol event procedures
and 1o discuss the essential cvents needed 10 manage Todms,

92 Module 5: Connecting Forms

Learning Objectives

Al the end of the module, you will be able to:

w Use the Unload statement 1o unload a form from memory.

s Use the Load statement to load a forim into memory.

w Use the Show method to display a form.

s Use ihe Hide method to Bide a Yorm but not unload it trom memory.

» Sctshe startup torm.

n

a2 A

3 353333323 332124713

FIRV A Y Y B Y 2 I N T N I |

Moduie 5 Connecting Forms K|
Sta-teme_nts - S T T
File Name: |] ‘
s \vb-disc\employee
Files: Directories: Cancel
! .mak [-]
employee r.na ffox]
[-a-]
(-c-]
(-d-}
[-s-]
The Load Statement

Syniax

Example

Further Examples

The Load statement is used to load o form or control inw menmwory. I8 normally
appears within other event procedures, '

Load object

'Event procedure for a control on Formi
Sub Commandl_Click ()

Load Form?2 !
End Sub

Important Load does not sutomatically display the Torme it just loads it into
memory. To make the form visible to the user, call the Show method, discussed

later in this module. In some cases you may choose to preload all the forms in the

application at application startup. Doing this causes thens tao he displayed more

quickly when the Show method for the forms is called av the appropriate time. OF
course this technique will add to the time it takes to start your application initially.

Application Form Procedure/Event

Calculator CALC.FRM Form_L.oml
Cancel_Clivk

4d

Syntax

Example

Syntax

Exampie

Module 5: Connecting Forms

The Unload Statement

The Unload statement is used to remove a form or contrel from memory. Unloading
a form from memory may be necessary when the memory resaurces used are needed
for soime other object or when you need to reset properties to their original value.
Another tvpical use for the Unload statement is in an OK button Click event for a
form like an About box. There is no reason to keep the About box form in memory,
becanse 10 is seldom used.

Note that when a Torm is unloaded. only the display component is unloaded. The
ede associated withy the form module remains in memory.

Unloud object

Vb toanesndil_Click ()}
tUnloari Forinl

Pt 2o

End Statement

This statcment ends a Visual Basic program, procedure, or block. By itself, the End
statement stops program exceution, closes all files, clears the values of all variables,
awned desirovs a1 forms,

You hinve seen or will see various uses for the End statement in other modules to
end portions of code. The 1opic appears here because you can use the End keyword
alone i code 1o end your application.

End | { Function | Select | Sub | Type |]

Stalement Description

St Fane ion Ends a Function procedure definition
faed 1 Ends o block If..Then statement
Faed et Ends o Select Case block

Sand i Ends a Sub procedure

B e Ends a user-defined type definition

More exvamples e available in Visual Basic Help.

I el Stalament Example
ab Endpemo ()

3 1o ‘Set up infinite locp
4 Msy3 = "Enter A, B, C, or X." 'Enter X to exit

9 Userinputs = UCase$(InputBox5({Msg5)) 'Get user input
5 Selegt Case Userlnput$ ‘Evaluate input
; Case "A': HMsg$ = "You entered 'A'."

H Case "B”: Msg$% = "You entered 'B*.*

T ' Case "C": Msg5 = "You entered 'C'."

i Case "X": End "End if user entered X
1 Case Else: Msg$ = "You made an invalid choice.

12 ATry again.”

b Enel Salect

i Muqglior Msyb ‘Display results

[BRI IF)

16 End -ub

Module 5: Connecting Farms 95

Meth od_s_'-_e Hide

.

EMPDB.HIDE

Employee:
Marla Lopez .-~ it

Peter Krauss

Barbara Richardson

Department; [

Update...'.

"7 Delete

Exit

A et § e WS R FAR T EEEE

Syntax

Example

Further Examples

Hiding a Form

When a form is hidden, it is removed {rom the sereen e its Visible property is sul

" to False. A hidden form's controls are not accessible 1o 1he user, but they are

available to the running Visual Basic application, to ather applications
communicating with the Visual Busic appheation trough dynamic data exchange

{DDE), and to timer events.

If a form is not loaded when the Hide method is invoked, the Form s loaded but nat

shown.

[form.] Hide

Note the optional form in the square brackets. Also noie that the period within the

brackets is not optional.

The following cxample is available from Visual Basic Help.

1 ‘Hide Method Example

2 Sub Form_Click ()

3 Oim Msg$ Beclare ot iabile
4 Hide Hide 1.0

5 Msg$ = "Choose OK to make the f{orm vdajqrar . "

6 MsgBox Msg$ Displo, ne:ssays
7 Show 'oShow o anain
8 End Sub '

Application Form Procedure/Event
Menu MAIN.TIFRM “mnuApphMer Click

mneliditor ek
mnulNun Chok

miu ol Chick

96

Module 5: Connecting Forms

‘Walk Through—Hide vs. Unload

Z To see the difference between Hide and Unload
. LFrom the Watk Throughs program group, stant Hide vs. Unload.

When the application starls you see two forms. Forml, on the left, containg two
Buitons: one (o show Form2, the other to unload Form?2.

FFarm2, on the right, contains nine buttons, Command|1 through Command8, and
a button labeled Hide Form2, The eight command buttons were placed on the
form to make sure that Form?2 uses enough memory and Windows resources (o
thasteste the point.

The purpose ol the application is to demonstrate the difference of the impact on
meimory and Windows-based resources when hiding a form versus unloading it.

2. Click the Hide fform2 button,
Thas hides the form.
Ao Program Manager, choose About Program Manager from the Help menu.

From the Help menu in Program Manager, choose About Program Manager.
Nole the values for the two lines at the bottom of the form for amount of
Muemory and System Resources free,

4. Choose QK.
Close the About Program Manager dialog box.
5. Press CTRL+ESC o display the Windows Task List.
0. Double-click Hide.
7. Chek the Unload Forim2 button,
Untoad your Form2.
X, In Program Manager, choose About Program Manager from the Help menu.

MNaoe He vithoes Tor the two bnes st the bottom of the form Tor amount of
Muemory und System Resources free,

Now that Form2 has been unloaded, not just hidden, you should sce more
rhcinory andfor resources available. The amount will vary depending on your
nachine's enviranment.

. Chusse the OK button.
Close the About Program Manuger dialog box.,
P Press CTRL + LESC.
(1. Seleet Hide from the Task List.
[2. Click the End Task button.

Terminate the project.

todule 5: Cannecting Forms 97

Methods—Show . -

EMPDB . SHOW

.

Peter Krauss OPs B

Barbara Richardson } SAL

e

%

| .

- Update... :

¥ oadds] | Delete [eat]
VLR S A o S Vi A a7

Syntax

Example

Further Examples

Showing a Form .

Show is used to display forms that have been loaded. U you use the Show method
on a form that has not been loaded, the Show method will automsatically load the
form and then show it.

Lform.} Show {style%)

Note The style% parameter is an integer value that determines whether the form is
modal or modeless. If style% is 0, the form is modeless: i sevle % is 1, the formis
modal, '

Users must respond to a modal dialog box by clicking any one of i numbuer of
buttons. Any dialog box that lets the user continue working with other forms in the
application is a modeless dialog box,

This example is available from Visual Busic Help.

1 *Show Method Examploe

2 sub Form_Click ()

3 Dim Msg$ el e wariable
4 Hide Hasle oot

b Msys = "Chuoose G Lo mnke Llos Lo toagyge o

6 MsgBox Msgs il ary nmerssaeg
3 Show Theww lonim agati
8 End Sub '
Application Form Procedure/ 1 vent

Helio GETSTART.FRM mnuButertly Chck

mnl leblo Uk
mnuScroilbun Chick

mnuShell _Chek

W Module b Connecling Fuims

Walk Through—Connecting Forms in Startup
Y Torvun the STARTUP.MAK project '
PP Visual Basic isn't running alrcady, start it
A oew. blunk Torm should be on the screen.
2. Fromthe File menu, choose Open Project. L o e
1 Open STARTUP.MAK,

This <hould be docated in WALKTHRIASAMPLES. Load the code, butl do not
run the spplication yet.

S0 Fromean MS-DOS prompt copy ABOUT.FRM from \STUDENT NABOUT 1o
WALKTHRINSAMPLLES.

5. Fromnthe File menu, choose Add File.
6. Chonse ABOUT.FRM.
7. Choose OK,
This adds ABOUT.FRM to the MAK file for the Startup application.
8. Select STARTUP.ERM in the Project Window and choose View Code.
Y. dnihe Object list box, sclect mnuAbout. . £

Gio o the Object list box and locate the template for the mauAbout_Click cveni.
It should be cpty.

). Add the following code:
I rmibemt Ghow |
Add the code thut will show the About box when the user sclects the Help menu

and the About command. Remember the | causes this form to be modal. Nolice
the syntax here? FormName.Show.

Important You might be tempted 1o use the Load statement to display the
frenAbout formn, but you will find that won't work here. Loading a Torm only
mweans that it is in memory. [0doesn't mean that the form is actually displayed on
sereen. For that you need t use the Show method.,

I Fronihe Run mienu, choose Start,
Sttt the application o test the resuill.
12, Openthe Flelp menu and choose the About command on the Stastup application,

The About Iix from the lab appears on screen.

Note You will need to now change the Caption property on the About box Torm
as well us the Jeon and Text propertics on the label o fit the current application,

1.3, Choose OK.
Fry to choose the OK button on the About Box form,

Yot haven't coded that yet.

| et e 4 ae o AR A s =

Module 5: Connecting Forms 99

14
s

16,

20.

21

22.

23,

24,
25,

20.

. From the-Run-menurchooseEpd— —— — . . . ————~ - —
. Select ABOUTFRM. '

Select the ABOUT.FRM Tile in the Project window.,

Choose View Code.

Bring up tie Code window,

In the Object list box, select cmdOK.

Locate the code template for the cmdOK _Click event procedure.

Add the following code:

Unload frmAbout

Add that code on the blank Tine i the template.

Notice the syntax here? The Unload statement comes first, and the ohject name
follows. Notice also that there is no punctuation.

From the Run menu, choose Start.

Statt the application again to test the success of your chunges.

Open the Help menu and choose the About commund on the Startup application
This should display the About box. v
‘Choose OK. -

Choose the OK command button on the About box, und it disappears from the
screen.

Now the question is what do you do to end or close the application itsell”?
From the Edit menu, choose Exit.
Try exiting from this command.

In order to close the application eatirely. you still need to make vne more change
to the source code.

follows interface guidelines for Windows would place ixit as the last itenion
the File menu.

From the Run menu, choose End.
Stop the application.
Select frmStartup in the Project Window and choose View Code

In the Object list box, choose the Exit menu Click cvent procedure, and place the
appropriate code there,

Add the following code:

End

Put this code on the blank line in the template.

100

Module 5: Connecting Forms

27.

-

29,

SSave this project.as STARTUP.MAK in \WALKTHRINSAMPLES.

From the Run menuy, choose Start.

Test the Exit command on the Edit menu, and test the About box elements.

Froan the Run inenu, choose End.

From the File menu, choose Save Project.

~— Event-Procedures ' : LTI

i

Maodule 5: Connecting Forms 101

Object: [Form #] Proc:|Load 4|

Sub Form_Load ()

Forml.Left = (Screen.Width - Forml.Width} N
Forml.Top = (Screen.Height - Forml.Height}

End Sub

A AT A

1
e T TR N OT I SPEE E e KRR iy

Syntax

Event Procedures .
An event procedure is defined as a procedure invoked by w user or system-triggered
event. Event procedures arc always attached 1o a given form or control, and the
syntax for an event procedure looks like the following:

Sub objectname_eventiicine
statementblock
End Sub

Examples of event procedures are: Commund | _Click qinl Form Click.

Loading a Form

A Form Load event occurs when a form is toaded. 11 normally occurs when an
application is run or as the result of either a Load statement oran implicit Joad thn
is caused by any reference to an unloaded forny's properties or controls.

Typically you place initialization code for « farm in a Form Load evenl procedure.
For example, you would specify default settings for controls, initiulize the contents
of a combo or list box, and initiafize form-level variables in TForm Load event.

102 Module 5: Connecling Forms

Syntax

Further Examples

Sub Form_Load ()
Tniialization code
el Sub

| it Form_Load {}
' Ceniter rhe form on the screen:

T TYa¥mlTizit s (Screen.width - Forml.width) / 2
i Forml.Top = (Screen.Height - Forml.Height) /2
R TR Y o

Unloading a Form

An Unloid event happens when a form is about to be removed trom memory. When
thar formeis reloaded, the contents of all the controls are reinitialized. Normally, this
cvent s Isggered by aouser action, by choosing Close from the Control menu or by
an Linlead statement,

Many times the Form_Unload event procedure contains a Select Case siatement to
verity that unloading should proceed or to specify actions that need to be taken prior
o inlosding. ' '

Dule Furm Unload (Cancel As Integer)

(IR
Compicie anformation on the Unload event is available from Visual Basic Help.
Applicatiton Form) Procedure/Iivent
Mena APPMGR FRM mnuDelApp_Click .
mnuExit_Click
EDIT.FRM mnuClose_Click I'
mnuExit_Ciick t
NUMSYS.FRM mnuBExit_Click
TDABOUT.FRM Command [_Click
TODO.FRM mnuEdit_Click

Module 5; Connecting Forms 103

v Project Options - - -

P mEmpDE . - o -

Command Line Aigument : l Cancel |,
i g - i mEMEDE - cc
Helpfile Hetel

Retal All

!

i

Setting the Startup Form

If you have a multiple-form application, by deliult the Tirst Torm you create will he
the startup form. It is easy to make another form the strtep form as you will see in
- the demonstration.

L

Walk Through— Setting the Startup Form Comment

z To sct the startup form
1. Start Visual Basic.
2. From the File menu, choose Open Project.
Locate EMPLOYEEMAK in \SOLUTIONVWORAS
3. EMPLOYEE.MAK.
Load the Employce Database applicition into the Prdject window,
4. From the Options menu, c.hnn.\'c Project. '

5. Choose the Select Startup Form option, and press the drop-down arow on the
combo box at the top.

6. Select frmEmpDB from the fist.
7. Choose OK.
Set the startup form.
8. Save the project.
9. Quit-Visual Basic.

104 Madule 5: Connecling Forms

Summary

« Form Management
“Statements 0T

Methods

Event Procedures

= Setting the Startup Form

Objectives

Iahis mawdude you learned to:

o Lisethe Unload statenient to untoad a form from memory.

o Ui ithe Load statement 1o load a form into memory.

s Ui the Show method to display a torm,

s Ui the Hide method to hide a form but not unload it from memary.

s Sctihe startup form,

Module 5: Connecting Forms 105

Lab-Time

Labh Time

Go to the Loading and Unloading Forms portion of your Bl nunual.,

- F F y y ry r » -

Module 6: Using Controls

Modute 6: Using Controls 109

Y
L3 _ ’ e - T,

T Overview

4

4
-
=

= Types of Controls

= Properties for Controls

Overview

The purpose of-this module is to make sure that you understand the general
purpose of control properties and events as well as the essential properties Tor
each of the controls in the Toolbox.

This is not intended to be a comprehensive treatment of all the possible propertics
and events for all of the controls. In addition, this modute covers anly half ol the
total number of controls in Visual Basic. The module tallowing this covers ihe
other half. '

The general approach here is to let you practice changing the propeeties Tor cacl

control and actually see how the change affects the contol,

Prerequisites

Prior to starting this module, you should have i fundamental awareness ol
a The functionality of Microsoft Visual Basic

s The genera] use for each of the controls in the Taolbos

a The general methods for setting propertics on controls

110 Module 6: Using Controls

Overall Objective
AL the cndd of this toduale, you will be able wo use key propertics on hali of the
controfs located in the Toolbox.

Learning Objectives

At the end of this inodule, you wiil have set key properties for:

s |abels

s Teat boxes

s Franes

s Comreand buttons

s Chock boxes

w Capron buttons

a Combao boxes

e [lin hunese

s Lhozontal sond vertical seroll bars
n Thners

s l'ictire boaes

Module 6: Using Contrals m

- Typesof Controls — ————

Pointer | » (@3)l| Picture Box
Label | A Text Box
Frame || D} Command Bution
Check Box |[m!®] Option Button
Combo Box ||Ef List Box
Horizontal Scroll Bar |rm 5 Vertical Scroll Bar
Timer =|| Drive List Box
Directory List Box [[f=| @] File List Box
Shape ||~ Line
Image %- Data Control
Custom Controls (*.VBX) ||

This module covers the various clusters of controls tound in (he Toolbex, their #
most commonly used properties, and the events that are normally used with tienr.
QOne of the first things you will see is that many of the controls ave the sume

kinds of attributes. In many cases, a property will be covered only once. even

though it shows up with almost every control.

Controls will be discussed in order of placement in the Toolbox, with the
exception of the picture box, which will be covered last, and the drive. directory.
and file list boxes, which will be discussed in a separine mundule,

A good way to get a handle on properties as they reline 1o contrals is to look
the very front of the Microsaft Visual Basic Language Reference. There you can
find a comprehensive list of controls and their properiies.

Adding Controls to The ToolBox

The graphic on this page displays the default ‘FoolBox. Yoo can add controls to the
Toolbox,

To add a custom control to the Toolbox
1. From the File menu choose Add File.
The Add File dialog is displayed.

2. From the Add File dialog, focate the custon congrol Tile thitl you wani to adid,
For example, locate the lile THREED. VBX. This like should be in the
CAWINDOWS\SYSTEM directory. This is a custom control provided by
Visual Basic.

3. Select the file THREED.VBX and choose OK.

The new controls are added 10 e Toolbox, You iy pet o eror message il
THREED.VBX has alreaudy heen added o the Toolbuos

4. Use this same process to add any custom cumtrol 1o the Toolbog.

112 Module 6: Using Controls

> Properties for Controls

= Labels, Text Boxes, and the Masked Edit Text Box

- Regulér and 3-D Frames, Check Boxes, and Option Buttons
= Regular and 3-D Command Buttons

= Combo and List Boxes

= Horizontal and Vertipal ScrolI"Bars

» Timers

" Piclure Boxes

Module 6: Using Controls 1"

Labels and Text Boxes— T " L

Labeld

3 it i

Text1

2

Labels and Their Common Properties ;
Labels are most commonly used to display test tiak von don’s want the user Lo he
able to change. Typically this woeuld be a captivg under o griphic or captions fi
drive, directory, and {ile fist buxes.

Determines whether a control adjusts (o

it its conlenls,

Title Tor thie vomtrol en sereen. The
caption is the detaule property for this
contral. Sy = Labell = "Files

From et horder af forny,

Nane used i conde.

Use Il as a peetin,

| retermsnes the taby cader of the Tahel,

Determines whether use cin use Tab ke

ot e 4o dhe tesd bony

Llser-delined valne

Property Default Clomameits
Alignment (b - Left Justil'y
AutoSize False
BackColor White
BorderStyle 0 - None
Caption Labell
FontName Helv
FontSize 8.25
FareColor Black
Height 500 In twips
Left -
Name Lubell
Tablndex Assigned by Visual
Hasic
TabStop True
Tag -

Top

From top border ol form,

114 Module 6: Using Conlrols

Text Boxes and Their Common Properties
Adest oy comtreldisplavs either information that is provided by the application
or indormation it the user can type.

Fypicid naes of text boxes would include the box where users type the string of
characters they want the application to find in a search funcuon. It you were
creating o front-cid for a database, you could use a sequence of text boxes 1o
gither intormation about members of the database:

IProperis Dreluult Comments

Algninen - Left Jusuly

o danne Helv

FontSiee ¥.25

Herehi 300 In twips,

Fen From feft border of form.

AMund enath] Conrals amuount of user input. Ranges
from 0 1o 64 characters.

Mulnhne Iulse Means no multiline capability,

N - Textl Name used in code.

Use txt as a prefix.
Foaswon iy Specifies the character to be displayed
when user types text in the text box,

Sonall s - None

i ent Teatl For none, assign ™ This is lhc'dul':lllll
property tor the control.
Syntux—Text] ="

Top Fram 1op border of form.

Widih Width of text bux.

Module 6: Using Controls 115

‘Walk Through==Text Box with a Scroll Bar -

To usc the text box with a scroll bar

1.

From the Walk Throughs program group, start T'ext Box with a Seroll Bar,

When you start the application, you will see a forny with atext box with
vertical scroll bar in the center of the form.

The purpose of this application is to demonstrate the behavior of a text hox
with a scroll bar and how to create o text box with o ~croll bar,

. Type some text into the text box.

Type enough text into the text box to cause it to sart serolling, Notice that the
text will automatically wrap at the right margin, Notice alse that you can
select text and then cut and paste it just as in a standurd Windows-based 1ex;
box. Use CTRL+C t0 copy. CTRL+V Lo Insert, CTRI «N Io et ind CTRL+7 ta unde,

Double-click the Control menu.

Close the walk through.

Start Visual Basic.

Double-click the text box tool in the Toolbox,

This will create a text box control.

In the Properties window drop-down comba box. niike these changes:
Height . 1000 (approximately)

ScrollBars 2 - Vertical

Set the ScrollBars property to 2 - Vertical, Notice that you dan't see the
control change. There's a little problem here. Setiing the ScroltBars praperty
for a text box only becomes ellective i the Muttil e property Tor the e hos
is also set to True.

Set the Multil.ine property to True.

Notice that a vertical scroll bar now appears on the tesi box,

From the Run menu, choose Start.

Test the behavior of the text box to see if it behuves us it did in the demo.

From the Run menu, choose End.

" Close the application,

116 Module 6: Using Controls

Masked Edit Control

Masked Edit Control

This conteat is u special form of the wxt box control. 1t is used to restrict user input
us well as to format data outpat,

Muask characters Deseription

Decimal placeholder
Thousamnds separator

Thine separator

/ [Dale separator

A Treat next character as a literal
N Character placcholder

A Alphanumeric placeholder

! Leuer placeholder

Digit placeholder

Walk Through—Validating User Input

z To monitor user input with the masked edit control

Lo From the Walk Through program group, start Masked Edit.

The purpose of this walk through is to demonstrate one of the reutine uses of the
nusked edit control —displaying a text box that prompts for and monitors the
vorreetness ol a user-added telephone number.

2o Type atelephone number.

Notice that the use of the parentheses and the underlining promipts the user on
the tvpe and amownt ol information to be typed. Notice also that the masked edit
text box autonedically tabs the cursor to the next control as you type the
telephiomne nunber.

A Chiswe the apphication,

Module 6: Using Controls 117

- 2_To create the application
1. Start Visual Basic.
2. Resize the formand setits propertics as follows:
Height 2850 (approximately)
Width 4560 (approximately)
3. Place a tabel control at the 1op of the formand sen s propertics as Toblows:
Alignment 2 - Center

AutoSize True

Caption Customer's Telephone Number
4. Place the masked edit control in the center of the vy and sctits properties as
follows:
Mask (H#iH#) #aH-HH4H
Width 1635 {approximaicly)

Visual Basic calls the parentheses and the hyphen “lnerads.” They are the visuul
cues that tell the user the type of data that s expected. iind you type them as pan
of the input mask. The number signs (#) are calted “digit placeholders.” and they
specify that a digit is required, As you hive seen, when you ran the application.
the control places an appropriate number of undersceres that tell the user the
total number of characters in the number as well s the aser's relative position
within the number.

T

5. From the Run menu, choose Stait.

Test the behavior of the masked edit controb 1o see il o beliaves as itdid in the
demo.

6. From the Run menu, choose End.

ValidationError Event

If a user types an invalid character, a Validatonrbirror cvent oceurs, You can place
code in the ValidationError event to displuy an error imessage, For example. vou
might want to beep if the user types un invalid character '

1. Place the following statement in the MaskedEdith_ValidationError event:

Beep

2. From the Run menu choose Start. Type a letier in the masked edit field.
The system beeps.

3, Save the form and .MAK file with appropriste mines in
\WALKTHRWASAMPLES.

118 Module 6: Using Contrals

Regular and 3-D Frames, Check Boxes, and Option Buttons

LLNRETEE S

1,
I

P

Frame]————

(®{Optiont] Check

O Option2 [Check2

e ARGy

-

PR

ybre T2

=)

I i J&g“.-«i»}ix.sﬂg

St Sy SR R 1 e S

The Trame, check hox, and option button controls provide a way 1o present users
with o set of aptions frony which they can choose.

Forexample, it you start the Solitaire game in Windows, then open the Game
menu. avd then choose Options, you will sce a dialog box that contains two scts
ol option huttons. Inside the frame labeled Draw are the options affecting how
nany cards are drawn. Inside the other frame labeled Scoring are the options that
affect bow the game is scored. The arrangement on the screen and the use of
(rames teli the user and the system that these are independent groups of option
buttons. A choiee made in the Draw group will not affect the Scoring group, and
VUL VEITSIL

Frames and Their Common Properties

Frames provide a means for graphically and functionally grouping controls.
IFrames are most commeonly used (o group two or more option buttons in a set of
mutually exclusive choices.

Note__Information_presented_in_frames and option buttens can also be presented

in drop-down st boxes,

Property Default Comments

Captiom Fraeme] On screen label. This is the delault
property for this control,

Syntax —Frame = "Delinitions"
Manae e Naune used i code,
Use fra as a prelix.

Visibbe True False hides the tframe and any controls
inside it.

Moduie 6: Using Controls 118

Events

R
————- _ .

Caution When Placing Controls on Frames

There are two methods for placing controls ana forme The simplest method is to
doubie-click a control icon. An instance of the control wili uppear in the ceoler o
the form, and you can position the control from there. This is o particularly usetul
approach when you arc placing several cantrols ana single Torm,

The second approach is to single-chick a tool in the Toolbox. move the cursor o
the form, and drag the control on the form unlil it is the size you want, This
second method iy required for placing comteoly on s frame. 1 you do nol use 1his
method, you will lose the controls when yott try to move the frame around on the
form,

3-Dimensional Frames
Added property Default) Comnents

Alignment 0 - Left Justify You cunnct centers or right=justity friume
capirons with the ather controls,

Caption : This is the detault property Tor this control.
Synlux—Framel = "Definitions”

Font3D 0 - None Sets the wnonnt wkd direction of shading
the Caption,
Name Frame3Dl Name used 1 code.

"

Use fraas prefiy,

Check Boxes and Their Common Properties

Property Default Conunents

Caption Checkl Onesereen valee

Enabled True IFalse dhisables all user uccess,
Name Check Nume used i code,

Use chk as aprenn,

Value 0 - Unchecked | - Checked: 2+ Graved.
(Fills box with pray). This is the default
property for the control,

Visible Truce Filse hides the check box.

Click Normally a Click event indicates that the user Jis madce o selection. li il
case of a check box, the Click event acts as i toggle. Wthere is an X inside the
check box when the user clicks it, the X will be removed. If the check hox is
empty, an X will be placed inside the check box alter the user clicks it. In cither
case, the Value property will be reset. A typical use of o check box might be to
allow the user to choose between buld or normal Tt

120 Module 6: Using Controls

Style Guidelines

Events

Option Buttons and Their Common Properties

Opticn huttons, as noted previously, are used to display an array of choices from
which the user may select only one. An example is found in the Microsott
Windows Write Print Setup dialog box, where the user can select either the
defaals printer or w specific printer and either portrait or landscape page
vrientation,

Property Default Comments
Captann Option| Oui-sereen vilue,
Nanw Option| Name used in code.
Use opt as a prefix,
Ligthied True User has access w control,
Value False This s the default property for this control,

Syntux —Qptionl = False

Adways have one option button in a group selected as the default for the user
when the Torm is displayed.

Click When the user clicks an option button, the Click event actually invokes
several activities. It paints the dot on the selected option button, removes the dot
from any other option button within the frame, and resets the appropriate values
far all option bultons in the same group.

Walk Through— Option Buttons and Displaying Their
Values

To compare the cffect of the Click event for a check box versus an option
button

. From the Walk Throughs program group, start Check versus Option.

Whea you start the application, you will see a form with three option buttons,
two check boxes, and a clear screen button on the right side.

The purpose of this application 1s to compare the eftect of the Click event for
acheck hox versus an option button.

2o Chick the Option | option button,
The values Tor all theee buttons should be displayed on the left side of the form.
3. Chick the Oplion2 option button.

The-updated-values-for-all-three-buttons-should-be-displayed-on-the feft-side- ol

the Form.
4. Click the Check] check box to place an X in it
The value of Checkl.Value is printed on the form.

Compare the number that is printed for the value of u check box when it is
selected (1) 1o the value that is printed for an option button when it is
sefected (- 1),

Module 6: Using Controls 121

5 Click the Check2'check box to place-an-X-in it. S

The value of Check2.Value is printed on the Form,

Compare the effect of the Click event for check hoxes versus option buttens.
Clicking one option button allects the state ol the other option buttons i iis
group. Clicking a check box will not affect the stine o) other check boxes,

6. Double-click the Control menu,

Close the walk through.

To code valucs for option and check boxes
I. If Visual Basic is not running already, start it
2. Double-click the frame contiol tool in the Teolbay,

Add a frame to the form. Click and drag the sizing hundles to make it big
enough to hold three option buttons. Place it neur the lower-right comer of the
form so that there is plenty of room to display the values for the three oplion
buttons you will add.

i

Click the option button tool in the Toolhox.

b

Move the mouse over the friame you just creied on Form,

Note that the mouse pointer has changed from wi arvow to 4 cross hair,
5. Click and drag inside the area of Frame! to draw an option hutton there.
6. When the buiton is the size you want, release the mouse.

7. Draw two more buttons inside Framel,

8. Double-click the top option button,

This displays the FORM.FRM Cade window with the Option | _Click event
procedure template.

<

Add the following code:

Print "Optionl.Value = "; Optionl.Vaiue
Print "Option2.Value = *; Option2.Valu:
Print “Cptionl.Value = "; Optioni.Valua

This adds the code that prints the values [or the bitions,

10. In the Object list box, select Option2 and locate the Click event templite fron
the Procedure list box.

11. Add the following cade:

Print "Optienl.Value = "; Optionl.Value
Print "Option2.Value = “; Option2.Value
Print "Option3.Value = "; Oplionl.Yulu:

This adds the same codce that pmm the values Tor thie buttons ta the Click
event for Option2.
[2. Using the Copy command, place the code above into the Clipboard.

13. In the Object list box, select Optiond and Jocate the Click event template from
the Pracedure list box.

122

Madule 6: Using Contiols

1.

16,

17.

Lising the Paste command. copy the contents of the Clipboard to this event
provedure template.
The conde should look like this:

I'rine "Optionl.value = *; Optionli.Value
Print "oOption2.value = "; Option2.value
Frin' "optiond.value = *; Option3.value

This adds the sume code that prints the values for the buttons to the Click
event [ur Option3.

Fronn the Run meny, choose Start.

Test vour code. .
Feamn the Run menu, choose nd.

Cleeer the applicasion,

Ouit Visual Basic,

3-Dimensional Frames, Option Buttons, and Check Boxes
For the most part, these three controls are identical to the three conirols just
discussed. However, there are a few subtle differences that need to be noted as well
as the procedures for setting the 3-D qualities for these controls.

3-Dimensional Option Buttons and Check Boxes

Added property Defanlt Comments

Namwe thow check Check3D! Name used in code.

hoses) Use chik as a prefix.

Natiwe o option Option3DI Name used in code.

bultums) Use opt as a prefix.

FFontdn 3 - Inset with Light Sets or returns the three-dimensional style
Shading of the caption. For example, you can set

Font3D to have fomt appear raised or inset
with light or dark shading.

Madule 6: Using Controls 123

" Regularand 3-D-Command Buttons — =~~~ S

l Commana{.

A R R L e 3 e it " e B R

Style Guidelines

Events

Command Buttons and Their Common Properties

A command button performs a task when the user presses it.

Property Default Conunents

Cancel False True—Dbwon activated by E5C.
Caption Command | On-sereen vidoe,

Default False Trne —button activared by ENTER,
Enabled True IFalse disables the bution for users.,
Height 500

Letl - Froo lelt bordes af Torm,

N Command | Numie gsed iy cide,

Use emd as o puedin.

Top - i top bordes ot ot
Width F215 twips
Value Syntax = Conunand] = Enablald

Place buttons in a group on a form, ¢ither horizontalty wlong the bottom of the
form, or vertically along the right side of the lorm.

Click With command buttons, a Click event normalty means that the user wints
some kind of action to take place. In the case of an OK button, for example. users
might want a form removed {rom the screcn so that they can continue work. In
this case, you will be providing code.

124

Module 6: Using Conlrols

Example

When the user uses the mouse pointer to choose a command button, the Click
cvent chunges the color of the button (to simulate its being pressed) and executes
whilever code you have added to the Click event procedure. A user cun also use
the kevbourd Lo generate a Click event for a button by tabbing to the button and
then pressing the SPACEBAR.

San Uomeandl _Click (0
Gteasy all execution of the program
el ' ’

el Eabe

3-Dimensional Command Buttons

This Torm ol the command button behaves in much the same manner as the other
commind huttons, but there are a couple of ineresting, differences.

I'roperty Default Comments

Hevel Wadth i Specifies the thickness of the Bighlight wd
shadow uround the button. Valid range is
from G to 10

N Cammand3D1 Niune used in code.

Gutlime True False disables the border or line edging the
buiton.

ictee None Enables placing o picture or icon on 3

command button.

[4

- " Corfibo-andList Boxes e =

0 - Drop-down Combo Box 1 - Simple Combo Box

TS T .M.l N e R 2 e T R e 7 Hwe

List Box 2 - Drop-down List Combo Box

There are actually four kinds of list box comrols, cach of which has o slightly
different functionality.

Both drop-down styles of boxes are designed 1o save on the inttial amount of
screen space in use by the control.

Users can only add new items directly into cither a drop-down or simple combo
box, With a list or drop-dawn list, they are Himited to the chuives provided by the
application. ‘

List Boxes and Their Common Properties

List boxes display a list of items from which the user cim select only one at’
time. Through the list box control, users can only select Trom the given listof
articles, but you can write code that aflows them fo wdd and delele items during
run time through some other control.

Automatic Scroll Bars

All list and combo boxes will atematically add i vertead sereld bur it the numbue
of items contained in the list is greater than what will ficin the maximum display
size of the control, which is set by the Height properny

Property Default Commuents

Columns Default Enables multiple colinmv display of dat i g
single st box.

List Accessible only w nun time. Sets or rewors the
ttems contatned ina control’s Tist string array.

ListCount Returns the number of items in the list.

ListIndex Retarms the sdes ol e selected dtem m e hiss

126 Module 6: Using Controls
Propurty Default Comments
MuthiSctect 0) - None Other options: 1 - Simple and 2 - Exiended. None
means that the user can select one within the list.
Simple means user can select multiple items
using the cursor. Extended means user can press
CTRL to select multiple items.
Namw Listd Name used in code.
Use Ist as a prefix.
Sorted False .
Tou This is the default property for this control,
Syntax—List1 = "Ttem 1"
Events Click Sl any of the list boxes, o Click event occurs when users select an item
(romi dhie st to mdicate their preferences.
DbIClick A double ¢lick normully is used as o shorteut that combines two actions:
the selection wid the starting up of a process.
Methods

These are used Tor Hst management.

Name Function Syntax

Adldlem Used to add individual items 1o ListlL.AddItem "name”
list box, Seeding a list box is
done from Form_Load.

Renwwveliens Used to remove items one at a Listl.Removeltem (ListCount)
time from a list box.

Clear . Used to remove all items ina list Listl.Clear
box in one stroke.

Walk Through— Adding and Removing List items

To add and remove list items
1. oo the Walk Throughs program group, start List Box.

Wihen the application starts up, the cursor should already be placed in the text
o,

The purpose ol this application is to demonstrate a simple procedure for
adding items 1o and removing items from a list box.

20 Type Harwood, Gene in the wext box.

Add i new ninne in the iext box.

Ao Choose Add.

You can do this with either the mouse or the ENTER key.
4. Seledtthe text box,

Tab o ar click the text box.
5. Type Simons, Anna in the text box.

At secomd mme 1o the List box, and a vertical scroll bar should appear on
yonn desplay.

Moadule 6: Using Controls 127

Choose Pfeiffer, Terry. =~ 77 . LT T T

Single-click this list item.
Click the Remove button.
The list item is removed {rom the display.

The question here is this: How does all ol this work?

Z To code list box handling

1.
2.

I Visua) Basic st vanning already | st

From the File meng, choose New Project.

Note If you want to do all of the work for this walk thraugh. go to the neat
step and start changing the properties Tor the Tor T vou wint o st fronm
completed interface, you can also find o partinliy completed form calted
LISTMAK in WALKTHRWNSAMPLES. I you «honse this aption. skip
down to step 12, the point where you start adding codde to the Form_Loud
event.

. Set the propertics for the form us follows:

Caption Consultants - ; “l
Name Forml . :

Height 3075 (approximately) i

Width 3420 (approximately)

Double-click the fist box too! in the Toulbox,

Add a list box to the form.

. Set the following properties:

Name Listl

Height 1005 (approximately)
Sorted False

Width 2775 (approximalely)

Double-click the text box tool in the Toolhox.
Add a text box to the form.

Set the following propertics:

Name _ Textl

Height 555 {approximately)
Tablndex [

Text Blank

Width 2775 {(approximately)

Double-click the command button ol in the Toothoy.

Add a commuand button to the Torm,

128 Module 6: Using Coitlrols

Y. Set the following propertics to create an Add button,
Caplion Add

Name Command|

IRIGHT True ‘
ileight 585 (approxinaiely)

Widily 1215 (approximately)

113, Daouble-elick the command button tool in the Toolbox.
Add i second command butlon 1o the form.

1. Setthe following properties to create a Remove button.

Caption Remove

Nam Command2

Flengeh SSS {approximately)
Wulih 215 {approximately)

Now that'yeu have created the interface, you need to add the code to make it
function,

12 hathe Project window, choose the View Code button.,
Make sure that the Form is selected,

13, hithe Object list .box, select Form.

[4. Inthe Procedure Hist box, sefect Load.

Adil the initialization code that foads the names into the hist box when the form
is loaded at run time, '
iFii! vhe list box at run time
e s L Aaddltem "liorcen. Joan®
vt Additem "white, Dont
ro s nded I bem "Marshall, Lynn”
Lisrt heidItem tpfeiffer, Terry"

150 lahe Object list box, select Command |l and locate the Click event procedure
in the procedure list box.

1o Add the following code:
iy i Addltem Textl.Text

This code tukes whatever is in the Text property of the text box and adds it to
the Bist box. '

I7. IFiom the Run menu, choose Start.
Run your application.
I8. Type Harwood, Gene in the text box.

Type Gene Harwood's name in the text box and press ENTER or click Add. His
namie should be added to the list box but not deleted from the text box.

[9. From the Run menu, choose End.

I order 1o clear the text box, you need to add a second line to the Click event
prrocedure here.

Madule 6: Using Controls 129

20..

21.

22,

24,

25.

26.

27.

29.

30.

kIR

Add the'following code to Commandl_Click:
Textl.Text = "~
This takes care of the simple addition ol items o st box,

From the Run menu, choose Start.

Try adding Gene Harwood's name one more time, [t should wark just fine, b
what about removing it?

From the Run menu, choose End.

Removing items from a list box is fairly straightforward.

in the Object list box, sclect Comnmund2_Click.

Add the following code:

Listl ,Removeltem Listi. it Dodex

This cade remaves the item indicated by the valie of Liselisiindes. The

Removeltem method remeves items one atac tme. With smiall lists, this nneln
be suitable. With farger lists, you would use the Clear methaod,

The above code will cause an crror i no st item is selected. You cmn avoid
this by moditying the code as follows:

If Listl.ListIndex = -1 Then
msgs = “Please Select o Consultant”
MsgBox msg$, 64, “"List 3electivn”
Else
Listl,Removeltem Listl.ListIndex
End If
From the Run menu, choose Start.
Add and delete a couple of niimes to see that the code works.
From the Run menu, choose End.
Close the application.

How about sorting this list? Don't you have Lo add o lot o code Lo sort the
items in the list? No, you don't! You simply set the Soried propeity to True
for List1, and all items inserted in the list will be sorted automatically.

Close the Code window.

From the Propertics list box, select Sorted Tor the Bist bos,
Click the List1 list box on the form,

Set the Sorted property 10 True.

From the Run menu, choose Start.

Note that the names in the list are now sorted. Adid and delete w couple of
names to se¢ that the sorted vrder of the listis maintained.

From the Run menu, choosc End.
Close the application.

Save your form and MAK files with appropriate nines in
\WALKTHRUNSAMPLIES. You can overwaile the Gle i already esists,

130

Module 6: Using Controls

Walk Through—Combo and List Box Differences

z To add eatries 1o combo and list boxes

4

0.

From the Walk Throughs pmgram‘group, start Combas.

Fype Fred in ithe drop-down combo box.

I vou press (he DOWN ARROW key, the list of names is displayed.
Press ENTER.

The mnme Fred is added to the list. If you add several more names, a vertical
scrobl bar is also added to the list.

. Type Natasha in the simple combo box.

Press ENTER

The new name will be added to this list. Notice here that the scroll bar is also
addecd,

sclect the name Larry in the drop-dowa list box.

This name appears in the box at the top of the list, but users cannot add items
to the list directly, '

Fra the Control menu choose Close, |

Close the application.

Modute 6: Using Controls 131

Events

Propcrly Default Comuments

Name Comboti N w1 vonle

Use cho s apuetin,

Style 0 - Dropdown Combo I - Simple Combo
- Dropalown List

Text Combol

Height 300 Siunple commbo—"Te height displaved
hoth ar desigan time aad run tinze.
Prop-dosn Set hicight property
desigr bone fov run ey, but tadl beigin
will ot be displayed until the user
drops dosn the Tistat cun time.

Text This is the detanlt praperty for te

conrol

Syntax - Cwnbol = " Natasha™

Change A Change event indicates that the contents ol sz control have changed. In
combo box, a Change event occeurs whenever you edit the teat box portion ol the

. . T
combo box or when you assign a new value to the Teat praperiy from code.

Drop-Down and Simple Combo Boxes

Drop-down combo boxes are an alternative to option hutons within frimes: tha
is, they are designed to display a limited nember of lovicully urrenged choices
from which the user may select one. A classic example ol a drop-down combo
box is found in the Windows Contrel Pancl. From the Scuimgs menu, the user can
choose Ports and then set the baud rate for the modeny at uny one of eight pussible
values, or type a value into the text box portion of the control. The new value
typed can then be added to the list. The drop-down cowmbo box enables o
scrollable jist that allows the user to review more cholces than can be casily
presented on screen. The user's chaice is displayed in the top box. ~

Drop-Down List Combo Boxes
Drop-down list combo boxes are used to present users witlea linnted nmnber of
choices, from which they may scleet only one.

Key Feature

Both drop-down combe and drop-down list combuo buses display data from which
the user may select only ore choice, But with a drop-down lisi users can only
select from the list; they cannot add to it.

'

132

Module 6: Using Conlrots

Scroll Bars

CEErE RS DR

T
S

Py

AT

I e Sk T ARF LR RS e M DRI w4, A s er,

Scroll Bars and Their Common Properties

Scrotl bars are most commonly used Lo enable quickly moving across a long list
ol tess, such asa long tist of filenames. They can also be used for indicating the
current position on a scale, such as shades of coloring for customizing the look
and leet of the screen, Or, scroll bars might be used to indicate the volume of an

audio svsiem,

Property

Default

Comments

LargeChange

Max

Nin

Name

P{1=32.767)

32,707

0

HSerolt]
—Or=

Vserolil

Amount of change when user clicks scroll
bar shaft.

Maximum value of scroll bar handle in
bottom most position.

Minimum value of scroll bar handle in
topmost position.

Name used in code.
Use lisb as a prefix.
Name used in code.

Use vsb as a prefix.

Evenfs.

SmallChange

Value

1 {1-32,767)

Amount of change when user clicks a seroll
ArFOW.

This is the detuult property for this control.
Can be set by user’s direct interaction with
the contro! or through code in response to
other events.

Change Ocewrs when the contents of the control have changed.

Module 6: Using Controls 133

-———- _ ~ Walk Through=Scroll Bars;Properties, and the Change
Event

Z To sce scroll bars, properties, und the Change event

From the Walk Throughs program group, start Scroll Bars.,
You will see a form with a vertical scroll bar on a1,

The purpose of this application is o demonstrate the behavior of w seroll har
and the effects of the properties LargeChinge and SmallChange on the Vadue
property.

Click the arrows on both cnds of the scrodl har.

-Note the change in the Vaulue property.

Click on the shalt of the scroll bar both above and below the scroll baox,

Note the change in the Value property.

4. Close the application.

5. Start Visual Basic.

6. From the File menu, choose New Project,

9.

1.

Start a new project. t

. Set the following form propertics in the Properiies window:
prop J

Height 4425 (approximaicly)
Width 5430 (approximately)
Double-click the vertical scroli bar tool in the Toolhox

Add a vertical scroll bar and change some ol its properties:

"Height 3495 (approximately)
EargeChange 20

Max . 100

SmaliChange 10

Width 375 (approximaicly)

In the Project window, choose the View Code buton,
Make sure thit Forml has been selecied.
In the Object list box, sclect VScrolt_Change.

Locate the Change event procedure Tor the vertivid scroll bar,

. Add the following code:

Print “"vScrolll.value = "; VScrolll.value

Display the Value property each time it changes.
From the Run menu, choose Start.

Test the application you have writien.

134 Module 6: Using Conlrols

[Fromthe Run menu, choose 2nd,
Close the application,
L Quin Visual Basic,

IS, Save vour form and .MAK files with appropriate names in
WAL KTHRINASAMPLES.

Module 6: Using Controls 135

2T Timers— - LT T e - =

[LhoRERE R R

Wi e ™

Timers and Their Common Properties

Timers arc used to run events at a specitic tinke or within an interval thai you
specify. For example, within a scheduling application timers would be-used 1o
enable alarms for the user. .

A special characteristic of this control is thitt 11 15 never visible at run tme.

Property Default Comments
Enabled True This i;;llhc detanl peoperty for this
control.

Symtax- Timer! = Eaabled

Interval 0 Countdown interval tor the tiimer,

measured i inilliseconmds,
Name Timerl Name vsed o code,

Use tor as o prelin,

136 Module 6: Using Conliols

Walk Through—Clock Application and the Timer Control

P

~3

‘o use the timer control
From the Walk Throughs program group, start Clock (Timer).

When vou start the application, you will see a form containing a digital clock
displaving the date and time. The clock will be updated every second.

Fhe pucpose ol this application is to demonstrate the behavior and use ol a
Hiner cuntrol

Donble-click the Contral menu.

Close the walk through.

St Visual Basice.

Froan the File menu, choose New Project.

SELanew project.

Setihe propertics Tor the Torm as follows:

BuckCuolor Yellow

BorderStyle 3 - Fixed Double Also removes Min/Max buttons
Caption — Clock

Heigh 2235 (approximatchy)
Ning frmClock
Width + 4345 (approximately)

eneble-ciick the fabed tool in the Toolbox,
Add a label to the form,

Set the properues for the label as tollows:
;\Iigmnum 2 - Center

BackColor Red

Cpion (1)

FomSize |2

ForeCotor - White

Heiglu 1340 (approximately)
el 120 '
Nim [blDateTiime

Top 420

Widih 4015 (approxinately)

Bouble-click the timer toal in the Toolbox,

Set the tollowing properties:
Nime muTimer!
Intervid [O00)

Place a timer on the Torm, Set the propertics Tor it You can place it anywhere,
" Behind the Label will be fine, because timers are not displayed on screen at run
T

Modute 6: Using Controls

137

---10. In the Project-window, choose-the-View-Code window.,

Make sure that frmClock has the focus.

FE. Inthe Object and Procedure Hist hoxes, docate tw o fimer | _Timer.
Locate the Timer event in the code.
12, Add the following code:

. 1lblDateTime.Caption = Foarmatb (Now, “mmimn b, 0 0 hoomm i amd pan™ }

Add the code on the bluank line in the Click event wimplate.
13. Double-click the Control menu.
Close the Code window.
4. From the Run menu, choose Start.
Test the clock application that you have just created.
15. From the Run menu, choose End.
Close the clock.
16. Quit Visual Basic.

17. Save your form and .MAK files with appropriate ninnes
\WALKTHRWSAMPLES.

Using a Timer to Initiate a Task at a Specific Interval

You.can use the timer to initiate a task after a specific merval I the tollowing

example, the timer event starts a backup procedure, The timer cvent occurs alter al
least 60 seconds have elapsed. You could place code inthe Timer event to cheek the

current time and start the backup routine only i certain tinws,

1 Sub Form_Load ()

2 Rem Timer will go off after 60 seconds.
k) timerl.Incerval = 60000

4 ‘timerl.Enabled = True

5 End Sub

6 Sub Timerl_timer (}
X = Shell{"c:\mybackup.bat")
8 End Sub

138 Module 6: Using Cunliols

Picture Boxes

ST

o e e R

s e
Mo

S A T et P T PO e A b AT, A S B R R e o e

.. Picture Boxes and Their Common Propefties

Picture hoses are used 1o displiy a range of graphics, from icons to bitmaps to
tetuliles, You could use a picture bos, for example, to display the icons in the
Viswil Basic icons library. You could also use the picture control to display the
kinds of card backs available for users of a Solitaire game.

IPropeety Default Comments

Antoltediaw I'alse Will not automatically repainl,

Autusse False Will not awtomatically resize control to {it
its contents.

Nue Picturel Name used in code.

Use pic as prefix.

Pictune {none) Use Load Picture dialog box at design time
to select a .BMP, WMT, or ICQO file. This
is the default property for this control.

Syntax —Picturel = LoadPicture(""\pat/')

Evenis Paint "This evemt occurs when a form or control is moved, exposing parts that
weren'tinitially painted on screen. Note that this applies only when AutoRedraw is
set o Fadse 1F AutoRedraw is set o True, repainting is done automaticatly, and no
Paint evens deeurs,

Moduie 6: Using Controls 139

Example

Example

Example

Loading-a-Picture at Run—T-lme_

To load a new picture file from disk into a pluum bus al ru tnm call the
LoadPicture function with the name of the file you want 1o fowd.

Sub Commandl_Click ()
Picturel . Picture = LoadPicture { " WEA oD e 2tz ioes
End Sub

If you want to copy a picture from one picture hox toanother ol run Bime. use the
Image property of the picturc you wish to copy,

Sub cmdCopyPicrure (!}
Picture2.Picture = Picturel.Image
End Sub

Clearing a Picture BoXx

At design time, clear the Picture property by clicking the piciure box you wish o
clear, Make sure the Picture property is selected in the Propenties list, click the
settings box, and then press the DEL Key. The settings oy with now read tnonei,

At run time, clear a picture box's Picture property by cidling the LoadPicture
function with an empty argument.

Sub Command2_Click () . '
Picturel.Picture = LoadPicture () ’
End Sub

140 Module 6: Using Conirols

Walk Through— Picture Box Controls and AutoSizing:

z To use picture box controds and autosizing
o Stast Visual Basic,
20 Frow the File menu, choose New Project.
Open o new blank form. ’ :
1 Daouble-click the picture box icon in the Toolbox.
’lace o picture control on the torm.,

4. Setthe following properties for the control:

AutoSize True
. Herght 1000 (approximately)
Wiy 1040 {approximately)

5. Place anicon in the picture control.
0. Set the Picture property to:
WIRICONS\VARROWS\ARWOIDNICO
The picture box uulomatic;lllly resizes o fit the graphic when it 1s added.
7. Place a bitmap in the picture control.
N.Setthe Piclure property to:
WILBITMAPSMGAUGECIRCLOCK.BMP
The pucture box automatically resizes to fit this graphic.

4. To cemwove the Picture property:
Click the Name property and thenr click back on the Picture property.
Chok in the Settings combo box Tor the Picture property.
Press the DEL Key

The settings box will read (none). This will remove the graphic from the
Meture praperty of the picture box.

[0, Quit Visual Basic,

‘Summary

= Types of Controls

= Properties for Controls

Module 6: Using Controls

Objectives

In this module you set key properties {or
s [abels

w Text boxes

» Frames

n Command buttons

= Check boxes

a Option buttons

« Combuo boxes

= List boxes

n Horizontal and vertical scroll birs
n Timers |

= Picture boxes

142 Module 6: Using Controls

Lab Time

Gioto the Adding Controls to Forms portion of your lab manual.

e e —
 ee—

Module 7: File Browsers and Other
Controls |

Module 7: Building a File Browser 145

Y. Overview

= File Browsing
@ Grid Control

= 3-D Panel Controls and Group Push Button

' Overview _

. This module is designed to dircctly follow the controls imanduafe, ind it covers mos
of the rest of the tools in the Toolbox. However, because ol lime limits it does nol
cover picture clip, lightweight line and shape, image. and serial communications
controls.

The first part of the module discusses file browsing conirods —- file. directory, and
drive list boxes as well as the common disdog control “The first three are specralized
controls that act just like regular list boxes; but as you wiil see. they have special

features that make them distinct.,

The purpose of this module is 1o walk you througl the How of events thiag are
needed to connect the various controls. The enphasis here s oniulking about the
kinds of events that need to be used in order for the chimees onone congyol o be
rellected an the other control>

The rest aof the madule provides you sith disenssion ol and sealke daoughs Tog mios
ol the rest ol the (ools in the Tootbox.

Prerequisites

This module assumes prior experience with:

a List boxes

» Click event implernentation

Overall Objective

. The overall objective is Tor you Lo develop an wwarencss of tie est ol the tools
the Toolbox.

146

T e e A T e A T DA T R A R e A

Module 7: File Browsers and Other Controls o

Learning Objectives

At the end of this module, you will be able to:

Design and develop a form that lets users browse drives, directorics, and files.

Use the Change and PathChange events.
Use the grid control,

Use the group push button and 3-D panel controls.

Module 7: Building a File Browser . 147

2. File Browsing

= Scenario
= Properties and Events for File Browser Controls

= The Common Dialog Control

148 Module 7: File Browsers and Other Controls R —

File Name: Directories:
*axt ciwindows -
3270.1d e g :
byte.Ixt = i . 3
networks.1xt [windows
printers.ixt (T} system
readme.txt
sysini.tx| __
sysini2.ixt W
List Files ol Type: Drives:
[Text Files (- TXT) [¥] c: T

File Browsers

A quick review of the workings of the file browser in Notepad shows that a number
of events oceur when the user selects a different drive or directory. If the user
«elects o new drive, the directories and files list boxes are automatically updated,
Jowing the current working directory for the system and any files (of the file type
specifivd in the List Files O Type list box).

Modute 7: Building a File Browser 14g

Style Guidelines

Walk Through— How File Browsers Work
): To use file browsers

In the Accessories group window, open Notepad.

All of you have used a file browser of one sort or anather. but you may nof have
looked closely at how it works, :

2. From the File menu, choose Open.

Drives listbox The Drives st box is w speciad b of drop-down list box, The
user can see options presented in the list but cannor add items to it

The more important element to notice at this point. hawever, ts that when the
user selects a new drive, the change in sclection is reflected i the dnrurmv arnd
file list boxes as well as in the current working directwy.

Directories list box The Directorics tist box is a special fornr of Jist box, N
behaves tike a regular list box but displays only dircctaries and suhduu:m oS,
Users cannot add items to or delete items from the sl

File Name combo box The File Namie combo box is o speciad form of the list
box that sends and receives messages rom e xt bos. The dext box allows users
to add items to the list, something that cannaod be done with a hist box.

List Files of Type Combo Box Notice that this, 1o, is i drop-dowr 1isi box.
Users can select items [rom it, but they ciumor add items to it themselves,

Current working directory Finally, notice that there s i tabel that tells the user
the current drive and directory.)

3. Choose Cancel, and close Notepad.
End walk through.

Typically, file browsers can be set to displuy onty a given type ol file in the
specified drive and directory. Because Notepud is designed 1o read files that have
the . TXT extension, .TXT is the default file type and *.% ix the second choice.

Because the Employee Database applicabion is designed to Jocare BMP and WM
files, they will be the default fite types.

[4

150 Module 7; Eile.Browsers and_QOther Conlrols

- Properties and Events for File Browser Controls

:

const2.txt

constani.txt ;

decomp.dil *3

form1.{frm
projectT.mak |28 [clipart F ’

readme.txt | [Jbimap |i#

(== 3] |

A4

.. .Drive, Directory, and File List Boxes
All thiee of these controls are special forms of list boxes. They have many of the
same ¢ haracteristics, but there are also a number of special properties that they use
terenable navigating through a file system.

Drive List Boxes and Their Common Properties

The first of these controls is the drive list box. [tis a special form of the drop-down
list bux. {nitially it only shows the current drive for the form, However, if the user
clicks the drop-down wirow, the cantrol will display all of the other drives currently
available on the system.

I'ropertly Delault Connments

Namwe Drivel Name used in code.
Use drv as a prefix.

Drive Accessible only at run time, this property
returns the selected drive, This is the default
property for this control.

. Synchronizing the Drive Property

Example b i"ul__(.'h;'mur’ {)
NTIVNY tdrive is changed, rescet the directory list box path
i1l .Path = Drivel.prive

e 2

Madule 7: Building a File Browser 151

Example

Example

Directory List Boxes and Their Common Properties

Property Default i Connments

Name Dirl “Nuanmie used in cede,
Use diras a pictin,

Path Accessible only at run time, this property
returns the absolute path for the selected
directory. This is tie default propeny for this
controf.

Synchronizing the Path Property

Sub Dirl_Change ()
' When directory is changed. reset the [ile list bhew parh
Filel.Path = Dirl.Path

End Sub

File List Boxes and Their Common Properties

Property Default Comments
Archive True , Displays all fifes with wchive biton,
Name Filel Name used i code.

Use Il as o prefis,

FileName Sets or returns the selected file Gom the list
portion of o Tide list box . Accessible onby
rum time. This is dhe delanlt property for this
conlrnd.

Hidden False Does not display hidden Ttes,

List Avcessible only s ran tine; returns the ieis
comtained in i hist box,

ListCount Accessible only at run time: returns the total
nutiber of items i the list box.

Listindex Accessible onby at run tinie; returns e iadex
of the currently selected em.

Normal - True].)ih[llil)f?\ all tiles with archive bat seton,
Path Avcessible only at raa lime,

Pattern . Display all 1iles.

ReadOnly True

System False

Accessing the FileName Property
Sub Filel_DblClick (}

Labell.cCaption = Filel.FileNama
End Sub

152 Module 7: File Browsers and Other Controls

. e - -—

Click Tor all three ol 1he basic controls, a Click event indicates that the user has
made o selection. That is, the user is selecting or changing drives, directories,
subdirectories, or filenames.

Events =

Double-click The only time that a double click is routinely used in a file browser is
when the user uses the File Name combo box. In this case. the double click
indicates that the user has located a specific tile of interest and wants the
application that uses the file browser to actuatly open that file.

Change The real workhorses of a file browser are the Change events. Code that
youradd 1 the event pracedure tlemplate keeps the three controls synchronized
whenever the user selects a new item in one of the list boxes.

PalhChange This cvent occurs when the selected path has been changed by setting
the FileName or Path property trom code.

PatternChange "I'his event occurs when the pattern has been changed by setting the
FileName ar Puttern property lrom code.

Module 7: Building a File Browser - 153

~ 2. Change Events

» Change Event
= PathChange Event

154

Module 7: File Browsers and Other Controls

The Change Event

Dirl_Change ()

autoexec.bat -
autoexec.bak Cl discover
command.com r:'j dos
config.bak [T im.dos D |
conlig.sys (T] Imdos.old ;
[T7] windows
- =
—_— L et LA Tt * ‘

Example

Example

Ay

ol

r

Changing the Path for Differing List Boxes ‘

Change Events Change events indicate that the contents of a control have changed. ™.
Change events are associated with a wide variety of controls-including combo
baxes. honzontal and vertical scroll bars, labels, and picture boxes. Forour

purpuses. this module focuses on the Change events for directory and drive list

&

.
baxes anly. Ii{

"
Directory List Box The Chinge event is invoked when the user clicks a new iy

dircctory or when the Path property is changed from the code. It indicates that the
centents of the comtrol have been changed. '

“ub, Dirl_Change [
* When directory i1s changed, reset the file path
Filel.Path = Dirl.Path

Fad Snah

+

Orive List Box The Change cvent is invoked when the user selects a new drive or

when the Drive property is changed from the code. It resets the path for the
direetory list box,

,uly Drivel_Change [)
Y odhen drive is changed, reset the directory's path
Lirl path = Drivel , Drive

[CHIEERNIE

Modute 7: Buitding a File Browser 155

Walk Through—Drawing and Coding a File Browser

Z To draw and code the file browser .

P R

o,

From the Walk Throughs program group, stirl Browser.

When this application starts, you will see a simptitied form af the file browser
used in the Employee Database. This form bas fite, directory, and drive Hist
boxes only.

Click a new directory and natice the file list is upduted.

The purpose of the application is to demanstrate the Path and Drive properties
and the Change events that.are used to synchronize controls,

Close Browser.,

Start Visual Basic.

From the File, choose New Project.

For Form]1, set the following propertics i the Properies window,

Height 3930 (approximately) .
Width 4290 (approximately) :
Double-click the tile fist box toof in the Toonibux.

Set the following propenties:

Height 2760 (approximately)

Width 1455 (approximately)

8. Double-click the directory tist box toel in the Toalhax.

9. Set the following propertics:

10,
. Set the following properties:

Height 2175 (approximately)
Width 14335 (approximately)

Double-click the drive list box ool in the Toolbax,

Width 1455 (approximately)

The first step of implementing a file browser is to udd the Change cvent code
that synchronizes changes in the state of the drive and directory hist boxes. To do
this, you need to:

. Double-click the drive list box.

This displays the Code window with the Dyivel Changre event procedure i
Add the following code:

Dirl.Path = Drivel.Drive

This cade resets the Path property of the directory st box o that of the Drive
property ‘of the drive list box.

Now the directory list box will be Kept ctrrent witle chisnges i the drive fist boa,
But what about the tile fist box?

. From the Object list, sefect inrl,

The Code window with the Dirl_Change evem template is disphayed.

Module 7: File Browsers and Olher Conitrols

i5. Addthe following code:

T

hT
1Y,

20,

Fitet parh = Dirl.Path

Click Form1 to display the interface.

The code added above resets the Path property of the tile list box to that of the
Path property of the directory list box.

The characteristics of the Path property of a directory list box vary depending on
whether the user's current working direclory is the root directory.

I the user selects the root directory, the path will be “*—that is, a path (in this
case the root). which is a backslash. If the user selects any other directory, the
path will end in the current working dirgetory, with no backslash at the end.

This is important when a program needs to build a fully qualified tilename. The
cocle must clieek to see if o backslash must be added 1o the current value of the
Path property befure concatenating it to a tilename.

The code o handle this requires a knowledge of conditional processing. To see

how this i< done, inspect the cmd OK_click procedure in the AddPhoto . FRM
code i ASOLUTIONWRINTING.

From the Run menu, choose Start.
Test to see if your code works.
From the File menu, choose Save As.

Save the tile as BROWSER.FRM in \WALKTHRU\BROWSER.

Save the project us BROWSER. MAK in \WALKTHRU\BROWSER.

Module 7: Building a File Browser 157

PathChange

Filel_PathChange ()

Dirl_Change ()

[T system

%

argyle .bmp Path: c\windows
bootlog.txt i

e : o B b e Y

Examples

Further Examples

PathChange

The event occurs when the selected path changes by setting either the FileName or
Path property from code.

These two examples are [rom Visuad Basic Help.

Sub Dirl_Change {}
Filel.Path = Dirl.Path
End Sub

‘PathChange Evenl BExamnple
Sub Pilnl_PathChanﬁo ()

Labell.Caption = "Path: " + DLirl.Path
End Sub

Notice in this example that the PathChange event is generaied by code in o Change
event in the directory dist box control o synchronize the value of the File] Path
property to the new value for Dirl.Path.

For further examples using the PuthChange event, see the tollowing,

Application Form Procedure

IconWorks VIEWICON.FRM - File_titebisi_PathClange

158 Module 7: File Browsers and Qiher Conlrols

The Common Dialog Control

File Hame: Direclories:
: r j c:\vb

{7 bitmaps
£ edk

! £ he (] Bead Oniy
: s () icons

]) metafile

Save File ar Type: Diives:

|

‘ L!_I [Hec: ¥

!‘ .
| .=
| The Common Dialog Control
]
— The common dialog control is a versatile tool provided as a standard part of the
| oge Professional Edition of Visual Basic. The most common use for it is as a file
\i . browsci, but as you will see, it has many other possible uses.
_ E Example b mimFileOpen Click (1}
: CHbVirlogl L AcLion = 2
TR T
Below s a list of the Action property settings and their associated dialog box type.
Action selting Type of dialog box
t No action
.
! File open dialog box
2 File save dialog box
E A Color dialog box
E y Choose font dialog box
o 3 Printer dialog box
P f Invoke WINHELP.EXE
|
|
1
|
|
:
5

Module 7: Building a File Browser 159

> More Controls

= Grid Control
= 3-D Panel Controls and Group Push Button

This final portion of the module deals, briefly. with cach of the remiaining tools in
the Toolbox.

160 Maodule 7: File Browsers and Other Controls

Using the Grid Control to Display Output

Name [Number %
Joe J. 123 :
Sue B. 456 i
Sam X.| 863 ;%

¥

Gridl.Col =1
Gridl.Row =1
Gridl.Text = "Name"

The Grid control allows you to display output on a grid. ~

The Culs and Rows properties set the total number of columns and rows you want
i the grid, These propenties are available at design time or at run time.

The Col and Row properties set or return the current cell in the grid. These
properties are availuble at run time only. The Text property scts or returns the text
in the current cell.

Sab e ldTex L _Click ()
“tov the current cell; remember that the first row and
el Aare Q
Gridl.Col = 1
Gridl.Row = 1
Gridl.Text = "Name”

iTnet Hal

The Clip propernty sets or returns the contents of the grid's selected region—tor
exainple:

tirid] Clip = "ABC”

You can include tabs and carriage returns in the string expression to indicate new
columns and new rows, respectively. '

Module 7: Building a File Browser 161

Example

The following example places

1 Sub cmdClipText_Click
2 Gridl.SelstartCol
3 Gridl.SelEndCocl =
4 Gridl.SelStartRow
5 Gridl. SelEndRow =
& tbs = Chrs$(9;

7 cr$ = Chrs{l3)

8 ds = "Joe J" + tb$
9 Gridl.Clip = a$

10 End 5ub

text in a two-hy-two range of cells,

0

TTab chaiac er

‘Carriag.
« *123% + ©rS§ ¢ "Su- P+ thiE e m456"

The grid control is used to display output. However, you can simutate input on a
grid with code. The following example updates a-grid cell when the user types into a

text box:

Sub Textl_Change ([}
Gridl . Text = Textl.Text
End Sub

Some of the key propertics that you will need in order tose tis control are as

follows.
Property Default Comments
ColAlignment 0 - Left Jusufy Sets or returns the alignnent of datain o

Cols. Rows
ColWidth
FixedCols,

FixedRows

GridLines —1-True

Picture

column

Sets ar revurns the totad number of rows or
columns in the grid

Sets ar returns twe width {in twipsy ol o
specified colan

Sets or retarns the total pamber of fixed
columns or rows Tow a1 end

Determines whether es hetween cells are
displayed

. Sets or returns a praphic for the current cell

162 ' tModule 7: File Browsers and Other Controls T

3-D Panel

i.;
v
R
This control has a number of possible uses, It has, however, two primary uses—ihe
First is 1o provide preater three-dimensionai (3-D) quality to another control or
eroup ol controls. For example, you can place other controls on the panel; it can be
used in place of a frame. You might also use this control as a background for the
entive form, The three-dimensional panel, because it has FloodPercent and
Flood Type properties. can be used as a status or progress indicator.
Sonw ol the key properties that you wiil need in order to use this control are.
roperty Default Comments
Aligrinent 0 - Left Justificd Top Caption aligmment for this control offers nine .
possible choices.
Hevellnme 0 - None Sets the style of the inner bevel of the panch:
none, inset, or raised,
BevelOuter 2 - Raised Sets the style of the outer bevel of the panel

BevelWidth I

I oode "Ofon
[HoodPercem

Flood Tyypxe) - None

Sets or returns the width of both the outer and
inner bevels of the panel.

Sets or returns the color used to paint the area
inside the panel's inner beve] when used as a
status indicator.

Sets or returns the percentage of the painted
arca inside the inner bevel when uscd as
status indicator.

Determines whether and how the pane! is
used as a status indicator,

Modute 7: Building a File Browser " 163

"

*TI “
i) B

Walk Through—Creating a Percent Meter

Z To sct the Percent Meter at work
[. From the Walk Through program group. choose Percent Meter,

The purpose of this walk through is to demonstrate the stitus reporting
capability of the three-dimensional panel control.

2. On the Percent Meter application, choose Start.

In a‘few seconds the panel will progressively change colar. indicating wong the
way the percentage completion of the process.

3. Open the Control menu on the Percent Meter application. and choose Clase.

z, To create the Percent Meter application
1. Start Visual Basic.
2. From the File menu, choose New Project,

3. Set the propertics for the form as follows,

Property Setting

Caption Pepcent Mcter

Height 4425 (approxinkately)

MaxButton False

MinButton i ' IFalse i

Width 2535 (approsiatel y)

4. From the toolbar, double-click the 3-D Paned 1ool and setits properties as

follows.

I'roperty Setting

Bevellnner I - Tnscet

BevelOuter 2 - Raised
BevelWidth 3

BorderWidth 2

Caption

FloodColor Yellow

FloodType 4 - Bottom 1o "T'up
Height 2653 (approgimately)
Left 240 (approximalcly)
Qutline True

Top . 240 (approximately)

Width 1935

T ——————— 164

Module 7: File Biowsers and Other Controls

5. From the toolbar, double-click the Command button and set its properties as

1.

tottows,

Property Sctting

Caplion Start X
FontSize 13.5

Heigin 495 {approximatcly)
futht . 430 (approximately)
Top 3240 (approximately)

Doble-click the Command button in design mode in order to open the Code
window,

Visual Basic displays a Code window with the Command1_Click event
provedure template init,

Place the following fines ol code between the two parts of the template:

Paned 41 FloodPercent = 0

e 9k =1 To 100
Panellddl.FloodPercent = 1% * 1

Thest G d

4

rom the Run menu, choose Start.
Test your application.
From the Run menu, choaose End,

Save your form and .MAK file with appropriate names in
WALKTHRUIWS AMPLES.

Close Visual-Basic.,

g

Module 7: Building a File Browser 165

Group Push Buttons

L

Group push buttons work like combination command bumons and option buttons.
They are like comimand buttons because when the user clicks the button, something
happens—a file is opened or saved, or text is right-justiticd. Group push buttons.
‘however, are also like option buttons because, with the properties set propeily.
selecting one option can automuticaify remove the selection from anather aption,

Some of the key properties that you will nced in order to use this control are as

follows.

Property Delault Comments

GroupAllowAllUp -1 - True Determines whether all buttons ina logical

Lol uiuer ! Scts o retusns the graup aumber fop a given
group push button. This property is used to
create logival growps of butlons.

Qutline Sets or returns whether the button has a
border arounl it

PictureDisabled None Specities the brtnap (o display on the 302
group push button when it is disabled.

PictureDn None Specilies the bitanap 1o use when the buiton
15 chepressed,

PictureDnChange 0 Determines how the BroareUp bitmap s o

' be used to create the ProtareDn bitmagps 2

merely inverts the Prctinebip bitmap.

PictureUp None Specifics the Bt to use when the button

is .

166

Module 7: File Browsers and Other Controls

E)E

Walk Through—Creating a Toolbar
Z Vo see the interface you will be creating |
[. From the Walk Throughs program group, choose Toolbar,

This littke application docsa't do very much. What it does show is that the user
can select any or all of the first three options, whereas they can only select one
ol the second three, More to the point, it is an example of how you would go
about diawing o oolbar like the one Tound in Microsofl Word tor Windows or
Micrusoll Bxcel. s ‘ .

4

2. From the Conteol menu on the Toolbar form, choose Close.

Z To create the toolbar N

I Open Visual Basic.

20 Fromghie File menu, choose Open l’fojccl.
Fovate TOOLBARMAK, It should be located in \WALKTHRWSAMPLES.
This form already contains the basic form—TOOLBAR.FRM with ali of its ',
properties already set, In order to add the woolbar, you need to complete the
Following sieps:

3. Phace seven proup push butions on the toolbar pane! at the top of the form,

3. Use the mouse pointer and the control key to select all seven of the group push
buttons, and then set the following properties for all of them,

Property Setting

Herght 420

Top N : N
Wiy 450

5. Place three ol the push buttons side by side on the left end of the panel.

These wil) become the text formatting buttons for Bold, htalic, and Underline.

Module 7; Bullding a File Browser 167

6. Select the first button in this group and set the properties as follows,

Praperty Selting

GroupNumber V 0

PictureUp ' BLD-UP BMP located in \VEABIEMAPSTTOOLBAR?
PictureDn BLD-DWN.BMP

These changes create the first buttan on the toalbar and miake use of twa
separate bitmaps to indicate the status of the buiton rathe user.

7. Select the second butten in this group and sct the propertics us Tollows,
Property Sctting
GroupNumber 0
PictureUp ITL-UP.BMP
PictureDn ITL-DWN.BMP

8. Select the last button in this group and set the properties as Toliows,
Property ’ Setting
GroupNumber 0 i
PictureUp ULIN-UP.BMP '
PictureDn ULIN-DWN . BMP

Notice that all three of these buttons have the same nuniber -0, A group
number of 0 means that they are nor part ol a logicul group. and therelore
changing the state of one will not change the state of athers. Afler all your user
may want to have bold and italic and underlining. Clusters of controls with any
other group number will act just like option huttons— onby one will be i faree
at any one time.

For purposes of contrast, we will take w shightly ditterent approach on the second
group of push buttons. Here you are giving the user the option ol formatting texi
as either left-, centered-, or right-justitied. In this case, you will want these
buttons to work as a group because any one bit ot tesl can have ondy aie of
these three states,

9. Create the second group of buttons side by side toward the mddle of the panel.
In all likelihood, you will not be able to keep the huttons i perlect top-to-hottom
alignment. Don't let that bother you. You can select the entire group at the end of
this walk through and set the Top property for all ot them in «ine step, as you did
above.

10. Select the first button in this group and set the propertics as Tollows,
Property Setting
GroupNumber 2
PictureUp LFT-UP.BMI?
PictureDnChange 2 - Invent PiciureUp Bitnap

Notice what we hivve done here? We have created the PicteDowae bitiap by
inverting the image using the property PictureUpChange.

168 ~ Moduie 7: File Browsers and Other Controls

P Scelectthe seeond buttan in this group and set ihe properties as folluws.

P’roperty Setting

GroupNumber 2 »
cnreUp CNT-UP.BMP
PictebDaChange 2 - Invert PictureUp Bitmap

12, Setect the third button in this group and set the properties as follows.

Propurty Setting

GroupNumber 2

Piciure Up RT-UP.BMP \
PicturenChange 2 - Invert PictureUp Bitmap

Wit this example emphasizes is that the property GroupNumber is your way of
(elling Visual Basic how you want individual sets of buttons to be grouped.

L3 Asahittle extra challenge, you set the properties for the last control. It's
supposed {o represent a printer, so you will need to use the PRT-UP.BMP, *

14 Save your work in\AWALKTHRIASAMPLES. t

Z To Code The Toolbar

A you want to implement the tootbar so it functions properly, you can add the
following code.

I Double-click the bold button to open the code window for GroupPush3D1_Click
event und add the following code:

Ihltiessage . FontBold = Value

2. Dawble-click the italic button to open the code window tor)
GrroupPush3D2_Click event and add the following code: *
Ihitessage.FontItalic = Value-

3. Duouble-click the underline bution to open the code window for
GroupPush3D3_Click event and add the following code:

lizltlessage. FontUnderline = Value !)
4. Double-chick the left-justify bution to open the code window for

GroupPush3bD4_Click event and add the following code:

InlHessage. Alignment = O
3.0 Denble-click the center button o open the code window tor

CrroupPush315_Click event and add the foliowing code:

ihriMessage.hlignment = 2

0. Double-click the right-justity button to open the code window for
CoronpPushdDo Click event and add the following code:

Phattiees e A b vgraueny, =}

~1

Save yvour work In AWALKTHRWSAMPLES.

Module 7: Building a File Browser 168

Summary

= File Browsing
m Grid Control
» 3-D Panel Controls and Group Push Button

Objectives
In this module you learned to:

® Design and develop a form that lets users browse drives, divectories, and files.

B Use the Change and PathChange events,
® Use the grid control. -

B Use 3-D panel controls and the group push bution.

‘Module 8: Using Visual Basic Data
Types

Module 8: Using Visual Basic Data Types 173

> Qverview

Key Terms

Using Variables and Constants

Scope

Additional Visual Basic Data Types

Overview

The overall purpose of this module is to introduce already knowledgeabie
programmers to the data types of Visual Basic and their scoping rules. This module
is designed as the first of a series of modules on the implemention of Basic within
Visual Basic.

Prerequisites
Prior to starting this module, you should atready be fanuliar with:
= Data types and scoping rules within some other provedural language

» The general Visual Basic programming system

Overall Objective’

At the end of this module, you will be able te correctly amd ciliviently use almost ali
of the Visual Basic data types.

Learning Objectives

At the end of this module, you will be able w;

n List and deseribe the seven variable data types in Visual Basie.
» Correctly identify the six type dectaration character symbaols

n Use the contents of CONSTANT.TXT.

» Distinguish among the various fevels of scope in Visual Basic.
s Fxplain the rules for using cach fevel of scope.

= Declare and use a user-delined duta type.

s Declare and use simple arrays.

174

- Module 8: Using Visual Basic Data Types

Key Terms

» Variables
= Constants
= AProcedures
= Statements
= Scope

» .Module

Variables Changcuble values that the program manipulates

Constants Unchanging values that the program manipulates

Procedures Activitics that the program performs

Statemenls Subuctivities within procedures

Scope (Acccssihilil.y) Which purt of & program can access specific data or

procedures

S

Module File containing code and data not attached to a form

M

-

Module 8: Using Visual Basic Dala Types 175

¥ Using Variables and Constants

= Data Types of Variables

a Data Types of Constants

......

176 Module 8: Using Visual Basic Data Types

Tt

Data Types of Variables

= Integer

= Long

= Single

= Double

= Cunency
= String

= Variant

%

{none)

I

There e seven Tundamental data types of variables that you can use in Visual

Husic,
Type nume Deseription Type-declaration Range
character
Integer Two-byte integer 9o -32,768 10 32,767
Long Four-byte integer & —~2,147,483,648 w0
2,147.483,647
Ninple Four-byte floating- ! -340E+38 1o
point number 3.40E+38
Double Light-byte fluating- # -1.79D+303 10
point nuinber 1.79D+308
Curtency Eight-byte nuimber @ -0.22E+14 10
wiih a fixed decimal 0.22E+14
point
String String of characlers by 0 to 65.500 characters
{approximately)
Variuot (Defaulty Dateftime, floating- (none) Date values:

paint number, string

January 1. 0000, to
December 31, 9999.
numeric values same
as double; string
values same as string

Module 8: Using Visual Basic Data Types 177

Declaring Variables

In polite society you always formally introduce strangers to cach other the tirst time
they meet. Visual Basic is no exception. You should introduce your variable to
Visual Basic by declaring the name of your variable before you use it You do this
in one of two ways: by using the Dim statement, or by using ane of the two
keywords— Global and Static. As you will sec in o couple of pages, not declaring
variables can be risky business in some situations becuuse the delault data tvpwe in
Visual Basic is Variant.

You have twa choices on how to explicitly declare varinble duta tvpes.

Using As Using the type-dectration character
Dim I As Integer Dim I%

Dim Amt As Double Dim AmtH

Dim YourName As String Dim Your Hoonee s

Dim BillsPaid As Currency Dim Billoiviie

In order to make compound variable declarations, you merely st

Dim X as Integer, Y as Long

L

. Caution If you declare three separate variables with the (ollowing statement. you
will get K3 as a string and I and J as variants, not as strings.

Dim.I, J, K§

Explicit Declarations

To require explicit declaration of variables in all of your code. place the following
statement in the General Declarations section of any form or imodule.

Option Explicit

If you want Lo require that all variables be explicitly declired inall of your projects.
from the Options menu choose Enviranment and set the Require Varable
Declaration option to YES.

Module 8: Usmg Vlsual Basic Data Types

Variable-Length Strings

Sometimes you may need a variable thae can hold strings of different lengths at
dditlerent times. This is called a variable-length string variable. You declare it like
this:

im Meesmage As String

Fixed-Length Strings
Avother times you know that the strings that will be assigned to a centain variable

will never have more than a certain number of characters. In this case, youcan
dechire o fived-fengith variabie like this:

i FooserlbenolhSLring As String * 50

In s cxample, you are decluring a string variable with the name
FixedbengthSuing., and you are telling the .xpphmuon that the variable may contain
up b SO characlers.

You can lake this one step further. For example, set the length using a Global
constant with the name FixedLength, set the value of the constant to 50, and then
point 1o that constant name using the following syntax:

tilobal Const FIXEDLENGTH = 50
GlobﬁJ.FixedString As String * FIXEDLENGTH

Rules When Working with-Variables

1. Variable names cun be up to 40 characters long.
2. Names can include only letters, numbers, and underscores.
A The first character in the name must be a letter.

4. You cannot use Visual Basic reserved words. See the list of programming topics
in Visual Basic Help for a partial list of reserved words.

+ 1

As the chart above shows, the Variant data type is the defautt, The Variant dala
typc can store numetric, string, or date/time information. You don’t need to canvert
between these kinds of data when assigning them to a variant variable: Visual Basic
autornatically performs any necessary type conversions for you.

Rules for Using Variant Variables

l.

0.

If you perform arithmetic operations or tunctions an i variant, it must corain
number. If you want to test a variant to see i it contains numeric data, use the
IsNumeric function.

Normally, when you concatenute two strings you wonld use the plus (11 sign. Te
avoid ambiguity with variant data, use the ampersand (&) o indicale
concalenation,

Note When concalenating, be careful to leave i space hebween o viriable nunme
and the ampersand. If you don’t, Visual Basic assumies that youe are ty pecasting
the variable imo a Long data type.

When passing a Variant variable as un argument, check the procedure
parameters. If the corresponding argument 15 an eaplivit disti type, you must piiss
the Variant variable with purentheses aronnd it in onler to pass it by value.

Dim V As Variant
V= "Testing”
Debug.Print PrintString((Vv)) CHExbra patent heses co pass ey vala

Sub PrintString{5 As String!
‘Do something
End- Sub

To determine the internal representation for a variant viwiable, use the Var'type
function. See documentation for specific cetwr vilues.

A variant variable huas the Empty value before it is assigned a vatue, The
Empty value is a special vaijue, different from a zero, o zero-length string, vr o
NULL value. To test your Variant variable Tor in Frapty vilue, use the
IsEmpty function. To reassign o Yariant vasiable back 1o the fGmipty value,
you must assign another cmpty Variant vartable 1o .

To test for a Variant variable containing NULL, use the IsSNULL function,

Note For alisting of the string conversion functivas {or the Variant dati type.
see the appropriate table at the end of the Visual Basic cade module.

o tdiney

Qbyect. [(general)]ﬂ Proc: @ecraraiions) m

" Al lgnment (label)
Global Const LEFT_ JUSTIFY- y
Global Const RIGHT_JUSTIFY]
Glolal Const CENTER = 2

I

TR

|

Labell Label Jii4

i 1741 0 - Lett Justity [l
Align| 0 - Left Justity

1 - Right Justity
Back(2 - Center
Backslyle "1 0- None
BorderStyle | a

e v S BRI SR IS

Caption {none)
 Draglcon 0 - Manual :
“ : True 4

What Are Constants? :

Constants are just that, entitles within your program whose vilue you need, but
which will not be changed during the running of the program. For example, if your

progrim needed to work with circles, you would probably need a constant like
Pl= 31459 '

Lxamples of typical constants can be found in CONSTANT.TXT. If you look at
his file. you will {ind several constant values declared that are familiar to you from

. ' the vyverview ot properties for controls.
h Example : ‘Hopder Style

i;) . st NONE = 0)

' osr FIXED_SINGLE = 1

; 4 tonst SIZABLE = 2

i mst FIXED_DOUBLE = 3

How Are They Declared?

Visual Basic contiains a CONSTANT. TXT file, which lists all the common
constants, You can copy and then modify this tile to meet the application's specilic
necds. You can then load CONSTANT.TXT into the General Declarations section

: : ol edule (CHAS) W be used by the application. Following is o partial listing of
b the peneral categories of constants defined in CONSTANT. TXT.,
1

Modufe 8; Using Visual Basic Data Types 181

2. Scope

Scope of Data

Declaring and Using Local Variables

Deélaring and Using Form-Level and Module-Level Variables

Declaring and Using Global Variables

-
182 Module 8: Using Visual Basic Data Types

Scope of Data

Form. FRM Module1.BAS
i
FormcaeDim A { Global=stGlobal C
i Modulecgy Dim D
Declarations Declarations
Sub X ' Sub P1
Localg Dim B Localge pim E
'Sees A,B,C) | ‘Sees C,D,E
Procedure Procedure i
Sub ¥ Sub P2 i
"Sees A, C ‘Sees C,D :
Procedure i Procedure
T T ey e e QS St e et oy ooy ster A4

What Is Scope of Data?

The scope of a data variable or constant is.its level of visibility within an
apphication. Scope of data fulls into three levels of visibility: local variables, form-
and muduile-level variables, and global variables.

Scope of Data— An Analogy

Scupe of data basically deals with who can use what. The casiest way to think of
tiis ix by analogy.

Say you had a refrigerator/treezer full of all kinds of goodies—candy, soft drinks,
we crean. Almost everyone likes these goodies and would like to get to them. Your
1ob as the imanager of these resources is to make sure that the right people get to
them and the wrong people don't.

i you put these goodies out where everyone can get to them, they will be used,
right I that is what you want, then fine, make them globally available. In Visual
Basic wermimology, declare and define variables that all functions will need access
(o using the Global keyword in the General Declarations section of a module
LBAS). not a form.

Forthose goodics that you only want suime people to get to, fur example, just the
members of your work group, then put the refrigerator/treezer where only they can
get to it—1for exanple, in your work group area. In Visual Basic, declare and
detine these variables using the keyword Dim in the General Declarations section
of either the form or the module, You'll see an example of how this is done in just a

few andindes,

Module 8: Using Visual Basic Data Types 183

Fmally for those goodies to which only you should have access, put the retrigerator
in your office. That is, declare and define thase variables locally — inside
procedure. Again, you'll see examples of this is just a minute,

Variable Declaration Keywords and Their Scope

The table below details how the different variable declarinion kevwaords are used.

Scope Declaration

Local Diny, Static, or ReDim cwinbin o procedure)

Module Dim (in General Declaranons section of a torm or a oy
: module).

Global Global (in General Declarations section of a module

A simple example of data declarations can be found this way
1. Start Visual Basic.

From the File menu, choose Gpen Project.

Go to the CAVBASAMPLES\CALC subdircciory.
Double-click CALC.MAK.

Click CALC.FRM in the Project window,

6. Click View Code in the Project window.,

Vo e

Visual Basic displays the formi-level variable declarations for the calealator
application. Notice the declaration of seven vartubles ind the Option Explicit
statement,

Note When you are writing code and you wunt to create module- or form-level
variables, make sure that you are really in the general decliarations section of the
code before you make changes or additions.

Always be sure that the top of your form window hays these two options selected,

General : Declarations

Pz 5 e N SR TR e I R TN

184 Module 8: Using Visual Basic Data Types

2 Faor a more complex listing of global declarations

b

X
-4

3.

From the File menu, choose Open Project.

Gio to the CAVINSAMPLESMICONWRKS subdirectory.
Pouble-click ICONWRKS MAK.

Click [CONWRKS.GBL in the Project window.

Clivk View Code in the Project window,

Scroll down to the General Declarations section of ICONWREKS.GBL and inspect
the various values declured and defined.

Rules for Using Local Variables

A focal variable is recopnized and declared only within the procedure in which it
appears using the keyword Dime The variable is re-initialized to zero or a
NULL string when the procedure beging, unless the local variable is declared as
Static. A local variable is a good choice for any Kind of temporary calculation,

IV you use a variable without declaring it, then Visual Basic assumes it is local
and wussumes Variant as the data type. However, this technique may waste
storage space and is not as reliable as declaring the variable in the appropriate
procedure. It is also not as efficient. r

-Rules for Using Form- and Module-Level Variables

A lorm-level variable is declared in the General Declarations section of the-
farny using the keyword Dimi. A form-level. variable is available to any
procedure on that form and only that form, '

A mudule-tevel variable is declared in the General Declarations section of the
module, using the keyword Dim. A module-level variabie is available to any
procedure in that module and only that module.

Rules for Using Global Variables : T

L.

5

A glubal variabie or constant is shared throughout an application. Multiple
forms and modules can use a global variable. They are declared in the General
Declarations section of a module using the Global keyword for variables and
Global Const for constants,

Global variables are persistent; they retain their value throughout the entire
application.

Style Guidelines Cioad programming practices when using variables and constints include:

Use Turm-level and module-level constants and variables as opposed Lo global-
fevelaf possible,

o Declare the variable or constant with the Dim statement rather than accepting

Busic auwomatic variables.

«Use Integer declarations instead of default Variant declarations whenever

possible, Indeger declarations take less space, avoid rounding errurs, and
constine less CPU time than Yariaat declarations,

Module 8; Using Visual Basic Data Types

185

Declaring and Using Local Variables

-, EMPREC.FRM | 7

Sub AddEmp { .

Object: | (general) i#] Proc: [AddEmp 4] ;
i

>Sub AddEmp () 7 3l
Dim CurrentLocation As Integer [
S

Example

Example

Local variables reset to value zero (0) or an empty string when the tocal procedure
begins.

To declare a local variable, place the Dim dita declaration stateeent inside the

local procedure,

1
2
3
4

w

Sub Form_Click {)
*The local variable below disappears gjea peroceadure axis,

‘and is reinitialized to zero whoen Lhee jerowscdinge in po-onte

Dim EmployeeNumber As Integer

EmployeeNumber = Val(Textl.Text)
Print "The Employee Number is: " + Soribmplosyeatinmbor)
End Sub

[

In the example above, EmployceNumber is declared ax an Integer. How would the
code be different if you handled it as a Variant?

1~

Sub Form_Click{)
Dim Employeelumber

EmployeeNumber = Textl.Text
Print *The Emplcoyee Number is: " & EmployesNumber
End Sub

Note Notice the use of the ampersand to concatenate the literal String and the

Variant in the Print statement above?

186 Module 8: Using Visual Basic Data Types

11 you want a local variable to be persistent, declare it as Static. Static local
variahles will retain their data value when the procedure performs a return.

Example : fuap 3taticboemo ()
‘The static variable below will retain its value across
* calls and is used to keep track of how many times

i * StaticDemo is called.

Static RunCount As Intager ‘' Create a persistent variable
RunCount = RunCount + 1 ‘ Use it to keep run count,

i . Msg$="The RunCount for the StaticDemo procedure is: °

- Msgs = Msg$ + Str$(RunCount)

'? Print Msg$ * Display message.

0 Find Sub

Module 8; Using Visual Basic Data Types 187

Declaring and Using Form-Level and Module-Level Variables

1:#| Proc;| ireclaianons) }ii

Dim AccessCount As Tnteger

Data

Obiject: [(general) 131 Proc:[ideclaratons) 4]

Dim UserName As String

Data

Example .

Use form-level variables or module-level variables when sharing data only within a
form or a module. The data remains persistent within the form or module bat is
accessible to procedures in other forms or maodules.

To declare a form-level or maodule-level variable, place the Dim statement in the
General Declarations section of the corresponding form or module,

The declaration below appears in the General Declarations section of the module
DEMO.BAS:

Oim UserName As String

When the procedure below is called. it can access this module-fevel variable. lFor
example, suppose that a text box is supplicd Tor the user to type his or her name:

UserName = tXtUserName,Text

Then the appropriate value for UserName will be printed when the Suby procedure
WelcomeDemo is called:

1 Sub WelcomeDemo ()

2 ' YVariable declared in module's Deciarations =2ction can be
3 ' referenced here

4 Print "Welcome " + UserName

5 End Sub

188 Module 8: Using Visual Basic Data Types
The module-level variable is also available to all other procedures defined in
DEMO.BAS.

Example

| by VarilyliserName ()

Msgh = "UserMame = "
Yariable declared in module's Declarations section can
i * aiso bhe refarenced here
MsgBox HMsyS « UserName
- el Sub

Module 8: Using Visual Basic Data Types

189

» DeclariAng and Using Global Variables

- MODULE1.BAS . i:

Global GlchalNumber As Integer

FORM1.FRM -

EY PR e — T

j-ven

.
R G P AR

- GlobalNumber
Accessible Here

b

" 'FORM2.FRM : - §

VO S A TARRsRatAE Te v P

GlobalNumber Also
Accessible Here

Use global variables and constants when sharing dati throughour an application.
The data remains persistent and accessible from all Torms wnd modules within the

application.

To declare a global variable. place the Global statement in the General
Declarations section of a module—that is, o [HAS file:

Global GlobalNumber As Integer

The variable GlobalNumber can now be referenced throughaut the apphication.

* Code for Forml
Sub Form_Click ()

Example 1

GlobalNumber = Globaltumber

End Sub

Example 2

‘ Code for Form2
Sub Form_Click (}

[V T

End Sub

1
2
3 ' Global variables can be referenced here
4
5

*CUlobal varialiles Carne olse e coleretmaal Taoas

Print = "GlobalNumber " + Str$iGlobaliNumber)

Load any constants you want declared for an entire program into the General

Declarations section of a module.

1590

Module 8: Using Visual Basic Dala Types

Walk Through—Scope

Z To demuanstrate the concepts of scope of data in Visual Basic

{y.

From the Walk Throughs program group, start Scope.

When the application starts, you sec two forms. Form 1, on the lelt, contains a
Cormmand [butten. Forn2, on the right, contains a Command i button.

The purpose of this walk through is to demonstrale the concepts of scope of data
in Visual Basic.

Click Formi (on the form, not the command button).
The Form_Click event will display values of data items as their scope permits.

The global and form-level data values are displayed. Note, however, that the
Form2 module-level variable and the Form!.Command!_Click and
Form2.Commandl_Click local variable values are not displayed. Remember,
vou just requested a Form_Click event, so the Commandi_Click variables are
nal yet in scope and Form2 variables are not in scope until Form2 has focus.

Click Form2 (on the form, not the command button).
The Form_Click event will display values of data items as their scope permits.

The global and form-level data values are displayed. Note, however, thatthe
Formi module-level variable and the Form1.Command | _Click and A
Form2.Command 1 _Click local variable values are not displayed cither,
Remember, you just requested a Form_Click event, so the Command2_Click
variable is not yet in scope and Form!1 variables are not in scope until Form| has
facus,

. Click the Commandt button on Form].

The Commund ! _Click event will display values of data items as their scope
PUriiits,

You lave just generaied a Form!.Command1_click event, and this places the
[Form . Command t_Click variable in scope. Forml still has focus, though, so
Form2's variables are not accessible.

Chck the Comnuind | button on Form?2.

The Command1_Click cvent will display values of data items as their scope
permits.

You have just generated a Form?2.Command1_Click event, and this places the
Form2.Commandi_Click varnable in scope. Form2 still has focus, though, so
Formd's variables are not accessible.

Double-click the Control menus on both forms o close them.

Module 8: Using Visual Basic Data Types 191

Additional Visual Basic Data Types

= User-Defined Data Types

» Arrays

Syntax

Example

User-Defined Data Types

Earlier in this module standard Visual Basic data typcx were discussed. Visual
Basic also allows you to create your own duta types. User-delined data types. called
records or structures in some olher programming langisiges, must be declared in the
General Declarations section ol a4 module, using the Type stateiment,

Type usertype

clementname As typename

[elementname As typename]

End Type

This feature allows you (o create new vartables that can be custonmized to fitthe
needs of your application. For example, you might want to define a data type o hold
customer information as follows:

1 ' Place this declaration in a module

2 Type CustomerRecord

k) CustNum As Long

4 CustName As String * 18

5 CustAddressl As String * 38 ' Streel Adilioss
6 CustAddress2 As String * 38 ' City, 3Lal#

7 CustZip As String * 10
8 End Typs

192 Module 8: Using Visual Basic Data Types
Yuou cun then declare and use variables of this new type in your application
wherever you need them. To refer to a particular element, use the syntax
vartablename.clemeniname.
Example | < nab GetCustomerInfo ()
lec:lare a variable of your user-defined type
lrim HewCustomer As CustomerRecord
“ * = contents of various text boxes on a form to fill in values to
" " the elements (fields) of your new CustomerRecord variable
Howimstomer . CustNum = Val (txtNumber . Text)
tHlewCustomer _Custaddressl = gxtAddrl.Text
H tlnwCustomer .Custaddress2 = txtAddr2.Text
" Hewtnstomer . CustZip = txtZip.Text
L) Ered Zab
‘ Arrays
Visual Basie, like maay other programming ng,uagcs allows you Lo creale arrays.
Anarriy s a group of variables of the same data type that share a common name.
Gach supirate element of the array is identified by a unigue index number.
Example beciare an array
im Arrayiame {UpperBounds) As DataType
[Yim ‘estScoraes(23) As Single
Note By defuult, the first clement in the array is referred to with the index 0 (zero).
This creates an arry of 24 (not 23) single-precision numbers in which you could
- store the scores for 24 students.
W yon wanted Lo pring this score out Lo the Torm, you would use the Tollowing:
Example irint, “The vest score for the first student is: *

i'vrint TestScores(0)

There is an alternate syntax tor declaring arrays that aliows you to specify the lower
(heginning) and upper (ending) indexes, or bounds, of an array You could declare
anarray o hold 24 west scores like this:

inm TestScores(l To 24) As Single

You would then refer to the first element in the array as TestScores(1).

I you dhdi't have arrays, you would have to create 24 separate variables, named
something like Scarel, Score2, Score3, and so on,

I the module on looping structures, you will discover that loops arc a very useful
ol for aceessing elements in an array.

Note ‘I'v change the default lower bound to 1, place an Option Base statement in
1he Cienersl Declarations section of the module, like this:

S R T O L YRS TE N |

Module 8: Using Visual Basic Dala Types 193

Variations on Array Declaration Syntax

Depending upon where the array is declured and the special needs of your progrin,
the syntax to declare an array miay vary a bit: Here s o table thae Sumnsrizes the
rules.

Scope of variable dectaration Keyword to use

. . . 3
Application-wide Global (Used only in the Ceneral Dectlarations section

pf a .BAS module.)

Form or module level Dirmy (Used in thie General Dreclarations section of
form ar module.)

Within a procedure Static (If the entire provedure bas been dectared Static,
then you may use the word Dim o declare the array.)

Muitidimensional Arrays

The array described in the last section, TestScores, is an exiunple of a one-
dimensional array. You could think-of it as representing a single column (or row) of
numbers. You can also declare an array of several dimensrons. The maximum
number of array dimensions allows in a Dim statement is 6{). For example, to
represent a table of numbers you can declare i two-dimensional iy as follows:

Sub GetNumbers ()
Static Table(d4, 23} As Single

-Or-

Static Table(l To 5, 1 To 24) As Sinyle

v

End Sub

This would create an array of live rows of 24 test scores cach and provide room
hold five scores for each of 24 students.

Dynamic Arrays

There are times when you want 1o use an array, but the size necded will change at
run time. Visual Basic allows you to create dynamic. or variuble-length arrays hy
doing the following:

Declare the array without declaring its size with either the Dime statement (for u
form- or module-level array) or the Global stwiement (for o global array). To da
this, just place an empty set of parentheses to the right ol the array name:

' Place in General Declarations section of a fciin or neddule
Dim DynArray() As String * 25

—Or-
Global DynArray{) As String * 25 ©oPlace i [ODGEDCBAS
.Here is another example:

alobal DynlntArray () As Integer

194 Module 8: U'sing Visual Basic Data Types

Then inside a procedure, when you know the size you need for this array in some
particular circumstance, redimension the array to the size you need.

Example | sSnb UseArray 1)

Notice you can use a variable from your program to set the size
Felim DynArrayi{ Listl.ListcCount)

- Fand Sab

Important Each time you use the ReDim statement, all the values currently stored
i the array are lost, and cach clement is resel to zero or a NULL string depending
an the type of the elements in the array. If you want to preserve the values-during
re-dimengioning of the array, use the Preserve keyword.

Lol reserve MyhArray (UBound (Myarray) + 10)

[y this case, you are re-dimensioning an array called MyArray to be 10 elements
farger while maintining existing data,

Control Arrays

Visual Busic has a special type of array called a control array, which has special
features and does not follow all the rules of standard arrays.

You will learn o use control arrays in the course that follows this one in the
Micrasoft University Visual Basic curriculum.

Module 8: Using Visual Basic Data Types

195

Summary

Key Terms

Using Variables and Constants
Scope

Additional Visual Basic Data Types

Objectives

In this module you learned to

List and describe the seven vartable dat types in Visual Basic.
Correctly identify the six type declaration character symbaols,
Use the contents of CONSTANT.TXT.

Distinguish among the various levels of scope in Visual Basic.
Explain the rules for using cach level of scope.

Declare and use a user-delined data type.

Declare and use simple arrays.

196 Madule B: Using Visual Basic Dala Types

Lab Time

Guo s the Using Constants and Variables portion of your lab manual.

. - - - - P e

Module 9: Writing Visual Basic Code

Module 9: Writing Visual Basic Code 198

> QOverview

Visual Basic Procedures

Scope of General Procedures

Writing Code in Visual Basic

String and Numeric Conversion Functions

Overview

This is the "Everything You Ever Wanted to Know About Writing Code...But Were
" Afraid to Ask"” module. It gives you the background and procedures needed to begin
writing the Visual Basic code that implements the interfaces.

Prerequisites

To successfully complete this module and its asseciated lab, yowshould have a
detailed understanding of forms, controls, and propertics as they wre implemented in
Visual Basic,

Knowledge of any block structured progrmmming Lsgoape is requiced.

Overall Objectives

There are two overall goals for this module:

1. To quickly review most of the fundamental procedures ol Basic as itis used in
the Visual Basic product

2. To show students the first steps required for completing the code Tor an
application

Learning Objectives
At the end of this module, you wiil be able (o

» Define important characteristics of Functions und Sub procedures and wiite
code that correctly uscs both,

s Deline and correctly code for appropriane scape ol data,

® Write code that uses any of the commuon Basic duta types,

200 Module 9: Writing Visual Basic Code

Sample Code

The best way fur you to learn how to wrile Visual Basic code is to read it. Sample
code fur a four-function caleulator application can be found in the
WEBASAMPLESVCALC subdirectory.

Module §: Writing Visual Basic Code PVl

Y Visual Basic Procedures

= Sub Procedures

= Functions

w ~Argu'ments and Parameters

= Procedures
Event Procedures
General Procedures - ' ,
Methods

Syntax

Syntax

‘What Are Procedures?

A procedure is a block of Visual Basic statements that are called as o togical unir.

Two Types of Procedures —A First Pass

Sub Procedures

After the Sub procedure completes its work (executes i codey, il returns to the
procedure that called it. ,

Sub SubName ()
statementblock

End Sub

Functions

A Function is similar to a Suby procedure. In addition. it Tias s data type just as o
variable does. After it completes its work, it returns @ value of that type to the
procedure that called it.

Function FunctionName() As SomeDaialvpe
statementhlock

FunctionName = SomeValue

"End Function

202 Module 9: Writing Visual Basic Code

Calling a Sub Procedure with Arguments

Event! Procedure

Sulb Commandl_Click () ?:}
DisplayError "MyError" 5 ,
End Sub 4
Sub Procedure
— :> Sub DisplayError (ErrMsg As String) g
iblError.Caption = ErrMsg S

Arguments

~Any procedure can be defined to receive data when ii is called. A piece of data seat

o aprocedure is called an argument; and an argument is matched to its equivalent
parameter entry in the procedure list. Each parameter is declarad to be of a specific
data 1ype.

The Tollowing is o Sub procedure that receives two arguments:
Syntax Suby SoneSub (Param! As Integer, Param? As Single)
statenenihlock
IZnd Sub

When you call this procedure you must make sure to pass it the same number and
type ol argumerds in the same order they appear in the Suly definition.

Syntax SomeSuby Argument], Argonent2
& 5

O -

Call SomeSub (Argument f |, Argument2)

Module 9: Writing Visual Basic Code 203

Syntax

Syntax

Example

The following calis a Function procedure with arguments.
Dim Result As Integer
Result = SomeFunction (Argument!, Argiimem2)

by '
Function SomeFunceion (Param! As Integer, Param? As Single)
A As Integer

StateinentBlock
SomeFunction = ReturnValiee

End Function

Note The argument names used when you call the procedure do not have 1o match
the argument names used in the definition of the procedure as they do in the above
example. The number, data type, and order of the arguments must match in the
procedure definition and call,

An alternative notation for the function retarn value dara tvpe is as tollows,
Function SomeFunction% (Param! As Integer, Param? As Single)
StatementBlock
SomeFunction = Return Value

End Functioﬁ

Note Function procedures with an explicit seturn vilue datinype are more,
efficient than those with @ Variant return vidue data type.

Remember what we said about Variant dataypes carlier? I vour wrgument 1s o
Variant and its corresponding paramcter is not, the Variant argument must be
passed by value, This is accomplished by putting a set ol extra parentheses around .
the Variant argument.

You can accomplish the same objective by usiig the By Val keyword when you
declare your paramcter in the procedure.

+

1 Function Reverss (5 A# String, ByVal N As Intager} As Variant
2 ‘... S5omeStatements

3 End Function

4 Dim U As Varlant, V As Variant, W As Variam

5 V = *Testing”

6 W = 10

7

U = Reverse ({V), W}

204

Module 9: Writing Visual Basic Code

Passing Arguments by Value

Visual Basic passes arguinents by reference as a default. What this means is that
the procedure con modity the values of the arguments in the procedure list because
it knows (he address for the duta. This in effect aliows you to pass back more than
one vilue merely by changing the arguments within the procedure.

I contrast, your can pass an argument to a procedure by value, which means that the
procedure receives only 1 copy of the data and cannot modify the value of the actual
arguanent, Any chianges made to the argument within the procedure are local and
hivve no effeet on the actual data.

To puss an argument by value, use the keyword ByVal in the parameter list or put a
set ol parentheses around the argument an the calling statement.

'y % ' N T ™

e N

I N . . - . s %

K. 9

Module 9: Writing Visual Basic Code 205

Types of-Procedures

a Event Procedures

= General Procedures

Types of Procedures— A Second Pass :

Visual Basic applications have two categories of procedures: event and sencrud,

‘Event Procedure
An event procedure is a procedurc invoked by user- or system-tiiggered event.

Event procedures are always attached Lo a given form or control. Fhe Tirst part of an
event procedure’s name indicates which object it is attihed 1o,

Syntax Sub objectname_eventname ()
statementblock
End Sub

Examples of event procedures are: Commund | _Click and Form_Click. It the user
clicks on the command button named Commuand |, the event procedure
Command1_Click will be called; but it the user clicks on the form, the event
procedure Form_Click will be called.

206 Module 9: Writing Visual Basic Code

Creating the Event Procedure

Procedure Name Determines
What Event to Respond To

Object: | HelloButton [#] | Proc: | Crick 1]

Sub HelloButton_Click ()
Readout .Text = "Hello, World:!®
End Sub

Templates (Sub and End Sub statements) are supplied tor all the events Visual
Basic automatically recognizes.

“All vou need to dois 1l i the code:

[. Openthe Code window.
= 20 Inahe Ghject list bax, seleet the appropriate object.
3 Inthe Procedure list box, select the appropriate event,

4. Type code into the template provided by Visual Basic.

Calling the Event Procedure

You don't have to do anything to call the event procedure. Visual Basic
automatically recognizes all the events for all Visual Basic objects {forms and
controls). As soon as a user or the system triggers an event for an object, the code in
the appropriate event procedure will be run by Visual Basic.

Scope of Event Procedures

Fvent procedures are only availuble on the form where they were defined,

Note Ewvent procedures may anly be Sub procedures, not Function procedures.

The Tollowing is a Click event procedure for a command button.

Example ; Hab Commandl_Click)
y " This wvalue can be found in CONSTANT.TXT
finnst HED = &HFF&
4 Coner e boekgroannd o calor o of the form too rod
Forml Hae LOAlor = HED ‘

' el b

Module 9: Writing Visual Basic Cade 207

Event Procedures in Visual Basic

A large number of event procedures are available for yauruse i Visual Basie, The
ones sctin italic type below are covered in this course, ad Ure remaining event
procedures are covered in the Programming in Microsofi Visual Busic 3.0 course,

Action Event

Change to control Change
DropDaown (combo box onlyy .

PathChange. PatternChange ite list box only)

Drag and drop DragDrog DragOver
Dynamic data exchange LinkClosc. LinkError. LinkFveeute. LinkOpen
{DDE)
Keystroke KeyDown, Keytp, KeyPress
Mouse Click, DoubleClick. MouscDawn, AauseUp,
MouseMave
Shiftin focus GotFocus. LostFocus
Timer interval Timer |
Forms and picture Paint, Resize, Laad, Uiload
References Use the online Help or the Microsoft Visual Basic Lanyuage Reference w

. .--descriptions of the event procedures in Visual Basic,

208 Module 9: Writing Visual Basic Code

General Procedure

Type e
@®sub () Function 2
Name: LNewProc ‘.Cancel{ |

o I L T - v AR et §

A generad procedure is a procedure executed only when explicitly called by zfnother
procedure.)

Creating the General Procedure

. Open the Code window.

2. Fromthe View menu, choose New Procedure.

X Type the nane for the procedure, and choose either Sub or Function.

S Auld the code o the procedure lemplate provided by Visual Basic. If you are
creating i pew function, remember to detine the return type of the function and
o include a staleiment in the code assigning the value you want returned to the
function name.

Exampie 1 Function StockWValue (NumShares As Integer, SharePrice As Single}
2 ~ Ag 3ingle
1 StockValue = NumShares * SharePrice
A bl Fupnction
5 Sub TmraliiLock ()
2 Print "Tutal value of all stock is: -
Print StockValue(i0, 123.25) - 3tockvalue(200, 19.75)
Ll Firl Sub

Calling the General Procedure ,

You must explicitly call a peneral procedure, or the code will never be rua.
Typically, you place a call 1o a general Sub or Function inside an event procedure
vr insude another generil procedure.

Module §: Wriling Visual Basic Code 209

-

Scope of General Procedures

Change mmp | Textl_Change

Event .
return
Click | —— .)
Evenl—’ Cmdl Click DisplavyBarChart
return
g}gt‘n—p Cmd2_Click
return

Syntax

Form-Level Scope of Code (.FRM) ;

The scope of a general procedure depends on where it detined. 1 yvou [nflow the
steps listed above while you are in the Code windaw Tor ane ol your furms. then
that procedure is available from anywhere on that formonly.

Global Scope of Code (.BAS)

Il you have a multiple-torm apphcation amd need 1o he able to call certam
pracedures from anywhere in yoeur applicazion, you swall need toereate woseparate
.BAS 'module to hold those procedures.

Note, for example, if DisplayBarChart is defined as o general procedure Tor Furml.
then Text!, Cmdl, and Cmd2 must all be controls on Traran b 10 however, ’
DisplayBarChart is defined in a separate .BAS module, Toxtd, Cmd 1L and Cnnd 2
could each be on a different form and still be able to call DisplayBarChart.

Private Scope of Code (.BAS)

In some cases, you will want 10 limit the accessibility of u procedure contained
within a module. In order to do this, use the Private keywoerd in [ront uf Sub or
Function definitions.

Declaring a Private Sub Procedure
Private Sub SomeSub ()

SomeStatements

End Sub

210

Madule 9: Wriling Visual Basic Code

Syniax

References

Declaring a Private Function
Private Function SomeFunction () As Integer

SenneStatenrents

Lo Iuncetion

Method
A methed is a special type of procedure provided for you by Visual Basic tor

specilic ubjects but not associated with a specific event.

Special Characteristics of a Method
1. You cannot create a method; you can only call it

2. You cannol view or change the code for a method.

)

The names ol ol Visual Basic methods are keywords. You cannot ¢reate a
geseral proceduare of your own with the same name as a Visual Basic method.

The Tollowing calls o method from o event procedure attached to a forn

Cagi e Ol e () " Form Click avent for Forml .
Lovrn . Show ' Display Form2 3

Fawel Bub

Methods in Visual Basic

A Large number of methods are available for your use in Visual Basic. The ones set
i itithic type below wre covered in this course.

Dravwang and graphics Circle, Cls, Line, PPoint, Pset

Printing lindDoc, NewPage, Print, PrintForm, TextHeight,
TextWidth

DDE LinkExecute, LinkPoke, LinkRequest, LinkSend

List box management Addltem, Removeltem, Clear

Clipbod Clear. GetData, GetFormat, GetText, SetData,
SetText

Maving controls Drag, Move

Form management Hide, Show, Refresh, Scale, SetFocus

Use the oatine Help or the Microsoft Visual Basic Language Reference to find
descriptions of the methods available for Visual Basic objects.

Module 9: Writing Visual Basic Code 21

Writing Code in Visual Basic

Microsoft Vistial Baale (dedlign) . -
View Run 0Qeb

File 2l

g

ug Oplions Window Help

Undo CirleZ i
Hodo [
Cut Cirl+X i
Copy Cul+C ¢
Pasle Cirl+v '
Hasi Link

Delete Del

Find... Ctrl+F
Find Next F3

Find Previous Shift+F3
Replace... Ctrl+R
8ring to Front Cirl+=
Send o Back Ctri+-
Align to Grid

There are several facilities built into Visual Buasic that make writing code cusy, Al
of the search and replace proccdures discussed below et vou scarch in the current
procedure only, in the current module only. or in all modules.
n Cutting, copying and/or pasting code
Edit menu, Cut or Copy, and Paste
» Finding strings (variable names, for examplie) in code
Edit menu, Find
s Finding the nextinstance of a string in code
Edit menu, Find Next
» Finding the previous instance ol o string i code
Edit menu, Find Previous
» Finding and replacing a steing in code
Edit menu, Replace
» Loading text from the hard disk
File menu, Load Text
s Saving code as text out to the hard disk
File menu, Save Text
Note Visual Basic offers a usetut feature for peopie weiting code. By defauiti
checks the syntax of your code s you are writing it, This is goud news because you

. get constant feedback on the correctness of the syntas. Beviuse there might be
; times when some people find this intrusive, this option can be disabled.

212 Module 9: Writing Visual Basic Code

2. String and Numeric Conversion Functions

UCase$ Function

1
Name:| M :
Text1 :
]

AR e S LTI L e L i e W et S

Visual Basic provides a number of prewrnitten functions that make your work with
strings a Iot euster. Below is a partial list of prewritten functions. The focus here is
con whin many feel are the most important library functions. For a more detailed
listing of library funclions, see Table 1, "Functions, Statements, and Methods by
Progrununing Task™ in the Microsaft Visual Basic Language Reference,

Returns Variant .

Returns String

Meaning/syntax, example, note

Chr

I“ormal
1.Cuse

beft

1T rim
Mid

Hight

KT rim

Chrs

Format$
.CascS

Lelts
f.en

LTrim$
Mid$

Right$

RTrim$%

Returns a ong-character string for an ANSI
code argument. For example, Chr$(13) +°
Chir$(10) is a carriage return and line feed.
which creates as new linc.

A powertul function that displays a number in
the format you request.

Returns the towercase instance of an upporease
character.

Returns a speciticd number of the lefumost
characiers of a string, LeftS(stringexpression,
nd&) See online Help tor un exampice.

Returns the number of characters in a string or
the number of storage bytes required by a
variabie. .

Returns a copy of a stnng with lefunost spaces
removed.

Returns a string that is part of another string,
NMidS$(stringexpression$, sturt &, [length%])
Returns a specified number of the rightinost
characters i it string.
Right$(soringespression, nk)

Returns a copy of a string with the rightimost
spuces removed.

Module 9: Writing visual Basic Code 272
Returns Variaat Returns String Meaning/syatax, example, note
Str Str$ Converts a number to astring of digiis.
Trim Trim$ Removes Jeading and trinhing spaces Ity
string.
UCase UCasc$ Returns the nppercase mnshimce of o lowercase

characrer.

Val Converts a stesng o digits to a number.

String Conversion Functions in the Employee Database

Function Sub procedure Form

Chr$ {not used}

I.Casc3 (not used)

LeftS " (not used)

Len FillFiclds FAPDBRM

LTrim$, (not used)

Mid$ FillFields EAMPDE FRM

Right$ emdOK_Click ADDPEEOTOFRA]

RTrim$ FillFiclds EAMPDU RN

Strs Form_Luad NP RN
_ FillFiclds

UCaseS {(not used)

Val ' emdView _Click FAMPDIRM

Numeric Conversion Functions
There are a number of functions available within Visual Basie that will convert data
types.

Function Comments

CCur Converts a pumenc expression to o Cuareeney vafue,

CbDhl Converts & numeric expression o double-precision number.

Clnt Converts a numeric expression tooan fnteger by rounding the
Fractional part ol the expressiog,

ClLng Converts o numerig expression to s Long (4-byte integer) by
rounding the fractional part of the expression.

CSng Costverts a numeric expression to it sigle-precision value.

CStr Converts a numeric expression 1o a String value.

CVar Converts it numeriy expression o String o a Variant.

CVDate Caonverts an expresston toa Variant of Vaclype 7 (Dater

i

214 Module 9: Writing Visual Basic Code

Format$ Function

.
I - i
| 3
; Obect | Command +] Proc: | Click [+
Sut Commandl_Click {) H
‘N ' t = Formats$ (Now, "d mmmm yyyy") B
o : !
o i
) s 3
: 3 i
o | :
! i ¢
vy Today's Date 1t February 1992 - ?
[. . — 4
bl Time 09:16 AM i
i '
iy i
H . R Y s SeeFob ol 3RO L e, S S e e b i s nenen Y e
. 1l
It
i’ H e ti
i This function converts a nuimber to a string and formats it according to instructions
|] ;: contitined in g formag expression. '
e . .
' I'I Syntax . FormatStmaneric-capression{, fmi3])
| fmt$
i Atorna expression is a string of Visual Basic display-format characters that detail
HI . - . .
; l; Bow the numeric expression is 10 be displayed.
¥ b
{ ii Here wre several sample format expressions and how the output would be displayed.
1§
i. ' Formathomt$t Positive 3 Negative 3 . Dectinal .3
i 0.0t 5.00 -5.00 0.50
H i) -5 |

5
SHEROOSHE BBDO0) S

L]

00 {$5.00} 50.30

The Now function cun be used to return the current system date/time as a serial
number. Date/timwe serial numbers can then be formatted with date/time or numeric
formats (because dae/time serial numbers are stored as floating-point values).

N
L
4
P

Module $: Writing Visual Basic Code 215

Example

Further Examples

The following are examples of date and time Tormals.

Format Display
nvdfyy | 277158
d-mmmm-yy 7-Necember-58
d-mmmm 7-Decemtn

mmmm-vy
hh:mm AM/PM
h:mm:ss a/p .
h:mm

h:mm:ss

m/dlyy h:mm

Sub cmdDisplayDate ()
txtTodaysDate . Text =
End Sub

Format$ {Now,

December-3%
UR:50 PAY
®50:35 p
20250
20:50:33

[277758 u:sn

tnun/sadsyye

A complete description of the Format$ functinn can be tound in Visual Basic Help.

Application Form

Procedure

ABOUTBOX.FRM
COLORPAL.FRM
- TOLORPAL.FRM
[CONEDIT.FRM
ICONEDIT.FRM
ICONEDIT.FRM
ICONEDIT.FRM
ICONEDIT.I'RM
VIEWICON.FRM
VIEWICON.FRM
VIEWICON.FRM
VIEWICON.FRM

IconWorks

- T
IForm_Linad St

Txi_RGHB . Clumge

Display_New _Color_und_Elements
Suve_Settings To_IN]_File
Paste_ClipBoard_Cuontents
Save_Colors To_INI_File
Peepare_For_New_lcon
Display_Mouse_Coordinates
IForm_lLouad

[Losd AL leons

IFile_Filelast Path{ hange

Form_Unlaad

lconWorks makes extensive use ol the Formal® function Tlhe above table s ondy o

partial listing.

216

Module 9: Writing Visual Basic Code

Summary

Visual Basic Procedures

Scope of General Procedures

Writing Code in Visuai Basic

String and Numeric Conversion Functions

Objectives

in this medule you learned to:

= Detine important characteristics of Fungtions and Sub procedures and write
code that correctly uses both, '

s Detine and correcty code for appropriate scope of data.

= Write code that uses the common Basic data types.

Modute 9: Writing Visual Basic Code

Lab Time

217

Go to the Writing Procedures partion of vour Ll manual.

et

Module 10: Using Conditional Logi'c ”
and Loops

Module 10: Using Conditional Logic and Loops

221

Y Qverview

Control Structures
If...Then Blocks

Select Case Statements
Do While Loops

Do Until Loops
For...Next Loops

GoTo Statements

QOverview

Conirol structures are a crucial part of any computer lunguage because they enahle
--syslematic decision making within the code. In this module you will learn how Lo
control the logica! flow of your program. You will also leirn how to mark off
blocks of code that are to be executed if a specified condition s true or false. You
will also learn how to specify the number of times that a piven block of stuements
is Lo be executed.

Prerequisites

This module assumes a fairly detailed undersiunding ol cding mechantsms in
Visual Basic, You will also need proficiency indesigning and building the user
intertace for software applications. &ou should already be Tamiliar with:

Forms and properties
Statements, Sub procedures, and Function procedures

General and event procedures, as well as methods

. Visual Basic data types

Variables and constants
Use of the MsgBox$ stalement and concatenating sirimges

String handling functions

Overall Objective

At the end of this module, you will be able to write code 1hat provides systentiiic

decision making within an application,

Lt

222 Module 10: Using Conditiona! Logic and Loops

Learning Objectives

Al the end o this module, you will be able to use:
s I Then.. Else blocks

= Scleet Case statements

s Do While Joops

« boLintil loups

s Foro Next loaps

s Golo statenents

Module 10: Using Conditional Logic and Loops

223

S>—Control-Structures

= |f,.Then Blocks
= |f,..Then...Else Blocks

n Select Case Statements

[

224

Module 10: Using Conditional Logic and Loops

If...Then Blocks

It condition Then statement

if condition Then
statements
End If

Example

e _. R [%3

Fhe Toit shows that there are two possible arrangements for If... Then blocks. You
i use either a single tine or multiple lines coniaining multiple statements. If you
have Lndtiple statements, you need to use End If,

Operators

There are six opengors that you can use n the condition portion of the If...Then
block.

Operator Mueaning

= Equal

< Not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal 10

Note i this case the = operator is #of being used for an assignment statement,
such is: Readout caprion = -0.-;instead it is being used for a conditional test.

[f opr¥FullTime.Yalue = TRUE Then PositionType = "Full Time"

Examples in the Employee Database Code

Fora list of example I£..Then blocks, If... Then...Else blocks, and Select Case
staleanents in the Employee Database code, see the listing at the end of this module.

Module 10: Using Conditional Logic and Leops 225

If...Then...Else Blocks

IF condition1 Then
statementblock
ELSEIF condition2 Then
statementblock2
ELSE
statementblockn
ENDIF

Here you get a chance to test for several different situations and react appropriately
to each one. Adding Else to the If... Then statement peovides miech more tlexibilay
in the response.

Walk Through—If...Then...Else Example

Z To use the If...Then...Else statement
1. From the Walk Throughs program group, start [{Else.

When the application starts, tsere will be a Torm with i check box fubeled Bodd
with an X in it and a command button lzheled Pring Something.

The purpose of the applicaiion is to show an example of where
If... Then...Else block might be used,

2. Click the Print Something command buiten.
The word "Something” will appear o the form i buld
3. Click the Boid check box.
This removes the X from the check box.
4. Click the Print Something command bution,
The word Something will appear on the form with the bald formal remoeved.
5. Closc IfElse.

Z To create the If... Then.. Else example
I. Start Visual Basic.
2. From the File menu, choose New Project.

Start i new projedt.

226

Module 10: Using Conditional Logic and Loops

TN

4.
).

Select FoatBold on the Properties list box.,

View the Form property ForntBold. Note that the detuult value is True. This
meians when the chkBold cheek box is ereated, its value should be set o
Checked. ‘

Double-click ithe check box tool in the Tooibox.

Create o cheek box on the {form.

Set the tollowing properties jor the check box:

Nae chkBold
Caphion Hold FFont
Vil | - Checked

Frosble-click the command button tool,

Create i conmand button,

Set the fullowing properties tor the command button:
Nunw cindPrintSomicthing

Ciaplion Print Something

Now that you have created the interface, you need to add the code to make it
function, et

Fon the Project window, choose View Code.
In the Object list box, select chkBold_Click.
Add ihe following code:

Crnis CHECRED = 1
if rhrBold.value = CHECKED Then
Forml, FonrBold = TRUE

£y e

Forml . FontBold = FALSE

it 1 E

This will cause the font to be set to bold or not, depending on how the user has
sel the check bux. '

ki the Qbject list box, select cmdPrintSomething_Click.

Auld the tolkowing:

Pront Somethiog”

Thas witl peint the word Swuanething o the form. Depending on the value of the
cheek box, it will be 1o bold format or not.

Fromabe oo micna, choose Stast,

Fromy the Run asenu, choose Lnd.

From the File menu, choose Save As,

Sase the form as IFELSE FRM in \WALKTHRIALOGIC.

Sanve te progectas FELSEMAK in WATLKTHRWL.OGIC,

Module 10: Using Conditional Logic and Loops 227

Select Case Statements

Select Case lestexpression
Case expressionlist!
statementblock1
Case expressionlistz
statementblock?
Case Else
statementblockn
End Select

Select Case statements look a lot like I Then. Else blocks, and there is a good
reason for this: Select Case stalements offer the same kind of tunctonality but in o’
much more efficient—for both the code and the coder— manaer. As you can see
from the example, Select Case statements work particulaely wellas aomeans B
handling structured choices oftered to the user.

228 Module 10: Using Conditional Logic and Loops

Walk Through—Coding a Message Box with a Select Case
Statement y

[anether module. vou created a message box that prompted users o save their data
prioe o closing the application. This message box allowed users three choices: Yes,
No.and Caneel, '

This nndule has provided the wols needed to write code to detect which button the
tser cliched: the Seleet Case staement.
2 T code o message hox with a Select Case statement!
I St Visual Basic,
20 Fromthe File meny, choose Open Project.
L Open MSGBONY MAK. '
This fite is locited M AWALKTHRIWNLOGIC and should already contain the

folloaing:

St eapnand !l _Click ()
The values for MsgBox constant declarazions
ooma {rom AVYBACOHSTANT . TXT

Haglox parameters Tt
const YESHOCANICEL = 3 " Yes, No, & Cancel btns
vems L HCGHQHESTION = 32 Y owarning query
HEas = tHava you saved all your work?" ..

HsaBox MsyS, YESNOCANCEL + ICONQUESTION, “MsgBox WalkThru”

P nh
heonder Lo get the buttons o respond appropristely, you need o add a number of
statements (o dhis, Do tha by declaring a variable and several constants.

S Tndesign maode. double-click the command button oa the form.

This vpens the Code window with the event procedure code in it

5. Addibe following code 1o the "ade window:
Cronat UANCEL = U
Conet TES = 4§
Conen 1) = 73

[V 1B Bespnnse AS Integer

The Cancel, Yes. und No declurations define more meamnglul names for the
vithues that are returned for each of the buttons. For example, if the user clicks
the Nohutton on the message box, the value 7 is returned by the system. For
code readability and maintainability, you should place Const declarations in
your code and use the canstants in the Select Case staternent. Remember, you
cin find the correct values o declare in \WWBA\CONSTANT.TXT or by searching
anline Help for the wpic MsgBox function and checking-the tuble of return
vilues, '

‘

Maoduyle 10: Using Conditional Logic and Loops 22%

In the earlier message box exwmple, you created w message box by calling the
MsgBox statement. Even though you created a muessage box with three buttons.
you had no way to tell which button the user clicked, Another way to create o
message box is to call the MsgBox function. In this case, you need o dechoe an
Integer variable to receive the value the MsgBox function returns.

Next, you need to alter the MsgBox stutement, making it intea function call
Remember, when you call a function vou must assico s return value tothe
appropriate type of variable. If you puss the function any arguiments, the
argument list must be enclosed in parcntheses.

0. Edit the original MsgBox statement so that 1t reuds:

MB_Response = MsgBoxi{Msgi. YESHNOCANUCLELs ICOI i 700,
A"MsgBox WalkThru“)

Now you need to add the Select Case statemient. Yoy want toadd only the
actual code and leave the comiments out.

7. Add the following code:

when an integer walue 1s returne’ by Maab o
Selact Cass ¥MB_Rasponss
if it marches the value of <. ffons:
Casa YES
findicals thal Lhe wger o bocbenl el bent g,
Print "User clickad Yas"
if it matches the walue of the Const ii- 70
Case NO
' indicate that the user clicked thh b Dyrren
Print "User clicked No”
if it matches the vaiu=s 0f dpe CUnST 4 eintlL
Case CANCEL
' indicate that the user ~lirked ri. caneed e Lon
Print "User clicked Cancel”
End Select

1

8. From the Run menu, choose Stait.
.Test the code of your application.
9. From the Run menu, choose End.
Close the application.
End the walk thrdugh.

Examples in the Employee Qatabase Code

Form Procedure/Roatine Cantrol structure type
EMPDB.FRM FillFields 1. Then
: . Then lse
ced Delete v ok Select Crase stateent
FillFFields Select Case statemenl

ADDPHOTO.F‘RM cndQK_Click 1. hen. lse

230 Module 10: Using Conditional Logic and Locps

> Loops

= Do While
= Do Until

u For....Next

i

Module 10: Using Conditiona! Logic and Loops 2N

Do...Loop

Do While condition

statements

Loop

-0r-

Do

statements

Loop While condition

Use a Do...Loop to execute 2 block of statemenis an indelinite muimber of times,
(By contrast, For loops let you specify how many timwes o set ol statciments are
executed.) In Do... Loop While loops the number of times the loop is exccuted is
controlled by a True/False condition. When some other event swiiches the vadue of
the condition from True to Faise, the looping staps.

What's the Difference?

The location of the While condition is the key difference between ihe two examnples
of syntax above, but what docs that mean” [{ the While condition s at the top ol the
block, the statements within the loop will not be executed it the condition is Talse 1o
begin with. The block of statements will always be exceated al least once it the
While condition is placed at the bottom ol the loup.

todule 10 Using Conditional Logic and Loops

Walk Through— Coding a Do While Loop

2 To code u Do While loup

[S Visual Basic.

Prom tie File menu, choose New Project.

el

Double-click the command button tool in the Toolbox.
A connmand button appears on the form.
1 Double-click the command button on the form.
Thie will open the command button Code window.
3 Aded the fullowing code o Forml.frav

e - wemanddl Click 4}
oA Fodeor
i
Do While [<= 3
Print &
[T SR
Loop

el N
S Froon the R ienu, ¢huose Start.
[Ru the application,

o rons the Run menu, choose End.

nd the walk through,

[§9

Module 10: Using Conditional Logic and Locps 233

Further Examples

Do...Loop

Do...Loop Until loops are almost identical 1o Do doap While, bui they dest 1o wee
if condition is false rather ihan true.

For further examples of ...Loop \While, see the following,

Application Module/IForin Procedure/Routine

lconWorks [CONWRKS.HBAS Help File_tu_Iaih

Walk Through—Do...Loop While with Lists

To use Do...Loop While with lists
I. From the Walk Throughs program group, start Do AWHite wirh Lasts,

When the application starts, a form with o hist box and o connand buiion
labeled Add To List appears.

The purpose of the application is to show an example of ustng a Do Loop
While structure.

Choose the Add To List bution.

An input box will appear prompting the user toadd atenn oo the Tist box,

(L8]

3. Type some text and choose OK.

The text just typed in the text box will be wdded as an e o the list onthe Joup
example form. ~

4. Repeat the above step several times.

Note that if you add morc items to the list thiy can be displayed at onee in the
list box, a vertical scroll bar will automatically be added to allow you to view an
items. In the case of this example, you mustadd ar least seven iems o e hist e
make a scroll bar appear.

5. Quit the application.

To use Do While loops in list processing
1. Siart Visual Basic.
2. From the File menu, choose New Project.
Start a new project,
3. Set the following properties:
Caption Do Loop While Examplu

Height 4035 (approximalely)
Width 3870 (approximalely)
Left 3565 (approximately)
Top © 1290 (approximitely)

4. Double-click the list box toul in the Toalbox,

Create a list box on the form.

234

Module 10: Using Conditional Logic and Loops

5.

0.

g
).

Set the foliowing propertics: S

Height 1435 (approximately)
Width {215 (approximately)
Lelt 900 (approximaiely)
Top 360 (approximately)

Daouble-chick the command button tool 1n the Toolbox.
Create a command button.

Set the fellowing properties:

Nanwe cmdAddTolist
Caption Add o List

Height 73 {approximately)
Width 1215 {approximalely)
Lelt 1030 (approximately)
Tup 1920 (approximately)

Now that.you have created the interface, you need to add the code to make it
Function. :

From the Preject window, choose View Code.
In the Object list box, select cmdAddToList_Click,
Add the following code:

Cim Response As 5tring
Do
Response = inputBoxS$("Item to add:*, *"Add Item®, *"*, Q. 1000} !

1f Response <> "* Then Listl.AddItem Response

Luop While Hesponse <>
By creating a While loop with the test at the bottom, you ensure going through
the Toap once 1o grompt for input, before any conditions are tested,

An input box is similar 10 2 message box, excepl it contains a text field for user
input. The arguments tor the inpiit box are:

Argl = Prompt

Arg? = Title bar caption

Argd = Detault value tor text box
"Arpgd = X-position for inlput box
Arg5 = Y-position for input box

An Il test is added so that the empty string that indicates the user wants to exit
the loop will not be added as an item in the list,

Keep this project open, because in just a moment you are going to add a Do
Until loop.

Test your code.

Fnd the walk tuough,

Module 10; Using Conditional Logic and Loops 235

Do Until

Do Until condition
statements

Loop

-QOr-

Do
statements

Loop Until condition

‘_L
Do Until is the opposite of Do While. The statements in a Do Until loop arc

executed only while the condition is False. A Do Until condition is the equivalent
of a Do While Not condition.

Walk Through— Do Until Example

To use Do Until
1. From the Walk Throughs program group, start Do Uil

This is an enhanced version of the previous Do While example, When the
application starts, a form with a list box, a command button labeled Add To List.
and another command button labeled Clear List appeur.

The purpose of the application is to add an example o using a Do Until
skructure.

2. Choose the Add to List butten.
" An input box will nbpcnr prompting the user woadd an e to the listhox.
3. Type some text and choose OK.

The text just typed into the text box will be added as un item to the fist on the
Loop Example form.

4, Repeat the above step several times.
Add several items to the list.
5. Choose the Clear List button.
All items will be cleared from the list box.

6. Quit the application.

236 Module 10: Using Conditional Logic and Loops

0.

Z*To’c.ruule’lhc’D(J’Uutil’example
I

Start Visual Basic.

Make sure that you are still working on the Do While walk through.
Set the Tollowing properties Lor the torm:

Caption Loop Example

Double-¢lick the command button tooi in the Toolbox.

Create another command button.

. Seithe following properties of the command button:

Nanie cmdClearl.ist
Cuption Clear List

Height 375 (upproximately)

Widih [215 (approximately)
et FOSO (approximately)
Top 2520 (approximalely)

Now that you have created the interfuce, you need to add the code to make it
function.

Iromy the Project window, choose View Code,

lin the Object list box, select cmdClearList_Click.

- Add the following code:

Uu Until Listi.ListCount = O
lisrl.Remuveltem 0

e

A Do Untit loop can be used to keep removing items from List] until the hist
bux is empty. The ListCount property keeps track of the number of items
cuitently in the list.

Inside the loop is a statement to call the Removeltem method. When you pass a
7ero to Removeltem, you are telling it to remove the top item in the list.

Rather than setting up a loop, you can clear an entire list box with the clear
method.

List! . clear

From the File menu, choose Save File As.

Save this file as DOUNTIL.FRM and the project as DOUNTIL.MAK in the
\WALKTHRWNLOGIC subdirectory. You will.need these files in the For Loop
lab.

End the walk through.

Module 10: Using Conditional Logic and Loops 237

For...Next

For counter = start To end[Step increment |
[statements]
[Exit For |
[statements]

Next [counter |

For...Next loops are used to exccute a black ol statements a lixed number of limwes.
The key difference between a For...Next {vop and a Do...Loap is that a For...Next
loop includes a counter that increases or deereases with cach repetition of the loop.

Complete the demonstration for an exampie of For...Next [oops.

Waik Through—Using Visual Basic For...Next Loops

To use For...Next loops
I. Start Visual Basic.
. Open Visual Basic. Open a new form.
2. From the File menu, choose New Project.
3. Double-click the command butten tool in the Toslbax.
This will open the command button Code window.
4, Add the Ie'lowing code inthe Code window:
5. Add the appropriate code o the Commuand I_Click ¢vent:

Sub Commandl_click {)
Dim I As Integer
For I =1 to 6
Print I
Next I
End Sub

6. From the Run menu, choose Start,

Test the application you have created. The default value for Step is 1. The
application prints the numbers | through 6 onthe form,

238 Module 10: Using Conditional Logic and Loops

7. From the Run menu, choose End.
%. In the Code window, change the Step value to 2,
9. From the Run meny, choose Start.
Test the application again.
How has the output you are getting changed?
How would you chiange the For...Next loop to display only even numbers?
161 Froam the Run menu, cheose End.

End the walk through.

Acinore sophisticated vse of the For...Next loop can be found in Visual Basic Help.

Example 1 “For,o Hexl Statement Example
Suby Farilegt tlomo ()
v HELS = ohr 20131 + Chrsilg) ' Define newline.
G For Rep® = 5 To 1 Step -1 ' Set up five repetitions.
5 Equate alphabet te numbers.
) For Indx% = Asc{"A") Tec Asci("I"}

-1

Append each lewter to string.

] Msgs = Msg§s + Chrsi{Indxy)

9 Next Indxy

1. Msg$ = Msg$ + NLS . ' Add newline for each rep. ot
11 f Next Rept

iz MsgBox Msgs ' ' Display results,

13 End Sub

Nutice that one For.. Next leap is "nestes” inside the other in this example? This is
a poweriul tool tor processing multiple rows or columns in arrays.

It you want 10 see this code running, fotow the directions detailed above and make
the appropriate moeditications to the code so that it executes as the result of a
comenand button being clicked.

Module 10: Using Conditionai Logic and Loops 238

Walk Through—Another For...Next Loop Example

Z To use another For...Next loop

6.

From the Walk Throughs program group. sturt Forl.oop 1o Clear List.

This is an enhanced version of the previous Do While example. When the
application starts, a form with a list box, a commuitnd button labeled Add To List,
and another command button labeled Clear List appear.

The purpose of the application is to change the example 1o use a For...Next loop
to clear the list.

Choose the Add to List button.

An input box will appear prompting the user to add an item to the list box.

. Type some text and choose OK.

The text just typed into the text box wiil be added as an item o the list on the
loop example form.

Repeat the above step several times.

Add several items to the list.

Choose the Clear List button.

All items will be cleared from the list box.

Quit the application.

2. To create the For...Next loop example

l.
2,
3.

Start Visual Basic.
From the File menu, choose Open Project.
Open DOUNTIL.MAK.

Open the project from the Do Until Walk Through. [tis lecuted in the
\WALKTHRWLOGIC subdirectory.

From the Project window, choose View Code.

5. Inthe Dbject list box, select cmdClearList_Click.

Replace the existing code with;

pim I As Integer

For I = 0 To Listl.ListCount-1
Listl.RemovelItem O

Next I

You can use a For...Next loop to keep removing itens from List] until the list
box is empty. In this case, the range for the loop will e from O (the top . inin
the list) to ListCount— | (the last item in the list).

Inside the loop is a statement to cail the Removeltem method, When you pass i
zero to Removeltem, you arc telling it 1o remove the top iter a1 the st

Further Examples For further examples of a For...Next loop sce:

Application Moduole/Form Procedure/Routing

Lmployec Database LMPDBIRM Form_Luoad

240

Module 10: Using Conditional Logic and Loops

The GoTo Statement

EMPREC.FRM .= -

Object: | {general)

Ii#] Proc: [AddEmp [¥]

Sub AddEmp ()
If PrintIt Then GoTo PrintlLabel
Exit Sub

PrintlLabel: <:j’”

Print "Made It ToHere!"

.

End Sub

Style Guidelines

Further Examples

GoTo causes execution to jump trom the GoTo statement io another location
marked by a label or fine number, ’

‘Foven thongh the GoTo statement doesn't enjoy much favor these days, Visual Basic

supports it and there are several places where there is an obvious use lor it, Error
handling s a particularly good example.

[4

Note GoTos are not like procedures; there is no standard return troma Go'To as
there s ram a procedure,

.

= Lach dine Tabet must begin with an alphabetic character.,
w Fach line label must end with ;1. colon.

o Lhch line Llsel suest be unigue within ils own module.

s Lach line label can have nomaore tham 40 chiracters.,

= oot use Visuad Basic keywords in line labels.

= Line labels are not case seasitive.

= A jine Jabel must start with the tirst nonblank character on a line, but it need not
be i the first column, Visual Basic forces it to the leftmost column.

Examples

Additional samplc code is located in Visual Basic Help.

For further examples of GoTo statements see the following.
Procedure/Routine

Application Module/Form

Validate _FileSpee

AddEmp

ICONWRKS.BAS
EMPREC.FRM

feonrWonks

Lmployee Dutabuse

Module 10: Using Conditionat Logic and Loaps

4

Summary

= Control Structures
If...Then Blocks
Select Case Statements
Do While Loops
Do Until Loops
For...Next Loops

GoTo Statements

Objectives

In this medule you learned to use:

n If...Then...Else blocks

= Select Case statements
» Do While loops

u Do Until loops

s For...Next loops

n GoTo statements

tt

242 Moduie 10: Using Conditional Logic and Logps

Lab Time

tt

Gio o the Conditional Logic and Loops portion of your lab manual.

Module 11: Debugging Code 1n
Visual Basic |

Module 11: Debugging Code in Visual Basic 245

> Qverview

= Debugging Terms
* Debugging Code in Visual Basic
Using the Call Tree

Using Walch Variables to Monitor Program Execution

Overview

Visual Basic offers programmers of all skill fevels a ser ol rabust wols o use during
- application development.

Prerequisites
Prior to starting this module, you should already be tumihiar with:

= Controls, forms, and properties
s Function and Sub procedures

s General and event procedurcs

Overall Objective

The overall objective of this module is to intruduce yeu to soime ol the most usetul
debugging tools available in Visual Basic. This s not intended to be comperchensive
trcatment of debugging techniques in general.

Learning Objectives
At the end of this module, you will be able 10

» Distinguish among run, design, and debug modes in Visual Basic.

s Use the Watch window to display the current values of vaciables withina
program.

n Set breakpoints within code.

= Single step through application procedures.

246 Module 11: Debugging Code in Visual Basic

Debugging Terms

» Watch Expressions
= Watch Point Variables
Walch point—break when true
Watch point—break when changed
= The Debug Window
The Immediale pane (?, =)

Walch pane

Watch Expressions g

A watch expression is a variable whose value is displuyed in the Debug window
whenever o progrian enters break mode.

You i set a watch expression by opening the Debug menu and choosing - the
Add Waeh or Edit Wateh command. This can be done in cither design moae .y
break maode. '

Watch Point Variables

A walch point variable will cause a program to enter break mode whenever the
watch point condition is satisfied.

You can set a wateh paint variable by opening the Debug menu and choosing either
the Add Watch or Edit Watch command, This can be done in either design mode or
hrvik iede.

Watch Point—Break When True
This wilch point variable will cause a program to enter break mode whenever the
variithle™s value becames true.

Watch Point—Break When Changed
This walch point variuble will cause a program to enter break mode whenever the
vartabie's value chunges.

The Debug Window

The Debug window is broken into two parts: the Immediate pane (the lower half of
the window) ind the Watch pine (the upper half). The Immediate pane is where you
can have s interactive conversation with the debugger using cither the question
mark 2 o the equal sign (=), The Watch pane is where the watch variabler -~
displiyed during break mode.

Module 11: Debugging Code in Visual Basic 247

Debugging Code in Visual Basic

su "'I‘:Baslo (design)’ i
Debug Options’ Window Help
Add Walch iea ‘

File Edlt View Run

Instant Watch... Shift+F9
Edit Watch... Ctri+W
Calls Ctrl+L

! Single Step F8 l
Procedure Step Shift+F8

Using the Visual Basic Debugger

This module is actually made up of a number of walk throughs that introduce you w
the various tools available within the Visual Basic debugper.

Walk Through—Using the Call Tree

E To see the first sample application work
1. From the Walk Through program group, stirt Debugl.
2. Click the Cali Procedures command button.

3. Observe the output generated on the form,

Dehoq - Cofl List Exercise i
Start Calling Pmc:durel Commandl
This it Procedwme A
Caling Piocedute D
Thit it Procedute B
Calling Procedhiwe C
Th e oneduin ©

RAetuiming liom Piocedurs ©
Relurning flom Proceduis B
Returning from Procedure A
Returming fiom Commandl_Click

Nate that Commandt_Click calis Procedsre A, Provedure A culls Procedure 3,
and then ProcedureB3 cails ProcedureC.

4, Choose End.

[%3

248 Module 11: Debugging Code in Visuai Basic

): To exanine the code for the walk through

The purpose of this walk through is to introduce you to two tools that you will tind
very useful: the Call window and single stepping through code.

.
it
RS
4.
5

0.

Start Visual Basic.

Openthe DEBUGI.MAK tfiie located in \WALKTHRUNDEBUG.
Seleet MODITBAS in the Project window and click View Code.
Fram the Procedures drop-down list box, select ProcC.,

Eximine the cude for ProcC. |

As it stands, this procedure prints two statements at column 49 on your form.
The other three Tines are “commented out.”™

Remove the three comment mark * in front of the Stop and Print statements.

Wit will huppen when you do tius? You have added three new statements to
the upplication. The first one prints a message to the form at column 40 that tells
you the application is gotng into break mode. The second statement actualily
stops that application using Stop. The final statement prints & message to the
form that tells vou Uikl you have entered single-step mode aller pressing F8
Twige.

tt

From the Run mweny, choose Start.,

Chick the Call Procedures comunand butlon.

I you mowve the Code window from on top of Form !, you will sec that the output
ts slightly chunged, Now it should look like this.

.- - .. Debug - Call List Exercige N

Stait Calling Procedwes - Commandl _Click
This is Piocedwe A
Calling Procedwe B

L Thie is Procedure 8
Cone Calling Procedure C

Cail Proceduies Th?a is Piocedurs C

: Going Inlo Oreak Moda

o af

Claas Foum

L.

Y. Frenn the Debug menu, choose Calls, Now you should see a form like this.

= R

M urchile: Mocedure:

Command{_Click

Notice that the calls are listed with the most recently called at the top.

Module 11: Debugging Cede in Visual Basic 249

15.

16.
17.

20.
21,

22,
23

10—~

Click-the-Show-command-button:
This returns you to MOD1.BAS.

You should see the code for ProcC with a hox around the code line containing
the Stop stalement.

Single step by pressing Fs once.

This will start you singie stepping through the rest ol the procedure. This muakes
Print ~Going into Single Step xoda- the NeXt stulement Lo execuie.

If you position both windows so that you can see afmost all of them. you will sec
Visual Basic work as you single step through the application.

Press F8 one more time.

This cxecutes the current Print statement and makes prins "Rerurning frop
Procedure C* the next stalement to cxccui,

Press F8 a third time.

This exccutes the current Print statement (cheek (the output on the form) and
makes the End Sub statement the next stalement to cxecute,

Press £8 a fourth time.

This executes the End Sub of ProcC and takes you to the next statement o
execute in ProcB, which is the print "Rerurning from Procecure 3°
statement.

From the Debug menu, choose Calls or press CTRL«L..

Note the most recent procedure is now Procedure B.

Doing this verifies that the call list has changed since the return from ProgC
Click the Show command button to return 10 ProcH.

Press F8 a fifth time and then a sixth time.

This takes you through the remaining two Procedure B statements and tukes you
1o the next statement in ProcA —psrint "Recurning from Procedur A-.

Press F8 twice more.

This single steps you through the remaining Procedure A statements and takes
you to the next statement in Command 1 _Click — i i “wevurning Toom
Commandl_Click".

Press F8 twice more.

This takes you through the remaining the Conenand 1 Click event procedure.
From the Run menu, choosc Break.

From the Debug menu, choose Calls,

Notice that ne calls are listed. That is because no Suby or Funcetion procedure is
currently "open” and your application is in 1dle wailing tor the user o do
something.

Choose the Close command button on the Calls dialog bux,
From the File menu of Visual Basic, choose Exit.

I you want 1o try tiis exercise a second time, do ot save the changes to the
files.

F13

250

Module 11: Debugging Code in Visual Basic

Walk Through—Using Watch Variables to Monitor
Program Execution

Debugging Applications

Debuyping applications is somewhere between a science and an art. By careful use

ot your debugping tools, such as breakpoints, watch variables, stngle stepping, and
pracedure stepping, you can zero in on the logical bugs existing in your code.

Thas watk through applics breakpoints and watch expressions to Jocate a number of

logical errors contained within the code.

To see the second debugping application run
i, From the-Walk Through program group, start Debug?2.

2. Click the Print File command button.

You get outpud that looks like this,

1 20 30 4 50 fotal = 150 Average = 20
12345 Total » 165 Average = 16
g 50 25 75 200 Total= 615 Aveiage = 41 33
109876 Tolal » 855 Average = 32 -
11 22 33 44 55 Tolal = 820 Average = 32

- ISum ol all totals = 0
Avg ol all tolals = 0

IR

This program lists five numbers, their total, and their average. It does this for
Nive sets of data, A the end, it prios the total of all the numbers and the average
for all the numbers.

30 Ba exanmine the output carelully. 1 isa @ giving you what you want: The totals
and averages aren’t correct.

I the application were coded correctly, final output should look something like

tiis.

- DEBUG2.FRAM
10 20 30 40 S0 Total= 150 Average = 30
12145 Tatal = 15 Average s 3

10U 50 25 75 200 Tolal= 450 Average» 30
it 3876 Total « 40 Aveiage = B
1122 3] 44 55 Tolal= 169 Averaga = 3]

Sum of all lolale = B20
vg of ‘all tolala =]2

{7 Iovind Fiiel ™ | [0 Clgar:

Yo need o correet the logice, hut where do you hegin?

4. Double-click the Control menu on the Debug2 form to close the application.

Module 11: Debugging Code in Visual Basic 251

2 To analyze the variables used in the sample application
1. If Visual Basic is not running already, start il.

2. From the File menu, choose Open Preject to locate and start DEBUG2.MAK.
located in \WALKTHRU\DERUG.

3. Note that there are two (iles to this project: DEBUG2FRM and MOD2.BAS,

4. What are the global-level variables. and where they are located?

I¥ you inspect the General Declarations scction of MOD2,BAS, you will see
%151, an Integer array, and sumcounter deciured as an Integer.

There is also a String variable called Frlename$ in MOD2BAS,

5. What are the form-{level variabies, and where they are locared?

If you inspect the General Declarations section of DEBUG2.FRM, yau wili find
Sum declared as an Integer. But, be caretul here. Visually inspecting the
General Declarations section doesn’t tell you all you need e know, and this will
come back to haunt you a little later on.

Why do you need to know this? Awarencss of the types and scepe of the
variables within your application will help in the analysis of the code.

z To analyze the procedures used in the sample application
|. In DEBUG2.FRM, examine the cmdPrimFile_Click vvent procedure.

2. Which general procedure is called in this procedure?

If you said the Readiile procedure from MOD2BAS, you were correct.

3. Examine the ReadFile general procedure in MOI3Z BAS.

To display the source for the ReadFile general procedure, pluce the cursor in the
word ReadFile in the cmdPrintFile_Click procedure and press SHIFT + 12

Note the outer For...Next loop is contrelled by J. whereas the inner For...Next
loop is controlled by L. These two loops control purt of the calculations in your
application.

252 Module 11: Debugging Code in Visual Basic

L Tw use breakpoints and watch expressions to observe program behavior

[n order to observe the logic flow and I and I's values, we will use two watch
expressions and a breakpoint.

1. Set u breakpoint on the next 1% line.

Place the cursor anywhere on the nvext 1% line and press F9.

[]

Highlight the 1% variable on the ror 1% line.
X Fronm the Debug Menu, choose Add Watch.

A Tornwill appear on screen that looks like this,

Lxpression;

iz |

I Context ‘U Cancel
® Proceduie [Fleadfiie LEI
D Form/Module [M0OD2.8AS [2]

- Global

tt

Watch yp
» Walch Expression

> Bieak when Exprestion iz Tiue

() Break when Expiession has Changed

'

4. Make sure that the values for the Add Watch window are as follows.

Control Setting

Expression i%

Procedure - Readtile -
Fornm/Module MOD2.BAS ’
Watch Type Watch Expression

5. Choase OK.
6. Repeal the above steps (1 thorough 5) for J9 to create a watch expression tor
1%,

You new have two watch expressions. Each time your program enters into break
miode, the current vafues of these two variables will be displayed at the top of
the Debug window.

Module 11: Debugging Code in Visual Basic 253

Z To observe your watch expressians in action
]. Start your program by pressing Fs.

2. Arrange the windows so that you can see DEBUG2.IFRM, the Debug winduw,
and MOD2.BAS code window.

You might want to arrange them so that they fook tike this

=] Debug window [DEHBUGZ.FRM|

F{

[Puint r.rui_l | ‘Claar] i n
=,l MOD2.BAS [~f{-

Ea?;;:if?[lgenereli l_;] “Proci [Readlila | ¢
Open Filename$ For Input AS Fnuml} |+
fFor Jt =110 6 !

Input Sfnumll, x(1), x(2), x(3), =(b}, %{5)
Forai.Print

3. Choose the Print File button.

Because you have set a breakpoint, your application will stop execution on the
line Next I%.

4. Note the values of 1% and J% in the Debug window.
Right now they should each bc at | because you are in the fiestiteration of both -

loops. If you look at the output of DEBUGZ.FRM. you will see that the value &
has been printed there. '

1

5. Continue execution by repeatedly pressing 155 uniil J% cquals 2 and 196 equuls 3.
Each time you press Fs, your application enters break mode and the current
values of [% and J% are displayed in the Watch pane.
Al this point you know that 1% and J% are behaving correctly. [Eis lime Lo
pursue analysis in a different direction.

6. From the Run menu, choose End to stop exccution ol your program,
7. Press F9 to clear your breakpoint on the sexc 1% line.

The next 1% line in the Readfile procedure ol MOD2.BAS shouid alrcady be
selected; so press F9.

To this point, you have seen what we wanted to demonsirate about watch poinls and
watch expressions. If that is all you need from this exercise, then quit here. If,
however, you want to sharpen your debugging skills. continue on with the exercise.

The question here is this: What is going wrang with the application? First, it doesn’t
scem to be calculating the individual totals properly. Youare ending up with
value ol 165 for the second set ol numbers when it should be 15 Why don’t you
next set a watch point on Total%”?

254

Module 11: Debugging Code in Visual Basic

z To use watch points—break when expression has changed (Total %)

In the Code window for MOD2.BAS, locate the procedure Readfile and
highlight the variable Total% within the For 1% loop.

2. From the Debug menu, choose Add Watch.
3. Muke sure that all the controls for the watch point are as follows.
Cantrol Setting
Lxpression Total%
Procedure Readfile
Formihodule MOQOD2.BAS
Watch Type Break when Expression has Changed
4. Choose OK o close the Add window.,

Z To ohserve your wateh variable in action

I,

-

I

4.
5.

0.
7.

From the Run-menu, choose Start to run your program.

Note the entry udded 10 the top of the Debug window. This wiil cause the
progrant to enter into break mode whenever Total% changes.

You may need to expand the Watch pane display area in order to sce the et
additional watch variable.

Click the Print File command button to enter the Readfile procedure.

What is the first value for Total%?

I you suid 1), you were correct.

Press Fs six more times (so that 1% equals | and J% equals 2).

Now, what is the value of Total%?

I you said 151, you were correct; But what should the value of Tolal% be at ths
point, wid what does that ielt you? ‘ '

The value tor Total% at this peint should be 1, because that is the first value for
the second pass through the J% loop. What this tells yo is that you need to reset
the value of Total% before each entry into the 1% loop.

From the Run menu, choose End.
AUd the following line just before the For 1% = 1 to 5 line:

Total% = 0

Module 11: Debugging Code in Visual Basic 255

8. Test your change by running the code again. Notice that the total is correct.

You will notice that the averages for the Tust four seis of nuabers have the
values 1, 30, 2, and 6. That is, they are still wrong, To fix this problem, what
other variable must you zero out before reentering the 1% loop?

If you said counler%, you were correct.

7. From the Run menu, choose End,
10. Add the following line just before the For 14 = 1 o0 s line:

Counterty = 0

[1. Testby rimning the program again.
12. Inspect the Total and Average for cach of the five seis of duta.

Total and Average for ¢ach set of numbers should now be correct. Compare
them with the correct output dispidyed earlier in this walk through.
3. Inspect the values displayed for the overall'sum and average values. _
T L

They are both 0. That can't be right.

14, From the Run menu, choose End.

Z To clear all watch variables and all breakpaoints

1. From the Debug menu, choosc Edit Walch,

2. Choose Delete All 1o delete all watch points you nay have set.
1. Choose Close to close the Edit Watch dialog box.
4

. From the Debug menu, choose Clear All 1o clear ull breakpoints that are set.

z To use watch points—Dbreak when expression hecomes 'True (Su)

At this point you have fixed the calculation of individual tods and averages, bul
the calculation of the overall total and average is still wrong, For this reason.
closer examination of the Sum variablc is wurranted.

1. From the Debug menu, choose Add Walch.

2. Fill in the following entries:

Expression Sum>0
Form/Mod DEBUGZ.FRM
Procedure « cmdClear_Click

Break when Expression is True
Choose OK
3. From the Run menu, choose Start.
4. Note the entry added to the top of the Debug window.

This will cause the program to cnter o bicak e whenever Sum > 0
becomes True.

256

Module 11: Debugging Code in Visual Basic

z To obscrve your watch variable in action

I Press the Print File conumand button to run the program.

2. Phd you ever enter Break mode?

Your program should not have entered break mode because the variabie Sum
wis never greater than 0.

3 From the Run mienu, chease Break, Noti o2 in the debug window it specifies Sum
<Notin Context>, This 18 because Sum 2 a local variable and you are not
currently running the procedure that contains Sum.

4. Fronn the Run menu, choose End.

To tix the code—using debugging and logical analysis to correct the code

Lo Fiest ol all, wow many variables named Suim are in this application?

Remember at the start of this walk through that we asked that question and said
that there was only one. Well, there are really two. If you said two, you were | «
correct. :

-2 ook in l]nc General Declarations section of DEBUG2.FRM. Notice that it

contains an explicitly declared form-level integer variable called Sum. This
variable is not available outside this form.

Ao Now ook at the code in MOD2.BAS. s the variable called Sum there, the saime
one as in DEBUG2.FRM? No, this is an implicit variable [ocal to the Sub
procedure Readfile. This is the source of your problem.

How can you make sure that the variable called Sum in cmdPrintFile in
DEBUG2.FRM and the one referred to in Readfile are the same?

I ousaid delere the ocal variuble declaration and make it Global, you were
right. .

4. Delete the declration in DEBUG2. FRM.

30 Add the following declarztion o MODULE2.BAS:

Giobal Suim As Integer

Z To test your scoping changes

. Run the program again.

Aller making these changes, yoﬁ'll discover that the sum of all totals is 2025 and
average of all 1otals is 81, They're still not right.

[)

Choose End from the Run menu.

Module 11: Debugging Code in Visuat Su.. - 257

3._Set the breakpoint.on-Nexi-1%-and-the-wateh-expressions-on-{G-and-J%-in-the

Readfile procedure. (Follow the guidelines outlined carlier in the walk through.
if you need to.)
z To single step through your program
|. From the Run menu, choose Start.
2. Click the Print File command button,
The next line of code to be exccuted should be vexe 14,

3. Now, query for the current value of Sum hy placing vour cursar in the Debuy
window and typing:

8um
Then press the ENTER key.

4, Observe that the value [0 displuyed in the Immediate pane of the Debug
window, That's the current value of Sum,

5. Step through the [% loop again, stopping ot the same point as before, and query
the value of Sum.

6. Observe that the value 40 is displayed. However, HE+ 20 " es not equal 40,

What's the problem? ne

If you said the line: sumy = Total « sum needs o be moved below the hine: texs
1%, you're correct.

7. Cutand paste the line sumé = Total - sum L0 just below roxe 13,

}:, To test your logic changes
[. Start and test the application again to see il it's working properly now.

2. Compare your output with the desired final vutpui shown below,

- DEBUG2.FRM !

10 20 30 40 50 Total = 150 Avcrage = 30

12345 Total = 15 Average = 3
1ﬂ0 50 25 75 200 Total= 450 Aveiage = 90
10 9876 Total = 40 Average = 8
11 22 33 44 55 Tolal= 165 Avetage= 33 -

Sum of all lotals = 820
Avg of all lotals = 32

Clear

1. Close the application and give yoursell a pat on the Tack,

258 Module 11: Debugging Code in Visual Basic

Summary

. Debugging Terms
= Debugging Code in Visual Basic
Using the Call Tree

Using Watch Variables to Monitor Program Execution

Objectives ,
Lo this needude yon learned tar
o Distinguish nong run, design, and debug moedes in Visual Basic,

Use the Watch window to display the current values of variables within a
progran.

Set breakpoints within code.

Single step through application procedures.

I

Module 12: Printing to Forms and
Printers

Module 12: Printing to Forms and Printers 261

> Qverview

Scenario

Methods for Printing

Print-Related Functions

Using PrintForm

Overview

Printing to forms and printers can be as complicated or as simyple as vou want w
make it. This module shows you some of the simple tricks that vou can use 1o
prepare text for printing.

Prerequisites
To succeed in the module, you should already be familiir with:
s The general syntax for methods.

» Sclect Case statements and If... Then...Else blocks.

Overall Objectives

The purpose of this module is to give you an introduction Lo printing using Visual
Basic. This module is split into two topics: printing 1o o foron and seading thit Torm
10 a printer.

Learning Objectives

At the end of this module, you will be able to:

n Use the Print method to create output directly onto a torm,

a Describe how the AutoRedraw praperty relites to pristing directly o torn,

» Use the CurrentX and CurrentY properties o a form and the Spe and Tab
functions to control the placement of output printed o u form.

s Use the Cls method to clear a form.

s Use the PrintForm methad to send a bit-Toe-big nage of o torn o the printer.

262 Medule 12: Printing to Forms and Printers

Scenario

= Printing a Form

L3

The specification for the Employee Database requires that users be able to print out_ .
an individual employee's personnel information.

Individual Reports

You lave determined that users want the individual report to include the following
information on individual lines:

. Lastname, fiest name, and middle initial
2. Llectronic mail alias and department code
3. Puosition type

4. Dueduction information

ﬁ

. Employee photo centered at the bouom of the page

Alter much work, you have determined that a workable individual report form
would look like this.

Employee Record Details

Employee: Richardson, Barbara, J.
Email: barbarar Dept: SAL
Category: Full time

Deduct: ESPP 401 (k) United Way
X

X

il

Module 12: Printing to Forms and Printers 263

Methods for Printing

Object: [Form %] Proc: {Click K3 .
Sub Form_Click () 2l
Dim I As Integer Al
ForI=1¢to6é6

Print T
Next I

i [THI TouI ety
S Pk A 8;;‘\"
g o h e e ot

b R O A e o LY

D0 WA —

Syntax

Overview E

There are a number of different methods, functions, and properties vou will need 1o

- understand in order to print to a form and then send that form to o printer.

Mecthods Functions ['ropertics
Print Spe Currem X
Cls Tab CurrentyY
PrintForm Format AutoRedraw,

Fontsize, and so on

The Printer Object

The Printer object is a predeftned object in Visual Busic. You can send outputto the
Printer object using the Print method. When you ure finished placing information
on the Printer object, you use the EndDoc method to send the vutput te she printer,
The output will print on your default printer,

Printer.Print "Here 1s some infarmacicn o Pagae one
Printer.NewPage *This causes a page Dreax
Printer.Print "Here 1is some mnre inloiier ion”
Printer.EndDoc '"This sends the outpuf Lo Lne printer.

The Print Method

The Print method is used to put a text string on a form, o piciure box, or Printer
object using the current color and font. This portion vl the module will discuss the

- Print method by first talking about it in general and then discussing the

implications of printing to a form and printing to o pichure hox.
[object1Printfexpressiontisi][{:l.]]

‘The object can be cither a fornm, o picture, o aprinter toowhich ahe expression Tisl
will be printed.

264 Medule 12: Printing to Forms and Printers

The expression list is either text or numbers that you want to print. Multiple
expressions can be separated with a semicolon, a comma, or a space. If the
cxpression list is omitted, Visual Basic prints a blank line.

The semicolon and the comima are used to specify the location of the text cursor for
the next character displayed. A semicolon means the cursor is placed immediately
alter the last character displayed. The comma means the cursor is placed at the start
of the next print zone. Print zones begin every 14 columns.

Note A lorm does not nced to have the Visible property set 1o True to be able to
send output w il

Walk Through—Printing with For...Next Loops
Z To priut with For_Next loops
I From the Walk Throughs program group, start Fancy Print.
2. Click the form.
This displays the output from the code contained on the next page.

3 From the Control menuy, choose Close.

The Tollowing example is available in Visual Basic Help.

"Print Method Example

Example 1
2 Sub PrintPemo ()

3 Const BLUE = 1

4 . Const MAGENTA = 5 . .

‘ Const BRIGHTWHITE = 1%

5 Cls ' Clear form,

! Wirlth = 7200 ' Set form width.
~ Hetght = S00C ' Set form height.
y HarkrColor = QBColor (BLUE) ' Set background color.
10 For I* = 1 To 3

1 Selact Coasae 1%

e Cogea 1L ' First time.

1 *Ser foreground color.

14 ForeCclor = (QBColor (MAGENTA)

i i o= 1: L% = 9: M% =1

ih Msgs = "Visual® ' Set message."

17 Cx =0 ' Set position variable.
13 Case 2 ' Second time.

19 K% = 1: L% = 9: MY = 1

20 ’ Msg$ = "Basic"

21 CX = ScaleWidth

22 Case 3 * Third time.

RE) toreColor = QBColor {BRIGHTWHITE)

24 K = 9: L% = 1: M% = -1

25 ' Msgs = “"Visual Basic-

Y CX = ScaleWidth / 2

N] End Select ,

Further Examples

Module 12: Printing to Forms und Printers 265
28 For J% = X% To L% Step M3
29 Select Case J% Cihange funt size
10 Case 1: Fontgize = 8§
3l Case 2: Fontsize = 140
a2 Case 3: Fontsize = i2
33 Case 4: Fontsize = 14
34 Case 5: Fontsize = 12
15 Case 6: Fontsize = 20
i6 Case 7: Fontsize = 24
37 Case 8: Fontsize = 156
i8 Case 9. Fontsize = 43
39 End Select
40 If I% = 1 Then
41 Offsezt = 0 el bt
42 ElselIf I% = 2 Then
43 Offsetd = TextWidthiisgs) Twexl oon oright
14 Else
45 Text in center.
46 Qffset% = TextWidthiMsgs) / 2
47 End If
48 CurrentX = CX - Offset}
49 Print Msgs$ Prine message.
50 Nextc J%
51 CurrentY = 0 Resel Lo top of form. o
52 Next I%
53 End Sub

For further examples using the Print method, sce the following.

Application

Form

I'rocedure

[conWorks

Employee Database

ICONEDIT.FRM
ICONEDIT.FRM
VIEWICON.FRM
VIEWICON.FRM
EMPREC.FRM

DisplayMaonseCoaordinates
IPic_NtatosArea Paint

Load _All_lenns

e _SelectedIconlabel_Paint
cind AddDeletelUpdate_Click

266 Module 12: Printing to Forms and Printers

> Print-Related Functions

» Spc Function

= Tab Function

Module 12: Printing to tutins and . ences 267
Spc Function
= .- Form1.drni
Object: [Form '] Proc: [Click 14
Sub Form_Click ()
FontName = "Helv"
FontSize = 12
Print "Skip 1 space and print a”; Spc(ly "1
Print "Skip 2 spaces and print a"; Opc(2) "2"
Print "SKip 3 spicoimdinid O . "
Print "SK\p 4 spi=Rstiale] 701 RS
Print "s 5 spd Skip 1 space and printa 1
Print "Sk Skip 2 spaces and printa 2
End Sub ¢ Skip 3 spaces and printa 3
o T SRR P Skip 4 spaces and print a 4
N LR AT LT IR vrr ot d KA Y E Vrre Skip 5 spaces and print a 3}
f Skip 8 spaces and print a 6

Syntax

Example

Further Examples

LN I T B PV S

This function inserts a specified number of blunk characters in w Print method,

starting at the current print position.

Spc(number)

The neunber argument must be an integer between Oand 32,767 inclusive,

t b

Important When using fixed pitch fonts (where the space allowed for each

character is the same size), Spe is not complicated to use: but with a proportionally

spaced font {such as Times New Romane), the width of the spuace is always the

average width of all characters tn 22 point size of that Tont.

'Spc Function Example
Sub Form_Click'{)
FontName = ~“Courier-
Print " 1
Print "12345678901234
Print "I'll skip some
End Sub

For other exampies using the

Application

2 4 il 5

SETBO0L1234G0 YDA] o n THOO

spaces then print an 7@ SpeiJi; "w”

Spe function. see the folowing.

Form Procedire

Employee Database

EMPREC.FRM

cindAddPrintUpdate_Click

268 Module 12: Printing to Forms and Printers

Tab Function

Object: | Form .'l Proc: | Click Itl
Sul> Form_Click ()
FontName = "Helv"
‘FontSize = 12
Print "Tab to"; Tab{10); "10"
Print "Tab to"; Tab(20); "20*"
Print "Tab to"; Tab(30}; "30"

End Sub g s
Tab 1o 20 . :
Tab to 30 i
d

The "Fab Tunction muves the text cursor to a specified print position when used w:th
the Print meihod.

Syntax Tab(cefumnd)

The parameter colwmn is an Integer expression that is the column number of the -
new print position. The Ieflmost prmt position on an output iine 1s always 1.

For forms, the only limit to lhe rightmost print position is the range of the Integer
data type.

lor a complete description of the Tab function, sce Visual Basic Help.

-~

Module 12: Prinling to Farms and Printers 269

Using PrintForm

[form.}PrintForm

. Syntax

Example

Further Examples

PrintForm

Once you have finished formatting ali the ourput to a Torm, vou i use the
PrintForm method to send a bit-by-bit image ot the Torny to a prinier.

[fornt.)PrintForm

This example is available in Visual Basic Help. It your machine is correctly
connected to a printer, this code will send the current forny 1o it

1 'PrintFerm Method Example

2 Sub PrintFormDemo ()

3 On Error GoTo ErrorHandler Y et op oarror nandlav
4 PrintForm opring form.

5 Exit Sub

6 Errortandler:

7 Msgs = "The form could not be printad.

8 MsgBox Msgs oD speay mrnsage.

9 Resume Next

10 End Sub

Application ' Form Procedare

Employee Database EMPREC . FRM cid A ddPrintUpdate_Click

Remember, the Print method is used to place the data on the form. The PrintForm
method is used to send a bit-by-bit tmage of the fornt o the detaull printer.

You should set the AutoRedraw property ol a lorm to Froe il vou will print it using
the PrintForm method. If AutoRedraw is not True. graphics druwwn direcily on the
form using Print, Line, Circle and other graphic statements will notappear on the
printer.

270 Module 12: Printing to Forms and Printers

Walk Through—Effects of AutoRedraw
z To see the effeets of setting the AutoRedraw Property
L. From the Walk Throughs program group, stan PrintForm & AutoRedraw.
2. Click the Draw command button,
This draws lines on the form.
3. From the AutoRedraw menu notice that AutoRedraw is set to False.

4. Drag the minimized Program Manager icon onto the form and then move it
dwily.

Nutice the frm now has a $ap where the Program Manager icon erased the
lines. The lines ure not redrawn, If you had printed this form using the
PrintForm method, the tines would not appear.

Ao Femithe AwoRedraw menu choose True 1o set AutoRedraw to Truc,
e code i this menu selection invokes the Deaw bunton for you.

O Dy theminimized Program Manager icon onto the form and then move it
il‘.\'il_\".
Nutice the Torn automaticatly redraws the lings it necessary. It you had printed
this Form using the PrintForm method, the lines would appear. tt

Module 12; Printing 10 Forms and Printers 2n

Summary

= Scenario
= Methods for Printing
= Print-Related Functions
= Using PrintForm
i
Objectives
In this module you learned to;
-» Use the Print method i create output directly onto o form.
m Describe how the AutoRedraw property relictes to printing directly to a torn.
» Use the CurrentX and CurrentY properties’of a form and the Spe and Tab
functions to control the placement of output printed o form,
s Use the Cls method to clear a form.
n Use the PrintForm method to send a bit-for-bit image ol a form te the printer.

Module 12: Printing lo Forms and Printers

272

Lab Time

T

pul portion of your lab manual.

=

Gioto the Getting Out

Module 13: Data Access Using the
PData Control

Module 13: Dala Access Using the Data Lol

275

> Overview

= Overview of a Database
= How.Does Visual Basic Access Databases?
= The Data Control
» Binding Controls to the Data Control
= Data Control Walkthru

= Data Control Methods and Properties

Objectives
At the end of this module, you will be able to;

s Describe how Visual Basic accesses databases.

a Use the data contro! to view the contents of a Microsolt Accesse database.

3

276 Module 13: Data Access Using the Data Control

Overview of a Database

Employee ID_!.". Order iD Customer 1D

Last Name 3“ Customer ID—= |Company Name|;

First Name % ——%Employee D % Contact Name |!
/

PTY

i el i

i a [r oy

Employees Orders Customers

- AR ekt AN

NWIND.MDB

Overview of a Database

The follewing information will help you undersiand somc of the tlerminology and
concepts associated with database structure and design.

Relationai Dalabase Objects

Visual Basic provides a relational interface Lo database files. Basically, a relational
database is one that stores data of tables, made up of columans and rows. In Visual
Basic, columns are referred to as fields and rows are referred to as records.

Tables

A table is a logical grouping of related information. For example, the Northwind
Traders database has a tabie that lists all the employees and another tabie that lists
all the customers. '

14

Module 13: Dala Access Using the Data Control 77

Overview of a Tab__l.e///

Employees Table

Employee 1D Last Name First Name {2
135 Levering Tim 4
284 Buchasan B.L.
Aows
(records) {
Lkt Mo L} Sivn Pl e e b T e et e [T \«”j
Columns (fields)
Fields :

Each column or field in a table contains a single piece of informiution. For example.
the Employees table has fields for Employee [, Last Nume, and so forth.

Records

A row Or record in a table contains information ubout 4 single entry in a table. For
example, a record in the Employees table would have information on a particular
employee: Generally, you do not want two records in a table to have the exact same
data. You would not want to have two Employees with the same nare and the same
ID number. Most tables have a field or combination of fields thut must be unique.

Indexes

To make access to the database faster, most dutabases use fndeves. Dalabase tuble
indexes are sorted lists that are faster to search than the tabies.

Structure Query Language (SQL)

Once the data is stored in the database, retrieving it is made cusier by using an
English-like language called Structured Query Language, or SQL. SQL has
evolved into the most widely accepted means to “canverse”™ with a database. The
user submits a query and the database returns all the rows that match that query.

Example Select [Last Name). Title From Employees where Title = 'Sales Rep’
Sample Databases :

In this course you will the Northwind Traders sample databise. This datuabase is
included with Microsoft Access.

218 Module 13: Data Access Using the Data Controi

How Does Visual Basic Access Databases?

Visual Basic e
L1
l .
et e TT Y A L kfh A ST W prr—yrery
L 2
v Installabla [Instaliable
opac ISAM | ISAM | Qther
Driver Daver 1SAM
ﬂw e Crivers
ODBC DEC v
sQL QRACLE -
Drivar’ Dnver géhaeé Blriava
—r = —— Drivers

How Does Visual Basic Access Databases?

- There are three types of databases that you can access from Visual Basic:

s “Natlive” Microsoft Access databases. These databases are accessed directly
by Visual Basic.

» Indexed sequential access method (ISAM) databases—for example dBASE,
Paradox®, and Btrieve® databases. Visual Basic reaches these databases
through uscr-installable drivers that link Visual Basic to the specific
databases.

» Open Database Connectivity (ODBC)-accessible databases. These include
client-server database management systems {DBMSs), sucl as Microsoft
SQL Server and ORACLEe. Visual Basic reaches these databases through
the appropriate ODBC drivers.

There wre various gatcways that are available to connect to a mainframe database.
This is typically impiemented through an QDBC driver.

) Module 13; Data Access Using the Data Control 279
J(/lfg
The Data Control

S

Move Previous . Move Last
Move First Move Next

Datali;

e e TR

Data Controli

. The data control allows you to link a Visual Basic form to a dalabase. With the data
control, you can create an application that displays and updates data lroma
database — without writing a single linc of code!

Adding the Data Control to the Toolbox

If the data contro] 1s not visible in the Toolbox, add the fellowing fine at the end of
the [Visual Basic] section in the VB.INI file in the CWINDOWS directory:

DataAccess=1

The DatabaseName Property

The data control locates the database through the DatabaseName property. [you
are connecting to a dBASE, Paradox. or Btrieve, dutabase, sct the DatabaseName
property to the directory that contains the database files.

Datal,DatabaseName = "¢:\walkthruinwind.mdb”

The RecordSource Property

The RecordSource property indicates the name of a table, query or it contains the
text of an SQL string.

The following example connects the data control to the Employees table:

Datal.RecordSource = “Employees”

‘The following example retricves @ subset of the Employees tahle.

Datal.RecordSource = “Select * from Emplovees where [Lasti Hame] » ‘i7"

280 Module 13; Data Access Using the Data Control

Joining Two Tables

The following example joins two tables, The brackets are used with lields that have
aspatee in the name,

Datal . PenordSourne = “Selecrt customers. [Customer Ig)
AlContact Name}, {Order Id)
AFrom Customers, Orders
AwWwhere Customers. [Customer Id] =
a0rders. {Customer Id]-

Ordering the Records

The following example selects only some of the fields in the Employees table and
orders the records by last name:

atal . pocord3ource = “Select [Firsc Namel, [Last Namel from
~Employees Order by [Last Namel"

L

Module 13: Data Access Using the Data Control 281

Binding Controls to the Data Control

Last N ' .DataSource = Datel
ast ame.& .DataField = TLastc MName’

Example

Binding Controls to the Data Contro!

The text, picture, image, check box, masked edit, 3D panel, and 3D check box
controls can be bound to a data control. When a control 1s bound to a data control,

. the data from the database is automatically displayed in the bound control. In

addition, if the user changes the data in the bound control, those changes are
automatically posted to the database as the user moves to another row,

To bind a control 10 a data control, set the DutuSource property w the data control
name and set the DataField property to a [eld mme from the dita contrel’s table.

'The DataSource property muat be gebt at design time
Textl.DataSource = Datal

*The DatcaFleld property can be set at design vr run time
Textl,DataField = *[Last Name]"

282 Module 13: Data Access Using the Data Control

Data Control Walkthrough

Last Name:

L

First Name:

[3

Data Control Walkthrough

- To get u quick overview of the data control, let’s create a simple application that
connects o the Microsoft Access Northwind database and browses the Employees
tuble:

I. Sturt with a new project and add the data control to the form; leave the <zfault
name Datal.

4]

Set the following properties for Datal:

DatabaseName = c:\walkthru\nwind.mdb
RecordSource = Employees

Nole When you sct the DatabaseName at design time, Visual Basic attempts io
connect to tie datubase. If it successfully connects to the database, it will display a
list of possible values for the RecordSource property. Notice when you set the
RecordSource property, you can type data in directly or choose the DOWN ARROW to
display a list of possible selections.

3. Add two text boxes to the form: leave the names Text] and Text2.
4. Set the following properties for Textl: -

DataSource = Datal
Datalield = Last Name

5. Sct the following properties for Text2:

DataSource = Datal
DataField = First Name

O Rua your application!

(continied on following page}

Module 13: Data Access Using the Data Centrol 283

. Click the right arow button to move forward, leil arrow bution 1o move
backward.

. Change a’last name, click the right arrow button to mave forward, and then click
the left arrow button to move back. The record should be updated.

. Notice you have not written a single line of code!

284 Module 13: Data Access Using the Data Control

Data Control Methods and Properties .

« Refresh Method
« Connect
Exclusive
ReadQOnly

Refresh Method

The data control retlects modifications to existing data by other users but does not
reflect records deleted or added by other users. The Refresh method updates the
data conirol with the latest information from the database.

Datal.Refresh

Connect Property

The Connect propenty indicates the type of database that will be opened. The
Conpeet property does not need to be set if you are connecting to a Microsoft
Accuss database.

Database formal Database name Cuonnect

Microsolt Access drive:\path\tile.mdb (none)

JBASE drive\pathy "dbase UL;" or "dbase 1V;"

Mizndoy . drive\pathy “puradox;”

Birieve : drivepathy " "birieve;”

onpc Registered data source "odbeidsn=datasource:uid=
name (server) user,pwd=password”

(Professional Edition only)

Exclusive Property

I you set the Exclusive property to True and then open the database, no other
application will be allowed to open the database until you ciose the database. If
another application has the database open and you attempt to open the database
with Exclusive set 1o True, your application will receive a run-time crror.

ReadOnly Property
vou set the ReadColy property to True, your application will not be allowed to
wrile to the database.

Module 13: Dala Access Using the Data Control 285
~ A Sample Application

ID HMumbet L Find l l Next l
Last Mame ' Update” ' I Prior _]
F.)a_foliug' J

Delcte ' First '
Firgt Name
[Nancyd T [Case) [e |
[[:4TData1 BRI | End

A Sample Application

Here is a sample application that adds, finds, updates and Jdeletes records froma
database.

The details on how to code this application are beyond the scope of this class.
However, you may find this application useful as an example.

The demonstration program DBSAMPLEMAK is locaied in the
\WALKTHRUADBSAMPLE dircctory.

[1

286 Module 13: Data Access Using the Data Control

>, Summary

Overview of a Database

How Does Visual Basic Access Databases?
The Data Control

Binding Controls to the Data Control

Data Control Wa!kthrlu

Data Control Methods and Properties

e

RLSFEN

i A i R Yo A el TR ;o

=
FACULTAD DE INGENIERIA U.N.A_ M.
DIVISION DE EDUCACION CONTINUA

- DEPARTAVENTO DE CURSOS INSTITUCIONALES

INSTITUTO N EXICANO DEL PETROLEQO

VISUAL BASIC
7- 11 NOVIENBRE DE 1994

VATERIAL DIDACTICO

Ing. Leonardo Dominguez
Pastrana

Palacio de NMineria
i éxico, D.F.

Palacio de Mineria Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285
Teléfonos: 5128955 5125121 521.7335 521-1987 Fax 510-0573 521-4020 AL 26

' --.‘,.,;ﬂ

Lang‘uage. Summary

. Visual Basic objects include {forms, controls, and special objects such as App,
Clipboard, Debug, Printer, and Screen. Each object has an assoctated set of
propertics, events and methods. This section includes six tables:

= Table 1.1 lists related functions, statements, and methods, grouped by
programming task. ltems listed in a given category are often used logether.

= Table [.2 lists properties by abject.
= Table 1.3 hists events by object.

= Tablc 1.4 lists methods by object.

= Table 1.5 lists Recordset objects and the properties that apply to cach object.

» Table 1.6 lists Recordset objects and the methods that apply to each object.

Table LI Functions, Statements, and Mcthods by Programming Task

Category Action Functions/Statements/Methods
Option Base :

Arrays Change delauit lower fimit
' Declare and initialize
Find the limits

Reinttialive

-I)im, Global, ReDim, Static
[.Bound, UBound .

Yrase, ReDim

Controtling Branch
progrinn Mlow

Lixit or pause the program

Loop

Make decisions

GoSub...Return, Go'To, On
seror, On.. GoSub, On...GoTo

DoKEvents, End, Stop, Unload

Do...Loop, For..Next,
While...Wend

If... Then. Else, Select Case

Converting ANSI vilue to string
Date 1o serial number
Decimal numbers o other

- Number 1o string

One numeric dala type to
another

Sertal number to date
Serial number o Gme
String to ASCH value
String to number

Time 1o serial number

Chr, Chr$

DateSerial, DateValue
Hex, Hex$, Oct, Oct$
Format, Format$, Str, Str$

CCur. Chhl, Clat, Ch.ng,
CSng. CStr, CVar, CVDale,
Fix, Int

Day, Month, Weekday, Year
Hour, Minute, Second

Ase

Val

TimeSerial, TimeValue

4

Language Reference

Table L1 Functions, Statements, and Methods by Programming "Uask (continted)

Calegory

Action

l"lmclinn.-dSl:lmncnlsll\'!ulliuds

Copying, cutting,
and pasting

Use Clipbhoard object

Clear, GetData, Getllornad,
Get'Text, Sethata, Set'Text

Datedtime

Get current date or time

Set date or time

Time a process

Date, Date$, Now, Time,
Time$

Date, Dated, Time, Fime$

Timer

Dynamic data

Use a Visual Basic application

LinkExecute, LinkI’oke,

exchange (DDE) as a DDE client LinkRequest

Use a Visual Busic application LinkSend

as a DDE server - .)
Error trapping Gel error messages Error$

Get crror-status data Frr, Erl

Simulate run-time errors Error

Trap errors while a program is
runaing

On Error, Resume

File VO

Access or create a lile
Closc files

Control output appeirance
Copy one file 1o another

Get information aboul a lile

Manage disk drives or
directories

Manage files

Read from u file

Set or get file attributes
Set read-write position in a file

Write to.a file

Open

- Close, Reset

Spe, Tab, Widih #
FileCopy

LEOF, FileAttr, FileDute,
IVilel.en, Freelile, Loc. 1.OF,
Seek

Chhir, ChlDrive. Curbir,

" CurDir$. MkDir. RmDir

Dir. Dir$, Kill, Lock...Unlock,
Nanre

Get, Input. Input #. Input$,
Line Input #

GetAllr, SetAtlr
Seek
Print i, Put, Write #

kel

Language Summary 5

Table 1.1 Functions, Statements, and Mcthaods by Programming Task (continued)

Calegory

Action

Functions/Statements/Mcethods

Graphics

Change coordinate system
Clear run-time graphics
Draw shapes

Draw 1ext

Find size of text

Load or save a picture tile

Work with colors

Scale

Cls

Circle, Line, PSet

I'rint

TextHeight, TextWidth
LoadPicture, Savellicture
Point, QBColer, RGB

Manipulating
. objects

Arrange forms or controls on
the screen

Dircct user input 10 a control
Display dizlog boxes

Drag and drop

Hide or show forms

Load or unload objccts
Move or resize controls
Print [orms

Update the display

Work with list boxes and
combo boxcs

Arrange, ZOrder

SctFocus

[nputBox, InputBox$, MsgBox
Drag

l-lidc. Show

Load, Unload

Move

PrintForm

Refresh

AddHlem, Removellem

" Math

Gcnem\[calculations
Generate random numbers
Get absolute value

Get the sign of an cxl.n‘csfx'iun
Numeric conversions

Trigonometry

Exp, Log, Sqr
Randomize, Rnd
Abs

-Sgn

Fix, Int

Aln, Cos, Sin, Tan

Printing

Control output appearance

Control printer

Print

Scale, Spc, Tab, TextHeight,
TextWidth

EndDoc, NewPage -

PPrint, PrintForm

16

Programmer’'s Guide

Starting Visual Basic

When you run the Visual Basic Setup program. Setup automatlcallv creates a new
program group and new program items for Visual Basic in Windows. You are

then ready to start Visual Basic from Windows. J

To start Visual Basic from Windows

e Double-click the Visual Basic icon.

You can also start Visual Basic from either the File Manager or the MS-DOS
prompt.

When you first start Visual Basic, you see the interface of the programming
environment, as shown in Figure 2.1.

Toolbar ~ ~ Toolbox Form Menu bar Project window

1
T
aso al Ba destqg {*

Fife Edit View Run Debug OQOptiohs Window Help

=l = B oo of (Al]2 157 oumatuy’ (27 7usssaucs
=1 Projectl -

. | View Form I View Code I \

1|88 GRID.VEX
|| oLECLIEN. VBX

==/ Properties i~

Properties window

Form1 Form i
x| fForm?

BorderStyle 2+ Sigable |
@M +

i |1

Figure 2.1 The Visual Basic Programming Environment
The Visual Basic interface consists of the following elements.
Toolbar Provides quick access to commonty used commands in the programming

environment. You click an icon on the toolbar once to carry out.the action
represented by that icon.

Chapter2 Your First Visual Basic Application

19

» To resize a control

A

[

= Microsoft Visual Basic [design] - -] -_IJ
File Edit View Run Qebug Options Window Help

=] ilgl Elﬁﬂll ol wl @lffl% I"I:.°| [75 comnzeo” * &7 sussnuss

| TR
Afsblflf e -
GOl e e X
WI@PI

=5 | B R I N

mEl

SISl
@]l

pl |l v
gl

Sl i
=

Figure 2.2 Drawing a text box with the Toolbox

. Place the cross hair where you want the upper-left corner of the control.

. Drag the cross hair until the control is the size you want. (Dragging means

holding the left mouse button down while you move an object with the
mouse.) ‘

. Release the mouse button.

The control appears on the form.

/

1. Select the control you want to resize by clicking it with the mouse.

Sizing handles appear on the control.

. Position the mouse pointer on a sizing handle, and drag it until the control is

the size you want.

A simple way to add a control to a form is to double-click the icon for that control
in the Toolbox. This creates a default-size control located in the center of the
form. .

Notice that small rectangular boxes called sizing handles appear at the comners of
the control; you'll use these in the next step as you resize the control.

The corner handles resize controls horizontally and vertically, while the side

handles resize in only one direction.

3. Release the mouse button.

v Programmer’s Guide

K

» To move acontrol '

» Position the mouse pointer-anywhere on the control other than on a sizing
handle, and drag the control to a new location on the form.

You now have the interface for the “Hello, world

2.3

Text}

Commandl

Command2

[A

application, shown in Figure

a5l

Figure 2.3 The interface for the “Hello, world!” application

setting Properties

The next step is to set properties for the objects you’ ve created. The Properties
window (Figure 2.4) provides an easy way to set properties for all objects on a
form. To open the Properties window, choose the Properties command from the
Window menu, or click the Properties button on the toolbar.

Object box

Tali— Settings box

— Properties list

Commandl CommandEution ! L‘._I
x| NCormmand
€ ack Color [LHED0000058 +
Cancel |Falze
Doetauit Fale
Trragicon [nzne}

0 - Manuat

Tiue

True

Filie

K
i
£l

[H e

-i Fondtize [EEE

wo— iz

Figure 2.4 The Properties Window -

T

22

Programmer’s Guide

>

To open the Code window

¢ Double-click the form or control on the form for which you want to write
code. _ C '

~QOr-
o From the Project window, select the name of the form and choose the View
Code button.

Figure 2.5 shows the Code window that appears when you double-click the
command button control.

Form1.4rm

Obiect: [Conmand) _____|3]

Sub Command1_Click ()

End Sub

Events for Command1

Figure 2.5 The Code Window

The Code window includes the following elements:

s Object box—Displays the name of the selected object. Click the arrow to the
right of the list box to display a list of all objects associated with the form.

» Procedure list box—Lists the procedures for an object. The box displays the
' name of the selected procedure—in this case, Click. Choose the arrow to the
right of the box to display all the procedures for the object.

Code in a Visual Basic application is divided into smaller blocks called
procedures. An event procedure, such as those you’'ll create here, contains code
that is executed when an event occurs (such as a user clicking a button). For more
information on other types of procedures and event-driven programming in
general, see Chapter 6, “Programming Fundamentals.”

32 Programmer’s Guide

Visual Basic Controls

The Visual Basic Toolbox contains the tools you use to draw controls on your
forms. Each tool in the Toolbox (Figure 3.1) represents a control.

Pointer —
Label —
Frame —
Check box —
Combo box —

Horizontal scroll bar —
Timer —
Directory list box —

T~

]

o

B

"t

H— Picture box

— Text box

t— Command bution
— Option button

List box

Shape —
Image

Grid —

— Vertical scroll bar
— Drive list box

— File list box

— Line

— Data

ol) e el L0 e 1A [el (3] e

Common dialog —

— OLE

15 Y e [ah

Figure 3.1 The Visual Basic Toolbox

~

The following table summarizes the Visual Basic controls found in the Toolbox.
You may recognize some of these tools from earlier versions of Visual Basic.

Description

Icon Control
[N Pointer
Picture box -
A Label

Provides a way t0 move and resize forms and controls.
(Note that this is nor a control.)

Displays bitmaps. icons. or Windows metafiles.
Provides an area in which to display text or acts as a
visual container of other controls. See Chapter 15.
“Creating Graphics for Applications.”

Displays text a user cannot interact with or modifv.

Chapter 3 Creating and Using Controls 3

4

]

Icon Control Description
I Text box Provides an area to input or display text.
e Frame - Provides a visual and functional container for controls.

®| (B 10|

0 (@] (e =l (B[

()

Command button
Chéck box

Option bution

Combo box

List box

Horizontal scroll_
bar
Vertical scroll bar

Timer
Drive list box

Directory list box

File list box
Shape

Line

Carries out 2 command or action when a user chooses
it. ,
Displays a True/Faise or Yes/No option. Any number
of check boxes on a form can be checked at one time.

As part of an option group with other option buttons,
displays multiple choices, from which a user can select
only one.

~

Combines a text box with a list box. Allows a user to
type in a selection or select an item from a drop-down
List.

Displays a list of items that a user can choose from.

Allows a user to select a value within a range of
values. (These are used as separate controls and are
not the same as the built-in scroll bars found with
many controls.)

Executes timer events at specified time intervals. See

- Chapter 17, “Interacting with the Environment.”

Displays and allows a user to select valid disk drives.
See Chapter 18, “Using the File-System Controls.”

Displays and allows a user to select directories and
paths. See Chapter 18, “Using the File-System
Controls.”

Displays and allows a user to select from a list of files.
See Chapter 18, “Using the File-System Controls.”

Adds a rectangle, square. ellipse, or circle to a form.
See Chapter 15, “*Creating Graphics for Applications.”

Adds a straight-line segment to a form. See Chapter

- 15, "Creating Graphics for Applications.”

34

-

Programmer’s Guide

Icon

Control

Description

Image

Data

Gnd

OLE

Common dialog

Menu

Displays bitmaps. icons, or Window’s metafiles; acts
like a command button when clicked. See Chapter 15,
“Creating Graphics for Applications.”

Enables you to connect to an existing database and
display information from it on your forms. See
Chapter 20. "Accessing Databases with the Data
Control.”

Displays a series of rows and columns and allows you
to manipulate the data in its cells. See Chapter 13,
“Using the Grid Control.” -

Embeds data into a Visual Basic application. See
Chapter 22. “Object Linking and Embedding (OLE).”

Provides a standard set of dialog boxes for operations
such as opening, saving, and printing files or selecting
colors and fonts. See Chapter 4, “Menus and Dialogs.”

Creates .menus in your Visual Basic applications. For
information about menu controls, see Chapter 4,
“Menus and Dialogs.” You work with menu controls
in the Menu Design window. which vou can access
either by choosing Menu Design from the Window
menu or by clicking the Menu icon on the toolbar.

You can also refer to the summary tables found in the Language Reference and in
Help for supported methods, properties, and events for each type of control.

Object Naming Conventions

When vou first create an object (form or control), Visual Basic sets its Name
property to a default value. For example, all command buttons have their Name
property initially set to Commandn, where nis 1, 2, 3, and so on. Visual Basic
names the first command button drawn on a form Commandl, the second
Command2. and the third Command3.

2

There is nothing wrong with keeping the default name: however, when you have
several controls of the same type. it makes sense to change their Name properti2s
to something more descriptive. Since it may be difficult to distinguish the
Command1 button on MyForm from the Command1 button on YourForm, a
naming convention can help. This is especially true when an application consists
of several form and code modules. '

/ Chapter3 Creating and Using Controls 35

For example. you can use a prefix to describe the object type, followed by a
descriptive name for the control. This makes the code more self-documenting and
alphabetically groups similar objects together in the Properties window in the
Object list box.

The following naming conventions for Visual Basic objects are used throughout
this manual. ~ : ' '

Table 3.1 Object Naming Conventions for Visual Basic

Object Prefix Example
Form frm frmFileCpen
Check box chk ' chkReadOnly
Combo box cbo cboEnglish
Command button cmd : cmdCancel
Data dat datBiblio
Directory list box dir dirSource
Drive list box drv drvTarget
File list box fil filSource
Frame . fra - - fral.anguage
Grid grd . . grdPrices
Horizontal scroll bar hsb hsbVolume
Image , img ' imglcon
Label lbl IblHelpMessage
Line ~lin linVertical
List box Ist IstPolicyCodes
Menu mnu mnuFileOpen
OLE ole : 0leQbject]
Option button ‘ opt optFrench
Picture box pic , picDiskSpace
Shape (circle. square, oval, shp shpCircle

rectangle. rounded rectangle.
and rounded square)

Text box) ixt txtGetText

Timer tmr tmrAlarm
Vertical scroll bar vsb vsbRate

CAPTTULO 3 ELEAMENTOS DEL LENGUAIE 37

%

Uina palabira reservada ticne un significado especial para Visual Basic. Son
palabras reservadas las sentencias predetinidas (For) y los nombres de funciones
(Vah, métados (Hide), propicdades (Caption) y operadores (And).

Tipos de datos

Ciae vartable puede ser de alguno de los seis lipos siguicntes: -

Cardceter de decla-

Tipo Descripeion - racion del tipo Rungo
Intever Entero Yo -32768 a
(2 bytes) ' 32767
Long Entero largo & -2147483048 a
(4 bytes) _ 2147483047
Single Real simple ! -3.37E438a
{por defecto) precision (4 byles) " 3.37E+38
Double Real doble : it -1.67D+308 a
precision (8 bytes) 1.67D+308
Currency Numero con punto @ D.22E+14 a
decimal [ijo 9.221:+14
String Cadena de ¥
caracteres

Antes de utilizar una variable, hay que declarar su tipo. Una forma de hacer
ésto s wtilizando Ta sentencia Dint (o una de las palabras Global o Static). Cual-
quicr deelaracion de éstas inicializa las variables numéricas con ¢l valor cero y las
variables alfanuméricas con el cardeter nulo. Por cjemplo,

i |oAn Inleger

im0 Ac Lonblo

D Hloanlar o A .'J'LI"-IAH(_'j

b B bquoeta As String * 10
i I AL Currency

i e An Long, X As Currency

Fas sentencias anterfores declaran 7 como una variable.entera, R como una
vinriable real de precision doble, Nombre como una variable para contener una ca-
denicde caracteres de longitud variable, Erigueta como una cadena de caracteres
de Tongitud fja (10 caracteres), £ como una variable [raccionaria, L como una

“’FI;Q

AN VISUAL BASIC, APLICACIHONES PARA WINDOWS

variable entera larga, y X como una variable Traccionaria. Observe que en una
sentencia Dim puede realizar mas de una decliracion, ,

Otra Tforma de declarar una vartable os utilizando los caracteres de declaracion
de tipo. Por ¢jemplo,

[Varuble entera

Rt Variable real de precision doble

HMombreros Cadena de caracteres : -
IO Varable fracctonaria '

Siouna variable se utiliza y no se dectara se asume que es de tipo Single.

Si de una variable sc sabe que nuncit va g contener un valor Iraccionario, es
mejor declararla como entera, ya que las operaciones con enteros son mis ripidas,
i caso contrario, st ¢l valor no vaca tener nuds de 4 digitos decimades y no nus
de 14 digitos enteros, es conveniente declararla como {raccionaria (Currency).
o las variubles de tipo Currency no tiene fugar el error producido en ta conver-
sion entre fas bases 2 y 1), que si tiene fugar cuando la variable es de 1po Single
o Double.

Cuando una vartable numérica de un tipo se asigna a olra variable numérica
de un tipo diferente. Visual Basic realiza L conversion correspondiente.

Ambito de las variables

variables globales
(declaradas eh et modulo global)
variables a nivel de la Torma vartables a nivel del modulo
(scecion de declaraciones) (seccion de declaraciones)
vartables variables variables variables
focules locales locales locales
Procedimientos Procedimicentos
Forma Maodulo

Aplicacton

;3

A0 VISTAL BASIC. APLICACIONES PARA WINDOWS

I's

Variables globales

Una variable global pucde ser accedida desde cualquicr parte de Ly aplicacion,
Para hacer que una variable sea global, hay gue declararky en ol mddulo global de
L aplicacion. Este modulo no admite codigo. solo admite declaraciones. El nom-
bre dado o este madulo por delecto es Global bas. Para editarlo, seleccionelo en
I ventana Project y haga clic en el boton View Cade,

Para declarar en el madulo Global.bas una variable global, utilice la palabra
clave Global en lugar de Dim. Por ¢jempio,

Global varl_global As Double, var2_global Aq SUr g

Variables con el mismo nombre en diferentes niveles

Una variable local, otra a nivel de Ta forma-o del médulo y otra global pucden te-
ner el mismo nombre, pero no son la misma variable, La regla para estos casos es
que el procedimicnto siempre utiliza la variable de nivel mas cercano (local. for-
mi o modulo v global). ‘

St una variable aparece en un procedumicnto y no estd explicitumente decla-
rada es por delecto locul. Para asegurarse de que Ta variable es local, s mejor
declararky explicitamente. '

OPERADORES

La tabla que se muestra & continuacion -presenta ¢l conjunto de operadores que
soporta Visual Busic colocados de mayor a menor prioridad. Los operadores que
aparecen sobre umit misima linea tenen igual prioridad. Las operaciones entre pa-
réntesis se evaliian primero, cjecutdndose primera los paréntesis mis internos,

Tipo Operacion Operador
Aritmélico Exponenciacion A
Cambio de signo -
Multiplicacion y division o
Division entera ; \
Resto de una division enlera Moaod
Sumay resta +. -

: 4
Relacional faual, distinto, mayor que, ... =, <>, > >, <L <=

CAPITULO 3 BLEMENTOS DEL LENGUAJE <

Tipo Operacion ' Opcerador
[ogico Negacion Not
tmanego de bits) And ' And
Or inclusiva Or
Or exclusiva Nor
FEquivalencia (opuesto a Xor) lLqv
Emplicacion fmp

(verdad si primer operando lalso y
segumdo operando verdadero)

=

SENTENCIAS)

U sentencia es una linea de texto que indica una o mids operaciones a realizar,
Uik linea puede tener varias seatencias separadas unas de otras por dos puntos.
bodat o= ocantidad * precio: suma = suma o Lolal

Lo sentencta mds comin en Visual Basic ¢s la sentencia de asignacion. Su
fornnt penerad es,

.

variable = expresion

L cual indica que ¢l valor que resulte de evaluar la expresidin tiene que ser alima-
cenado en lavaridable especificada. St la expresion cs numérica fa variable ticne
(que ser tunbidn numdrica y sila expresion es altanumdérica fu variable tiene gue
soer tambidn allanwimérica. Por cjemplo,

< (I ! P
Il ereses = Capital * "lantolorCicnto / 100
Henna je = "La operacidén es corrccLa”

PROPIEDADES

Recordar que un abjeto (forma o control) ticne asociadas varias propredades. Para
referirse o una propiedad de un objeto se utiliza la forma,

objeto.propicdad

Por cjemplo; supongamos ¢f objeto Texto y su propicdad Text. Las siguicntes
aperaciones serian vitlidas ‘

76 Programmer’s Guide

Creating Menus at Design Time

'Y

If you want your application to provide a set of commands to users. menus offer a
convenient and consistent way to group commands and an easy way for users to

access them. \

Figure 4.1 illustrates the elements of a menu interface on an untitled Visual Basic
form.

: Menu title : Menu item [Menu bar /— Title bar

Text Editor: Untitied ’ . - | -
Edit Settifgs About...

+

Qpen..,

Menu — Save as...
Close
Separator bar "
+
ol I {»

Figure 4.1 The elements of a menu interface on a Visual Basic form

The menu bar appears immediately below the title bar on the form and contains
one or more menu titles. When you click a menu title (such as File), a menu
containing a list of menu items drops down. Menu items-can include commands
(such as New and Exit), separator bars. and submenu titles. Each menu item the
user sees corresponds to a menu control you define in the Menu Design window.

To make vour application easier to use, you should group menu items according
to their function. In Figure 4.1, for example. the file-related commands New,
Open. and Save As are all found on the File menu.

Some menu items perform an action directly: for example. the Start menu item on
the Run menu runs the currently loaded project. Other menu items display a
dialog box, a window that requires the user to supply information needed by the
application to perform the action. For example, the Open Project command on the
File menu displays the Open Project dialog box.

Chapter4 Menus and Dialogs

i

Using the Menu Design Window

Menus are created using the Menu Design window. You add menu items to a

menu at design time by creating menu controls and setting properties to define
their appearance.

» To display the Menu Design window

e Choose Menu Design from the Window menu.
=-0r-—-
. ® Choose the Menu Design button on the toolbar.

This opens the Menu Design window, shown in Figure 4.2.

— Menu control properties

Meny Design Window * .
¢ Caption: [o]
Name: { I 'Cancul
- L b ttex] shonewe [mosel 1] 4— Shortcut combo box
] WindowList HelpContextiD: D '
& Visibte

k O Checked

[T

& Enabled

L Menu control list box

Figure 4.2 A Menu Desigh window

All the menu control design-time properties are shown in the Menu Design
window. The two most important properties for menu controls are:

rdi

s Name—This is the name you use to reference the menu control from code.

» Caption—This is the text that appears on the control.

Other properties in the Menu Design window, including Index and Checked, are
described later.in this chapter.

8 Programmer’s Guide N]

ey

The menu control list box lists all the menu controls for the current form. When

you type a menu itemn in the Caption text box, that item also appears in the menu *
control list box. Selecting an existing menu control from the list box allows you to

edit the properties for that control.

- For example, Figure 4.3 shows the menu conlrols for the File menu in the Text

Editor application.

Caption: |8

| |
Name: |mnuFile . | | Cancel]

- Dy._!indowList HelpContextiD: D

O Checked & Enabled & visible

Figure 4.3 File menu controls in the Menu Design window

The position of the menu control in the menu control list box determines whether
the control 1S a menu title, menu item, submenu title, or submenu item:

* A menu control that appears flush left in the list box is displayed on the menu
bar as a menu title.

= A menu control that 1s indented once in the list box is displayed on the menu
bar when the user clicks the preceding menu title.

= A menu control followed by menu controls that are further indented becomesa
“submenu title. Menu controls indented-below the submenu t1tle become iiems
of that submenu.

» A menu control with a hyphen (-) as its Caption property setting appears as 2
separator bar. A separator bar divides menu items into logical groups.

e e e e T T s A R ‘}H"'Lﬁifi‘?.?ﬁmﬁﬁkq, :
e e

| _ Chapter 4 Menus and Dialogé 81

Writing Code for Menu Controls

4F

When the user chooses a menu control, a Click event occurs. You need to write a
Click event procedure in code for each menu control. All menu controls except -
separator bars (and disabled or invisible menu controls) recognize the Click event.

Visual Basic displays a menu automatically when the menu title is chosen:
therefore, it is not necessary to write code for a menu title’s Click event procedure
unless you want to perform another action, such as disabling certain menu items
each time the menu is displayed.

Note At design time, the menus you create are displayed on the form when you
close the Menu Design window. Choosing a menu item displays the Click eveat
procedure for that menu control.

Writing Code for the Edit Menu

You refer to an element in a control array by specifying its index value along with
its name. In the preceding Edit menu from the Text Editor application, for
example, mnuEditltem(Q) refers to Cut, the first menu item on the Edit menu and
the first element in the mnuEditltem control array.

The index value of the selected menu item is passed to the event procedure when
the user clicks that item on the menu. Since all the elements in the array share the
same event procedure code, you can use conditional statements such as If...Then
or Select Case to determine what code will be executed. For example, this code
uses Select Case to cut, copy, and paste with the Clipboard:

Sub mnukditiItem Click (Index As Integer)

Select Case Index)
Case @ ' If Index = @, user chose Cut.
* Copy selected text to Clipboard.
Clipboard.Clear * Clear the Clipboard.

Clipboard.SetText txtEdit.SelText
' Clear selected text from the document.
txtEdit.SelText = "~

Case 1 ' If Index = 1, user chose Copy.
Clipboard.Clear : * {lear the Clipboard.
' Copy selected text to Clipboard.
Clipboard.SetText txtEdit.SelText

Case 2 * If Index = 2, user chose Paste.
' Paste Clipboard text (if any) into document. .
txtEdit.SelText = Clipboard.GetText()

End Select
End Sub

82

Programmer’s Guide

For More Information For information about the Clipboard object, see the
Language Reference, or'search Help for Clipboard.

Creating Submenus

o0

Each menu you create can include up to four levels of submenus. A submenu
branches off another menu to display its own menu items. You may want to use a
submenu when:

= The menu bar is full. .

» A particular menu control is seldom used:

= You want to emphasize one menu control’s relationship to another.

If there is room on the menu bar, however, it’s better to create an additional menu
title instead of a submenu. That way, all the controls are visible to the user when
the menu is dropped down. It’s also good programming practice to restrict the use
of submenus so users don't get lost trying to navigate your application’s menu
interface. (Most applications use only one level of submenus.)

Figure 4.4 displays a menu interface with four levels of submenus.

Menu title

& Text Editor: Untitléd
Eile

BackColor »
ForeColor

Blue Light Blue
Menu ‘ Dark Blue SeaBlue A

5|

Submenu 1
Submenu 2

Submenu 3 -
Submenu 4

Figure 4.4 A menu interface with four levels of submenus

17

Chapter 4 Menus and Dialogs 83

Figure 4.5 displays the same submenus individually. Notice that all menu controls
that display submenus have an arrowhead symbol at their right edge. Visual Basic
_provides this visual cue automatically.

!

Settings
Colors
Font Sizes

[— Arrowhead symbol! indicating submenu contrel

BackColor »

EoreColor »| | Red
Green \
Blue » | Light Blue
Dark Blue » | Sea Blue
Midnight Blue

Figure 4.5 Visual cues indicating submenus

In the Menu Design window, any menu control indented below a menu control
that is not a menu title is a submenu control. In general, submenu controls can
include submenu items, separator bars, and submenu titles. The fourth-level
submenu can include submenu items and separator bars, but not submenu titles.
Figure 4.6 shows how the submenu titles and submenu items from the previous
example are indented in the menu control list box in the Menu Design window.

4

Submenu title — :

Submenu titte — |-

]

+

Submenu title —

"L submenu items
L Submenu items

Submenu items

i

Figure 4.6 Submenu titles and submenu itemns in the menu control list box

138 Programmer’s Guide

Using the Value of a Control

Al controls have a property that you can use for storing or retricving values just
by referring to the control, without using the property name. This is called the
value of the control and is usually the most important or most commonly used
property for that kind of control. Table 6.1 lists the property that is considered to

be the value for each kind of control.

v . Table 6.1 Controls and the Properties That Are Their Values
Control Property
Check box V’:lluc
Combo box Text
Command button Vitlue
Common dinlog Action
Data Cuption
Directory list box Path
Drive list box Drive

File list box
Frame

Grid
Horizontal scroll bar
‘lmugc

Label

Line

List box
Menu

Option bution
Picture box
Shape

Text box
Timer

Vertical scroll bar

IileName
C:iplit;n
Text
Value
Picture
Caption

Visible

Text

Enabled
Value
Picture
Shape
Text

- Enabled

Value

Whenever you want to refer to a property on a control that happens to be the value
of that control, you can do so without specifying the property name in your code.
For example, this line sets the value of the Text property of a text box control:

Textl = “This text is assigned to the Text property of Textl® 22

Chapter 6 Progrémming Fundamentals 141

The fisst three items in the preceding list are decision structures. You use them to
detine groups of statements that may or may not be exeeuted, depending on run-
time conditions. The last two items arc loop structures. You use them to deline
groups of statements that Visual Basic executes repeatediy.

Decision Structures

Like macros, Visual Basic procedures can test conditions and then, depending on
the results of that test, perlorm different operations. The decision structures that
Visual Basic supports include:

« . Then
« LT hen,. Else

= Scleet Case

If...Then

Use an H..Then block to exceute one or more statements conditionally.-You can
use cither a single-line syntax or a mulliple-line “block™ syntax:

If condition Then statement

It condition Then

statements
Fand If

The condition is usually a comparison, but it can be any expression that cvaluates
to a numeric value. Visual Basic interprets this value as True or False; a zero
numeric value is False, and any nonzero numeric value is considered True. 11
condition is "True, Visual Basic exceutes all the starements tollowing the Then
keyward, You can.usc cither single-line or multiple-line syntax to exceule just
one statement conditionally (these two examples are equivalent):

It anyDate < Now Then anyDate = Now

If anyDate < Now Then
anyDate = Now
End [f ‘

Prograh\mer's Guide

Notice that the single-line form of Il Then does not use an End I statement, If
you wantt to execute more than one line ol code when condition is True, you must
use the multiple-line block If...Then...End If syntax.

[f anyDate < Now Then
anyDate = Now

T\imerl.Enab]ed = False ' Disable timer control,
Cnd If

If...Then...Else

Use an IT..Then...Else block 1o deline several biocks ol statements, one of which

N

gets executed: j

H condition! Then .
[stetementblock-1)

| Elself condition2 Then -
| statementblock-21] ...

[IElse
|starementblock-nl)

“End If

Visual Basic first tests condition]. 1110 False, Visual Basic proceeds to test
condition2, and so on, until it finds a True condition. When it linds a4 True
condition, Visual Basic executes the corresponding statement block and then
exeeules the code following the End If. As an option, you can include an Else
statement block, which Visual Basic exeeutes il none of the conditions are True,

If...Then is really just a special case-of If...Then...Else. Notice that you can have
any number of Elself clauses, or none at afl. You can include an Else clause
wlu.lhcn or not you have Elself clauses.

For example. your application could perform different actions depending on
which control in a menu control array was clicked:

Sub mnuCut_Click (lndex As Integer)

IT Index = @ Then * Cut command.
CopyActiveControl ' Call general procedures.
ClearActiveControl

Elself Index = 1 Then ' Copy command.
CopyActiveCnntrol

Elself Index = 2 Then : * Clear command.
ClearActiveControl

Else ' Paste command.
PasteActiveControl , 24

‘Y End If
End Sub

i

Chapter6 Programming Fundamentals 143

Notice that you can always add more Elself parts to your If... Then structure.
Flowever, this syntax can get tedious to write when cach Elself compares the
same expression o a different value. For this situation, you can use a Select Case
decision structure. '

For More Information For additional details about If...Then...Else, sce the
Language Reference, or search Help for If.

Select Case

Visual Basic provides the Seleet Case structure as an alternative to

H... Then.. Elselr for sclectively exceuting one block ol statements from among
multiple blocks of statements. A Select Case statcment provides capability similar
to the H... Then.. Else statement, but it makes code more cfficient and readable.

A Select Case structure works with a single (est expression that is evaluated once,
at the top of the structure. Visual Basic then comparces the result of this expression
witl the values for cach Case in the structure. ! there is @ match, it cxceutes the
block of statements associated with that Case:

Sclecet Case restexpression
| Case expressionlist]
statementblock-11)
[Case cxpressiondist2
[statementblock-2]} ...
[Case Else
[statementblock-n])
Fnd Select

ach expressionlist is a list of onc or more valucs. If there is more than one value

in a single list, the values arc scparated by commas. Each starementblock contains
zero or more statements. I more than onc Case matches the test expression, only
the statement block associated with the lirst matching Case is executed. Visual -
Basic exceutes statements in the Case Else clause (which is optional) if nonc of

the values in the expression lists matches the test expression.

- ~

\ ;

144 Programmer’s Guide

Loop Structu

i

For example, suppose you added another command to the Edit menu in the
IL. Then. Elself example. You could add another Elself clause, or you could
write the function with Seleet Case:

Sub mnuCut_Click (Index As Integer)
Select Case Index

Case @ * Cut command.
CbpyActiveControl _ ' Call general procedures.
ClearActiveControl

Case 1 ' Copy command.
CopyActiveControl

Case 2 Then : * Clear command.
ClearAcliveControl

Case 3 ' Paste command.
PasteActiveControl

Case Etlse
frmFind.Show * Show Find dialog.

End Select

End Sub

Notice that thé Seleet Case structure evaluates an expression once at the top of
the structure. In contrast, the IFLThen L Elsell structure can evaluate a difterent
expression for each Elself statement. You can replace an I Then.. Elself
strueture with a Select Case structure only i each Elself statement evaluates the
siame expression,

res

Loop structures allow you o execute one or more lines of code repetitively. The
toop structures that Visual Basic supports include:

~w Do..Loop

« ["or..Next

Do...Loop

Use a Do loop 1o exccute a block ol statements an indelinite number ol times.,
There are several variations'of the Do Loop statement. but each evaluates a
numeric condition to determine whether to continue exceution. As with .. Then,
the condition must be a vilue or expression that evaluales 1o False (zero) or o
True (nonzero), '

.

In the tollowing Do...Loop, the statements are executed as long as the condition is
True:

Do While condition
Matements z8
Loop '

Chapler 6 Programming Fundamentals 145

When Visual Basic executes this Do loop, it lirst (ests condition. I condition is
IFalse (zero), it skips past all the statements. 11i0Cs True (nonzero), Visual Basic
exceutes the statements and then goes back to-the Do While statement and tests
the condition agai. ' '

Conscquently. the loop can be executed any number of times, as long as condition
is nonzero or Troe, The statements are never exceuted if condition is initially
False. For example, this procedure counts the occurrences of a target string within
another string by looping as long as the target string is found:

Funcltion CountStrings (longstring, target}
Dim position, count
position = 1
Do While InStr(position, longstring. target)
position = InSLr(p051t10n longstring, targel) + 1
_count = count + 1
Loop
CountStrings = count
Ind Functlion

[the target string doesn’t oceur in the other string, then InStr returns () .md the
loop s’ executed.

Another variation of the Do...Loop statement exceutes the statements first and
then tests condition alter cach execution. This vartalion guarantces at feast one
execution ol statemients:

Do
statements
Loop While condition

Two other variations are analogous (o the previous two, exeept that they loop us
fong as condition is False rather than True.

Laop zero or more limes Loap at feast once
Do Untid condition i Do

SIHCINEHLY salements
Loop Loop Untl condition

Naotice that Do Until condition is exactly cquivalent to Do While Not condition.

1.7

Programmer’s Guide /

For...Next

Do loops work well when you don’t know how many times you nced to execute
the statements in the Joop. When you kinow you must execute the-statements a
specific number ol times, however, your code ismore efficient if you use a For
loop. Unlike a Do loop, a For loop uses a comnter variable that increases or
decreases in value during cach repetition of the loop. The syntax. is:

For counter = start To end |Step increment)
Stalementy
Next counter]

The arguments counter, start, end, and inerement are all numeric.

Note The argument increment can be cither positive or negative. 1 increment is
positive, start must be less than or equal to end or the statements in the {oop won't
be executed, W increment is negative, start must be greater than or equal to end
for the body of the loop to be executed. I Step isn’t set, then increment delaults
o 1.

In exceuting the For loop, Visual Basic:
1. Sets counter equal to start,

2. Tests o see il comnter 1s greater than end. 11 so, Visual Basic exits the loop.
(0 increment is negative, Visual Basic tests to see i counter is less than end.)
3. Lxeccutes the statements. K

4. Increments counter by 1—or by fncrement if iU's specilied.

5. Repeats steps 2 through 4.

This code prints the names of all the aviilable Sereen fonts:
Sub Form_Click ()
Dim i o) "
For i = @ To Screen.FontCount - 1
Print Screen.Fonts(i)
Nexi
fnd Sub

Another example in Chapter 3 used a For...Next loop to step through the entries
in the Sclected property of a multiple-column list box:

Sub cderaﬁsfer;Click O
For n =0 To (I1stTop.ListCount - 1)

if 1stTop.Selected(n) = True Then * If selected,
I1stBottom.AddItem 1stTop.List(n) *add to tist. g¢
End If

Next
End Sub

—— f‘hapler 6 Programmmg Fundamenlals 147

Nested Control Structﬁres

As the previous éxample demonstrates. you can place control structures inside
other control structures (such as an If..Then block within a For...Next loop). A
control structure placed inside another control structure is said to be nested.

Control structures in Visual Basic can be nested Lo as many levels as you want.
It's common practice 10 make nested decision structures and loop structures more
readable by indenting the body of the decision structure or loop.

For example, this procedure prints alt the font names that are common to both the
Printer and Screen:

Sub Form_Click {)
Dim SFont, PFont
For SFont = @ To Screen.FontCount - 1
For PFont = @ To Printer.FontCount - 1
If Screen.Fonts(SFont) = Printer.fonts{PFont) Then
Print Screen,.Fonts(SFont)
End If
Next PFont
Next SFont ,
End Sub

Notice that the Tirst Next closes the inner For oop and the last For closes the
outer For loop. Likewisc, in nested If statements, the End I statcments
automatically apply to the ncarest prior If statement. Nested Do..Loop structurcs
work ina similar fashion, with the innermost Loop statement matching the
innermost Do statement.

Exiting a Control Structure

The Exit statement allows you to exit dircetly [rom a For loop, Do loop, Sub
procedure, or Function procedure. Syntactically, the Exit statcment is simple:
Lxit For can appear as many times as nceded inside a For loop, and Exit Do can
appear as many times as nceded inside a Do loop:

¥or connter = start To end {thp increment|
[statementblock)
{Exit For|
|statementblock]

Next [counter], counter] |....1|

{
Do [{ While | Until} condition)
|statementblock]
| Exit Do 29

[statemeniblock)
Loop

.8 Programmer’s Guide

The Exit Do statement works with all versions of the Do loop syntax.

ixit For and Exit Do arc useful becanse sometimes it's appropriate to guit a toop
immediately, without performing any further iterations or statements within the
loop. For example, in the previous example that printed the fonts common to both
the Sereen and Printer, the code continues to compare Printer fonts against a given
Screen font even when a mateh has already been found with an carlier Printer
font. A more efficient version ol the function would exit the loop as soon as a
match is found: '

~

Sub Form_Click ()
fim SFont, PFont .-
For SFont = B To Screen.fFontCount - |)
For PFont = @ To Printer.FontCount - 1
If Screen.Fonts{SFont) = Printer.Fonts{PFont) Then
N Print Screen.Fonts{SFont)

Exit For ' Exit inner loop. i
End If ‘ 7 '
{ Next PFont
- Next SFont

B ¥
End Sub ' ;
As this example illustrates, an Exit statement almost always appears inside an If
statement or Sefect Case statement nested inside the foop.

Exiting a Sub or Function Procedure

The syntax of Exit Sub and Exit Function is simitar to that ol Exit For and Exit
Do n the previous section, “Exiting a Control Structure.” Exit Sub can appear as
many times as needed, anywhere within the body of a Sub procedure. Exit
Function can appear as many times as needed, anywhere within the body ol a
Function procedure. '

Exit Sub and Exit Function arc usefu! when the procedure has done everything it
needs 1o do and can return immediately. For example, il you want to change the
previous example so it prints only the first common Printer and Screen Tont it
linds, you would use Exit Suly:

Sub Form_Click ()
Dim SFont, PFont
For SFont = @ To Screen.FontCount - 1
" For PFont = @ To Printer.FontCount - 1
If Screen.fFonts{SFont) = Printer.Fonts(PFont) Then
Print Screen.Fonts(SFont)
Exit Sub * Exit-the procedure.
End If) ' .
Next PFont- : ‘
Hext SFont
End Sub

Lk

154 Programmer’s Guide
— —-1 Madule2
Global A Can access A, B, M1, and X Global B
- Dim M1 Cannot access M2, Y, or Z Dim M2 ‘
Procedurel . -t Procedure3
{mm X _l- CanaccessA, B, M2, and Z 0im 7 1
Cannot access M1, X, or Y

CanarcessA, B,M1,and Y

Cannot access M2, X, or Z

Procedure? h
"'Dim Y

Fipure 7.1 Yisibility of variables with different scopes

Name Conflicts and Shadowing | /

A variable cannot change scope while your code is running. However, you can
have a variable with the same name at a different scope. For example, you could
have a global variable called Temp and then, within a procedure, declare a local
variabie called Temp. References to the name Temp within the procedure would
access the local variable; references to Temp outside the procedure would access
the global variable.

In ceneral, when variables have the same name bul dilferent scope (see Figure

7.1), the more local variable always shadows (ls accessed in preference to) less
local variables. So if you also had a module- level variable named Temp, it would
shidow the global variable Temp within that module (and the local Temp would
shadow the module-level Temp within that procedure). ‘

You can also declare a variable with the same name as a form property. Within
the code in a form module, a variable with (he same name as a form property
shadows the property. If you want to access a [orm property that is shadowed by a
variable, you must qualify the property name with a reference to the form name or
the Me keyword. Within form code, similarly, variables with the same names as
controls on-the form shadow the controls. You must qualify the control with a
reference (o the form or Me 1o sel or get its valuc or any of its properties. For
example:

Sub Form_Click ()
Bim Textl, BackColor

Programmer’s Guide ' e

Data Type and Scoping Differences
In Visual Basic for MS-DOS, the default data type is SINGLE. Tn Visual Basic

lor Windows, the default data type is Variant. This difference can cause serious
errors using Get and Put on existing data files, since the two data types are
diferent sizes. To avoid this, add a DefSng statement (o cach module that doesn’t
already include a Defrype statement.

To remain consistent with carlier versions ol Basie, Visual Basic for MS-DOS
does not allow shaved array variables to be shadowed at the procedure fevel. For
example, the following code behaves ditferently in MS-DOS ind Windows:

"' Module lovel
DIM SHARED Array() AS INTEGER L
SUB ChangeArray () : -
In MS-DOS, dimensions shared array. In Windows, creates.
' a new copy of the array (shadows shared array}.
DIM Array(10)

END SUB

To avoid this unexpected behavior, rename the procedure-level array.

Unsupported Keywords

Visual Basic for Windows omits about 100 keywaords that are supported by Viswal
Baste for MS-DOS. Using any of these keywords.in the MS-DOS apphication that
you convert to Windows results in omitted IunLlum dity. You must rewrite any

. code thal relics on these]\Lywmds

ALL CSRLIN ERDEV$
BLOAD CVI EVENT

BOF CVC FIELD
BSAVE CVD FILES
CALLS CVDMBF I'N

CDECL CVL FRI
CHAIN CVS GETINDEX$
CHECKPOINT CVSMBF INKEY$
COLOR DELETEINDEX INP

COM DELETETABLE INSERT
COMMON DRAW 10CTL
CREATEINDEX ERDEV 10CTLS 47

Appendix C Compatibilily with Other Vérsions 635 |

ISAM PMAP SSEGADD
KEY POKI - STACK
LIST POS STICK
LOCATE PRESET STRIG
LPOS RUN SWAP
LPRINT SADD SYSTEM
MIKCS J SAVEPOINT 'l‘liX’l‘CQM‘l’
MKDMBES SCREEN TRON
MKI$ SEEKEQ TROFF
MKLS SEEKGE UEVENT
MIKS$ SELEKGT UPDATE
MKSMBES SEG VARPTER
OuUT ‘ SETINDEX 'VARPTRS$
PAINT | SETMEM VARSEG
PALETTE SETUEVENT - VIEW
PCOPY SIGNAL WAIT

CPEEK SLEEP - WINDOW
PEN SOUND |
PLAY SSEG

Note Visual Basic for Windows does not support DEF FN [unctions.

Different Coding Mechanisms
The scoping mechanisms are different between Visual Basic for MS-DOS and
Windows, as shown by the following table.

Yisul Basic for MS-DOS construction

Visual Basic for Windows equivakeat

CONMMON SEHARED

DIM SHARED (at module leved)

SHARED attribute Gt procedure level)

COMMON

Glohal.
Dim (st module Tevel).

None, Use madule-level variable, which is
visible to all procechires,

None, Module-level-only variables are not

~uselul in Visuad Basice for Windows, 37

To open the Code window .)

¢ Double-click the form or control on the form for which you want to write
code. - .
Qr

¢ From the Project window, select the name of the form and choose the View
Code button. '

Figure 2.5 shows the Code window that appears when yo-u double-click the
command button control.

! Object: |c°ﬂ|ﬂ"lﬂd1 iil Proci |Click is

iSub Connand1_Click () :‘ug;:u:b I i
!: Cragtvet l i
End Sub Do vt . Events for Command

le

Figure 2.5 The Code Window

The Code window includes the following elements:

= Object box — Displays the name of the selected object. Click the arrow to the
right of the list box to display a list of all objects associated with the form.

= Procedure list box—Lists the procedures for an object. The box displays the
name of the selected procedure—in this case. Click. Choose the arrow to the
right of the box 1o display 21l the procedures for the object.

Code in a Visual Basic application is divided into smaller blocks called
srocedures. An event procedire. such as ihase vou il crewie hers. containg cods
that is execuied when an event occurs (such as 2 uger clicking 2 button). For ma oy
information on other iypes of procedures and event-driven programming in
general, see Chapter 6, "Programming Fundamentals.”

v Ed

For example. you can use a prefix 10 describe the object t\'pe followed by a
descriptive name for the control. This makes the code more self-documenting and
alphabetically groups similar objects together in the Properties wmdou. in the
Object list box.

The following naming conv entions for Visual Basic objects are used throughout

this manual.

Table'3.1 Object Naming Conventions for Visual Basic

Object Prefix Example
Form frm frmFileOpen
Check box chk - chkReadOnly
Combo box cbo cboEnglish
Command butten cmd ¢mdCancel
Data dat daiBiblio
Directory tist box dir dirSource
Drive list box drv drvTarget

File list box fil filSource
Frame fra fralanguage
Gnd i erd grdPrices
Horizontal scroll bar hsb hsbVolume
Image img imglcon

Label Ibl IblHelpMessage
Line lin linVertical
List box Ist IstPolicyCodes
Menu mnu mnuFileOpen
OLE ole oleObjectl
Option button opt optFrench
Picture bex pic picDiskSpace
Shape (circtz. square. oval. hp shoCircle
secimngie, rounded reclangle.

and reunds 3 souare

Tans by ixl o GetText
Timer unr imrAlarm
Vertical scroli bar vsb x5

vsbRate

-

2
M
I

r-.
.o B [
-
. -
. .) o
- K . :
) IR . .
' B N
- > v
-
. .
. R 0t
y . =
-3

R

Chapter 2

Your First Visual Basic Applic’

BE LU EBEEEET

Action

Menu equivalent

Creates a new form
Creates a new module
Opens an existing project
Saves the current project

Displays the Menu Design
window

Displays the Properties
window

Starts an application in
design mode

Stops execution of a
program while it’s running

Stops execution of an
application and retumns to
design mode

Toggles breakpoint on the
current line '

Displays the value of the
current selection in the Code
window

Displays the structure of
active calls

Executes code one statement
at a time in the Code
window

1]

Executes code one
procedure or statement at a
time in the Code window

New Form command on the File menu
New Module command on the File menu
Open Project command on the File menu
Save Project command on the File menu
Menu Design command on the Window
menu _
Properties command on the Window menu
Start command on the Run menu

Break command on the Run menu

End command on the Run menu

Toggle Breakpoint on the Debug menu

Instant Watch on the Debug menu

Calls command on the Debug menu

Single Step command on the Debug menu

Procedure Step command on the Debug
menu

J

" Toolbox Provides a set of tools that yvou use at design time to place controls on a
form. For information on the specific controls, see Chapter 3, “Creating and Using

Controls.”

Menu Bar Displays the commands you use to build.your application.

Form Serves as a window that you customize as the interface of your appiication'.
You add controls, graphics, and pictures to a form to create the look you want.

3¢

