

FACULTAD DE INGENIERIA

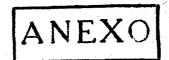
UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

GABRIEL DORANTES GOMEZ PROSPERO GARCIA MARQUEZ CARLOS DE LA LANZA ELTON ANGEL VICTORIA ROSALES

EJERCICIOS DE ECUACIONES DIFERENCIALES Y EN DIFERENCIAS

DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE MATEMATICAS APLICADAS

PROLOGO


Considerando que en el tiempo normal de clase es difícil que los profesores desarrollen abundantes ejercicios de los temas de la materia, la coordinación de Ecuaciones Diferenciales y en Diferencias; pone a disposición de profesores y alumnos - este cuaderno de ejercicios el cual pretende abarcar todo el curso coadyuvando así al proceso enseñanza-aprendizaje.

Recomendamos que el alumno estudie todos los problemas resuel tos y que, sobre todo, intente resolver los ejercicios propues tos ya que de esta manera podrá adquirir cierta habilidad para resolver otro tipo de problemas.

Con el objeto de mejorar y enriquecer futuras ediciones, agradeceremos a profesores y alumnos todo tipo de observaciones y sugerencias que nos hagan llegar a esta coordinación.

ATENTAMENTE

LA COORDINACION DE ECUACIONES DIFERENCIALES Y EN DIFERENCIAS 1982

		in the second of							3
		e ka k a [†]							
							* **		
						1			
					1. 1		1		20
								The second	
	• 100								
			- '						
かんしょ もっけいせん しょないしん けいしゅつ	e a e e con								200
							*		
			100						
	State Control of the								
		* * * * * * * * * * * * * * * * * * *							45
				11 4					
			7.4						
									- 1946 - 1942
			1.5						
			11 77 74						
						计操制			
and all the consequences of the State of the	سلافوف ده	2 <u>2</u> 225	11.8513	e typeda	ujiha "		1, 193, 112	2 3 % (225°)	10 A 274 PASS

T E M A I. PROBLEMAS RESUELTOS

1.1.- En cada una de las ecuaciones diferenciales ordinarias siguientes, indicariel orden, el grado y si es o no lineal.

Además, en caso de ser lineal, indicar si es homogénea y el tipo de coeficientes.

a)
$$y'' - y' - 2y = 0$$

b)
$$xdy + 5ydx = tanx dx$$

c)
$$xdx + 2ydy = 0$$

d)
$$y'' + x (y')^2 + xy = x^3$$

e)
$$(y''')^2 + y'' + 5y' - y^2 = sen x$$

SOLUCION

- Segundo orden, primer grado, lineal, coeficientes constantes y homogénea.
- Primer orden, primer grado, lineal en y, coeficientes variables y no homogénea.
- Primer orden, primer grado, no lineal en x por xdx y no lineal en y por ydy.
- d) Segundo orden, primer grado, no lineal por $(y')^2$
- e) Tercer orden, segundo grado, no lineal por $(y^{"1})^2$ y por y^2
- 1.2.- Determinar la solución general de cada una de las siguientes ecuaciones diferenciales homogéneas:

a)
$$y''' - 3y'' - y' + 3y = 0$$

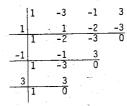
b)
$$y''' - 5y'' + 7y' + 13y = 0$$

c)
$$\frac{d^5x}{dt^5} + \frac{d^4x}{dt^4} - 7 \frac{d^3x}{dt^3} - 11 \frac{d^2x}{dt^2} - 8 \frac{dx}{dt} - 12 x = 0$$

$$\frac{d^4y}{dx^4} + 8 \frac{d^2y}{dx^2} + 16 y = 0$$

SOLUCION

a)
$$y^{11} - 3y^{11} - y^{1} + 3y = 0$$


en términos del operador diferencial:

$$(D^3 - 3 D^2 - D + 3) y = 0$$

la ecuación característica es

$$m^3 - 3 m^2 - m + 3 = 0$$

calculando las raíces por división sintética:

$$m_1 = 1$$
 , $m_2 = -1$, $m_3 = 3$

Estas raíces generan las soluciones $y_1=c_1e^X$, $y_2=c_2\bar{e}^X$ y $y_3=c_3e^{3X}$, las cuales son linealmente independientes entre sí, por lo tanto la solución general de la ecuación es:

$$y = c_1 e^X + c_2 \bar{e}^X + c_3 e^{3X}$$

b)
$$y''' - 5y'' + 7y' + 13y = 0$$

$$(D^3 - 5 D^2 + 7 D + 13) y = 0$$

la ecuación característica es:

$$m^3 - 5 m^2 + 7 m + 13 = 0$$

calculando las raíces por división sintética:

$$\begin{vmatrix} 1 & -5 & 7 & 13 \\ -1 & -1 & 6 & -13 \\ 1 & -6 & 13 & 0 \end{vmatrix}$$
; $m^2 - 6m + 13 = 0$

$$m_1 = -1$$

$$m_{2,3} = \frac{6 - \sqrt{36 - 52}}{2} = 3 - 2$$

las tres raíces obtenidas son diferentes entre sí, por lo tanto la solución general de la ecuación propuesta es:

$$y = c_1 \bar{e}^X + c_2 e^{(3+2i)X} + c_3 e^{(3-2i)X}$$

o bien

$$y = c_1 \bar{e}^X + c_2 e^{3X} e^{2Xi} + c_3 e^{3X} \bar{e}^{2Xi}$$

como

$$e^{2Xi} = \cos 2 x + i \sin 2 x$$
 y $e^{2Xi} = \cos 2 x - i \sin 2 x$

entonces

$$y = c_1 \bar{e}^X + c_2 e^{3X} (\cos 2 x + i \sin 2 x) + c_3 e^{3X} (\cos 2 x - i \sin 2 x)$$

factorizando

$$y = c_1 \bar{e}^X + e^{3X} \left[(c_2 + c_3) \cos 2 x + (ic_2 - ic_3) \sin 2 \bar{x} \right]$$

haciendo

$$c_2 + c_3 = b_2$$
 , $ic_2 - ic_3 = b_3$

$$y = c_1 \bar{e}^X + e^{3X} \sum_{i=1}^{n} b_2 \cos 2x + b_3 \sin 2x$$

o bier

$$y = c_1 \bar{e}^X + e^{3X} [c_2 \cos 2 x + c_3 \sin 2 \bar{x}]$$

Notar que no es necesario repetir este desarrollo para pasar de la solución en forma exponencial a la forma trigonométrica, sino observar, que si las raíces son complejas, a±bi, la solución en forma trigonométrica correspondiente es

$$e^{ax}$$
 (c_1 cos bx + c_2 sen bx)

c)
$$\frac{d^5x}{dt^5} + \frac{d^4x}{dt^4} - 7 \frac{d^3x}{dt^3} - 11 \frac{d^2x}{dt^2} - 8 \frac{dx}{dt} - 12 x = 0$$

en términos del operador:

$$(D^5 + D^4 - 7 D^3 - 11 D^2 - 8 D - 12) x = 0$$

la ecuación característica correspondiente es

$$m^5 + m^4 - 7 m^3 - 11 m^2 - 8 m - 12 = 0$$

calculando las raíces

la solución general de la ecuación propuesta es: $x = c_1 e^{3t} + c_2 \overline{e}^{2t} + c_3 t \overline{e}^{2t} + c_4 \cos t + c_5 \sin t$

d)
$$\frac{d^4y}{dx^4} + 8 \frac{d^2y}{dx^2} + 16 y = 0$$

la ecuación característica es

$$m^4 + 8 m^2 + 16 = 0$$

para obtener las raíces, hacemos $w = m^2$, quedando la ecuación:

$$w^2 + 8w + 16 = 0$$

$$W_{1,2} = \frac{-8 \pm \sqrt{64 - 64}}{2} = -4$$

$$w_1 = -4$$
 y $w_2 = -4$

còmo .

$$m_{1,2} = \sqrt{w_1} = \sqrt{-4} = \pm 21$$

$$m_3, 4 = \sqrt{w_2} = \sqrt{-4} = \pm 2i$$

Así

$$m_1 = 2i$$
, $m_2 = -2i$, $m_3 = 2i$ y $m_4 = -2i$

como las raíces son imaginarias y repetidas la solución general es:

$$y = c_1 \cos 2x + c_2 \sin 2 x + c_3 x \cos 2 x + c_4 x \sin 2 x$$

o bien

$$y = (c_1 + c_3 x) \cos 2 x + (c_2 + c_4 x) \sin 2 x$$

1.3.- Para cada una de las siguientes ecuaciones diferenciales determinar el operador aniquilador.

a)
$$y''' + 2y' + y = 1$$

b)
$$y'' - 4y = 3x e^{2x}$$

c)
$$y''' - 4y'' + 6y' - 4y = x + e^{x} \cos x$$

d)
$$y'' - 2y' + y = x e^{x} + \overline{e}^{x}$$

e)
$$u^{111} + 3u^{1} = x e^{x} on x$$

SOLUCION

a)
$$y''' + 2y' + y = 1$$

el aniquilador Ø (D) buscado, es un polinomio en D tal que al aplicarlo a la función f (x) = 1 de la ecuación, la anule

Para este caso Ø (D) = D , ya que D(1) = $\frac{d}{dx}$ (1) = 0

b)
$$y'' - 4y = 3 \times e^{2x}$$

 $q(x) = 3 \times e^{2x}$ es una solución particular obtenida de la solución general:

$$q(x) = c_1 e^{2X} + c_2 x e^{2X}$$

haciendo c_1 = 0 y c_2 = 3 . Esta solución general se formó con las raíces:

$$m_1 = 2$$
 y $m_2 = 2$

y la ecuación característica correspondiente es:

$$(m - 2)^2 = 0$$

∴ q(x) es solución de la ecuación homogénea:

$$(D-2)^2 q(x) = 0$$

el aniquilador buscado es entonces \emptyset (D) = (D-2)²

comprobación:

$$\emptyset (D) (3xe^{2X}) = (D-2)^2 (3xe^{2X}) = (D^2 - 4D + 4) (3xe^{2X})$$

$$= \frac{d^2}{dx^2} (3xe^{2X}) - 4\frac{d}{dx} (3xe^{2X}) + 4 (3xe^{2X})$$

$$(D-2)^2 (3xe^{2X}) = (12 xe^{2X} + 12e^{2X}) - (24 x e^{2X} + 12e^{2X}) + 12 x e^{2X} = 0$$

c)
$$y''' - 4y'' + 6y' - 4y = x + e^{X} senx$$

 $\mathbf{q}(\mathbf{x}) = \mathbf{x} + \mathbf{e}^{\mathbf{X}}$ sen \mathbf{x} es una solución particular obtenida de la solución general:

$$q(x) = c_1 + c_2 x + e^{X}(c_3 cos x + c_4 sen x)$$

haciendo c_1 = 0, c_2 = 1, c_3 = 0 y c_4 = 1 . Esta solución general se formó con las raíces:

$$m_1 = m_2 = 0$$
 , $m_3 = 1+i$, $m_4 = 1 - i$

y la ecuación característica correspondiente es:

$$m^2 [m - (1 + i)] [m - (1 - i)] = 0$$

$$m^2 (m^2 - 2m + 2) = 0$$

∴ q(x) es solución de la ecuación homogénea:

$$D^2 (D^2 - 2D + 2) q(x) = 0$$

y el aniquilador es:

$$\emptyset$$
 (D) = D² (D² - 2D + 2)

Se recomienda al alumno efectuar la comprobación.

d)
$$y'' - 2y' + y = x e^{X} + \overline{e}^{X}$$

 $q(x) = x e^{x} + \overline{e}^{x}$ es una solución particular obtenida de la solución general:

$$q(x) = c_1 e^X + c_2 x e^X + c_3 \bar{e}^X$$

haciendo c_1 = 0, c_2 = 1 y c_3 = 1 . Esta solución general se formó con las raíces:

$$m_1 = m_2 = 1$$
 , $m_3 = -1$

y la ecuación característica correspondiente es:

$$(m-1)^2 (m+1) = 0$$

 \therefore q(x) es solución de la ecuación homogénea

$$(D-1)^2 (D+1) q(x) = 0$$

y el aniquilador es

$$\emptyset$$
 (D) = (D-1)² (D+1)

e) $y^{111} + 3y^1 = x e^X \operatorname{sen} x$

 $q(x) = x e^{x}$ sen x es una solución particular obtenida de la solución - general

 $q(x) = e^{X} (c_1 \cos x + c_2 \sin x) + x e^{X} (c_3 \cos x + c_4 \sin x)$

haciendo $c_1=c_2=c_3=0$ y $c_4=1$. Esta solución general se formó con las raíces.

 $m_1 = m_2 = 1 + i$, $m_3 = m_4 = 1 - i$

y la ecuación característica correspondiente es:

$$[m - (1 + i)]^2 [m - (1 - i)]^2 = 0$$

$$m^4 - 4 m^3 + 8 m^2 - 8 m + 4 = 0$$

∴ q(x) es solución de la ecuación homogénea:

$$(D^4 - 4 D^3 + 8 D^2 - 8 D + 4) q(x) = 0$$

y el aniquilador es:

$$\emptyset$$
 (D) = D⁴ - 4 D³ + 8 D² - 8 D + 4

- 1.4.- Determinar la solución general de cada una de las siguientes ecuaciones diferenciales, utilizando el método de coeficientes indeterminados.
 - a) y''' y' = 1 2 x
 - b) $y'' + 4y = sen 2 x + 2 e^{x}$

SOLUCION

a) y''' - y' = 1 - 2x

En términos del operador

$$(D^3 - D) y = 1 - 2 x$$

Sabemos que la solución general es de la forma:

$$y = y_c + y_p$$

y_c es la solución de la ecuación homogénea asociada:

$$(D^3 - D) y = 0$$

cuya ecuación característica es

$$m^3 - m = 0$$

de donde

$$m_1 = 0$$
 , $m_2 = 1$, $m_3 = -1$

$$\therefore y_c = c_1 + c_2 e^X + c_3 \bar{e}^X$$

Para obtener la solución particular y_p , por coeficientes indeterminados, se obtiene el operador aniquilador. En este caso, para q(x)=1-2x, el aniquilador es:

$$\emptyset$$
 (D) = D^2

Aplicando el aniquilador a ambos miembros de la ecuación diferencial no homogénea:

$$D^2 (D^3 - D) y = D^2 (1 - 2 x)$$

$$D^{2} (D^{3} - D) y = 0$$

las raíces del polinomio asociado, correspondientes a esta ecuación homogénea son $\ensuremath{\mathsf{n}}$

$$m_1 = m_2 = m_3 = 0$$
 , $m_4 = 1$, $m_5 = -1$

.. su solución general es:

$$y = c_1 + c_2 e^X + c_3 \bar{e}^X + c_4 x + c_5 x^2$$

en esta solución podemos identificar los tres primeros términos como y_c , por lo tanto, como $y = y_c + y_D$ tenemos que:

$$y_{D} = c_{4} x + c_{5} x^{2}$$

Como y_p no debe tener constantes arbitrarias, debemos obtener los valores de c_* y c_5 . Para ésto, vamos a sustituir y_p en la ecuación diferencial original:

$$(D^3 - D) y_p = 1 - 2 x$$

$$\frac{d^3y_p}{dx^3} - \frac{dy_p}{dx} = 1 - 2 x$$

$$\frac{\text{como}}{\text{dx}} = c_4 + 2 c_8 x \qquad y \qquad \frac{\text{d}^3 y_p}{\text{dx}^3} = 0 \quad , \quad \text{tenemos}$$

$$-(c_4 + 2 c_5 x) = 1 - 2 x$$

de donde:

$$c_4 = -1$$
 , $c_5 = 1$

$$y_p = -x + x^2$$

y la solución general $y = y_c + y_p$ es:

$$y = c_1 + c_2 e^X + c_3 \bar{e}^X - x + x^2$$

b) $y'' + 4y = sen 2x + 2e^X$

en términos del operador

$$(D^2 + 4) y = sen 2 x + 2 e^X$$

la solución complementaria y_c es:

$$y_c = c_1 \cos 2 x + c_2 \sin 2 x$$

Para la función $q(x) = sen 2 x + 2 e^{x}$ el aniquilador correspondiente es:

$$\emptyset$$
 (D) = (D² + 4) (D-1)

Aplicando el aniquilador a ambos miembros de la ecuación diferencial:

$$(D^2+4)$$
 $(D-1)$ (D^2+4) $y = (D^2+4)$ $(D-1)$ $(sen 2 x + 2 e^X)$

= (

esta ecuación diferencial homogénea, tiene la ecuación característica:

$$(m^2 + 4) (m - 1) (m^2 + 4) = 0$$

de donde

$$m_1 = 2i$$
 , $m_2 = -2i$, $m_3 = 1$, $m_4 = 2i$ y $m_5 = -2i$

 $y = c_1 \cos 2 x + c_2 \sin 2 x + c_3 x \cos 2 x + c_4 x \sin 2 x + c_5 e^X$

En esta solución identificamos a $y_c = c_1 \cos 2 x + c_2 \sin 2 x$, y como

la solución general es $y = y_c + y_p$, tenemos que:

$$y_{D} = c_{3} x \cos 2 x + c_{4} x \sin 2 x + c_{5} e^{X}$$

Para determinar el valor de las constantes c_3 , c_4 y c_5 que aparecen en y_p , sustituimos y_p en la ecuación diferencial no homogénea:

$$(D^2 + 4) y_p = \text{sen } 2 x + 2 e^X$$

$$\frac{d^2y_p}{dx^2} + 4y_p = \text{sen } 2x + 2e^X$$

como:

$$\frac{d^2y_p}{dx^2} = 4 (c_4 - c_3x) \cos 2 x - 4(c_3+c_4x) \sin 2 x + c_5e^X$$

entonces

de donde:

$$-4 c_3 = 1$$
 ; $c_3 = -\frac{1}{2}$

$$c_5 = 2$$
 ; $c_5 = \frac{1}{2}$

..
$$y = y_c + y_p = c_1 \cos 2 x + c_2 \sin 2 x - \frac{1}{4} x \cos 2 x + \frac{2}{5} e^x$$

1.5.- Determinar la solución general de cada una de las siguientes ecuaciones diferenciales, por medio del método de variación de parámetros.

a)
$$y' + \frac{1}{y}y = Ln x$$

b)
$$y'' + 9y - 6y' = e^{3X}x^{-1}$$

c)
$$x^2 y'' - 2 x y' + 2y = x^3 Ln x$$

$$d) \quad (\mathcal{D}^4 + \mathcal{D}^2) \quad u = 2$$

SOLUCION

a)
$$y' + \frac{1}{x}y = Ln x$$

Como podemos observar, esta ecuación diferencial es lineal de primer orden, por lo tanto es de la forma:

$$\frac{dy}{dx} + P(x) y = Q(x)$$

Para obtener la solución complementaria y_c , resolveremos la ecuación homogénea asociada:

$$\frac{dy}{dx} + \frac{1}{x} y = 0$$

separando variables e integrando

$$\int \frac{dy}{y} = - \int \frac{dx}{x}$$

Lny = - Lnx + c

 $L_{ny} x = c$ tomando antilogaritmos

$$y = \frac{C_1}{x}$$
 ; $C_1 = e^C$

$$\therefore y_c = c_1 \frac{1}{x}$$

Ahora, por variación de parámetros

$$y_{p} = u_{1}(x) \frac{1}{x}$$

para obtener $u_1(x)$, sustituímos y $_{\rm p}$ en la ecuación diferencial no homogénea:

$$y'_p + \frac{1}{x}y_p = L_nx$$

$$- u_1(x)\frac{1}{x^2} + \frac{1}{x} \frac{du_1(x)}{dx} + \frac{1}{x}u_1(x) \frac{1}{x} = Lnx$$

de donde

$$\frac{du_1(x)}{dx} = x Lnx$$

integrando:

$$u_1(x) = \int x Lhx dx$$

por partes:

$$u = L_{nx}$$
, $du = \frac{1}{x} dx$; $dv = xdx$, $v = \frac{x^{2}}{3}$
 $u_{1}(x) = \frac{x^{2}}{2} L_{nx} - \int \frac{x}{2} dx = \frac{x^{2}}{2} L_{nx} - \frac{x^{2}}{4}$

$$y_p = u_1(x) \frac{1}{x} = (\frac{x^2}{2} \ln x - \frac{x^2}{4}) \frac{1}{x} = \frac{x}{2} \ln x - \frac{x}{4}$$

y la solución general es:

$$y = y_c + y_p = c_1 \frac{1}{x} + \frac{x}{2} L_{nx} - \frac{x}{4}$$

b)
$$y'' + 9y - 6y' = e^{3x} x^{-1}$$

en términos del operador

$$(D^2 - 6D + 9) y = e^{3x}/x$$

Para obtener la solución complementaria $\,y_{_{\hbox{\scriptsize c}}}$, resolvemos la ecuación $h\underline{o}$ mogénea asociada:

$$(D^2 - 6D + 9) y = 0$$

Las raices del polinomio asociado m^2 - 6 m + 9 son m_1 = m_2 = 3

$$y_c = c_1 e^{3x} + c_2 x e^{3x}$$

Ahora, por variación de parámetros, la solución particular $\,{\bf y}_{_{\rm P}}\,$ es de la forma:

$$y_p = u_1(x) e^{3x} + u_2(x) x e^{3x}$$

en donde para obtener $\,u_1(x)\,\,y\,\,u_2(x)$ tendremos que integrar la solución del siguiente sistema:

$$\begin{bmatrix} e^{3x} & xe^{3x} \\ 3e^{3x} & 3xe^{3x} + e^{3x} \end{bmatrix} \begin{bmatrix} u_1'(x) \\ u_2'(x) \end{bmatrix} = \begin{bmatrix} 0 \\ e^{3x}/x \end{bmatrix}$$

La solución del sistema es la siguiente:

$$u_1^*(x) = -1$$

$$u_2^1(x) = \frac{1}{x}$$

integrando:

$$u_1(x) = \int (-1)dx = -x$$

$$u_2(x) = \int \frac{1}{x} dx = L_{nx}$$

..
$$y_p = -x e^{3x} + (Lnx) x e^{3x}$$

y la solución general es:

$$y = y_c + y_p = c_1 e^{3x} + c_2 x e^{3x} - x e^{3x} + (Lnx) x e^{5x}$$

c)
$$x^2y'' - 2xy' + 2y = x^3 Lnx$$

Como esta ecuación diferencial es de coeficientes variables, la solución complementaria y_c , no la podemos obtener a partir de la ecuación característica. El alumno puede comprobar que la solución complementaria de esta ecuación es:

$$y_{c} = c_{1} x + c_{2}x^{2}$$

Como el método de variación de parámetros es aplicable a ecuaciones con coeficientes variables, tenemos que la solución particular es de la forma:

$$y_{r} = u_{1}(x) x + u_{2}(x) x^{2}$$

en donde para obtener $u_1(x)$, y $u_2(x)$ tendremos que integrar la solución del siguiente sistema:

$$\begin{bmatrix} x & x^2 \\ 1 & 2x \end{bmatrix} \begin{bmatrix} u_1^1 \\ u_2^1 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{x^3 \ln x}{x^2} \end{bmatrix}$$

La solución del sistema es la siguiente:

$$u_1(x) = -x Lnx$$

$$u_2^1(x) = Lnx$$

integrando:

$$u_1(x) = -\int x L_n x dx = -\left[\frac{x^2}{2} L_n x - \int \frac{x^2}{2} \frac{1}{x} dx\right] = -\frac{x^2}{2} L_n x + \frac{x^2}{4}$$

$$u_2(x) = \int L_{nx} dx = x (L_{nx} -1)$$

$$y_{p} = \left[-\frac{x^{2}}{2} L_{n}x + \frac{x^{2}}{4} \right] x + \left[x (L_{n}x - 1) \right] \left[x^{2} \right]$$

$$= \frac{x^{3}}{2} L_{n}x - \frac{3}{4} x^{3}$$

$$= \frac{x^{3}}{2} \left[L_{n}x - \frac{3}{2} \right]$$

y la solución general es

$$y = y_c + y_p = c_1 x + c_2 x^2 + \frac{x^3}{2} \left[Lnx - \frac{3}{2} \right]$$

d)
$$(D^4 + D^2) y = 2$$

La ecuación homogénea asociada es

$$(D^4 + D^2) y = 0$$

la cual tiene como ecuación característica:

$$m^4 + m^2 = 0$$

de donde .

$$m_1 = m_2 = 0$$
 , $m_3 = i$, $m_4 = -i$

$$y_{C} = c_{1} + c_{2} x + c_{3} \cos x + c_{4} \sin x$$

Por variación de parámetros, la solución particular es de la forma:

$$y_{D} = u_{1}(x) + u_{2}(x) x + u_{3}(x) \cos x + u_{4}(x) \sin x$$

Para obtener u_1 (x), u_2 (x), u_3 (x) y u_4 (x) tendremos que integrar la solución del siguiente sistema:

$$\begin{bmatrix} 1 & x & \cos x & \sin x \\ 0 & 1 & -\sin x & \cos x \\ 0 & 0 & -\cos x & -\sin x \\ 0 & 0 & \sin x & -\cos x \end{bmatrix} \begin{bmatrix} u_1' \\ u_2' \\ u_3' \\ u_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$

la solución de este sistema es:

$$u_1(x) = -2x$$
, $u_2(x) = 2$, $u_3(x) = 2 \operatorname{sen} x$, $u_4(x) = -2 \cos x$

integrando:

$$u_1(x) = - \int_0^2 x \, dx = -x^2$$
, $u_2(x) = \int_0^2 dx = 2x$

$$u_3(x) = f2 \operatorname{sen} x dx = -2 \cos x$$
, $u_4(x) = -f2 \cos x dx = -2 \operatorname{sen} x$

$$y_p = -x^2 + (2x)x + (-2 \cos x) \cos x + (-2 \sin x) \sin x$$

$$= x^2 - 2$$

y la solución general es:

$$y = y_c + y_p = c_1 + c_2 x + c_3 \cos x + c_4 \sin x + x^2 - 2$$

- 1.6. En cada una de las siguientes ecuaciones diferenciales, decir si una solución partícular puede obtenerse por:
 - i) Coeficientes indeterminados
 - ii) Variación de parámetros
 - iii) Ninguno de los métodos anteriores
 - a) $(D-1)^2 y = 2 e^X sen x + e$
 - b) $y'' + 6y' + 3y^2 = x$
 - c) $x^2y'' 3xy' + 2y = -x^2$
 - d) $y'v y = \tan x$
 - e) $(D^2 1) D y = \bar{e}^X \cos 2 x$

SOLUCION

- a) Por coeficientes indeterminados y por variación de parámetros
- b) Por ningún método, dado que la ecuación diferencial es no lineal
- Exclusivamente por variación de parámetros, dado que la ecuación es de coeficientes variables
- d) Exclusivamente por variación de parametros, ya que f(x) = tan x no es solución de una ecuación diferencial lineal homogénea.
- d) Por coeficientes indeterminados y por variación de parámetros.
- 1.7. Problema. En una cierta reacción química, una substancia A que pesa inicialmente 24 lb es conventida en una substancia B. La rápidez a la cual se forma B es igual al doble de la cantidad remanente de A en cada instante. Determinar la expresión que describe la formación de B a través del tiempo.

SOLUCION

El modelo matemático del problema es el siguiente:

$$\frac{dB}{dt} = 2 (24-3)$$
; B(0) = 0

Este modelo es una ecuación diferencial lineal no homogénea:

$$\frac{dB}{dt} + 2B = 48$$

La solución general es de la forma $B=B_{\rm c}+B_{\rm p}$ Resolviendo la ecuación homogénea asociada:

$$\frac{dB}{dt} + 2 B = 0 .$$

la ecuación característica es

$$m + 2 = 0$$

de donde

$$B_c = c_1 \bar{e}^{2t}$$

La solución particular y_p la podemos obtener por coeficientes indeterminados. El aniquilador correspondiente a f(t) = 48 es:

$$\emptyset$$
 (D) = D

Aplicando el aniquilador a ambos miembros de la ecuación diferencial:

$$D(D + 2) B = 0$$

la solución de esta ecuación homogénea es:

$$B = c_1 \bar{e}^{2t} + c_2$$

como $B = B_c + B_p$ y sabemos que $B_c = c_1 \overline{e}^{2t}$

entonces

$$B_{yp} = c_2$$

derivando B y sustituyendo en la ecuación diferencial no homogénea:

$$0 + 2 c_2 = 48$$

$$c_2 = 24$$

..
$$B(t) = B_c + B_p = c_1 e^{2t} + 24$$

que es la solución general del modelo matemático

Como
$$B(0) = 0$$
 , tenemos:

$$0 = c_1 \bar{e}^{2(0)} + 24$$

de donde

$$c_1 = -24$$

У

$$B(t) = -24 \tilde{e}^{2t} + 24$$

es la solución particular del problema. Esta expresión nos describe la formación de la substancia B a través del tiempo.

I.8. Problema. Un paracaidista abre su paracaídas en el instante en que su velocidad alcanza los 50 m/seg.

Si con el paracaídas abierto la resistencia del aire es 1 To W V Kg., siendo W el peso total del hombre y su paracaídas y V la velocidad instantánea. Determinar la expresión que describe la caída a través del tiempo y a partir de que se abre el paracaídas.

SOLUCION

Para obtener el modelo matemático del problema emplearemos la segunda ley de Newton.

Las fuerzas que intervienen en el problema son: el peso w y la fricción $\frac{1}{10}$ w $_V$ Entonces por la segunda ley de Newton.

$$\mathsf{ma} = \Sigma \, \mathsf{F}_{\mathsf{Y}}$$

 $= W - \frac{1}{10} W V$ como la aceleración

$$a = \frac{d^2y}{dt^2}$$
 $y = \frac{dy}{dt}$, tenemos

$$m \frac{d^2y}{dt^2} = W - \frac{1}{10} W \frac{dy}{dt}$$

1-1

y como w = mg:

$$m \frac{d^2y}{dt^2} = mg - \frac{1}{10} mg \frac{dy}{dt}$$

o bien:

$$\frac{d^2y}{dt^2} + \frac{1}{10} g \frac{dy}{dt} = g$$

si consideramos g ± 10

$$\frac{d^2y}{dt^2} + \frac{dy}{dt} = 10$$
 - - - - - - - - - - - - (a)

la ecuación (a) es el modelo matemático del problema. Resolviendo la ecuación diferencial lineal no homogénea (a):

$$y = y_c + y_p$$

Resolviendo la ecuación homogénea asociada:

$$\frac{d^2y}{dt^2} + \frac{dy}{dt} = 0$$

$$m^2 + m = 0$$
 ; $m_1 = 0$, $m_2 = -1$

$$\therefore y_c = c_1 + c_2 \bar{e}^t$$

Determinando $\mathbf{y}_{\mathbf{p}}$ por coeficientes indeterminados:

: aniquilador es
$$\emptyset$$
 (D) = D

..
$$D (D^2 + D) y = 0$$

cuya solución es:

$$y = c_1 + c_2 \bar{e}^t + c_3 t$$

como
$$y = y_c + y_p$$
, tenemos que

$$y_{-} = c_3 t$$

sustituyendo y_p en (a):

$$c_3 = 10$$

$$\therefore y = y_c + y_p = c_1 + c_2 e^{t} + 10 t$$
 ----(b)

La expresión que describe la caída con las condiciones delproblema es:

 $y = 40 - 40 \,\bar{e}^{t} + 10 \,t$

PROBLEMAS PROPUESTOS. TEMA I.

1.- En cada una de las ecuaciones diferenciales siguientes, indicar: el orden, - el grado y si es o no linéal. Además, en caso de ser líneal, indicar el tipo de creficientes y si es o no homogénea.

a)
$$5y^{11} + 3y^{1} + y = \cos x$$

b)
$$ydy - 5x^2 dx = (\tilde{e}^X + 3) dx$$

c)
$$y'v + y''' - 3xy'' + y' - 8y = 5x$$

d)
$$y''' + y'' + yy' + y = \csc x$$
.

e)
$$\frac{d^4x}{dt^4} + \frac{d^2x}{dt^2} + 3\frac{dx}{dt} - x = 0$$

2.- Determinar la solución general de cada una de las siguientes ecuaciones diferenciales lineales homogéneas.

a)
$$\frac{d^4x}{dt^4} - 6\frac{d^3x}{dt^3} + 11\frac{d^2x}{dt^2} - 6\frac{dx}{dt} = 0$$

b)
$$y''' + 2y'' + 5y' - 26y = 0$$

c)
$$y^{V} - 3y^{IV} + 7y^{II} - 13y^{II} + 12y^{I} - 4y = 0$$

d)
$$u^{IV} + 2 u'' + u = 0$$

 Para cada una de las siguientes ecuaciones diferenciales, determinar el operador aniquilador.

a)
$$y' + 4y = x^3 - 2x$$

b) -
$$y'' - 4y = e^{x} - \bar{e}^{2x}$$

c)
$$y'' + 2y' + y = 3 e^{2x} sen x$$

d)
$$y'' + 9y = x \cos x + \cos 2x$$

4.- Determinar la solución de cada una de las siguientes ecuaciones diferenciales, utilizando el método de coeficientes indeterminados.

a)
$$y'' + 2y' + 5y = 6 \text{ sen } 2 \times + 7 \cos 2 \times$$

b)
$$y''' - 3y'' + 4y = 4e^{x} - 18 e^{x}$$

e)
$$y'' + y = x \operatorname{sen} x$$

d)
$$y'' + y = 12 \cos^2 x$$

e)
$$y'' - 4y = 2 - 8x$$
; $y(0) = 0$; $y'(0) = 5$

5.- Determinar la solución general de cada una de las siguientes ecuaciones dí<u>se</u> renciales, por medio del método de variación de parámetros.

a)
$$t \frac{dx}{dt} + x = t \ln 2t$$

b)
$$y'' + 4y' + 4y = \frac{\overline{e}^2 x}{x^2}$$

c)
$$x^2y'' - 2xy' + 2y = -2x^2$$
, si $y_c = c_1x^2 + c_2x$

d)
$$(D-1) (D^2 - 5D + 6) y = e^X$$

- 6.- En cada una de las siguientes ecuaciones diferenciales lineales, decir si una solución particular puede obtenerse por:
 - i) Coeficientes indeterminados
 - ii) Variación de parámetros

a)
$$x^2 y'' - 4 x y' = e^x$$

b)
$$y^{m} + y = 2 Ln$$

c)
$$(D^3 - 1) D^2 y = x^2 e^X \cos 2 x + 1$$

d)
$$u'' + u = 3 \text{ Sen}^2 x$$

$$(a) \quad u^{(1)} - u^{(1)} = x^{(1)} - x^{(2)}$$

| | | | | | | | | | 50 |
|--------------|-------|-----|-----|-------|-----|------|-----|-----|-------------|
| | N = 1 | | • | | | | | | |
| | | | | | | 1.24 | | | |
| | | | | | | | | | |
| | | | - 1 | | | | | | |
| | | | | | | | | * | |
| | | | | | | | | | |
| | | | | | | | | | |
| 1 1 1 m | | | | | | | | | |
| | | 4 | | | | | | | |
| | | | | | | | | | |
| - | . 1 | | | | | | | | |
| | | | | | | | | | |
| to the total | | | | | 100 | | | | |
| | | | | | | | | | |
| | - | | | | | | | | . 65 |
| | | | | | | | | | |
| | : | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | • | | | | |
| | | | | • | | | | | |
| | | * | | | | | | | |
| | | *. | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | i. j |
| | | | | | i | | | | |
| | | | | | | | | | |
| | | | | | | | | 40 | |
| | | * 1 | | | | | | 4 3 | |
| | | | • | | | | | | |
| | | | | | | | *4 | | |
| | | | | | | * . | • | | |
| | | | | | | | | | |
| | * | | | | | 4 | | | |
| | • • | | | | | | | | |
| | | | | | | | | | |
| | * | | | | | | | | |
| | | ** | | | | | | | |
| | | | | | | | | | |
| | | | | • | | | | | |
| | | | | | | | | | -1. |
| | | | , | | | | | 100 | |
| | | | | | | | | | |
| | | | | | | 1 | | | |
| | | | | | | | | | |
| 1965 | | | | | • | . ' | | | |
| | · | | | | | | 194 | | |
| | ė. | | | | | | | | |
| | | | | 4 . S | | | | | |
| | | | | | | | | | a de
Car |
| | | | | | | | | | |
|
 | | | | | | | | | |

T E M A II PROBLEMAS RESUELTOS

11.1.- Utilizando el teorema de Hamilton-Cayley. Obtener A' para

$$A = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix}$$

SOLUCION

La ecuación característica de A es:

$$\det (A - \lambda I) = \begin{vmatrix} 2-\lambda & 4 \\ 1 & -1 & -\lambda \end{vmatrix} = \lambda^2 - \lambda - 6 = 0$$

Por el teorema de Hamilton - Cayley:

$$A^2 - A - 6I = 0$$

despejando A²:

$$A^2 = A + 6I$$

multiplicando por Λ :

$$A^3 = A^2 + 6 A$$

$$= (A + 6I) + 6A$$

$$= 7A + 6I$$

multiplicando nuevamente por A:

$$A^{4} = 7A^{2} + 6A$$

$$= 7(A + 6I) + 6A$$

$$A^{4} = 13 \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix} + 42 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 68 & \$2 \\ 13 & 29 \end{bmatrix}$$

| 11.2 | Para cada una de | las siguientes | matrices | cuadradas, | obtener la | matriz | expo- |
|------|-------------------------------|----------------|----------|------------|------------|--------|-------|
| | nencial e ^{At} corre | spondiente: | | | | | |

A =
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, b) A = $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, c) A = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

SOLUCION

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

Como A es una matriz de 2 x 2, la matriz exponencial $e^{\mbox{At}}$, la calculamos de la siguiente manera:

$$e^{At} = \beta_0 I + \beta_1 A$$
 ---- (a)

para conocer β_0 y β_1 , necesitamos obtener los valores característicos de A y sustituir cada uno de ellos en:

$$e^{\lambda_1 t} = \beta_0 + \beta_1 \lambda_i$$
; i = 1, 2 ----- (b

Obteniendo los valores característicos

$$\det (A - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - 4 = 0$$

:. la ecuación característica es:

$$\lambda^2 - 2\lambda - 3 = 0$$

de donde

$$\lambda_1 = -1$$
 y $\lambda_2 = 3$

Para $\lambda_1 = -1$, la ecuación (b) queda:

$$\bar{e}^{t} = \beta_{0} - \beta_{1}$$
 -----(c

Para $\lambda_2 = 3$,

Resolviendo las ecuaciones (c) y (d), obtenemos:

$$\beta_0 = \frac{1}{4} (e^{3t} + 3\bar{e}^t)$$
 ; $\beta_1 = \frac{1}{4} (e^{3t} - \bar{e}^t)$

En la ecuación (a):

$$e^{At} = \beta_0 I + \beta_1 A$$

$$= \beta_0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \beta_1 \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \beta_0 + \beta_1 & 2 \beta_1 \\ 2 \beta_1 & \beta_0 + \beta_1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{4} (e^{3t} + \bar{e}^{t}) & \frac{2}{4} (e^{3t} - \bar{e}^{t}) \\ \frac{2}{4} (e^{3t} - \bar{e}^{t}) & \frac{2}{4} (e^{3t} + \bar{e}^{t}) \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} e^{3t} + \bar{e}^{t} & e^{3t} - \bar{e}^{t} \\ e^{3t} - \bar{e}^{t} & e^{3t} + \bar{e}^{t} \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Como A es de 2 x 2

$$e^{At} = \beta_0 I + \beta_1 A$$
 ---- (a

У

$$e^{\lambda_i t} = \beta_0 + \beta_1 \lambda_i$$
 ; i = 1, 2 ---- (b)

Para obtener los valores característicos de $\text{ A, } \lambda_1 \text{ y } \lambda_2$:

$$\det (A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 \\ -1 & 1 - \lambda \end{vmatrix} = \lambda^2 - 2\lambda + 2 = 0$$

c)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

e^t cos t

> Como en este caso A es una matriz de 3 x 3 :

$$e^{At} = \beta_0 I + \beta_1 A + \beta_2 A^2$$
 ---- (a

у.

$$e^{\lambda_{i}t} = \beta_{0} + \beta_{1} \lambda_{i} + \beta_{2} \lambda_{i}^{2}$$
 ---- (b)

Determinando los valores característicos de A:

$$\det (A-\lambda I) = \begin{vmatrix} 1-\lambda & 0 & 0 \\ 0 & 1-\lambda & 0 \\ 0 & -1 & 1-\lambda \end{vmatrix}$$
 (1-\lambda)³ = (

$$\lambda_1 = \lambda_2 = \lambda_3 = 1$$

Como los tres valores característicos de A son iguales, para obtener $\beta_0,~\beta_1~y~\beta_2$, tendremos que sustituir λ = 1 tanto en la expresión (b) como en su primera y segunda derivada. Derivando (b) con respecto a λ_1 :

$$t e^{\lambda_i t} = \beta_1 + 2 \beta_2 \lambda_i$$
 ---- (c)

derivando (c):

$$t^2 e^{\lambda_1 t} = 2 \beta_2$$
 -----(d

sustituyendo $\lambda_i = 1$ en (b), (c) y (d):

$$e^t = \beta_0 + \beta_1 + \beta_2$$

$$t e^t = \beta_1 + 2 \beta_2$$

$$t^2 e^t = 2 \beta_2$$

Resolviendo este sistema de ecuaciones:

$$\beta_2 = \frac{1}{2} \ t^2 \ e^{t} \quad \text{,} \quad \beta_1 = t \ e^{t} - t^2 \ e^{t} \quad \text{,} \quad \beta_0 = e^{t} - t \ e^{t} + \frac{1}{2} \ t^2 \ e^{t}$$

Con A, β_0 , β_1 y β_2 en (a) tenemos:

$$e^{At} = \beta_0 I + \beta_1 A + \beta_2 A^2$$

$$= \beta_0 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \beta_1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} + \beta_2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \beta_0 + \beta_1 + \beta_2 & 0 & 0 \\ 0 & \beta_0 + \beta_1 + \beta_2 & 0 \\ 0 & \beta_1 + 2\beta_2 & \beta_0 + \beta_1 + \beta_2 \end{bmatrix}$$

$$e^{\mathbf{A}\mathbf{t}} = \begin{bmatrix} e^{\mathbf{t}} & 0 & 0 \\ 0 & e^{\mathbf{t}} & 0 \\ 0 & te^{\mathbf{t}} & e^{\mathbf{t}} \end{bmatrix}$$

II.3.- Para el sistema lineal de ecuaciones:

$$x' = x + 2 y$$

$$y' = 2 x + y$$

a) Determinar la solución particular que satisface las condiciones

$$x(0) = 0$$

$$y(0) = 4$$

b) Determinar la solución particular que satisface las condiciones

$$x(1) = 0$$

$$y(1) = 2$$

c) Determinar la solución general

SOLUCION

a) El vector de condiciones iniciales es:

$$\bar{\mathbf{x}}(0) = \begin{bmatrix} \mathbf{x}(0) \\ \mathbf{y}(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

la matriz de coeficientes del sistema es:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

La solución particular \bar{x} (t) pedida, está dada por la expresión:

$$\bar{x}(t) = e^{At} \bar{x}(0)$$
 ---- (a)

donde e^{At} es la matriz exponencial correspondiente a la matriz A de coeficientes. La matriz e^{At} de A la obtuvimos en el inciso a) del problema II.3, y es:

$$e^{At} = \frac{1}{2} \begin{bmatrix} e^{3t} + \bar{e}^{t} & e^{3t} - \bar{e}^{t} \\ e^{3t} - \bar{e}^{t} & e^{3t} + \bar{e}^{t} \end{bmatrix}$$

 \therefore sustituyendo e^{At} y \bar{x} (0) en (a):

$$\bar{x}$$
 (t) = $\frac{1}{2}\begin{bmatrix} e^{3t} + \bar{e}^{t} & e^{3t} - \bar{e}^{t} \\ e^{3t} - \bar{e}^{t} & e^{3t} + \bar{e}^{t} \end{bmatrix}\begin{bmatrix} 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 (e^{3t} - \bar{e}^{t}) \\ 2 (e^{3t} + \bar{e}^{t}) \end{bmatrix}$

.: la solución particular del sistema es:

$$x(t) = 2(e^{3t} - \bar{e}^t)$$

$$y(t) = 2(e^{3t} + \bar{e}^t)$$

b) Para este caso, en que las condiciones del sistema no están dadas en t = 0, sino en otro valor de t, t = t_0 , específicamente t = t_0 = 1 la solución particular correspondiente está dada por:

$$\bar{x}(t) = e^{A(t-t_0)} \bar{x}(t_0)$$

$$y como t_0 = 1$$

$$\bar{x}(t) = e^{A(t-1)} \bar{x}(1)$$
 ----(a

donde \bar{x} (1) es el vector:

$$\bar{x}$$
 (1) = $\begin{bmatrix} x & (1) \\ y & (1) \end{bmatrix}$ = $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$

 $y e^{A(t-1)}$ la obtenemos a partir de e^{At} , haciendo t = t - 1, esto es:

$$e^{A(t-1)} = \frac{1}{2} \begin{bmatrix} e^{3(t-1)} + \bar{e}^{(t-1)} & e^{3(t-1)} - \bar{e}^{(t-1)} \\ e^{3(t-1)} - \bar{e}^{(t-1)} & e^{3(t-1)} + \bar{e}^{(t-1)} \end{bmatrix}$$

sustituyendo $e^{A(t-1)}$ y \bar{x} (1) en (a):

$$\bar{x}$$
 (t) = $e^{A(t-1)}$ \bar{x} (1) = $\begin{bmatrix} e^{3(t-1)} - \bar{e}^{(t-1)} \\ e^{3(t-1)} + \bar{e}^{(t-1)} \end{bmatrix} = \begin{bmatrix} e^{3t}\bar{e}^3 - \bar{e}^t e \\ e^{3t}\bar{e}^3 + \bar{e}^t e \end{bmatrix}$

 \therefore la solución particular que satisface las condiciones x(1) = 0 y y(1) = 2 es:

$$x(t) = \bar{e}^3 e^{3t} - e \bar{e}^t$$

 $y(t) = \bar{e}^3 e^{3t} + e \bar{e}^t$

c) Como la solución del sistema que satisface las condiciones en $\, t_0 \,$ está dada por:

$$\bar{x}(t) = e^{A(t-t_0)} \bar{x}(t_0)$$

para obtener la solución general, simplemente consideraremos que:

$$\bar{x} (t_0) = \begin{bmatrix} x (t_0) \\ y (t_0) \end{bmatrix} = \begin{bmatrix} \kappa_1 \\ \kappa_2 \end{bmatrix}$$

donde k_1 y k_2 son constantes, entonces:

$$\bar{x} (t) = e^{A(t-t_0)} \bar{x} (t_0) = \frac{1}{2} \begin{bmatrix} e^{3(t-t_0)} + \bar{e}^{(t-t_0)} & e^{3(t-t_0)} - \bar{e}^{(t-t_0)} \\ e^{3(t-t_0)} - \bar{e}^{(t-t_0)} & e^{3(t-t_0)} + \bar{e}^{(t-t_0)} \end{bmatrix} \begin{bmatrix} \kappa_1 \\ \kappa_2 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} (\kappa_1 + \kappa_2)e^{3(t-t_0)} + (\kappa_1 - \kappa_2)\bar{e}^{(t-t_0)} \\ (\kappa_1 + \kappa_2)e^{3(t-t_0)} - (\kappa_1 - \kappa_2)\bar{e}^{(t-t_0)} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2}(\kappa_1 + \kappa_2)\bar{e}^{3t_0}e^{3t} + \frac{1}{2}(\kappa_1 - \kappa_2)e^{t_0}\bar{e}^t \\ \frac{1}{2}(\kappa_1 + \kappa_2)\bar{e}^{3t_0}e^{3t} - \frac{1}{2}(\kappa_1 - \kappa_2)e^{t_0}\bar{e}^t \end{bmatrix}$$

haciendo $\frac{1}{2} (\kappa_1 + \kappa_2) e^{3t_0} = c_1$ $y \frac{1}{2} (\kappa_1 - \kappa_2) e^{t_0} = c_2$, tenemos:

$$\bar{x}(t) = \begin{bmatrix} c_1 e^{3t} + c_2 \bar{e}^t \\ c_1 e^{3t} - c_2 \bar{e}^t \end{bmatrix}$$

: la solución general es:

$$x(t) = c_1 e^{3t} + c_2 \bar{e}^t$$

$$y(t) = c_1 e^{3t} - c_2 \bar{e}^{t}$$

II.4.- Determinar la solución particular del siguiente sistema de ecuaciones diferenciales:

$$x_1' = x_1 + x_2 + x_3$$

$$x_1(0) = 1$$

$$x' = 2 x_1 + 2 x_2 + 2 x_3 :$$

$$x_2(0) = 1$$

$$x' = 3 x_1 + 3 x_2 + 3 x_3$$
;

$$x_3(0) = -1$$

SOLUCION

La matriz de coeficientes A y el vector de condiciones iniciales son:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} \qquad ; \qquad \bar{x} (0) = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

La solución del sistema es de la forma:

$$\bar{x}$$
 (t) = $e^{At} \bar{x}$ (0) ----- (a)

calculando la matriz exponencial:

Los valores característicos de A son:

$$\lambda_1 = 0$$
 , $\lambda_2 = 0$, $\lambda_3 = 6$

Para
$$\lambda_1 = 0$$
 , en (c):

$$1 = \beta_0$$

Para $\lambda_2 = 0$

$$t = \beta_1$$

Para $\lambda_3 = 6$

$$e^{6t} = 1 + 6t + 36\beta_2$$
; $\beta_2 = \frac{e^{6t} - 1 - 6t}{36}$

Sustituyendo β_0 , β_1 y β_2 en (b);

$$e^{At} = \beta_0 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \beta_1 \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} + \beta_2 \begin{bmatrix} 6 & 6 & 6 \\ 12 & 12 & 12 \\ 18 & 18 & 18 \end{bmatrix}$$

$$= \begin{bmatrix} \beta_0 + \beta_1 + 6 \beta_2 & \beta_1 + 6 \beta_2 & \beta_1 + 6 \beta_2 \\ \beta_1 + 2 \beta_2 & \beta_0 + 2 \beta_1 + 12 \beta_2 & 2 \beta_1 + 12 \beta_2 \\ 3 \beta_1 + 18 \beta_2 & 3 \beta_1 + 18 \beta_2 & \beta_0 + 3 \beta_1 + 18 \beta_2 \end{bmatrix}$$

$$= \frac{1}{6} \begin{bmatrix} e^{6t} + 5 & e^{6t} - 1 & e^{6t} - 1 \\ 2e^{6t} - 2 & 2e^{6t} + 4 & 2e^{6t} - 2 \\ 3e^{6t} - 3 & 3e^{6t} - 3 & 3e^{6t} + 3 \end{bmatrix}$$

Finalmente la solución particular es:

$$\vec{\mathbf{x}}(\mathbf{t}) = e^{\mathbf{A}\mathbf{t}} \vec{\mathbf{x}}(0) = \frac{1}{6} \begin{bmatrix} e^{6} t + 5 & e^{6} t - 1 & e^{6} t - 1 \\ 2e^{6} t - 2 & 2e^{6} t + 4 & 2e^{6} t - 2 \\ 3e^{6} t - 3 & 3e^{6} t - 3 & 3e^{6} t + 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} e^{6} t + 5 \\ 2e^{6} t + 4 \\ 3e^{6} t - 9 \end{bmatrix}$$

esto es:

$$x_1(t) = \frac{1}{6}(e^{6t} + 5)$$
 , $x_2(t) = \frac{1}{6}(2e^{6t} + 4)$, $x_3(t) = \frac{1}{6}(3e^{6t} - 9)$

II.5.- Sabiendo que la solución general de un sistema lineal de ecuaciones diferenciales no homogéneo, se forma con la suma de la solución complementaria \bar{x}_c y de la solución particular \bar{x}_p , determinar la solución general del siguiente sistema:

$$x' = x + 2 y + 2 t$$

$$y' = 2 x + y$$

SOLUCION

La solución complementaria $\bar{x}_{_{\rm C}}$, es la solución del sistema homogéneo asociado:

$$x' = x + 2y$$

$$y' = 2 x + y$$

La solución de este sistema homogéneo se obtuvo en el inciso c) del -

$$\bar{x}_{C} = \begin{bmatrix} c_{1}e^{3t} + c_{2}\bar{e}^{t} \\ c_{1}e^{3t} - c_{2}\bar{e}^{t} \end{bmatrix}$$

La solución particular \bar{x}_p está dada por:

$$\bar{x}_p = \int_0^t e^{A(t-\tau)} \bar{b}(\tau) d\tau$$

Como para este sistema la matriz e^{At} es (ver problema II.4):

$$e^{At} = \frac{1}{2} \begin{bmatrix} e^{3t} + \bar{e}^t & e^{3t} - \bar{e}^{t-1} \\ e^{3t} - \bar{e}^t & e^{3t} + \bar{e}^t \end{bmatrix}$$

$$\bar{b}(t) = \begin{bmatrix} 2 & t \\ 0 \end{bmatrix}$$

haciendo $t = t - \tau$

$$e^{A(t-\tau)} = \frac{1}{2} \begin{bmatrix} e^{3(t-\tau)} + \bar{e}^{(t-\tau)} & e^{3(t-\tau)} - \bar{e}^{(t-\tau)} \\ e^{3(t-\tau)} - \bar{e}^{(t-\tau)} & e^{3(t-\tau)} - \bar{e}^{(t-\tau)} \end{bmatrix}$$

y en b(t), haciendo $t = \tau$:

$$\bar{b}(\tau) = \begin{bmatrix} 2 & \tau \\ 0 \end{bmatrix}$$

$$\therefore e^{A(t-\tau)}\bar{b}(\tau) = \begin{bmatrix} \tau(e^{3(t-\tau)}+\bar{e}^{(t-\tau)}) \\ \tau(e^{3(t-\tau)}-\bar{e}^{(t-\tau)}) \end{bmatrix} = \begin{bmatrix} e^{3t}\tau\bar{e}^{3\tau} + \bar{e}^{t}\tau e^{\tau} \\ e^{3t}\tau\bar{e}^{3\tau} - \bar{e}^{t}\tau e^{\tau} \end{bmatrix}$$

$$\bar{x}_{p} = \int_{0}^{t} e^{A(t-\tau)} \bar{b} (\tau) d\tau = \begin{bmatrix} \int_{0}^{t} (e^{3t\tau} \bar{e}^{3\tau} + \bar{e}^{t\tau} e^{\tau}) d\tau \\ \int_{0}^{t} (e^{3t\tau} \bar{e}^{3\tau} - \bar{e}^{t\tau} e^{\tau}) d\tau \end{bmatrix}$$

$$= \begin{bmatrix} e^{3t} \int_0^t \tau \bar{e}^{3T} d\tau + \bar{e}^t \int_0^t \tau e^T d\tau \\ e^{3t} \int_0^t \tau \bar{e}^{3T} d\tau & \bar{e}^t \int_0^t \tau e^T d\tau \end{bmatrix}$$

$$= \begin{bmatrix} e^{3t} (\frac{1}{9} - \frac{1}{9} \bar{e}^{3t} - \frac{t}{3} \bar{e}^{3t}) + \bar{e}^{t} (te^{t} - e^{t} + 1) \\ e^{3t} (\frac{1}{9} - \frac{1}{9} \bar{e}^{3t} - \frac{t}{3} \bar{e}^{3t}) - \bar{e}^{t} (te^{t} - e^{t} + 1) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{9} e^{3t} + \bar{e}^{t} + \frac{2}{3} t - \frac{10}{9} \\ \\ \frac{1}{9} e^{3t} - \bar{e}^{t} - \frac{4}{3} t + \frac{8}{9} \end{bmatrix}$$

La solución general del sistema es:

$$\bar{x}(t) = \bar{x}_c + \bar{x}_p = \begin{bmatrix} c_1 e^{3t} + c_2 \bar{e}^t + \frac{1}{9} e^{3t} + \bar{e}^t + \frac{2}{3}t - \frac{10}{9} \\ c_1 e^{3t} - c_2 \bar{e}^t + \frac{1}{9} e^{3t} - \bar{e}^t - \frac{4}{3}t + \frac{8}{9} \end{bmatrix} = \begin{bmatrix} k_1 e^{3t} + k_2 \bar{e}^t + \frac{2}{3}t - \frac{10}{9} \\ k_1 e^{3t} - k_2 \bar{e}^t - \frac{4}{3}t + \frac{8}{9} \end{bmatrix}$$

donde:

$$k_1 = c_1 + \frac{1}{3}$$
 $k_2 = c_2 + 1$

11.6.- Para el sistema de ecuaciones del problema 11.5, comprobar que:

$$\int_{0}^{t} e^{A(t-\tau)} \vec{b} (\tau) d\tau = \int_{0}^{t} e^{A\tau} b(t-\tau) d\tau$$

SOLUCION

En el problema II.5, se tiene que

$$\frac{1}{b}(t) = \begin{bmatrix} 2 & t \\ 0 & \end{bmatrix}$$

y se obtuvo:

$$e^{\mathsf{At}} = \frac{1}{2} \begin{bmatrix} e^{\mathsf{st}} + \bar{e}^\mathsf{t} & e^{\mathsf{st}} - \bar{e}^\mathsf{t} \\ e^{\mathsf{st}} - \bar{e}^\mathsf{t} & e^{\mathsf{st}} + \bar{e}^\mathsf{t} \end{bmatrix}$$

y

$$\int_{0}^{t} e^{A(t-\tau)} \bar{b}(\tau) d\tau = \begin{bmatrix} \frac{1}{9} e^{3t} + \bar{e}^{t} + \frac{2}{3}t - \frac{10}{9} \\ \\ \frac{1}{9} e^{3t} - \bar{e}^{t} - \frac{4}{3}t + \frac{8}{9} \end{bmatrix}$$
 -----(a)

Ahora

$$e^{A\tau} = \frac{1}{2} \begin{bmatrix} e^{3\tau} + \bar{e}^{\tau} & e^{3\tau} - \bar{e}^{\tau} \\ e^{3\tau} - \bar{e}^{\tau} & e^{3\tau} + \bar{e}^{\tau} \end{bmatrix} ; \quad \bar{b}(t-\tau) = \begin{bmatrix} 2(t-\tau) \\ 0 \\ 1 \end{bmatrix}$$

$$\int_{0}^{t} e^{A\tau} \bar{b}(t-\tau) d\tau = \int_{0}^{t} \frac{1}{2} \begin{bmatrix} 2(t-\tau) \left(e^{a\tau} + \tilde{e}^{\tau} \right) \\ 2(t-\tau) \left(e^{a\tau} - \tilde{e}^{\tau} \right) \end{bmatrix} d\tau$$

:abnot

$$\begin{bmatrix} t \int_{0}^{t} (e^{3T} + \bar{e}^{T}) d\tau - \int_{0}^{t} \tau (e^{3T} + \bar{e}^{T}) d\tau \\ t \int_{0}^{t} (e^{3T} - \bar{e}^{T}) d\tau - \int_{0}^{t} \tau (e^{3T} - \bar{e}^{T}) d\tau \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{9} e^{3T} + \bar{e}^{t} + \frac{2}{3} t - \frac{10}{9} \\ \\ \frac{1}{9} e^{3t} - \bar{e}^{t} - \frac{4}{3} t + \frac{8}{9} \end{bmatrix} - - - - - - - (b)$$

Como podemos ver (a) = (b)

$$\therefore \int_{0}^{t} e^{A(t-\tau)} \bar{b} (\tau) d\tau = \int_{0}^{t} e^{A\tau} \bar{b} (t-\tau) d\tau$$

II. 7.- Determinar la solución del siguiente sistema de ecuaciones no homogéneo:

$$x_1' = x_1 + x_2 + x_3$$
 ;

$$x_1(0) = 0$$

$$x_2^1 = 2 x_1 + 2 x_2 + 2 x_3 + 1$$
;

$$x_2(0) = 0$$

$$x_3 = 3 x_1 + 3 x_2 + 3 x_3$$
;

$$x_3(0) = 0$$

SOLUCION

La solución $\tilde{x}(t)$ del sistema por medio de la matriz exponencial viene dada por

$$\bar{x}$$
 (t) = $e^{At} \bar{x}$ (0) + $\int_{0}^{t} e^{A(t-\tau)} \bar{b}$ (τ) $d\tau$ ---- (a)

o bien por

$$\bar{x}$$
 (t) = $e^{At} \bar{x}$ (0) + $\int_{0}^{t} e^{A\tau} \bar{b}$ (t - τ) d τ - - - - - - - (b)

En este sistema como el vector $\bar{b}(t)$ tiene elementos constantes, nos convendrá obtener la solución del sistema por medio de la expresión (b).

La matriz exponencial correspondiente a este sistema (ver problema II.4)

$$e^{At} = \frac{1}{6} \begin{bmatrix} e^{6t} + 5 & e^{6t} - 1 & e^{6t} - 1 \\ 2e^{6t} - 2 & 2e^{6t} + 4 & 2e^{6t} - 2 \\ 3e^{6t} - 3 & 3e^{6t} - 3 & 3e^{6t} + 3 \end{bmatrix}$$

$$\int_{0}^{t} e^{A\tau} \hat{b} (t-\tau) d\tau = \int_{0}^{t} \frac{1}{6} \begin{bmatrix} e^{6\tau} + 5 & e^{6\tau} - 1 & e^{6\tau} - 1 \\ 2e^{6\tau} - 2 & 2e^{6\tau} + 4 & 2e^{6\tau} - 2 \\ 3e^{6\tau} - 3 & 3e^{6\tau} - 3 & 3e^{6\tau} + 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} d\tau$$

$$= \frac{1}{6} \int_{0}^{t} \begin{bmatrix} e^{6\tau} - 1 \\ 2e^{6\tau} + 4 \\ 3e^{5\tau} - 3 \end{bmatrix} d\tau$$

$$= \frac{1}{6} \begin{bmatrix} \frac{1}{6} (e^{6^{t}} - 1) - t \\ \frac{1}{3} (e^{6^{t}} - 1) + 4 t \\ \frac{1}{2} (e^{6^{t}} - 1) - 3 t \end{bmatrix}$$

como $\bar{x}(0) = \bar{0}$, tenemos:

$$\bar{x}(t) = e^{At}\bar{x}(0) + \int_{0}^{t} e^{A\tau}\bar{b}(t-\tau)d\tau = \frac{1}{6} \begin{bmatrix} \frac{1}{6} (e^{6t} - 1) - t \\ \frac{1}{3} (e^{6t} - 1) + 4 t \\ \frac{1}{2} (e^{6t} - 1) - 3 t \end{bmatrix}$$

11.8.- Transformar la siguiente ecuaçión diferencial a un sistema de ecuaciones de primer orden:

$$\frac{d^4y}{dt^4} - 6 \frac{d^2y}{dt^2} + 9 y = 12 t^2$$

SOLUCION

Identificamos a la variable dependiente, en este caso $\ \ y$, $\ \ y$ hacemos un -cambio de variable:

$$y = x_1$$
.

derivando:

$$\frac{dy}{dt} = \frac{dx_1}{dt}$$

haciendo un cambio de variable en la derivada:

$$\frac{dy}{dt} = x_2$$

con lo cual tenemos:

$$\frac{dy}{dt} = \frac{dx_1}{dt} = x_2 \qquad ---- (a$$

derivando

$$\frac{d^2y}{dt^2} = \frac{dx_2}{dt}$$

y haciendo

$$\frac{d^2y}{dt^2} = x$$

tenemos

$$\frac{d^2y}{dt^2} = \frac{dx_2}{dt} = x_3$$

derivando nuevamente

$$\frac{d^3y}{dt^3} = \frac{dx_3}{dt}$$

haciendo

$$\frac{d^3y}{dt^3} = x_1$$

obtenemos

$$\frac{d^3y}{dt^3} = \frac{dx_3}{dt} = x_4$$
 ---- (c

derivando

$$\frac{d^{4}y}{dt^{4}} = \frac{dx_{4}}{dt}$$

Observar que hasta aquí hemos introducido un número de variables: x_1 , x_2 , x_3 y x_4 , igual al orden de la ecuación. Despejando $\underline{d}^4\underline{y}$ de la ecuación

original:

$$\frac{d^4y}{dt^4}$$
 - 9 y + 6 $\frac{d^2y}{dt^2}$ + 12 t²

у сото

$$\frac{d^{4}y}{dt^{4}} = \frac{dx_{4}}{dt}$$
, $y = x_{1}$ y $\frac{d^{2}y}{dt^{3}} = x_{3}$

la ecuación anterior queda:

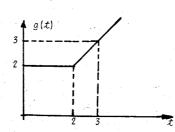
Las ecuaciones (a), (b), (c) y (d) constituyen un sistema de ecuaciones diferenciales de primer orden, que en forma matricial quede representado: $\frac{1}{2}$

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \\ \frac{dx_3}{dt} \\ \frac{dx_4}{dt} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -9 & 0 & 6 & 0 \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 12t^2 \end{bmatrix}$$

TEMA II

PROBLEMAS PROPUESTOS

- 1.- Transformar, cada una de las siguientes ecuaciones diferenciales, a un sistema de primer orden equivalente.
 - a) Lnt $y^{v} + t^{2} y^{u} + \frac{1}{t} y = \cos t e^{t}$
 - b) $\bar{e}^{2t} y^{1v} e^{t} y = 4 \bar{e}^{2t}$
- 2.- Determinar, por medio de la matriz exponencial, la solución de cada uno de los siguientes sistemas de ecuaciones diferenciales.
 - a) $\frac{dx}{dt} = -x + y$; x(0) = 1
 - $\frac{dy}{dt} = -2 x + y$; y(0) = 1
 - b) $\dot{x}_1 = x_2 + e^{3t}$; $\ddot{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
 - c) $\frac{dy_1}{dt} = 2y_1 + 2y_2$; $y_1(0) = 1$
 - $\frac{dy_2}{dt} = 3y_1 + 3y_2 + 2$; $y_2(0) = 2$
 - d) $y_1^1 = 5y_1 + 4y_2 + 1$; $y_1(0) = 2$
 - $y_2^1 = 2y_2 + y_1$; $y_2(0) = 3$
 - e) $\begin{bmatrix} x_1^1 \\ x_2^1 \\ x_3^1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$; $\overline{x}(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$


f)
$$\dot{x}_1 = x_1 + x_2$$

 $\dot{x}_2 = 2 x_2$
 $\dot{x}_3 = x_1 + 2 x_2 + 3 x_3 + e^3$

$$\bar{x}(0) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

EJERCICIOS RESUELTOS

III.1.- Obtener la transformada de Laplace de cada una de las siguientes funciones:

(a)
$$f(t) = sen at$$

SOLUCION

$$a)$$
 $f(t) = sen at$

Por la definición de transformada de Laplace de una función:

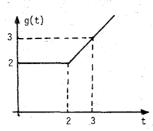
$$L\{\text{sen t}\} = \int_0^\infty \bar{e}^{\text{st}} \text{ sen at dt} = \lim_{A \to \infty} \int_0^A \bar{e}^{\text{st}} \text{ sen at dt}$$

integrando por partes:

$$\int \bar{e}^{st} \operatorname{sen at dt} = -\frac{1}{s} \bar{e}^{st} \operatorname{sen at} + \frac{a}{s} \int \bar{e}^{st} \cos at dt$$

integrando en esta expresión \bar{e}^{st} cos at por partes:

$$\int \bar{e}^{st} \operatorname{sen at dt} = -\frac{1}{s} \bar{e}^{st} \operatorname{senat} + \frac{a}{s} \left(-\frac{1}{s} \bar{e}^{st} \operatorname{cosat} - \frac{a}{s} \right) \bar{e}^{st} \operatorname{sen at dt}$$
de donde:


$$\int \tilde{e}^{st} \operatorname{sen at } dt = \frac{s}{s^2 + a^2} \left(- \tilde{e}^{st} \operatorname{sen at } - \frac{a}{s} \tilde{e}^{st} \cos at \right)$$

$$\therefore \mathbf{Y} \{ \text{sen t} \} = \lim_{A \to \infty} \int_{0}^{A} \bar{e}^{\text{st}} \text{ sen at dt}$$

$$= \lim_{A \to \infty} \frac{s}{s^2 + a^2} \left(-\bar{e}^{st} \operatorname{sen at} - \frac{\bar{a}}{s} \bar{e}^{st} \cos at \right) \Big|_{0}^{A}$$

$$= \frac{a}{s^2 + a^2}$$

ь)

la función g(t) la podemos representar analíticamente, quedando:

$$g(t) = \begin{cases} 2 & ; & 0 < t < 2 \\ t & ; & t > 2 \end{cases}$$

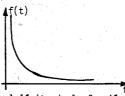
La transformada de Laplace correspondiente es:

$$L \{ g(t) \} = \int_{0}^{\infty} \bar{e}^{st}g(t) dt$$

$$= \int_{0}^{2} \bar{e}^{st}(2) dt + \int_{2}^{\infty} \bar{e}^{st} t dt$$

$$= -\frac{2}{s} \bar{e}^{st} \Big|_{0}^{2} + \lim_{b \to \infty} \left(-\frac{1}{s} t \bar{e}^{st} \Big|_{2}^{b} + \int_{2}^{b} \bar{e}^{st} dt \right)$$

$$= -\frac{2}{s} \bar{e}^{2s} + \frac{2}{s} + \lim_{b \to \infty} \left[-\frac{1}{s} t \bar{e}^{st} \Big|_{2}^{b} + \left(-\frac{1}{s^{2}} \bar{e}^{st} \Big|_{2}^{b} \right) \right]$$


$$= -\frac{2}{s} \bar{e}^{2s} + \frac{2}{s} + \lim_{b \to \infty} \left[-\frac{b}{s} \bar{e}^{sb} + \frac{2}{s} \bar{e}^{2s} - \frac{1}{s^{2}} \bar{e}^{bs} + \frac{1}{s^{2}} \bar{e}^{2s} \right]$$

$$= -\frac{2}{s} \bar{e}^{2s} + \frac{2}{s} + \frac{2}{s} \bar{e}^{2s} + \frac{1}{s^{2}} \bar{e}^{2s}$$

$$= \frac{2}{s} + \frac{1}{s^{2}} \bar{e}^{2s}$$

III.2. Diga si la función $f(t)=\frac{1}{t}$; $t\geq 0$, es una función seccionalmente contínua y de orden exponencial fuando $t+\infty$.

La gráfica de la función aparece en la siguiente figura:

Como podemos ver, el límite de la función cuanto $t \to 0^+$ no existe, por lo tanto la función no es seccionalmente continua.

Para que la función sea de orden exponencial cuando $~t\to \infty$, deben existir constantes $~M,~b~y~t_0~$ tales que

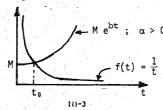
$$|f(t)| < Me^{bt}$$
 , $\star t > t$

en nuestro caso

$$\left|\frac{1}{t}\right| < M e^{bt}$$
; $\Rightarrow t > t_0$ ---- (a.

como la función está definida para $t \ge 0$ entonces en (a) $\left|\frac{1}{t}\right| = \frac{1}{t}$

$$\frac{1}{t} < M e^{bt}$$


 $como \ \bar{e}^{bt} > 0$

$$\tilde{e}^{bt} \frac{1}{t} < M$$

$$\frac{1}{te^{bt}} < t$$

$$\lim_{t \to \infty} \frac{1}{te^{bt}} = 0 \quad \text{si} \quad b > 0$$

.. cuando t $\rightarrow \infty$ siempre existirá una constante b > 0 y una constante M tal que M > $\frac{1}{\mathsf{te}^{\mathsf{bt}}}$ para toda t mayor que alguna t_0 . Esto es la desigualdad (a) se verifica. La desigualdad (a) la podemos ver en la siguiente gráfica:

III.3. Demostrar que:

$$L\left\{\frac{d^{n} \delta(t)}{dt^{n}}\right\} = s^{n} L\left\{\delta(t)\right\} - s^{n-1} \delta(0) - s^{n-2} \delta'(0) - \dots - s \delta^{(n-2)}(0) - \delta^{(n-1)}(0)$$

SOLUCION

Por inducción matemática:

i) para n = 1

$$L\left\{\frac{df(t)}{dt}\right\} = s L\left\{f(t)\right\} - f(0)$$

Demostrando:

$$L\{\frac{df(t)}{dt}\} = \int_0^\infty \bar{e}^{st} \frac{d f(t)}{dt} d t$$

integrando por partes:

$$u = \overline{e}^{st} \quad ; \quad du = -s \overline{e}^{st} d t$$

$$dv = \frac{df(t)}{dt} dt = df(t) \quad ; \quad v = f(t)$$

$$L\{\frac{d f(t)}{dt}\} = \overline{e}^{st} f(t) \Big|_{0}^{\infty} + s \int_{0}^{\infty} \overline{e}^{st} f(t) dt$$

$$= \lim_{A \to \infty} \left[\overline{e}^{st} f(t) \Big|_{0}^{A} \right] + s L\{f(t)\}$$

$$= \lim_{A \to \infty} \left[\overline{e}^{As} f(A) - f(0) \right] + S L\{f(t)\}$$

$$= s L\{f(t)\} - f(0)$$

: la proposición original es verdadera para n = 1

ii) para n = k

$$L\left\{\frac{d^{k} f(t)}{dt^{k}}\right\} = s^{k} L\left\{f(t)\right\} - s^{k-1} f(0) - s^{k-2} f'(0) - \dots - s f^{(k-2)}(0) - f^{(k-1)}(0)$$

iii) para n = k + 1

$$L\left\{\frac{d^{k+1}f(t)}{dt^{k+1}}\right\} s^{k+1}L\left\{f(t)\right\} - s^{k}f(0) - s^{k-1}f'(0) - \dots - sf^{(k-1)}(0) - f^{(k)}(0)$$

$$L\left\{\frac{d}{dt}\frac{d^k f(t)}{dt^k}\right\} = s \left[s^k L\{f(t)\} - s^{k-1}f(0) - s^{k-2}f'(0) - \dots - f^{(k-1)}(0) \right] - f^{(k)}(0)$$

de ii):

$$L\left\{\frac{d}{dt}\frac{d^{k}f(t)}{dt^{k}}\right\} = s\left[L\left(\frac{d^{k}f(t)}{dt^{k}}\right)\right] - f^{(k)}(0)$$

considerando

$$\frac{d^{k}f(t)}{dt^{k}} = g(t) \quad ; \quad \frac{d^{k}f(t)}{dt^{k}} \quad \bigg|_{t = 0} = f^{(k)}(0) = g(0)$$

tenemos:

$$L\{\frac{d}{dt} g(t)\} = s L\{g(t)\} - g(0)$$

lo cual es verdadero, pues se demostró en el inciso $\,$ i), por lo tanto, la proposición dada es verdadera para $\,$ n = 1, 2, 3, \dots

III.4. - Demostrar que
$$L\{\int_{0}^{t} \{(\tau) d\tau\} = \frac{1}{s} L\{\{\{t\}\}\}$$

SOLUCTON

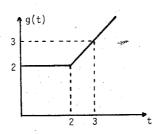
$$L\{ \int_0^t f(\tau) d\tau \} = \int_0^\infty \tilde{e}^{st} \left(\int_0^t f(\tau) d\tau \right) dt$$

, integrando por partes

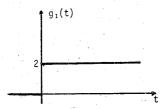
$$u = \int_0^t f(\tau) d\tau ; du = f(t) dt$$

$$dv = \bar{e}^{st} dt ; v = -\frac{1}{s} \bar{e}^{st}$$

$$L\{ \int_{0}^{t} f(\tau) d\tau \} = \left(-\frac{1}{s} \bar{e}^{st} \int_{0}^{t} f(\tau) d\tau \right) \Big|_{0}^{+} + \frac{1}{s} \int_{0}^{\infty} \bar{e}^{st} f(t) dt$$

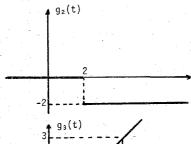

$$= \lim_{A \to \infty} \left[-\frac{1}{s} \bar{e}^{As} \int_{0}^{A} f(\tau) d\tau + \frac{1}{s} \bar{e}^{s(0)} \int_{0}^{0} f(\tau) d\tau \right] + \frac{1}{s} L\{(t)\}$$

$$= \left[0 + 0\right] + \frac{1}{s} L \left\{f(t)\right\}$$


$$=\frac{1}{s} L \{f(t)\}$$
 , L.Q.Q.D

111.5 Para la función g(t) del inciso b) del problema 111.1, representarla por medio de la función escalón y obtener su transformada de Laplace.

SOLUCION



La función g(t) la podemos obtener sumando las tres funciones siguientes:

$$g_1(t) = 2 u(t)$$

donde u(t) es la función escalón unitario.

$$g_2(t) = -2 u(t-2)$$

$$g_3(t) = t u(t-2)$$

esto es:

$$g(t) = g_1(t) + g_2(t) + g_3(t)$$

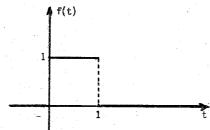
$$= 2 u(t) - 2 u(t-2) + t u(t-2)$$

$$= 2 u(t) + (t-2) u(t-2)$$

Obteniendo la transformada de Laplace de g(t):

$$L\{g(t)\} = L\{2u(t) + (t-2) u (t-2)\}$$
$$= 2 L\{u(t)\} + L\{(t-2) u (t-2)\}$$

donde


$$L\{u(t)\} = \frac{1}{s}$$

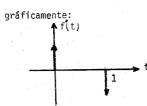
y por el teorema de traslación en el dominio de t:

$$L\{(t-2) \ u(t-2)\} = \bar{e}^{2s} L\{t \ u(t)\}$$
$$= \frac{1}{2} \bar{e}^{2s}$$

:
$$L{g(t)} = 2 \frac{1}{s} + \frac{1}{s^2} \tilde{e}^{2s}$$

III.6 Peterminar la transformada de Laplace de la siguiente función f(t) y de su derivada.

_SOLUCION


La función f(t) la podemos representar por medio de una suma de funciones escalón:

$$f(t) = u(t) - u(t-1)$$

la derivada de f(t) es:

$$f'(t) = \frac{d u(t)}{dt} - \frac{d u(t-1)}{dt}$$

$$= \delta (t) - \delta (t-1)$$

Obteniendo la transformada de f(t):

$$L\{f(t)\} = L\{u(t)\} - L\{u(t-1)\}$$

donde

$$L\{u(t)\} = \frac{1}{s}$$

y por el teorema de traslación en el dominio de t:

$$L\{u(t-1)\} = \bar{e}^s L\{u(t)\}$$

$$=\bar{e}^s \frac{1}{s}$$

:
$$L\{f(t)\} = \frac{1}{s} - \frac{1}{s} \bar{e}^s$$

Obteniendo la transformada de Laplace de

$$L\{f'(t)\} = L\{\delta(t)\} - L\{\delta(t-1)\}$$

donde

$$L\{\delta(t)\} = 1$$

$$L\{\delta(t-1)\} = \bar{e}^s L\{\delta(t)\}$$

$$\therefore L\{f^i(t)\} = 1 - \bar{e}^s$$

III.7.- Obtener la transformada inversa de Laplace para cada una de las siguientes funciones:

a)
$$F(s) = \frac{2}{s^2 - 2s + 5}$$

b)
$$F(s) = \frac{2s}{s^2 - s - 1}$$

c)
$$F(s) = \frac{4}{s(s-2)^2}$$

d)
$$F(s) = \frac{(s-3)s}{s^4-s^3-7s^2+s+6}$$

SOLUCION

a)
$$F(s) = \frac{2}{s^2 - 2s + 5}$$

i) Completando el trinomio cuadrado perfecto:

Siendo el denominador un polinomio de segundo grado cuyo coeficiente de s es diferente de cero, podemos completar el trinomio cuadrado perfecto:

$$F(s) = \frac{2}{s - 2s + 5} = \frac{2}{s - 2s + 1 + 4}$$

y como
$$s^2 - 2s + 1 = (s - 1)^2$$
, tenemos que

$$F(s) = \frac{2}{(s-1)^2 + 4}$$

por el teorema de traslación en s:

$$L^{-1}$$
 {F(s)} = L^{-1} { $\frac{2}{(s-1) + 4}$ } = e^{t} L^{-1} { $\frac{2}{s^2 + 4}$ }

de tablas:

$$L^{-1}\left\{\frac{2}{s^2+4}\right\} = \text{sen 2 t}$$

$$\therefore L \{F(s)\} = e^{t} \operatorname{sen} 2 t$$

ii) Desarrollando F(s) en fracciones parciales:

$$F(s) = \frac{2}{s^2 - 2s + 5} = \frac{2}{\left[s - (1+2i)\right] \left[s - (1-2i)\right]} = \frac{A}{s - (1+2i)} + \frac{B}{s - (1-2i)}$$

$$= \frac{A[s - (1-2i)] + B[s - (1+2i)]}{\left[s - (1+2i)\right] \left[s - (1-2i)\right]}$$

de donde:

$$2 = AS - A + 2 Ai + BS - B - 2 Bi$$

= $(A + B) S - A - B + 2 (A - B)i$

$$A + B = 0$$
 (a)

$$-A-B+2(A-B)i=2$$
 (b)

$$A = -B$$

sustituyendo en (b)

$$B^{-} - B + 2 (-B - B)i = 2$$

$$B = \frac{1}{2} i$$
; $A = -\frac{1}{2} i$

$$\therefore \ \ L^{1}\{F(s)\} = L^{1}\{\frac{-\frac{1}{2}i}{s-(1+2i)} + \frac{\frac{1}{2}i}{s-(1-2i)}\}$$

$$= -\frac{1}{2} \cdot i \cdot L^{-1} \cdot \{\frac{1}{s - (1 + 2 \cdot i)}\} + \frac{1}{2} \cdot i \cdot L^{-1} \cdot \{\frac{1}{s - (1 - 2 \cdot i)}\}$$

$$= -\frac{1}{2} i e^{(1+2i)t} + \frac{1}{2} i e^{(1-2i)t}$$

$$= -\frac{1}{2} i e^{t} e^{2it} + \frac{1}{2} i e^{t} \bar{e}^{2it}$$

$$= \frac{1}{2} e^{t} (-ie^{2it} + i\bar{e}^{2it})$$

$$L^{-1}\{F(s)\} = \frac{1}{2} e^{t} \left[-i(\cos 2 t + i \sin 2 t) + i(\cos 2 t - i \sin 2 t) \right]$$

$$= \frac{1}{2} e^{t} \left[2 \sin 2 t \right]$$

$$= e^{t} \sin 2 t$$

Como podemos observar, obtener la transformada inversa desarrollando en fracciones parciales, fue más laborioso que completar el trinomio cuadrado perfecto en el denominador de F(s).

b)
$$F(s) = \frac{2s}{s^2 - s - 1}$$

Como el denominador de F(s), es un polinomio de segundo grado, podríamos pensar en obtener sus raíces s_1 y s_2 y entonces desarrollar - F(s) en fracciones parciales, esto es:

$$F(s) = \frac{2s}{s^2 - s - 1} = \frac{A}{s - s_1} = \frac{B}{s - s_2}$$

Sin embargo, como s $_1$ y s $_2$ son complejas, el proceso de obtener la transformada inversa sería muy laborioso (ver inciso anterior).

Completando el trinomio cuadrado perfecto en el denominador:

$$F(s) = \frac{2s}{s^2 - s - 1} = \frac{2s}{s^2 - s + \frac{1}{4} - \frac{5}{4}} = \frac{2s}{(s - \frac{1}{2})^2 - \frac{5}{4}}$$

$$\therefore L^{-1} \{ F(s) \} = L^{-1} \{ \frac{2s}{(s - \frac{1}{2})^2 - \frac{5}{4}} \}$$

$$= 2 L^{-1} \{ \frac{(s - \frac{1}{2}) + \frac{1}{2}}{(s - \frac{1}{2})^2 - \frac{5}{4}} \}$$

$$= 2 e^{\frac{1}{2} t - \frac{1}{2}} \{ \frac{s + \frac{1}{2}}{s^2 - \frac{5}{4}} \}$$

$$\begin{bmatrix}
-1 \\
L
\end{bmatrix} \{ F(s) \} = 2 e^{\frac{1}{2}t} \begin{bmatrix}
-1 \\
L
\end{bmatrix} \{ \frac{s}{s^2 - \frac{5}{4}} + \frac{1}{2}\sqrt{\frac{2}{5}} \frac{\sqrt{\frac{5}{2}}}{s^2 - \frac{5}{4}} \} \end{bmatrix}$$

$$= 2 e^{\frac{1}{2}t} \begin{bmatrix} \cos h^{\sqrt{5}} + \frac{1}{\sqrt{5}} & \sin h^{\sqrt{5}} + \frac{1}{\sqrt{5}} &$$

c)
$$F(s) = \frac{4}{s(s-2)^2}$$

i) Desarrollando F(s) en fracciones parciales:

$$F(s) = \frac{4}{s(s-2)^2} = \frac{A}{s} + \frac{B}{s-2} + \frac{C}{(s-2)^2}$$

o bier

$$F(s) = \frac{4}{s(s-2)^2} = \frac{A}{s} + \frac{B \cdot S + C}{s^2 - 4 \cdot s + 4}$$

Optando por el primer desarrollo:

$$\frac{4}{s(s-2)^2} = \frac{A}{s} + \frac{B}{s-2} + \frac{C}{(s-2)^2} = \frac{A(s-2)^2 + Bs(s-2) + cs}{s(s-2)^2}$$

de donde:

$$4 = A (s - 2)^2 + B s (s - 2) + c s$$

para s =

$$4 = 4A$$
 ; $A = 1$

para s = 2

para s = 1 (arbitrariamente):

$$A = A - B + C$$
 $B = -1$

$$\therefore L^{-1} \{ F(s) \} = L^{-1} \{ \frac{1}{s} + \frac{1}{s-2} + \frac{2}{(s-2)^2} \}$$

$$= L^{-1} \{ \frac{1}{s} \} - L^{-1} \{ \frac{1}{s-2} \} + 2e^{2t} L^{-1} \{ \frac{1}{s^2} \}$$

ii) Por el teorema de convolución:

$$F(s) = \frac{4}{s(s-2)^2} = \frac{4}{s} \cdot \frac{1}{(s-2)^2}$$

$$G(s) = \frac{4}{s}$$
, entonces $g(t) = \frac{-1}{1} \{ \frac{4}{5} \} = 4$

$$H(s) = \frac{1}{(s-2)^2}$$
, entonces $h(t) = L^{-1} \left\{ \frac{1}{(s-2)^2} \right\} = t e^{2t}$

Por el teorema de convolución:
$$\overset{-1}{L} \left\{ F(s) \right\} = \overset{-1}{L} \left\{ \frac{4}{s} \cdot \frac{1}{(s-2)^2} \right\} = \overset{-1}{L} \left\{ G(s) \cdot H(s) \right\} = \int_0^t g(t-\tau) \ h(\tau) \ d\tau$$

donde

$$g(t - \tau) = 4$$

$$h(\tau) = \tau e^{2\tau}$$

=
$$2 \left[t e^{2t} - \frac{1}{2} (e^{2t} - 1) \right]$$

= $2 t e^{2t} - e^{2t} + 1$

d)
$$F(s) = \frac{s(s-3)}{s^4 - s^3 - 7s^2 + s + 6}$$

Las raices del denominador son $s_1 = -1$, $s_2 = 1$, $s_3 = -2$ y $s_4 = 3$ por lo tanto:

$$F(s) = \frac{s(s-3)}{s^4 - s^3 - 7s^2 + s + 6} = \frac{s(s-3)}{(s+1)(s-1)(s+2)(s-3)}$$

$$= \frac{s}{(s+1)(s-1)(s+2)}$$

$$= \frac{A}{s+1} + \frac{B}{s-1} + \frac{C}{s+2}$$

$$= \frac{A(s-1)(s+2) + B(s+1)(s+2) + C(s+1)(s-1)}{(s+1)(s+2)}$$

de donde:

$$s = A(s-1) (s+2) + B(s+1) (s+2) + C(s+1) (s-1)$$

para $s = s_1 = -1$
 $-1 = -2 A$; $A = \frac{1}{2}$

para
$$s = s_2 = 1$$

 $1 = 6 B$; $B = \frac{1}{6}$.
para $s = s_3 = -2$
 $-2 = 3c$; $C = -\frac{2}{3}$
 $\therefore L\{F(s)\} = L\{\frac{1}{2} + \frac{1}{6} + \frac{2}{3} + \frac{2}{3} + 2\}$
 $= \frac{1}{2} e^{-t} + \frac{1}{6} e^{t} - \frac{2}{3} e^{-2t}$

- III.8. Por medio de la transformada de Laplace, determinar la solución de cada una de las siguientes ecuaciones diferenciales:
 - a) $y'' y = 5 \operatorname{sen} 2 t$; y(0) = 0; -y'(0) = 0
 - b) $y'' y' 2y = 4 t^2$; y(0) = 1; y'(0) = 4
 - c) $\frac{dy}{dx} + 3y = 2$

SOLUCION

a) $y'' - y = 5 \operatorname{sen} 2 t$; y(0) = 0, y'(0) = 0

Aplicando el operador transformada de Laplace en ambos miembros de la ecuación:

$$L \{ y'' \} - L \{ y \} = 5 L \{ sen 2 t \}$$

$$s^2 y_s - s y(0) - y'(0) - y_s = 5 \frac{2}{s^2 + 4}$$

como
$$y(0) = y'(0) = 0$$

$$(s^2 - 1) y_s = \frac{10}{s^2 + 4}$$

$$-y_s = \frac{10}{(s^2 + 4) (s^2 - 1)}$$

Por la transformada inversa:

$$y(t) = L^{-1} \left\{ \frac{10}{(s^2 + 4)(s^2 - 1)} \right\}$$

desarrollando, y_s en fracciones parciales:

$$\frac{10}{(s^2+4)(s^2-1)} = \frac{10}{(s^2+4)(s+1)(s-1)}$$
$$= \frac{As+B}{s^2+4} + \frac{C}{s+1} + \frac{D}{s-1}$$

$$= \frac{(As+B) (s^2-1) + C(s^2+4) (s-1) + D(s^2+4) (s+1)}{(s^2+4) (s+1) (s-1)}$$

de donde

10 = (AS + B)
$$(s^2 - 1) + C (s^2 + 4) (s - 1) + D (s^2 + 4) (s + 1)$$

expresión que se satisface con

$$A = 0$$
 , $B = -2$, $c = -1$ y $D = 1$

$$\therefore y(t) = L^{-1} \left\{ \frac{10}{(s^2+4)(s^2-1)} \right\} = L^{-1} \left\{ \frac{-2}{s^2+4} + \frac{-1}{s+1} + \frac{1}{s-1} \right\}$$

$$y(t) = - sen 2 t - \bar{e}^t + e^t$$

b)
$$y'' - y' - 2y = 4t^2$$
; $y(0) = 1$, $y''(0) = 4$
Aplicando la transformada de Laplace:

$$s^2y_s - sy(0) - y'(0) - sy_s + y(0) - 2y_s = \frac{8}{s^3}$$

como
$$y(0) = 1$$
 y $y'(0) = 4$

$$(s^2 - s - 2) y_s - s - 3 = \frac{8}{s^3}$$

$$(s^2 - s - 2)y_s = \frac{s^4 + 3s^3 + 8}{s^3}$$

$$y_s = \frac{s^4 + 3s^3 + 8}{s^3 (s^2 - s - 2)}$$

Para obtener la transformada inversa de Laplace, conviene desarrollar $\mathbf{y}_{\mathbf{s}}$ en fracciones parciales:

$$y_{s} = \frac{s^{4} + 3s^{3} + 8}{s^{3}(s^{2} - s - 2)} = \frac{s^{4} + 3s^{3} + 8}{s^{3}(s - 2)(s + 1)}$$
$$= \frac{A}{s} + \frac{B}{s^{2}} + \frac{C}{s^{3}} + \frac{D}{s - 2} + \frac{E}{s + 1}$$

$$= \frac{As^{2}(s^{2}-s-2)+Bs(s^{2}-s-2)+C(s^{2}-s-2)+Ds^{3}(s+1)+Es^{3}(s-2)}{s^{3}(s-2)(s+1)}$$

de donde

 $s^4+3s^3+8=(A+D+E)s^4+(-A+B+D-2E)s^3+(-2A-B+C)s^2+(-2B-C)s$ - 2c expression que se satisface con:

$$A = -3$$
, $B = 2$, $C = -4$, $E = 2$, $D = 2$

$$\therefore \quad \overset{-1}{L} \left\{ y_{g} \right\} = \overset{-1}{L} \left\{ \frac{s^{4} + 3s^{3} + 8}{s^{3}(s - 2) (s + 1)} \right\} = \overset{-1}{L} \left\{ \frac{-3}{s} + \frac{2}{s^{2}} + \frac{-4}{s^{3}} + \frac{2}{s - 2} + \frac{2}{s + 1} \right\}$$

de tablas:

$$y(t) = -3 + 2t - 2t^2 + 2e^{2t} + 2\bar{e}^t$$

c)
$$\frac{dy}{dx} + 3y = 2$$

Aplicando el operador transformada de Laplace:

$$sy_{s} - y(0) + 3y_{s} = \frac{2}{s}$$

de donde

$$y_s = \frac{2}{s(s+3)} + \frac{y(0)}{s+3}$$

$$y(x) = L^{-1} \left\{ \frac{2}{s(s+3)} + \frac{y(0)}{s+3} \right\}$$
$$= L^{-1} \left\{ \frac{2}{s(s+3)} + y(0) \right\} \left\{ \frac{1}{s+3} \right\}$$

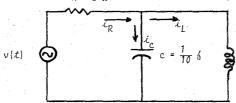
$$= L^{-1} \left\{ \frac{A}{s} + \frac{B}{s+3} \right\} + y(0) \bar{e}^{3x}$$

=
$$L^{-1}$$
 { $\frac{2/3}{s} + \frac{-2/3}{s+3}$ } + y(0) E^{3x}

$$=\frac{2}{3}-\frac{2}{3}\bar{e}^{3x}+y(0)\bar{e}^{3x}$$

$$=\frac{2}{3}+\left[y(0)-\frac{2}{3}\right]\bar{e}^{3x}$$

haciendo


$$y(0) - \frac{2}{3} = c_1$$

$$y(x) = c_1 \bar{e}^{3x} + \frac{2}{3}$$

111.9. Para el siguiente circuito eléctrico, determinar el voltaje en las terminales del capacitor en cualquier instante de tiempo, considerando que la excitación es:

a)
$$v(t) = 2\bar{e}^t$$
; $t \ge 0$

b)
$$v(t) = \delta(t)$$

 $R = 2 \Omega$

 $i_{\ell}(0) = 1 \text{ Amp.}$

υ_c(0) = 10 Volts.

SOLUCION

- Estableceremos primero un modelo matemático.

En la malla de la izquierda:

$$v_R + v_C = v(t)$$

como $v_R = Ri_R$, entonces:

$$Ri_R + v_C = v(t)$$

además $i_R = i_L + i_C$, con lo cual

la ecuación característica para un capacitor es:

$$\frac{dv_c}{dt} = c \cdot \frac{dv_c}{dt}$$

y de la ecuación característica para un inductor:

$$v_{L} = L i_{L}^{1}$$

tenemos que

$$i_{L} = \frac{1}{L} \int_{0}^{t} v_{L} (t')_{l} dt' + i_{L}(0)$$
 ---- (c

sustituyendo (b) y (c) en (a):

$$R \left[C \frac{dv_c}{dt} + \frac{1}{L} \right] \int_0^t v_L(t') dt' + i_L(0) + v_c = v(t)$$

Además, en el circuito vemos que v_L = v_C , por lo tanto:

$$R\left[C\frac{dv_c}{dt} + \frac{1}{L}\int_0^t v_c(t') dt' + i_L(0)\right] + v_c = v (t)$$

sustituyendo los valores R, C, L e $i_{\tau}(0)$:

$$\frac{1}{5} \frac{dv_c}{dt} + \frac{6}{5} \int_0^t v_c(t') dt' + 2 + v_c = v(t)$$

Esta ecuación es una ecuación "integrodiferencial" y constituye el mode lo del problema. Como podemos ver, esta ecuación puede ser resuelta aplicando la transformada de Laplace.

a) para
$$v(t) = 2e^{t}$$
, $t \ge 0$, en (d):

$$\frac{dv_{c}}{dt} + 6 \int_{0}^{t} v_{c}(t') dt' + 10 + 5 v_{c} = 10 \bar{e}^{t}$$

aplicando la transformada de Laplace:

$$S L \{ v_c \} - v_c(0) + 6 \frac{1}{s} L \{ v_c \} + \frac{10}{s} + 5 L \{ v_c \} = \frac{10}{s+1}$$

sustituyendo $v_c(0) = 10$, y multiplicando ambos miembros por s :

$$s^{2}$$
 L { v c } - 10 s + 6 L { v c } + 10 + 5 s L { v c } = $\frac{10s}{s+1}$ de donde

$$L \{ {}^{v}c \} = \frac{10s^2 + 10s - 10}{(s+1)(s^2 + 5s + 6)}$$

Antitransformando

$$v_{c}(t) = \bar{L}^{-1} \left\{ \frac{10s^{2} + 10s - 10}{(s+1)(s^{2} + 5s + 6)} \right\}$$

$$= \bar{L}^{-1} \left\{ \frac{A}{s+1} + \frac{B}{s+2} + \frac{C}{s+3} \right\}$$

$$= \bar{L}^{-1} \left\{ \frac{-5}{s+1} + \frac{-10}{s+2} + \frac{25}{s+3} \right\}$$

$$= -5 \bar{e}^{t} - 10\bar{e}^{2t} + 25 \bar{e}^{3t}$$

b) para $v(t) = \delta(t)$, en (d):

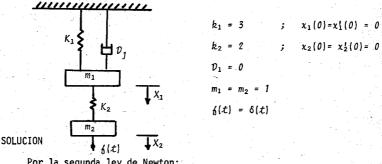
$$\frac{dv_c}{dt} + 6 \int_0^t v_c(t') dt' + 10 + 5 v_c = 5 \delta(t)$$

aplicando la transformada de Laplace

$$s L \{ v_c \} - v_c(0) + \frac{6}{s} L \{ v_c \} + \frac{10}{s} + 5 L \{ v_c \} = 5$$

sustituyendo $v_c(0)$ = 10, multiplicando por s ambos miembros y despejando L { v_c }:

$$L \{ v_c \} = \frac{15s - 10}{s^2 + 5s + 6}$$


$$v_{c}(t) = L^{-1} \left\{ \frac{15s - 10}{s^{2} + 5s + 6} \right\}$$

$$= L^{-1} \left\{ \frac{A}{s + 2} + \frac{B}{s + 3} \right\}$$

$$= L^{-1} \left\{ \frac{-40}{s + 2} + \frac{55}{s + 3} \right\}$$

$$= -40 \quad \bar{e}^{2t} + 55 \quad \bar{e}^{3t}$$

III.10 Para el siguiente sistema mecánico, determinar el desplazamiento de la masa m_1 y el desplazamiento de la masa m_2 en cualquier instante de tiempo

Por la segunda ley de Newton:

para la masa m₁

$$m_1 \frac{d^2 x_1}{dt^2} = -k_1 x_1 - D_1 \frac{dx_1}{dt} + k_2 (x_2 - x_1)$$

para la masa m₂

$$m_2 \frac{d^2x_2}{dt^2} = -k_2 (x_2 - x_1) + f(t)$$

sustituyendo $k_1 = 3$, $k_2 = 2$,

$$\frac{d^2x_1}{d+2} = -5x_1 + 2x_2$$

$$\frac{dx_2}{dt^2} = 2 x_1 - 2 x_2 + f(t)$$

Este sistema de ecuaciones constituye el modelo matemático del sistema. Para resolverlo vamos a aplicar la transformada de Laplace:

$$S^{2} L \{x_{1}\} = -5 L \{x_{1}\} + 2 L \{x_{2}\}$$

$$s^{2} L \{x_{2}\} = 2 L \{x_{1}\} - 2 L \{x_{2}\} + L \{f(t)\}$$
como
$$L \{f(t)\} = L \{\delta(t)\} = 1$$

$$\{s^{2} + 5\} L \{x_{1}\} - 2 L \{x_{2}\} = 0$$

 $-2 L \{x_1\} + (s^2 + 2) L \{x_2\} = 1$

Resolviendo este sistema algebraíco:

$$L \{ x_1 \} = \frac{2}{s^4 + 7s^2 + 6}$$

$$L \{ x_2 \} = \frac{s^2 + 5}{s^4 + 7s^2 + 6}$$

Para obtener la transformada inversa, conviene desarrollar primero en fracciones parciales:

L {
$$x_1$$
 }= $\frac{2}{s^4 + 7s^2 + 6} = \frac{2}{(s^2 + 1)(s^2 + 6)}$

$$= \frac{AS + B}{s^2 + 1} + \frac{CS + D}{s^2 + 6}$$

$$= \frac{2/5}{s^2 + 1} + \frac{-2/5}{s^2 + 6}$$
L { x_2 }= $\frac{s^2 + 5}{s^4 + 7s^2 + 6} = \frac{s^2 + 5}{(s^2 + 1)(s^2 + 6)}$

$$= \frac{AS + B}{s^2 + 1} + \frac{CS + D}{s^2 + 6}$$

$$= \frac{4/5}{s^2 + 1} + \frac{1/5}{s^2 + 6}$$

$$\therefore x_1(t) = L \left\{ \frac{2/5}{s^2 + 1} + \frac{-2/5}{s^2 + 6} \right\} = \frac{2}{5} \operatorname{sen} t - \frac{2}{5} \frac{1}{\sqrt{6}} \operatorname{sen} \sqrt{6} t$$

$$x_2(t) = L^{-1} \left\{ \frac{4/5}{s^2 + 1} + \frac{1/5}{s^2 + 6} \right\} = \frac{4}{5} \operatorname{sen} t + \frac{1}{5} \frac{1}{\sqrt{6}} \operatorname{sen} \sqrt{6} t$$

 $g(t) = t^2$

a)
$$f(t) = g(t) e^{3t}$$

b)
$$f(t) = g(t) e^{2t}$$
; $g(t) = sen h (4t)$

c)
$$f(t) = e^{t} g(t)$$
; $g(t) = \cos h (3t)$

d)
$$f(t) = \tilde{e}^{4t} g(t)$$
 ; $g(t) = \begin{cases} 0, & t < 1 \\ 2, & t \ge 1 \end{cases}$

2.- Obtener la transformada inversa de Laplace, de cada una de las siguientes funci \underline{o} nes:

a)
$$F(s) = \frac{3s - 12}{s^2 + 8}$$

b)
$$F(s) = \frac{2s-5}{s^2-9}$$

c)
$$F(s) = \frac{3s + 2}{4s^2 + 12s + 9}$$

3.- Por medio de la transformada de Laplace, determinar la solución de cada una de - las ecuaciones diferenciales:

a)
$$y'' + 2y' + y = \cos 3 t$$

$$v(0) = 0$$
 $v'(0) = 0$

b)
$$y'' - 2y' = 2e^{t}$$

$$y(0) = 2, y'(0) = 4$$

c)
$$-3y'' - 2y'' - 3y = 4 + x$$

$$y(0) = 1, y'(0) = 0$$

4.- Por medio de la transformada de Laplace, obtener la solución, de cada uno de los sistemas de ecuaciones diferenciales:

a)
$$x^{\mu} = 2x - 3y$$
; $x(0) = 3$

$$y' = y - 2x$$
; $y(0) = 1$

b)
$$x'' - x + 5y' = t$$
; $x(0) = 0$, $x'(0) = 0$

$$y'' - 4y - 2x' = -2$$
; $y(0) = 0$, $y'(0) = 0$

c)
$$x' + 2y - 3 = 0$$
 ; $x(0) = 0$

| | | | 역상에 보다서 | | | |
|--------------------|-----|------------|---|-------------------|--------------|-----------|
| | | | | | | |
| | | 2 24 · · · | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | e.
- | | | | 1942 |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | 4 T | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | · · | | | | - |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | 41 | 200 | | | | i j |
| | | | | | e** | ta
Ata |
| | | | 7 · · · · · · · · · · · · · · · · · · · | | | |
| | | - | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | The second second | | |
| | | 5m | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| Mariana
Mariana | 1 | | | | | |
| | | | | · | | |
| | | *, | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | Table States | |
| | | | | | | |
| | | | | | | |

TEMA IV

PROBLEMAS RESUELTOS

- IV.1. Para cada una de las siguientes funciones, obtenga la ecuación en derivadas parciales de la cual la función es solución general.
 - a) u = f(xy)
 - b) $u = ((2x+y) + g(3x+y) + 3x^3 2$

SOLUCION

a) Como la solución u, está compuesta por una sóla función arbitraria, f(x y), la ecuación en derivadas parciales es de primer orden.

Haciendo s = xy, la solución nos queda

y obteniendo las primeras derivadas parciales:

$$\frac{\partial u}{\partial x} = \frac{df(s)}{ds} - \frac{\partial s}{\partial x} = f'(s)y \qquad ---- (a)$$

$$\frac{\partial u}{\partial y} = \frac{df(s)}{ds} \frac{\partial s}{\partial y} = f'(s) x$$

Para eliminar f'(s), la cual no aparece en la ecuación en derivadas - parciales, la despejamos de (a);

$$f'(s) = \frac{1}{y} \frac{\partial u}{\partial x}$$

y la sustituimos en (b):

$$\frac{\partial u}{\partial y} = \frac{1}{y} \frac{\partial u}{\partial x} x$$

de donde

$$y \frac{\partial u}{\partial y} = x \frac{\partial u}{\partial x}$$

que es la ecuación en derivadas parciales de primer orden cuya solución general es u=f(x,y)

b) En este caso, la solución general $u=f(2x+y)+g(3x+y)+3x^3-2$ contiene dos funciones arbitrarias: f(2x+y) y g(3x+y), por lo tanto la ecuación - buscada es de segundo orden.

Haciendo s = 2 x + y y t = 3 x + y, la solución nos queda:

$$u = f(s) + g(t) + 3 x^3 - 2$$

y obteniendo las derivadas hasta de orden dos:

$$\frac{\partial u}{\partial x} = \frac{d f(s)}{d s} \frac{\partial s}{\partial x} + \frac{d g(t)}{d t} \frac{\partial t}{\partial x} + 9 x^2$$

$$= 2 f' + 3 g' + 9 x^2$$

$$\frac{\partial^2 u}{\partial x^2}$$
 = 4 f" + 9 g" + 18 x - - - - - - - - - (a

$$\frac{\partial u}{\partial y} = f' + g$$

$$\frac{\partial^2 u}{\partial x \partial y} = 2 \text{ f"} + 3 \text{ g"}$$
 ---- (c

Para eliminar f'' y g'', ya que éstas no deben aparecer en la ecuación en derivadas parciales buscada, podemos resolver el sistema de -ecuaciones (b) y (c) para f'' y g''. La solución de este sistema es:

$$g'' = \frac{\partial^2 u}{\partial x \partial y} - 2 \frac{\partial^2 u}{\partial y^2}$$

$$f'' = 3 \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial x \partial y}$$

sustituyendo en (a):

$$\frac{\partial^2 u}{\partial x^2} = 4 \left(3 \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial x \partial y} \right) + 9 \left(\frac{\partial^2 u}{\partial x \partial y} - 2 \frac{\partial^2 u}{\partial y^2} \right) + 18 x$$

de donde:

$$\frac{\partial^2 u}{\partial x^2} - 5 \frac{\partial^2 u}{\partial x \partial y} + 6 \frac{\partial^2 u}{\partial y^2} = 18 x$$

que es la ecuación en derivadas parciales cuya solución general es $u = f(2x + y) + g(3x + y) + 3x^3 - 2$

IV.2.- Dada la ecuación en derivadas parciales:

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^4 u}{\partial x^4} = 0$$

determinar su solución por el método de separación de variables para $\,\alpha > 0\,$ SOLUCION

Proponemos que la solución de la ecuación es de la forma:

$$u(x,t) = F(x) \cdot G(t)$$
 ----- (a)

Las derivadas involucradas en la ecuación en derivadas parciales son:

$$\frac{\partial^2 u}{\partial t^2} = F(x) G''(t)$$
 ---- (t

$$\frac{\partial^4 u}{\partial x^4} = F^{IV} (x) G(t) \qquad ---- (c)$$

sustituyendo (a), (b) y (c) en la ecuación:

$$F(x) G''(t) - c^2 F^{IV}(x) G(t) = 0$$

separando variables:

$$\frac{F^{IV}(x)}{F(x)} = \frac{1}{c^2} \frac{G''(t)}{G(t)}$$

para lo cual se requiere que:

$$\frac{F^{IV}(x)}{F(x)} = \alpha \qquad ----- \qquad (d)$$

у

$$\frac{1}{c^2} \frac{G''(t)}{G(t)} = \alpha$$
 (e)

Resolviendo la ecuación diferencial ordinaria (d) para $\alpha > 0$

$$F^{IV}(x) - \alpha F(x) = 0$$

haciendo $\alpha = k^2$

$$F^{IV}(x) - k^2 F(x) = 0$$

su ecuación característica es: $m^4 - k^2 = 0$ o sea $(m^2 + k) (m^2 - k) = 0$ de donde $\therefore F(x) = c_1 e^{\sqrt{k} x} + c_2 e^{-\sqrt{k} x} + c_3 \cos \sqrt{k} x + c_4 \sin \sqrt{k} x$ Resolviendo la ecuación diferencial (e) para $\alpha > 0$: $\frac{1}{c^2} \frac{G''(t)}{G(t)} = \alpha$ $G''(t) - c^2 \alpha G(t) = 0$ haciendo $\alpha = k^2$: $G''(t) - c^2k^2G(t) = 0$ su ecuación característica es: $m^2 - e^2 k^2 = 0$ de donde: $m_1 = c k$ $\therefore G(t) = c_5 e^{ckt} + c_6 \bar{e}^{ckt}$ Sustituyendo F(x) y G(t) en (a): $u(x,t) = (c_1e^{\sqrt{k} x} + c_2e^{-\sqrt{k} x} + c_3\cos\sqrt{k} x + c_4\sin\sqrt{k} x) (c_5e^{ckt} + c_6e^{-ckt})$ que es la solución completa de la ecuación en derivadas parciales dada.

IV.3.- Determinar la serie seno y la serie coseno de Fourier para la función $\{\{x\} = e^{-X} \quad , \quad 0 < x < 1 \}$

SOLU CION

La serie seno de Fourier para la función f(x) dada es:

 $f(x) = \sum_{n=1}^{\infty} b_n \text{ sen nII} x \qquad , \qquad 0 < x < 1 \qquad \qquad ----- \qquad (a$

$$\bar{e}^{X} = 2 \pi \left[\frac{1}{\pi^{2}+1} (1+\bar{e}^{1}) \text{ sen } \Pi x + \frac{2}{4\pi^{2}+1} (1-\bar{e}^{1}) \text{ sen } 2\pi x + \ldots \right]$$

La serie coseno de Fourier para la función f(x) dada es:

$$f(x) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n \cos n\pi x$$
 , $0 < x < 1$ ---- (c)

$$a_n = 2$$
 $\int_0^1 f(x) \cos n\pi x \, dx$; $n = 0, 1, 2, ... - - - - - (d)$

$$f(x) = \bar{e}^x$$
; $0 < x < 1$:

$$a_n = 2$$
 $\int_0^1 \bar{e}^x \cos n\pi x \, dx$; $n = 0, 1, 2, ...$

para n = 0

$$a_0 = 2 \int_0^1 \bar{e}^x dx = 2 (1-\bar{e}^1)$$

para n = 1, 2, 3, ...

$$a_n = 2 \int_0^1 \bar{e}^x \cos n\pi x dx$$

$$= \frac{2}{n^2 \pi^2 + 1} \left[n \pi \tilde{e}^x \text{ sen } n \pi x - \tilde{e}^x \cos n \pi x \right]_0^1$$

$$=\frac{2}{n^2\Pi^2+1}\left[n\Pi\ \bar{e}^1\ \text{sen }n\Pi\ -\ \bar{e}^1\ \cos\ n\Pi\ +\ 1\right]$$

$$= \frac{2}{n^2 \pi^2 + 1} \left[1 - (-1)^n \bar{e}^{\bar{1}} \right]$$

Sustituyendo a_0 y a_n en (c):

$$f(x) = \bar{e}^x = 1 - \bar{e}^1 + \sum_{n=1}^{\infty} \frac{2}{n^2 \Pi^2 + 1} \left[1 - (-1)^n \bar{e}^1 \right] \cos n \Pi x$$
, $0 < x < 1$

IV.4. Obtener la serie trigonométrica de Fourier para la siguiente función en el intervalo indicado.

$$6(x) = \begin{cases} 0 & ; & -2 < x < 1 \\ 1 & ; & 1 < x < 2 \end{cases}$$

SOLUCION

La serie de Fourier para la función dada, en el intervalo -2<x<2 es:

$$f(x) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{n \pi x}{2} + b_n \sin \frac{n \pi x}{2})$$
 ---- (a)

El cálculo de los coeficientes a_0 , a_n y b_n lo haremos a continuación:

$$a_0 = \frac{1}{2} \int_{-2}^{2} f(x) dx = \frac{1}{2} \left[\int_{-2}^{1} (0) dx + \int_{1}^{2} (1) dx \right] = \frac{1}{2}$$

$$a_n = \frac{1}{2}$$
 $\int_{-2}^{2} f(x) \cos \frac{n\pi x}{2} dx$; $n = 1, 2, 3, ...$

$$= \frac{1}{2} \left[\int_{-2}^{1} (0) \cos \frac{n \pi x}{2} dx + \int_{1}^{2} (1) \cos \frac{n \pi x}{2} dx \right]$$

$$= \frac{1}{2} \frac{2}{n II} \left[\text{ sen } n II - \text{ sen } \frac{n II}{2} \right]$$

=
$$-\frac{1}{n\Pi}$$
 sen $\frac{n\Pi}{2}$; ya que sen $n\Pi$ = 0 para n = 1, 2, 3,...

$$b_n = \frac{1}{2} \qquad \int_{-2}^2 f(x) \sin \frac{n\pi x}{2} dx$$

$$= \frac{1}{2} \int_{1}^{2} (1) \operatorname{sen} \frac{n \pi x}{2} dx$$

$$= -\frac{1}{n\pi} \left[\cos n\pi - \cos \frac{n\pi}{2} \right]$$

$$= -\frac{1}{n\pi} \left[(-1)^n - \cos \frac{n\pi}{2} \right]$$

Sustituyendo a_0 , a_n y b_n en (a):

$$f(x) = \frac{1}{4} + \sum_{n=1}^{\infty} \left[-\frac{1}{n\Pi} \operatorname{sen} \frac{n\Pi}{2} \cos \frac{n\Pi x}{2} - \frac{1}{n\Pi} \left((-i)^{n} - \cos \frac{n\Pi}{2} \right) \operatorname{sen} \frac{n\Pi x}{2} \right]$$

que es la serie trigonométrica de Fourier para la función dada en el intervalo -2 < x < 2

IV.5.- Sea el problema de conducción de calor en una varilla de cobre de 1 m de largo, cuyos extremos se mantienen a 0°C para toda t>0. Determine la función de temperatura u(x,t), si la distribución inicial de la temperatura es:

$$u(x, 0) = \begin{cases} x & ; & 0 \le x < \frac{1}{2} \\ 1 - x & ; & \frac{1}{2} < x \le 1 \end{cases}$$

SOLUCION

El modelo matemático del problema, es la ecuación de conducción de calor:

$$\alpha^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$
 , $0 < x < 1$, $t > 0$ - - - - - - (a)

donde α^2 es la constante de disipación térmica y depende del material, para el cobre α^2 = 1.14 cm²/seg., l es la longitud de la varilla, l = 1, y u es la temperatura de la varilla, u=u(x,t). Las condiciones de frontera del problema son;

y la condición inicial es:

$$u(x, 0) = g(x)$$
 (d)

donde

$$g(x) = \begin{cases} x & ; & 0 \le x < \frac{1}{2} \\ 1-x & ; & \frac{1}{2} & x \le 1 \end{cases}$$

Para resolver al ecuación (a), utilizaremos el método de separación de variables.

| Propongamos como solución de la ecuación (a) a la función: | Š |
|--|------------|
| u (x, t) = F(x) G(t) (| e) |
| para que sea solución de (a) deberá satisfacerla. | |
| Derixando u(x, t): | |
| $\frac{\partial u}{\partial t} = F(x) G'(t)$ | |
| $\frac{\partial^2 u}{\partial x^2} = F''(x) G(t)$ | |
| sustituyendo en la ecuación: | |
| α^2 $F''(x)$ $G(t) = F(x)$ $G'(t)$ | |
| separando las variables | |
| $\frac{F''(x)}{F(x)} = \frac{1}{\alpha^2} \frac{G'(t)}{G(t)}$ | . <u>.</u> |
| para lo cual: | |
| $\frac{F''(x)}{F(x)} = k$ (1) | f) |
| $\frac{1}{\alpha^2} \frac{G'(t)}{G(t)} = k$ | g) |
| donde k es constante. | |
| Antes de determinar el valor de $$ k, observemos la relación entre $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ |) |
| y G(t) con las condiciones de frontera: | |
| u(0,t) = F(0) G(t) = 0 | |
| u(1, t) = F(1) G(t) = 0 | |
| de donde, si $G(t) = 0$, al sustituir en (e) tendriamos que | |
| $u(x, t) = 0$, o sea la solución trivial. Entonces, si $G(t) \neq 0$ se - | • |
| tiene que | |
| F(0) = 0 | |
| F(1) = 0 | IJ. |

i) Consideremos que k = 0

Entonces la solución de la ecuación diferencial (f) es:

$$F(x) = c_1 + c_2 x$$

determinando c_1 y c_2 por medio de las condiciones (h):

$$F(0) = c_1 + c_2 (0) = 0$$

$$F(1) = c_1 + c_2 (1) = 0$$

de donde $c_1 = c_2 = 0$, con lo cual $F(x) = c_1 + c_2 x = 0$. Esta función F(x) = 0, hace que la solución u(x, t) = F(x) G(t) sea trivial la cual no es aceptable, por lo tanto k no puede ser cero.

ii) Consideremos que k > 0

La ecuación diferencial (f) se puede representar:

$$F''(x) - k F(x) = 0$$
 , $k > 0$

cuya solución es:

$$F(x) = c_1 e^{\sqrt{k} x_-} + c_2 e^{\sqrt{k} x}$$

determinando c_1 y c_2 por medio de las condiciones (h):

$$F(0) = c_1 + c_2 = 0$$

$$F(1) = c_1 e^{\sqrt{k} \ell} + c_2 \bar{e}^{\sqrt{k} \ell} = 0$$

Este sistema por ser homogéneo acepta la solución trivial $c_1 = c_2 = 0$, pero esto hace a F(x) = 0, con lo cual u(x, t) = 0, que como ya vimos no es aceptable. Para que el sistema anterior tenga solución distinta de la trivial se requiere que su determinante sea cero:

$$\begin{vmatrix} \hat{1} & \hat{1} \\ e^{\sqrt{k}} \ell & \bar{e}^{\sqrt{k}} \end{vmatrix} = \bar{e}^{\sqrt{k}} \ell - e^{\sqrt{k}} \ell = 0$$

este determinante es cero solamente para k=0, pero k=0 contradice la consideración hecha para este caso de que k>0. Por lo tanto k no puede ser positiva.

iii) Considerando que k < 0

Con k < 0 la solución de la ecuación diferencial (f) es:

 $F(x) = c_1 \cos \sqrt{x} x + c_2 \sin \sqrt{x} x$ ---- (**

utilizando las condiciones (h):

 $F(0) = c_1 = 0$

 $F(1) = c_1 \cos 4 \vec{k} + c_2 \sin 4 \vec{k} + 1 = 0$

de donde $c_1 = 0$ y c_2 sen $\sqrt{k} 1 = 0$

Se puede evitar la solución trivial, o sea $c_2 \neq 0$ si en la expresión c_2 sen $\not R$ l = 0

 $c_2 \neq 0$ y sen A = 0, lo cual se cumple para:

 \sqrt{k} 1 = nII ; n = 1, 2, 3, ...

o sea:

 $-k = \frac{n^2 \Pi^2}{1^2}$

Con este valor de k', la solución de (f), o sea la función (i) que da:

 $f(x) = c_2 \operatorname{sen} \frac{n \Pi x}{1}$

y la solución de (g) es:

$$G(t) = c_3 e^{\alpha^2 k t}$$

$$= c_3 \bar{e} \frac{\alpha^2 n^2 II^2}{l^2} t$$

Sustituyendo F(x) y G(t) en la solución (e) y sustituyendo l = 1:

$$u(x, t) = (c_3 \bar{e}^{\alpha^2 n^2 \Pi^2 t}) (c_3 \text{ sen } n\Pi x)$$
 , $n = 1, 2, 3, ...$

$$= \bar{e}^{\alpha^2 n^2 \Pi^2 t} (b_n \text{ sen } n \Pi x)$$

donde $b_n = c_2 c_3$ para toda $n = 1, 2, 3, \dots$

Como podemos ver tenemos una solución para cada valor de n, o sea tenemos un número infinito de soluciones. Por ser la ecuación en derivadas parciales lineal, la suma de sus soluciones también es lineal, por lo tanto:

$$u(x, t) = \sum_{n=1}^{\infty} \bar{e}^{\alpha^2 n^2 \Pi^2 t} (b_n \text{ sen } n \Pi x)$$
 ----- (j

Para determinar el valor del coeficiente $\,b_n^{}\,$, vamos a utilizar la condición inicial (d):

$$u(x, 0) = g(x) = \sum_{n=1}^{\infty} \bar{e}^{\alpha^2 n^2 \Pi^2(0)} b_n \text{ sen } n \Pi x = \sum_{n=1}^{\infty} b_n \text{ sen } n \Pi x$$

y como podemos observar, esta serie es la serie seno de Fourier de la función g(x) en el intervalo $0 \le x \le 1$, donde:

$$b_n = 2 \int_0^1 g(x) \sin n\pi x dx$$
; $n = 1, 2, 3, ...$

como

$$g(x) = \begin{cases} x & ; & 0 \le x < \frac{1}{2} \\ 1 - x & ; & \frac{1}{2} < x \le 1 \end{cases}$$

entonces

$$b_n = 2 \int_0^{1/2} x \operatorname{sen} n \pi x \, dx + \int_{1/2}^1 (1-x) \operatorname{sen} n \pi x \, dx$$

$$= \frac{4}{n^2 II^2} \operatorname{sen} \frac{nII}{2}$$

sustituyendo b_n en (j):

$$u(x, t) = \sum_{n=1}^{\infty} \frac{4}{n^2 \Pi^2} \left(\bar{e}^{\alpha^2 n^2 \Pi^2 t} \right) \text{ (sen } \frac{n\Pi}{2} \text{) (sen } n\Pi x \text{)}$$

que es la solución del modelo matemático del problema.

TEMA IV

PROBLEMAS PROPUESTOS

IV.1.- Para cada una de las siguientes funciones, obtenga la ecuación en derivadas parciales de la cual la función es solución general:

a)
$$\pm = F(x) + y G(x) + x^2 - x y^2$$

b)
$$u = F(y+x) + g(y-x)$$

c)
$$u = f(x^2 + y^2)$$

IY.2.- Determinar la solución de cada una de las siguientes ecuaciones para la α dada:

a)
$$\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} = 0$$
 , para $\alpha = 0$ y para $\alpha > 0$

b)
$$x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial u}{\partial y} = u$$
, para $\alpha = 0$

IV.3.- Determinar la serie trigonométrica de Fourier para cada una de las siguientes funciones.

a)
$$f(x) = x^2$$
, $-1 < x < 1$

b)
$$f(x) = \begin{cases} x(2+x) & ; -2 < x < 0 \\ (2-x)^2 & ; 0 < x < 2 \end{cases}$$

IV.4.- Determinar la serie seno y la serie coseno de Fourier para la función:

$$f(x) = 1 - x$$
; $0 < x < 1$

IV.5.- Una linea de transmisión, para la cual R=1 ohm/milla, L=0.01 henry/milla, $c=18^{-8}$ farad/milla, $y=10^{-6}$ mho/milla, tiene 1000 millas de longitud. Inicialmente el potencial en cualquier punto es independiente del tiempo, en x=0 y x=1000 el potencial es respectivamente E_1 y E_2

Si los extremos son repentinamente aterrizados, determinar la función potencial resultante $E(x,\,t)$, si sabemos que el modelo matemático del problema es:

$$\frac{\partial^2 E}{\partial x^2} = R G E + (R C + L G) \frac{\partial E}{\partial t} + LC \frac{\partial^2 E}{\partial t^2}$$

| | | | | | | | | | 建筑的 | |
|--|--|-----|-----|---|------|---------|------|------------|--------|-----------|
| | 등 경제되어 | | | | | AND THE | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | 12.1 | | | 100 |
| | | | | | | | | | | |
| | | | 1.0 | | | | | | | 100 |
| | | | | | | | 11.4 | 1 | 1.75 | |
| | | . : | | * | | | | | 3 12 4 | |
| | | | | | | | | The second | | |
| | | | | v | | | | | | 33. |
| | | | 14 | | | | | | | |
| | | | | | | | | | | • - 17 |
| | × | | | | | | | | | |
| | | | | | | | 1 | | | |
| | | | | | | | | ** | -2 | |
| | | | | | | • | | | | |
| 装件 医甲二二甲 | | | | | | | | | | |
| | | | | | | | - | | | |
| | | | | | | | | | 14 | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | 100 | |
| 경기 :
1981 - 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | ٠, ٠, |
| | | | | | | | | | | |
| | | | | | * : | | | | | + 3 |
| | | | | | | | | | | |
| | • | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| San | | | 200 | | | | ~ | | | |
| | | | | | | | - | | 14 = 1 | |
| | | 4. | | | | | | | | |
| | | | | | | | | | 5-5- | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | • | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | . 2 | | | | | |
| | | | | - | | | | | | |
| | | | | | | 1 | | 14. | 47.47 | |
| 复压力 田田 一直 | | | | | | | | | | |
| 용도한 사람들은 그는 그 그 그 그들은 | | | | | | | | | | |
| | | | | | | | | | | |
| | | | 4 | | | | | | | |
| | gradina e porteira en
Regelo espetado en 1880 | | | | - 10 | | | | | |
| | | | | | | | | | | |
| The second secon | | | | | | _ , | | | | Balton 71 |
| | | | | | | | | | | |

PROBLEMAS RESUELTOS

V.1. Determinar $\Delta^2 f_0$ para la función $f_k = 2^k + k + \frac{2}{3^k}$, con h = 1

$$\Delta^{2} f_{k} = f_{k+2h} - 2 f_{k+h} + f_{k}$$

$$con h = 1$$

$$\Delta^{2} f_{k} = f_{k+2} - 2 f_{k+1} + f_{k}$$

$$= 2^{k+2} + (k+2) + \frac{2}{3^{k+2}} - 2 \left[2^{k+1} + (k+1) + \frac{2}{3^{k+1}} \right] + 2^{k} + k + \frac{2}{3^{k}}$$

$$= 4 \cdot 2^{k} - 4 \cdot 2^{k} + 2^{k} + k - 2^{k} + k + 2 - 2 + \frac{2}{9 \cdot 3^{k}} - \frac{4}{3 \cdot 3^{k}} + \frac{2}{3^{k}}$$

$$= 2^{k} + \frac{8}{9 \cdot 3^{k}}$$

: para
$$k = 0$$

 $\Delta^2 f_0 = 1 + \frac{8}{9} = \frac{17}{9}$

Comprobar que $\Sigma k^{(m)} = \frac{k^{(m+1)}}{m+1}$

SOLUCION

$$\Sigma k^{(m)} = \frac{k^{(m+1)}}{m+1}$$
 ---- (a)

entonces aplicando el operador
$$\Delta$$
 en ambos miembros:
$$k^{(m)} = \Delta \frac{k^{(m+1)}}{m+1}$$
$$= \frac{(k+1)^{(m+1)}}{m+1} - \frac{k^{(m+1)}}{m+1}$$
$$= \frac{(k+1)^{(m+1)}}{m+1} - k^{(m+1)}$$

Para comprobar que (a) es verdadera, bastará con demostrar la identidad (b).

Desarrollando la primera diferencia de $k^{(n)}$:

$$\Delta k^{(n)} = (k+1)^{(n)} - k^{(n)}$$

=
$$(k+1)$$
 (k) $(k-1)$ $(k-2)$ \cdots $\left[k-(n-2)\right]$ - $k(k-1)$ $(k-2)$ \cdots $\left[k-(n-1)\right]$

$$= \{k(k-1) \ (k-2) \cdots \left[\ k-(n-2) \ \right] \} \ \{(k+1) \ - \ \left[\ k-(n-1) \ \right] \}$$

=
$$\{k(k-1) (k-2) \cdots [k-(n-2)]\}$$
 {n}

$$= \{k^{(n-1)}\} \{n\}$$

$$= n k^{(n-1)}$$

$$(k+1)^{(n)} - k^{(n)} = n k^{(n-1)}$$

si en esta expresión hacemos n = m + 1:

$$(k+1)^{(m+1)} - k^{(m+1)} = (m+1) k^{(m)} - - - - - - - - - - - - - - (c)$$

sustituyendo (c) en (b):

$$k^{(m)} = \frac{(m+1) k^{(m)}}{m+1}$$

$$= k^{(m)}$$

.: queda demostrada la identidad (b).

- V.3. Para la función $\delta_b = k^3$, determinar:
 - a) Σ 6_k
 - b) \(\sum_{0}^{2} \, \delta_{k}^{2} \)
 - c) 5 6

SOLUCION:

a) Para obtener $\Sigma \kappa^3$, vamos a representar k^3 por medio de la función - factorial:

$$k^3 = k^{(3)} + 3 k^{(2)} + k^{(1)}$$

ya que:

$$k^{(3)} + 3k^{(2)} + k^{(1)} = k(k-1)(k-2) + 3k(k-1) + k$$

$$= k^{3} - 3k^{2} + 2k + 3k^{(2)} - 3k + k$$

$$= k^{3}$$

Entonces:

$$\Sigma \kappa^{3} = \Sigma \left[\chi^{(3)} + 3k^{(2)} + \chi^{(1)} \right]$$

= $\Sigma k^{(3)} + 3 \Sigma k^{(2)} + \Sigma k^{(1)}$

como
$$\Sigma k^{(m)} = \frac{k^{(m+1)}}{m+1}$$
 , tenemos

$$\Sigma \kappa^3 = \frac{k^{(4)}}{4} + \frac{3 k^{(3)}}{3} + \frac{k^{(2)}}{2}$$

$$= \frac{k(k-1) (k-2) (k-3) + 4k (k-1) (k-2) + 2k(k-1)}{4}$$

$$= \frac{k^4 - 2 k^3 + k^2}{4}$$

b)
$$\sum_{0}^{2} k^{3} = \frac{k^{4} - 2 k^{3} + k^{2}}{4} \Big|_{0}^{3} = 9$$

Esta suma la podemos obtener, sin necesidad de conocer previamente la suma indefinida de k^3 . Basta con desarrollar la suma de la función desde cero hasta dos:

$$\sum_{0}^{2} k^{3} = (0)^{3} + (1)^{3} + (2)^{3} = 0 + 1 + 8 = 9$$

Con esto podríamos pensar en que para conocer la suma definida es inútil obtener primero la suma indefinida, como lo hicimos en el inciso a). Sin embargo la ventaja de obtener la suma definida primero, se puede - apreciar en el siguiente inciso.

c)
$$\sum_{0}^{9.9} k^3 = \frac{k^4 - 2}{4} \frac{k^3 + k^2}{4} \Big|_{0}^{100} = \frac{10^8 - 2 \times 10^6 + 10^4}{4} = 24502500$$

de otra manera:

$$\sum_{0}^{99} k^{3} = (0)^{3} + (1)^{3} + (2)^{3} (3)^{3} + ... + (99)^{3}$$

- V.4. Determinar el orden de cada una de las siguientes ecuaciones en diferencias:
 - a) $\Delta^2 y_k \Delta y_k = k$

6)
$$(\Delta^2 + 3 \Delta + 1) y_k + (E - 1) y_k + y_{k-1} = 0$$

SOLUCION

a)
$$\Delta^2 y_k - \Delta y_k = k$$

 $(E-1)^2 y_k - (E-1) y_k = k$
 $(E^2 - 2E+1 - E+1)y_k = k$
 $(E^2 - 3E+2)y_k = k$
 $y_{k+2} - 3y_{k+1} + 2y_k = k$

∴ el orden es 2

b)
$$(\Delta^2 + 3 \Delta + 1)y_k + (E-1)y_k + y_{k-1} = 0$$

$$\begin{bmatrix} (E-1)^2 + 3 (E-1) + 1 \end{bmatrix} y_k + (E-1) y_k + y_{k-1} = 0$$

$$\begin{bmatrix} E^2 - 2E + 1 + 3E - 3 + 1 + E - 1 \end{bmatrix} y_k + y_{k-1} = 0$$

$$(E^2 + 2E - 2) y_k + y_{k-1} = 0$$

$$y_{k+2} + 2y_{k+1} - 2y_k + y_{k-1} = 0$$

∴ el orden es 3

V.5. Determinar la solución de cada una de las siguientes ecuaciones en diferencias.

a)
$$y_{k+3} + 3y_{k+2} + 3y_{k+1} + y_k = 0$$

b)
$$y_{k+4} - 16 y_k = 0$$

c)
$$(E^4 + 18 E^2 + 81) y_k = 0$$

SOLUCION

a) La ecuación representada por medio del operador E es:

$$(E^3 + 3 E^2 + 3 E + 1) y_k = 0$$

La ecuación característica correspondiente es:

$$\beta^3 + 3 \beta^2 + 3\beta + 1 = 0$$

Determinando las raices por división sintética:

$$\therefore \quad \beta_1 = \beta_2 = \beta_3 = -1$$

Con las tres raíces iguales, la solución general de la ecuación es:

$$y_k = (c_1 + c_2k + c_3k^2) (-1)^k$$

b)
$$y_{k+4} - 16 y_k = 0$$

haciendo $\beta^2 = \lambda$, tenemos

$$\lambda^2 - 16 = 0$$

$$\lambda = \pm 4$$

para $\lambda = 4$

 $\beta^2 = \lambda = 4$

 $\beta = \pm \sqrt{4}$; $\beta_1 = 2$, $\beta_2 = -2$

para $\lambda = -4$

 $R^2 = -4$

 $\beta = \pm \sqrt{-4}$, $\beta_3 = 2i$, $\beta_4 = -2i$

para β₃ y β

 $r = \sqrt{(2)^2 + (0)^2} = 2$ $y = \theta = angtan \frac{2}{0} = \frac{1}{2}$

:. la solución general de la ecuación es:

 $y_k = c_1 \cdot 2^k + c_2 (-2)^k + 2^k (c_3 \cos k \frac{\pi}{2} + c_4 \sin k \frac{\pi}{2})$

c) $(E^4 + 18 E^2 + 81) y_k = 0$

La ecuación característica es:

 $\beta^4 + 18 \beta^2 + 81 = 0$

haciendo $\beta^2 = \lambda$

 $\lambda^{2} + 18 \lambda + 81 = 0$

 $\lambda_1 = \frac{-18 \pm \sqrt{324 - 324}}{2}$; $\lambda_1 = \lambda_2 = -9$

para $\lambda = \lambda_1 = -9$:

 $R^2 = -Q + R = 3i R_0 = -3i$

nara $\lambda = \lambda_{-} = -9$

 $\beta^2 = -9$; $\beta_3 = 3i$, $\beta_4 = -3i$

Las cuatro raices son imaginarias y se repiten.

$$r = 3$$
; $\theta = ang \tan \frac{3}{0} = \frac{II}{2}$

La solución general de la ecuación es:

$$y_k = 3^k \left[(c_1 + c_2 k) \cos k \frac{\pi}{2} + (c_3 + c_4 k) \sin k \frac{\pi}{2} \right]$$

V.6.- Obtener el operador aniquilador para cada una de las siguientes ecuaciones en diferencias:

a)
$$P(E) y_k = 2^k$$

b)
$$P(E) y_k = 3 - 4 k^2$$

c)
$$P(E) y_k = 2^k \operatorname{sen} k \frac{\pi}{2}$$

d)
$$P(E) y_k = 5 \cos k \frac{\pi}{3} + (-1)^k$$

e)
$$P(E) y_k = -2.3^k \cdot k \text{ sen } k \frac{\Pi}{2}$$

SOLUCION

a)
$$P(E) y_k = 2^k$$

El aniquilador Ø (E) buscado, es un polinomio en E tal que al aplicarlo a la función ${\bf q}_k=2^k$ de la ecuación, la anule.

Para este caso \emptyset (E) = E - 2 , ya que:

$$\emptyset$$
 (E) $q_k = (E-2) 2^k = E 2^k - 2 \cdot 2^k = 2^{k+1} - 2 \cdot 2^k = 0$

Este aniquilador se obtiene de la siguiente manera:

 $q_{\nu} = 2^{k}$ es una solución particular obtenida de la solución general:

$$q_k = c_1 \cdot 2^k$$

haciendo $c_1 = 1$. Esta solución general se formó con la raíz $\beta = 2$,

y la ecuación característica correspondiente es:

 \therefore $q_k = 2^k$ es solución de la ecuación homogénea:

$$(E - 2) q_{L} = 0$$

de donde se tiene que el aniquilador es

$$\emptyset$$
 (E) = E - 2

b) $q_k = 3 - 4 k^2$ es una solución particular obtenida de la solución general:

$$\tilde{q}_{k} = c_{1} + c_{2} k + c_{3} k^{2}$$

haciendo $c_1=3$, $c_2=0$ y $c_3=-4$. Esta solución general se formó con las raíces:

$$\beta_1 = \beta_2 = \beta_3 = 1$$

y la solución característica correspondiente es:

$$(\beta - 1)^3 = 0$$

 \therefore q_k = 3 - 4 k² es solución de la ecuación homogénea:

$$(E - 1)^3 q_k = 0$$

de donde se tiene que el aniquilador es:

$$\emptyset$$
 (E) = (E - 1)³

c) $q_k = 2^k \text{ sen } k \frac{\pi}{2}$ es una solución particular obtenida de la solución general:

$$q_k = 2^k (c_1 \cos k \frac{\pi}{2} + c_2 \sin k \frac{\pi}{2})$$

haciendo $c_1=0$ y $c_2=1$. Esta solución general se formó con - r=2 y $\theta=\frac{\Pi}{2}$, por lo tanto, las raíces de la ecuación caracterís

ca son:

$$\beta_1 = a + bi$$
 , $\beta_2 = a - bi$

donde

$$a = r \cos \theta = 2 \cos \frac{\pi}{2} = 0$$

$$b = r \operatorname{sen} \theta = 2 \operatorname{sen} \frac{\pi}{2} = 2$$

por lo que

$$\beta_1 = 2i$$
 y $\beta_2 = -2i$

La ecuación característica correspondiente es

$$(\beta - 2i) (\beta + 2i) = 0$$

$$\beta^2 + 4 = 0$$

 \therefore el aniquilador es \emptyset (E) = E² + 4

d) $q_k = 5 \cos k \frac{\pi}{3} + (-1)^k$ es una solución particular obtenida de la solución general:

$$q_k = (c_1 \cos k \frac{\pi}{3} + c_2 \sin k \frac{\pi}{3}) + c_3 (-1)^k$$

Los dos primeros términos de esta solución se formaron con $\, r=1 \,$ y $\, \theta=\frac{\Pi}{3} \,$, por lo tanto las raíces de la ecuación característica son:

$$\beta_1 = a + b i$$
, $\beta_2 = a - b i$ y $\beta_3 = -1$

donde

$$a = r \cos \theta = \cos \frac{\pi}{3} = \frac{1}{2}$$

$$b = r \ \text{sen} \ \theta = \text{sen} \ \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

por lo que:

$$\beta_1 = \frac{1}{2} + \frac{\sqrt{3}}{2} i$$
 , $\beta_2 = \frac{1}{2} - \frac{\sqrt{3}}{2} i$, $\beta_3 = -1$

La ecuación característica es:

$$\[\beta - (\frac{1}{2} + \frac{\sqrt{3}}{2} i) \] \[\beta - (\frac{1}{2} - \frac{\sqrt{3}}{2} i) \] \[(\beta + 1) = 0 \]$$

$$(\beta^2 - \beta + 1)$$
 $(\beta + 1) = 0$

$$\beta^3 + 1 = 0$$

: el aniquilador correspondiente es \emptyset (E) = E³ + 1

e) $q_k = -2 \cdot 3^k \cdot k$ sen $k \frac{II}{2}$ es solución particular obtenida de la solución general.

$$q_k = 3^k \left[(c_1 + c_2 k) \cos k \frac{\pi}{2} + (c_3 + c_4 k) \sin k \frac{\pi}{2} \right]$$

haciendo $c_1=c_2=c_3=0$ y $c_4=-2$. Esta solución se formó - con r=3 y $\theta=\frac{\pi}{2}$ de las raíces repetidas:

$$\beta_1 = \beta_3 = a + bi$$
 , $\beta_2 = \beta_4 = a - bi$

donde

$$a = r \cos \theta = 3 \cos \frac{\pi}{2} = 0$$

$$b = r \sin \theta = 3 \sin \frac{\pi}{2} = 3$$

con lo cual

$$\beta_1 = \beta_3 = 3i$$
 , $\beta_2 = \beta_4 = -3i$

la ecuación característica correspondiente es:

$$(\beta - 3i)^2 (\beta + 3i)^2 = 0$$

$$(\beta^2 + 9)^2 = 0$$

: el aniquilador correspondiente es:

$$\emptyset$$
 (E) = (E² + 9)²

V.T.- Peterminar la solución general de la siguiente ecuación en diferencias.

Por ser lineal la ecuación, su solución general es de la forma

$$y_k = y_k^{(c)} + y_k^{(p)}$$

Determinando la solución complementaria $y_k^{(c)}$:

la ecuación característica es:

$$\beta^2 - 1 = 0$$

de donde
$$\beta_1 = 1$$
 y $\beta_2 = -1$

Determinando la solución particular $y_k^{(p)}$ por el método de-coeficientes indeterminados:

El aniquilador de $q_k = 5 \cos k \frac{11}{3} + (-1)^k$, como puede verse en el inciso d) del problema IV.6, es:

$$\emptyset$$
 (D) = E³ + 1

Aplicando el operador aniquilador en ambos miembros de la ecuación en diferencias:

$$(E^3 + 1) (E^2 - 1) y_k = (E^3 + 1) \left[5 \cos k \frac{\pi}{3} + (-1)^k \right] = 0 - - - - (c)$$

La ecuación característica de esta ecuación homogénea es:

$$(\beta^3 + 1) (\beta^2 - 1) = 0$$

de donde

$$\beta_1 = 1$$
, $\beta_2 = -1$, $\beta_3 = -1$, $\beta_4 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ y $\beta_5 = \frac{1}{2} - \frac{\sqrt{3}}{2}i$

con β_4 y β_5

$$r = (\frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2 = 1$$
 , $\theta = \text{ang tan } \frac{\sqrt{3}}{1/2} = 60^\circ = \frac{\pi}{3}$

∴ la solución de (c) es:

$$y_k = c_1 + (c_2 + c_3 k) (-1)^k + c_4 \cos k \frac{\pi}{3} + c_5 \sin k \frac{\pi}{3} - - - - (d)$$

Esta solución también es solución de (a) y como $y_k = y_k^{(c)} + y_k^{(p)}$,

sabemos que:

$$y_k^{(c)} = c_1 + c_2 (-1)^k$$

$$y_k^{(p)} = c_3 k (-1)^k + c_4 \cos k \frac{\pi}{3} + c_5 \sin k \frac{\pi}{3}$$

Para determinar las constantes c_3 , c_4 y c_5 , sustituímos $y_k^{(p)}$ en (a):

$$2 c_{3}(-1)^{k} + c_{4} \left[\cos k \frac{\pi}{3} \cos \frac{2\pi}{3} - \sin k \frac{\pi}{3} \sin \frac{2\pi}{3} \right] +$$

$$+ c_{5} \left[\sin k \frac{\pi}{3} \cos \frac{2\pi}{3} + \cos k \frac{\pi}{3} \sin \frac{2\pi}{3} \right] - c_{4} \cos k \frac{\pi}{3} -$$

$$- c_{5} \sin k \frac{\pi}{3} = 5 \cos k \frac{\pi}{3} + (-1)^{k}$$

de donde:

$$2 c_3 = 1$$

$$c_4 \cos \frac{2\Pi}{3} + c_5 \sin \frac{2\Pi}{3} - c_4 = 5$$

- $c_4 \sin \frac{2\Pi}{3} + c_5 \cos \frac{2\Pi}{3} - c_5 = 0$

$$-1.5 c_4 + \frac{\sqrt{3}}{2} c_5 = 5$$

$$-\frac{\sqrt{3}}{2}c_{4}-1.5c_{5}=0$$

cuya solución es:

$$c_3 = \frac{1}{2}$$
 , $c_4 = -\frac{5}{2}$, $c_5 = \frac{5 \cdot \sqrt{3}}{6}$

$$y_k^{(p)} = \frac{1}{2} k (-1)^k - \frac{5}{2} \cos k \frac{\pi}{3} + \frac{5\sqrt{3}}{6} \operatorname{sen} k \frac{\pi}{3}$$

y la solución general queda:

$$y_k = c_1 + c_2 (-1)^k + \frac{1}{2} k (-1)^k - \frac{5}{2} \cos k \frac{\pi}{3} + \frac{5\sqrt{3}}{6} \operatorname{sen} k \frac{\pi}{3}$$

V.8.- Resolver la siguiente ecuación en diferencias:

$$y_{k+2} - 3y_{k+1} + 2y_k = \frac{2}{3^k}$$

SOLUCION

La solución complementaria de la ecuación es:

$$y_k^{(c)} = c_1 + c_2 \cdot 2^k$$

a) Determinando $y_k^{(p)}$ por coeficientes indeterminados.

 $q_k = \frac{2}{3^k} = 2 \cdot (\frac{1}{3})^k$ es una solución particular de una ecuación homogénea

 $P(E) q_k = 0$, obtenida de la solución general.

$$q_k = c_1 (\frac{1}{3})^k$$

haciendo c_1 = 2. Esta solución se formó con la raíz β = $\frac{1}{3}$, y la ecuación complementaria correspondiente es:

$$(\beta - \frac{1}{3}) = 0$$

 \therefore el aniquilador es $\emptyset(E) = E - \frac{1}{3}$

Aplicando el aniquilador en ambos miembros de la ecuación no homogénea:

$$(E - \frac{1}{3}) (E^2 - 3E + 2) y_k = 0$$

la solución de esta ecuación homogénea es:

$$y_k = c_1 + c_2 \cdot 2^k + c_3 \left(\frac{1}{3}\right)^k$$

de donde, como $y_k^{(c)} = c_1 + c_2 \cdot 2^k$, tenemos que

$$y_k^{(p)} = c_3 \left(\frac{1}{3}\right)^k$$

Para determinar c_3 , sustituímos $y_k^{(p)}$ en la ecuación no homogénea:

$$c_3 \left(\frac{1}{3}\right)^{k+2} - 3 c_3 \left(\frac{1}{3}\right)^{k+1} + 2 c_3 \left(\frac{1}{3}\right)^k = \frac{2}{3^k}$$

$$c_3 \frac{1}{9} \left(\frac{1}{3}\right)^k - c_3 \left(\frac{1}{3}\right)^k + 2 c_3 \left(\frac{1}{3}\right)^k = 2 \left(\frac{1}{3}\right)^k$$

de donde:

$$\frac{c_3}{9} - c_3 + 2 c_3 = 2$$
; $c_3 = \frac{9}{5}$

: la solución general de la ecuación es:

$$y_k = c_1 + c_2 \cdot 2^k + \frac{9}{5} \left(\frac{1}{3}\right)^k = c_1 + c_2 \cdot 2^k + \frac{9}{5 \cdot 3^k}$$

Determinando $y_k^{(p)}$ por variación de parámetros.

$$y_k^{(c)} = c_1 + c_2 \cdot 2^k$$

$$y_k^{(p)} = u_k + v_k \cdot 2^k$$

 $v_k^{}$ se obtienen sumando la solución del Donde las funciones siguiente sistema:

$$\begin{bmatrix} (1)^{k+1} & 2^{k+1} \\ (1)^{k+2} & 2^{k+2} \end{bmatrix} \begin{bmatrix} \Delta u_k \\ \Delta v_k \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{2}{3^k} \end{bmatrix}$$

La solución del sistema es:

$$\Delta u_k = -\frac{2}{3^k} \qquad ; \qquad \Delta v_k = \frac{1}{6^k}$$

sumando:

$$u_k = \Sigma \left(-\frac{2}{3^k}\right) = -2\Sigma \frac{1}{3^k} = -2\frac{3}{-2\cdot 3^k} = \frac{3}{3^k}$$

$$v_k = \sum \frac{1}{6^k} = \frac{6}{-5 \cdot 6^k}$$

$$y_k^{(p)} = \frac{3}{3^k} + \left(-\frac{6}{5 \cdot 6^k}\right) \left(2^k\right) = \frac{3}{3^k} - \frac{6}{5} \left(\frac{2}{6}\right)^k = \frac{3}{3^k} - \frac{6}{5} \left(\frac{1}{3}\right)^k$$

$$y_k^{(p)} = (3 - \frac{6}{5}) \frac{1}{3^k} = \frac{9}{5 \cdot 3^k}$$

finalmente la solución general de la ecuación es:

$$y_k = c_1 + c_2 \cdot 2^k + \frac{9}{5 \cdot 3^k}$$

V.9.- Por el método de variación de parámetros determinar la solución de la siguien te ecuación:

$$y_{k+3} - 2y_{k+2} - y_{k+1} + 2y_k = 6 \cdot 2^k$$

SOLUCION

La solución complementaria de esta ecuación es:

$$y_k^{(c)} = c_1 + c_2(-1)^k + c_3 \cdot 2^k$$

La solución particular de la ecuación es de la forma:

$$y_k^{(p)} = u_k + v_k (-1)^k + w_k \cdot 2^k$$

donde las funciones \mathbf{u}_k , \mathbf{v}_k y \mathbf{w}_k se determinan sumando la solución del siguiente sistema:

$$\begin{bmatrix} 1 & (-1)^{k+1} & 2^{k+1} \\ 1 & (-1)^{k+2} & 2^{k+2} \\ 1 & (-1)^{k+3} & 2^{k+3} \end{bmatrix} \begin{bmatrix} \Delta u_k \\ \Delta v_k \\ \Delta w_k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 6 \cdot 2^k \end{bmatrix}$$

La solución de este sistema es:

$$\Delta u_k = -3 \cdot 2^k$$
 , $\Delta v_k = -\frac{2^k}{(-1)^k} = -(-2)^k$, $\Delta w_k = 1$

sumando:

$$u_k = \Sigma (-3 \cdot 2^k) = -3 \cdot 2^k$$

$$v_k = - \sum (-2)^k = \frac{(-2)^{k'}}{3}$$

$$w_{k} \Sigma (1) = k$$

$$\therefore y_{k}^{(p)} = -3 \cdot 2^{k} + \frac{(-2)^{k}}{3} (-1)^{k} + k \cdot 2^{k}$$

$$= (k-3) \cdot 2^{k} + \frac{(-2)}{3} (-1)^{k}$$

$$= (k-3) \cdot 2^{k} + \frac{2^{k}}{3}$$

$$= (k-3) \cdot 2^{k} + \frac{2^{k}}{3}$$

$$= (k-3) \cdot 2^{k} + \frac{2^{k}}{3}$$

y la solución general es:

$$y_k = c_1 + c_2 (-1)^k + c_3 \cdot 2^k + (k - \frac{8}{3}) \cdot 2^k$$

- 2.- Determinar Σf_k para la función $f_k = k^4$
- 3.- Determinar el orden de cada una de las siguientes ecuaciones en diferencias

a)
$$(E^4 + 12 E^2 + 18) x_k = 15$$

b)
$$y_{k+3} + 12y_{k+2} - 3y_{k-1} = k^2$$

c)
$$\Delta^2 y_k - (E+1)y_k = 0$$

d)
$$(\Delta^2 + 3\Delta) x_k = \frac{1}{k^2}$$

4.- Determinar la solución de cada una de las siguientes ecuaciones en diferencias.

a)
$$x_{k+2} - 6 x_{k+1} + 13 x_k = 0$$

b)
$$y_{k+3} - 3y_{k+2} - 10y_{k+1} + 24y_k = 0$$

c)
$$y_{k+4} + 16y_k = 0$$

d)
$$x_{k+3} - 13x_{k+1} + 12x_k = 4 + (-2)^k$$

e)
$$y_{k+2} - 3y_{k+1} + 2y_k = \frac{3k}{4^k}$$

f)
$$y_{k+2} + y_k = 2.3^k \cos k \frac{\pi}{2}$$

g)
$$y_{k+2} - y_k = -3^k \cdot 4^k + 2$$

h)
$$y_{k+2} - 2y_{k+1} - 3y_k = 3k 3^k$$

| | | | | | | 100 | | | | - 10 |
|--|------------------|-----|----------------|---|----------|--------|---|----------|-------|---------------------|
| | | | | | | | | | | |
| | | | | | | | | 10 m 11 | | |
| | | | and the second | | | | | * 11 | * 1 | |
| | | | | - | | | | 200 | | 100 |
| | | | | | | | | | | |
| | | | | | | * | | | | |
| | | | | | * - | | | | | |
| | | | | | | | | | | |
| | | | | | | | | , | | 1000 |
| I to the second | | | | | | | | | | |
| | | | | - | | | | | | 11244 |
| | | | | * | | | | | | |
| uni de la companya da de la companya d
Na companya da | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | 1 | - |
| | | | | | | | | | | 2.0 A.3.6
2.12.5 |
| 4 | | | | | | *** | | | | |
| 50 · | : | | | - | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | , | | |
| ÷ | .) | * . | | | | ٠. | | | | |
| eta e | | | | | | | • | | | 1.5" |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | * ** | | | | | | | | | |
| | | | | | | | | ÷ . | | 4 |
| | • • | | | | | | | | | |
| | | | | | | | | | | . 525 |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | * | | | |
| | | | | | | | | - | | |
| | | | | | | | | | | |
| 714 A. C. | | | | | | | | | | 17.0 |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | - | | | | | | | | 11 to 12 |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | • | | | | | | | | 4.5 | 1973 |
| | | | | | | | | | | |
| | | | | | | | | | | 200 |
| | • | | | | | | | | | |
| | | | | | | | | 4.1 | | 10.3 |
| | | | | | | | | 100 | | 1.00 |
| , | | | | | | | | | | |
| ati.
Line in the second of the s | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | - | e fig. | | |
| | | | Tr. | | | | | | | |
| | Carlotte Control | | | | 1.75 | | | 1 Put 12 | | |
| | | | | | <u> </u> | dayah. | | | NEW Y | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |

TEMA VI

PROBLEMAS RESUELTOS

VI.1.- Para la matriz A:

$$A = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix}$$

determinar A^{-1} , A^2 y A^{15}

SOLUCION

$$A^{k} = \beta_0 I + \beta_1 A$$
 ----(a)

Determinando los valores característicos de A:

$$\begin{bmatrix} 2 - \lambda & 4 \\ 1 & -1 - \lambda \end{bmatrix} = \lambda^2 - \lambda - 6 = 0$$

$$\lambda_1 = 3 \quad , \quad \lambda_2 = -2$$

Sustituyendo λ_1 y λ_2 en

$$\lambda_i^k = \beta_0 + \lambda_i \beta_1$$

tenemos, para $\lambda_1 = 3$

para $\lambda_2 = -$

$$(-2)^k = \beta_0 - 2 \beta_1$$
 -----(c

La solución del sistema de ecuaciones (b) y (c) es:

$$\beta_0 = \frac{2 \cdot 3^k + 3 (-2)^k}{5}$$

$$\beta_1 = \frac{3^k - (-2)^k}{5}$$

sustituyendo en (a):

$$A^{k} = \beta_{0} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \beta_{1} \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} \beta_{0} + 2\beta_{1} & 4\beta_{1} \\ \beta_{1} & \beta_{0} - \beta_{1} \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 4 \cdot 3^{k} + (-2)^{k} & 4 \cdot 3^{k} - 4(-2)^{k} \\ 3^{k} - (-2)^{k} & 3^{k} + 4(-2)^{k} \end{bmatrix}$$

$$A^{-1} = \frac{1}{5} \begin{bmatrix} \frac{5}{6} & \frac{10}{3} \\ \frac{5}{6} & -\frac{10}{6} \end{bmatrix} = \begin{bmatrix} \frac{1}{6} & \frac{2}{3} \\ \frac{1}{6} & -\frac{1}{3} \end{bmatrix}$$

Para
$$k = 2$$

$$A^{2} = \frac{1}{5} \begin{bmatrix} 40 & 20 \\ 5 & 25 \end{bmatrix} = \begin{bmatrix} 8 & 4 \\ 1 & 5 \end{bmatrix}$$

Para k = 15

$$A^{15} = \frac{1}{5} \begin{bmatrix} 57362860 & 57526700 \\ 14381675 & 14217835 \end{bmatrix}$$

VI.2.- Determinar la matriz A^k para cada una de las siguientes matrices:

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 3 & 2 & 2 \\ 1 & 2 & 2 \\ -1 & -1 & 0 \end{bmatrix}$$

SOLUCION

a) Determinando los valores característicos de A:

$$\begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + 1 = 0 \quad ; \quad \lambda_1 = i \quad , \quad \lambda_2 = -$$

$$A^{k} = \beta_0 I + \beta_1 A$$

$$(i)^{k} = 80 + 18$$

Como

$$(i)^k = (e^{i\frac{\pi}{2}})^k = e^{k\frac{\pi}{2}} = \cos k\frac{\pi}{2} + i \operatorname{sen} k\frac{\pi}{2}$$

tenemos:

$$\cos k \frac{\Pi}{2} + i \operatorname{sen} k \frac{\Pi}{2} = \beta_0 + i \beta_1$$

de donde:

$$\beta_0 = \cos k \frac{\pi}{2}$$

$$\beta_1 = \text{sen } k \frac{11}{2}$$

.:

$$A^{k} = \beta_{0} I + \beta_{1} A = \beta_{0} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \beta_{1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \beta_{0} & -\beta_{1} \\ \beta_{1} & \beta_{0} \end{bmatrix}$$

$$= \begin{bmatrix} \cos k \frac{\Pi}{2} & - \sin k \frac{\Pi}{2} \\ \\ \sin k \frac{\Pi}{2} & \cos k \frac{\Pi}{2} \end{bmatrix}$$

b) Determinando los valores característicos de A:

$$\begin{vmatrix} -3 - \lambda & -2 \\ 4 & 1 - \lambda \end{vmatrix} = \lambda^2 + 2\lambda + 5 = 0 ; \quad \lambda_1 = -1 + 2i , \quad \lambda_2 = -1 - 2i$$

Sustituyendo λ_i en:

$$\lambda_1^k = \beta_0 + \lambda_1 \beta_1$$

tenemos para $\lambda_1 = -1 + 2i$

$$(-1 + 2i)^k = \beta_0 + (-1 + 2 i)\beta_1$$

como
$$(-1+2i)^k = (\sqrt{5} e^{2i})^k = 5^{\frac{k}{2}} e^{2ki} = 5^{\frac{k}{2}} (\cos 2 k + i \sin 2 k)$$
 entonces:
$$\frac{\frac{k}{2}}{5} (\cos 2 k + i \sin 2 k) = \beta_0 - \beta_1 + 2 \beta_1 i$$
 de donde
$$\beta_1 = \frac{5^{\frac{k}{2}}}{2} \sin 2 k$$

$$y \qquad \frac{k}{\beta_0} = \frac{5^{\frac{k}{2}}}{2} (2 \cos 2 k + \sin 2 k)$$
 Por ser la matriz A de orden 2:

$$A^{k} = \beta_{0} I + \beta_{1} A = \beta_{0} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \beta_{1} \begin{bmatrix} -3 & -2 \\ 4 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \beta_{0} - 3 \beta_{1} & -2 \beta_{1} \\ 4 \beta_{1} & \beta_{0} + \beta_{1} \end{bmatrix}$$

$$= \frac{\frac{k}{2}}{2} \begin{bmatrix} 2 \cos 2 k - 2 \sin 2 k & -2 \sin 2 k \\ 4 \sin 2 k & 2 \cos 2 k + 2 \sin 2 k \end{bmatrix}$$

$$= \frac{\frac{k}{2}}{2} \begin{bmatrix} \cos 2 k - \sin 2 k & -\sin 2 k \\ 2 \sin 2 k & \cos 2 k + \sin 2 k \end{bmatrix}$$

c) Determinando los valores característicos de A

Para
$$\lambda_1 = 1$$

$$1 = \beta_0 + \beta_1 + \beta_2$$
Para $\lambda_2 = 2$

$$2^k = \beta_0 + 2 \beta_1 + 4 \beta_2$$
Para λ_3 , derivamos (a):
$$k \lambda_1^{k-1} = \beta_1 + 2 \lambda_1 \beta_2$$
Sustituyendo $\lambda_3 = 2$

$$k 2^{k-1} = \beta_1 + 4 \beta_2$$
Resolviendo el sistema de ecuaciónes (b), (c) y (d), obtenemos:
$$\beta_0 = 2^k (k-3) + 4$$

$$\beta_1 = 4 \cdot 2^k - 3 k \cdot 2^{k-1} - 4$$

$$\beta_2 = k \cdot 2^{k-1} - 2^k + 1$$

$$\therefore \text{ como } A \text{ es de orden } 3$$
:
$$A^k = \beta_0 I + \beta_1 A + \beta_2 A^2 = \beta_0$$

$$0 \quad 1 \quad 0 \quad 0 \quad 1$$

$$0 \quad 0 \quad 0 \quad 0 \quad 1$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$0 \quad 0$$

V1.3.- Para el sistema de ecuaciones en diferencias:

$$x_{k+1} = 2 x_k + 4 y_k$$

$$y_{k+1} = x_k - y_k$$

- a) Determinar su solución general por medio de la matriz A^{k}
- b) Determinar la solución particular que satisface las condiciones iniciales $x_0 = 1$, $y_0 = -1$

SOLUCION

a) La solución de este sistema lineal y homogéneo es:

$$\bar{x}_{\nu} = A^{k} \bar{x}_{0}$$

donde la matriz $\mathbf{A}^{\mathbf{k}}$ correspondiente a la matriz \mathbf{A} de coeficientes - del sistema:

$$A = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix}$$

se obtuvo en el problema V.1 , y es:

$$A^{k} = \frac{1}{5} \begin{bmatrix} 4 \cdot 3^{k} + (-2)^{k} & 4 \cdot 3^{k} - 4 & (-2)^{k} \\ 3^{k} - (-2)^{k} & 3^{k} + 4(-2)^{k} \end{bmatrix}$$

El vector \bar{x}_0 , es el vector de condiciones iniciales y en este caso para obtener la solución general, hacemos:

$$\bar{x}_0 = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$
 ; $k_1 \quad y \quad k_2$ constantes

$$\dot{x}_{k} = A^{k} \ \dot{x}_{0} = \frac{1}{5} \begin{bmatrix} 4 \cdot 3^{k} + (-2)^{k} & 4 \cdot 3^{k} - 4(-2)^{k} \\ 3^{k} - (-2)^{k} & 3^{k} + 4 (-2)^{k} \end{bmatrix} \begin{bmatrix} k_{1} \\ k_{2} \end{bmatrix}$$

$$= \frac{1}{5} \begin{bmatrix} (k_1 + k_2) & 4 \cdot 3^k + (k_1 - 4 k_2) & (-2)^k \\ (k_1 + k_2) & 3^k - (k_1 - 4 k_2) & (-2)^k \end{bmatrix}$$

haciendo:

$$c_1 = \frac{1}{5} (k_1 + k_2)$$
 y $c_2 = \frac{1}{5} (k_1 - 4 k_2)$

tenemos:

$$\bar{x}_k = \begin{bmatrix} 4 & c_1 \cdot 3^k + c_2 & (-2)^{k-1} \\ c_1 \cdot 3^k & -c_2 & (-2)^k \end{bmatrix}$$

que es la solución general del sistema.

En este caso, el vector de condiciones iniciales es:

$$\bar{\mathbf{x}}_0 = \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{y}_0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Entonces, la solución particular correspondiente es:

$$\bar{x}_k = A^k \bar{x}_0 = \frac{1}{5} \begin{bmatrix} 4 \cdot 3^k + (-2) \\ 3^k - (-2)^k \end{bmatrix}$$

$$= \frac{1}{5} \begin{bmatrix} 5(-2)^k \\ -5(-2)^k \end{bmatrix}$$

$$= \left[\begin{array}{c} (-2)^k \\ - (-2)^k \end{array} \right]$$

VI.4.-Determinar la solución del siguiente sistema que satisface las condiciones iniciales indicadas:

$$x_{k+1} = 2 x_k + 4y_k + 2 k$$
; x_k

$$x_{k+1} = 2 x_k + 4y_k + 2 k$$
; $x_0 = 0$
 $y_{k+1} = x_k - y_k - 2k$; $y_0 = 0$

SOLUCION

El sistema es lineal, no homogéneo y de coeficientes constantes. La solución es de la forma:

$$\bar{x}_k = A^k \bar{x}_0 + \sum_{j=0}^{k-1} A^j \bar{b}_{k-1-j}$$

del sistema:

$$A = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix}; \quad B_k = \begin{bmatrix} 2 & k \\ -2 & k \end{bmatrix}; \quad \overline{x}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 $\mathbf{A}^{\mathbf{k}}$ se obtuvo en el problema V.1 :

$$A^{k} = \frac{1}{5} \begin{bmatrix} 4 \cdot 3^{k} + (-2)^{k} & 4 \cdot 3^{k} - 4(-2)^{k} \\ 3^{k} - (-2)^{k} & 3^{k} + 4(-2)^{k} \end{bmatrix}$$

Entonces

$$\sum_{j=0}^{k-1} A^{j} \bar{b}_{k-1-j} = \sum_{j=0}^{k-1} \frac{1}{5} \begin{bmatrix} 4 \cdot 3^{j} + (-2)^{j} & 4 \cdot 3^{j} - 4(-2)^{j} \\ 3^{j} - (-2)^{j} & 3^{j} + 4 & (-2)^{j} \end{bmatrix} \begin{bmatrix} 2(k-1-j) \\ -2(k-1-j) \end{bmatrix}$$

$$= \sum_{j=0}^{k-1} \frac{1}{5} \begin{bmatrix} 10(-2)^{j}(k-1-j) \\ -10(-2)^{j}(k-1-j) \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{j=0}^{k-1} (-2)^{j}(k-1-j) \\ -2\sum_{j=0}^{k-1} (-2)^{j}(k-1-j) \end{bmatrix}$$

sumando:

$$\sum_{j=0}^{k-1} (-2)^{j} (k-1-j) = \sum_{j=0}^{k-1} \left[(-2)^{j} (k-1) - (-2)^{j} j \right]$$
$$= (k-1) \sum_{j=0}^{k-1} (-2)^{j} - \sum_{j=0}^{k-1} (-2)^{j} j$$

de tablas:

$$\Sigma (-2)^{j} = -\frac{(-2)^{j}}{3}$$

VI-8

sumando por partes
$$(-2)^{j}j$$
:

La solución del sistema es:

$$\bar{x} = A^{k} \bar{x}_{0} + \sum_{j=0}^{k-1} A^{j} \delta_{k-1-j} = \begin{bmatrix} \frac{2}{9} \left[(-2)^{k} + 3 k - 1 \right] \\ -\frac{2}{9} \left[(-2)^{k} + 3 k - 1 \right] \end{bmatrix}$$

VI.5.- Obtener la solución del sistema de ecuaciones dado en el problema V.4, por medio del operador corrimiento E.

SOLUCION

El sistema a resolver es el siguiente:

$$x_{k+1} = 2 x_k + 4 y_k + 2 k$$
; $x_0 = 0$

$$y_{k+1} = x_k - y_k - 2 k$$
; $y_0 = 0$

Representando el sistema por medio del operador E:

$$E x_k = 2x_k + 4y_k + 2k$$

$$E y_k = x_k - y_k - 2_k$$

o bien:

(E-2)
$$x_k - 4 y_k = 2 k$$

- $x_k + (E+1) y_k = -2 k$

Resolviendo este sistema algebraico:

Para x_k:

$$\begin{vmatrix} E - 2 & -4 \\ - 1 & E+1 \end{vmatrix} x_k = \begin{vmatrix} 2k & -4 \\ -2k & E+1 \end{vmatrix}$$

$$[(E-2) (E+1) - 4] x_k = (E+1) (2k) - 8k$$

$$(E^2 - E - 6) x_k = 2(k+1) + 2k - 8k$$

= 2 - 4k - - - - - - - - - - - (a)

Para y_k

$$\begin{vmatrix} E - 2 & -4 \\ -1 & E+1 \end{vmatrix} y_k = \begin{vmatrix} E - 2 & 2k \\ -1 & -2k \end{vmatrix}$$

$$(E^2 - E - 6) y_k = (E - 2) (-2k) + 2 k$$

Las ecuaciones (a) y (b) son ecuaciones en diferencias ordinarias lineales.

La solución de la ecuación (a) es de la forma:

$$x_k = x_k^{(c)} + x_k^{(p)}$$

donde

$$x_k^{(c)} = c_1 3^k + c_2 (-2)^k$$

ν

$$x_k^{(p)} = -\frac{2}{9} + \frac{2}{3} k$$

$$\therefore x_k = c_1 3^k + c_2 (-2)^k - \frac{2}{9} + \frac{2}{3} k - - - - - - - (c)$$

La solución de la ecuación (b) es:

$$y_k = c_3 3^k + c_4 (-2)^k + \frac{2}{9} - \frac{2}{3} k$$
 - - - - - - - (d)

Para encontrar la relación que existe entre las constantes c_1 , c_2 , c_3 y c_4 , sustituímos (c) y (d) en cualquiera de las ecuaciones del sistema original. Sustituyendo (c) y (d) en la primera ecuación del sistema:

$$x_{k+1} = 2 x_k + 4 y_k + 2 k$$

$$c_1 3^{k+1} + c_2 (-2)^{k+1} - \frac{2}{9} + \frac{2}{3} (k+1) = 2 c_1 3^k + 2 c_2 (-2)^k - \frac{4}{9} + \frac{4}{3} k + \frac{4}{3$$

+ 4
$$c_3 3^k$$
 + 4 $c_4 (-2)^k$ + $\frac{8}{9} - \frac{8}{3} k$ + 2 k

de donde:

$$c_3 = \frac{1}{4} c_1 \quad y \quad c_4 = - c_2$$

Sustituyendo estas relaciones en la solución (d):

$$y_k = \frac{1}{4} c_1 3^k - c_2 (-2)^k + \frac{2}{9} - \frac{2}{3} k$$
 - - - - - - - (e

Las funciones (c) y (e) constituyen la solución general del sistema de ecuaciones en diferencias. Para obtener la solución particular que satisface las condiciones $x_0 = 0$ y $y_0 = 0$, hacemos k = 0 en la so

lución general y sustituímos dichas condiciones:

$$0 = c_1 + c_2 - \frac{2}{9}$$

$$0 = \frac{1}{4} c_1 - c_2 + \frac{2}{9}$$

Resolviendo este sistema, obtenemos:

$$c_2 = \frac{2}{9}$$

i. la solución particular es:

$$x_k = \frac{2}{9} (-2)^k - \frac{2}{9} + \frac{2}{3} k$$

$$y_k = -\frac{2}{9}(-2)^k + \frac{2}{9} - \frac{2}{3}k$$

Como podemos ver, esta solución es exactamente la misma que la que obt \underline{u} vimos en el problema anterior.

VI.6.- Transformar la siguiente ecuación en diferencias en un sistema de ecuaciones de primer orden.

$$y_{k+4} - 3y_{k+2} + 5y_{k+1} - 3y_k = k^2$$

SOLUCION

Introduciendo cuatro nuevas variables $x_k^{(1)}$, $x_k^{(2)}$, $x_k^{(3)}$ y $x_k^{(4)}$, por ser la ecuación de orden cuatro, tales que:

$$y_k = x_k^{(1)}$$

 $y_{k+1} = x_{k+1}^{(1)} = x_k^{(2)}$ -----(a

$$y_{k+2} = x_{k+1}^{(2)} = x_k^{(3)}$$
 ----(b)

$$y_{k+3} = x_{k+1}^{(3)} = x_k^{(4)}$$
 -----(c)

$$y_{k+4} = x_{k+1}^{(4)}$$
 -----(d)

despejando y_{k+4} de la ecuación en diferencias:

como (d) y (e) son iguales:

las ecuaciones (a), (b), (c) y (f) son un sistema de ecuaciones - en diferencias de primer orden y que en forma matricial queda respresentado:

| x _{k+1} | 0 | 1 | 0 | 0 | $\left[x_{\mathbf{k}}^{(1)} \right]$ | | 0 |
|---|---|----|---|----|---------------------------------------|---|----|
| x _{k+1} ⁽²⁾ | 0 | 0 | 1 | 0 | x _k ⁽²⁾ | | 0 |
| x _{k+1} = | 0 | 0 | 0 | 1. | x _k ⁽³⁾ | + | 0 |
| $\begin{bmatrix} x_{k+1}^{(4)} \end{bmatrix}$ | 3 | -5 | 3 | 0 | x _k ⁽⁴⁾ | | k² |

PROBLEMAS PROPUESTOS

1.- Transformar las siguientes ecuaciones en diferencias en un sistema de ecuaciones en diferencias, de primer orden equivalente.

a)
$$\frac{1}{k^2} x_{k+4} + x_{k+3} - 2x_{k+2} + 4 x_{k+1} - kx_k = 2^k \text{sen } \frac{11}{2} k$$

b)
$$k^5 y_{k+3} - k^2 y_{k+2} - 3 y_{k+1} + y_k = k^3 2^k$$

2.- Determinar A^k y a partir de ella obtener A^o y A, para la siguiente matriz:

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

3.- Determinar la solución de cada uno de los siguientes sistemas de ecuaciones en - diferencias:

a)
$$x_{k+1} = 2 x_k + y_k$$

$$y_{k+1} = x_k + 2y_k$$

b)
$$x_{k+1} = x_k + 2y_k$$
; $x_0 = 0$

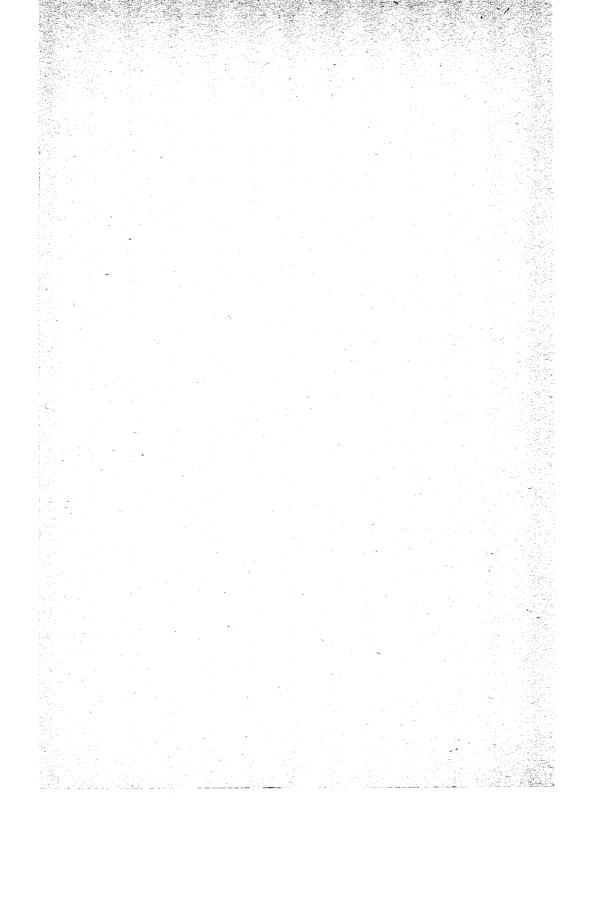
$$y_{k+1} = 2x_k + y_k$$
 ; $y_0 = -2$

c)
$$x_{k+1} = -3x_k - 2y_k$$
; $x_0 = 1$

$$y_{k+1} = 4x_k + y_k$$
 ; $y_0 = -1$

d)
$$x_{k+1} = 3x_k + 2y_k + 1$$
; $x_0 = 0$

$$y_{k+1} = 2x_k + 3y_k + 1$$
 ; $y_0 = 0$


e)
$$\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & 9 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_k \\ y_k \end{bmatrix} + \begin{bmatrix} 1 \\ k \end{bmatrix} ; \quad \bar{x}_0 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

f)
$$x_{k+1} = x_k + 2y_k$$
 ; $x_0 = 0$

$$y_{k+1} = 2x_k + y_k + k$$
; $y_0 = 1$

g)
$$x_{\nu+1} = 3x_{\nu} + y_{\nu} + 1$$
; $x_0 = 1$

$$y_{k+1} = 2x_k + 2y_k + k$$
; $y_0 = -1$

TEMA VII
TABLA DE PROPIEDADES Y TRANSFORMADAS GEOMETRICAS

| Función f _k | T. G. , F(z) |
|---|--|
| $C_1 f_k + C_2 g_k$ | $C_1F_1(z) + C_2F_2(z)$ |
| $a^k f_k$ | F(az) |
| ^f ketm | $\frac{F(z) - \sum_{r=0}^{m-1} z^r f_r}{z^m}$ |
| f_{k-m} , $k = m$, $m+1$, $m+2$,
0 , $k = 0$, 1, 2, $m-1$ | z ^m F(z) |
| $f_k * g_k = \sum_{m=0}^{k} f_m g_{k-m}$ | F(z) •G(z) |
| 1, | 1
1-z |
| k | $\frac{z}{(1-z)^2}$ |
| k² | $\frac{z(z+1)}{(1-z)^3}$ |
| $\mathbf{a}^{\mathbf{k}}$ | 1
1- az |
| (k + 1) a ^k | $\frac{1}{(1-az)^2}$ |
| k ⁽²⁾ | $\frac{2z^2}{(1-z)^3}$ |
| k (m) | $\frac{\underline{m!} \ \underline{z^m}}{(1-z)^{m+1}}$ |
| δ (k-m) | z ^m |
| sen ak | $z \operatorname{sen} a/(1+z^2-2z \cos a)$ |
| cos ak | 1-z cos a/(1+z² -2z cos a) |
| $\binom{k}{r} = \frac{k!}{r!(k-r)!}$ | $\frac{z^{r}}{(1-z)^{r+1}}$ |
| $ \begin{pmatrix} k + r \\ r \end{pmatrix} = \frac{(k+r)!}{r! k!} $ | 1
(1-z) ^{r+1}
VII- |

PROBLEMAS RESUELTOS

VII-1 Demostrar que
$$\frac{z}{z}$$
 { cos ak } = $\frac{1-z\cos a}{1+z^2-2z\cos a}$

Por definición,
$$\neq \{\cos ak\} = \sum_{k=0}^{\infty} z^k \cos ak$$

De las fórmulas de Euler:

$$e^{aki} = \cos ak + i \sin ak$$

Sumando y después despejando cos ak:

$$\cos ak = \frac{e^{aki} + e^{-aki}}{2}$$
 - (1)

$$\overline{z} \left\{ \cos ak \right\} = \sum_{k=0}^{\infty} \frac{e^{aki} z^k + e^{-aki} z^k}{2}$$

$$\mathcal{Z}\left\{\cos ak\right\} = \frac{1}{2} \sum_{k=0}^{\infty} (e^{ai} z)^k + \sum_{k=0}^{\infty} (e^{-ai} z)^k - (2)$$

como
$$\Sigma(e^{ai}z)^k = \frac{(e^{ai}z)^k}{e^{ai}z-1}$$
 y; $\Sigma(e^{-ai}z)^k = \frac{(e^{-ai}z)^k}{e^{-ai}z-1}$

Entonces

$$\sum_{k=0}^{\infty} (e^{ai} z)^k = \lim_{A \to \infty} \sum_{k=0}^{A} (e^{ai} z)^k = \lim_{A \to \infty} \sum (e^{ai} z)^k \qquad \sum_{k=0}^{A+1} \left(e^{ai} z \right)^{A+1} = \lim_{A \to \infty} \frac{(e^{ai} z)^{A+1}}{e^{ai} z - 1} = \frac{1}{e^{ai} z - 1}$$

Si |z| < 1, se tiene:
$$\frac{\lim_{A\to\infty}}{A^{+\infty}} = \frac{(e^{ai} z)^{A+1}}{e^{ai} z - 1} = 0$$
 .:

$$\sum_{k=0}^{\infty} (e^{ai} z)^k = \frac{1}{1-e^{ai}z} - (a)$$

$$\sum_{k=0}^{\infty} (e^{-ai} z)^k = \frac{1}{1-e^{-ai} z} - (b)$$

Sustituyendo (a) y (b) en (2)

$$\overline{Z}\left\{\cos ak\right\} = \frac{1-z\cos a}{1+z^2-2z\cos a}$$

VII-2 Empleando la definición, obtener la T.G. de las funciones a) $f_k = k$ b) $f_k = \frac{1}{k}$, $k = 1, 2, 3, \dots$

SOLUCION:

a)
$$\neq \{f_k\} = \sum_{k=0}^{\infty} f_k \quad z^k = f_0 + f_1 z + f_2 z^2 + f_3 z^3 + \dots$$
 - (1)

derivando (1) con respecto de z

$$\frac{d}{dz} \neq \{f_k\} = \frac{d}{dz} \quad (f_0 + f_1 z + f_2 z^2 + f_3 z^3 + \dots) \quad -(1)$$

$$= 0 + f_1 + 2 f_2 z + 3 f_3 z^2 + 4f_4 z^3 + \dots + k f_k z^{k-1} + \dots$$

$$\therefore \frac{d}{dz} \neq \{ f_k \} = \sum_{k=0}^{\infty} k f_k z^{k-1}$$

multiplicando por z ambos miembros

$$-z \frac{d}{dz} \neq \{f_k\} = \sum_{k=0}^{\infty} k f_k z^k$$

por definición

$$z \frac{d}{dz} \neq \{f_k\} = \neq \{k f_k\} \qquad - (2)$$

Si en (2) se tiene que $f_k = 1$

$$z \frac{d}{dz} \neq \{1\} = \neq \{k\}$$

entonces
$$\frac{7}{4}$$
 { k} = $z \frac{d}{dz} \frac{1}{1-z}$

Si
$$\frac{d}{dz}$$
 $\frac{1}{1-z}$ = $\frac{1}{(1-z)^2}$

finalmente se tiene:

$$\frac{z}{2} \left\{ k \right\} = \frac{z}{(1-z)^2}$$

b)
$$\neq \left\{ \begin{array}{c} 1 \\ \overline{k} \end{array} \right\} = \sum_{k=1}^{\infty} \frac{1}{k} z^k$$

Sabemos que $\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$

También $\sum_{k=0}^{\infty} z^k = \sum_{k=1}^{\infty} z^{k-1}$

de donde $\sum_{k=1}^{\infty} z^{k-1} = \frac{1}{1-z}$ - (1)

Integrando ambos miembros de (1) con respecto de z

$$\int_{k=1}^{\infty} z^{k-1} dz = \int \frac{1}{1-z} dz - (2)$$

desarrollando e integrando el primer miembro de (2)

$$\sum_{k=1}^{\infty} z^{k-1} = 1 + z + z^2 + z^3 + \dots + z^{k-1} + \dots$$

$$\int_{k=1}^{\infty} z^{k-1} = z + \frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4} + \dots + \frac{z^k}{k} + \dots$$

$$\int_{k=1}^{\infty} z^{k-1} dz = \sum_{k=1}^{\infty} \frac{1}{k} z^{k} - (3)$$

igualando (2) y (3)

$$\sum_{k=1}^{\infty} \frac{1}{k} z^{k} = \int \frac{dz}{1-z}$$

$$\sum_{k=1}^{\infty} \frac{1}{k} z^{k} = - \ln (1-z)$$

Es decir

VII-3 Obtener la T.G. de las funciones

- a) $3^{k+2} 2k + 5^k \text{ sen } 3 k$
- b) $(2k + 3) 2^k$
- c) $3 k^{(3)}$

SOLUCION:

a)
$$f_k = 3^{k+2} - 2k + 5^k \text{ sen } 3 \text{ k}$$

Aplicando linealidad

$$Z$$
 $\left\{3^{k+2} - 2k + 5^k \text{ sen } 3k\right\} = 9Z\left\{3^k\right\} - 2Z\left\{k\right\} + Z\left\{5^k \text{ sen } 3k\right\} - (1)$

donde:

$$\neq \{3^k\} = \frac{1}{1-3z}$$

$$\frac{Z}{z}\left\{k\right\} = \frac{z}{(1-z)^2}$$

$$\mathbb{Z}\{\text{ sen 3 k}\}=\frac{z \text{ sen 3}}{1+z^2-2 z \cos 3}$$

como: 5 sen 3 = 0.7

$$.10 \cos 3 = -9.89$$

$$Z$$
 {5^k sen 3 k} = $\frac{0.7 \text{ z}}{1 + 25 \text{ z}^2 + 9.89 \text{ z}}$

Sustituyendo en (1)

$$z\{3^{k+2} - 2k + 5^k \text{ sen } 3 k\} = \frac{9}{1-3z} - \frac{2z}{(1-z)^2} + \frac{0.7 z}{25 z^2 + 9.89 z + 1}$$

b)
$$f_k = -(2 k + 3) 2^k$$

$$\neq \{ -(2 k + 3) 2^k \} = -2 \neq \{ k 2^k \} - 3 \neq \{ 2^k \} - (1)$$

donde:

$$\frac{z}{2} \left\{ k 2^{k} \right\} = \frac{2z}{(1-2z)^{2}}$$

Sustituyendo en 91)

finalmente

$$Z\left\{-(2 + 3) 2^{k}\right\} = \frac{2z - 3}{(1-2z)^{2}}$$

c)
$$f_k = 3 k^{(3)}$$

ler. Método

$$f_k = 3k^3 - 9k^2 + 6k$$

Aplicando linealidad

$$\neq \{3 k^3 - 9 k^2 + 6 k\} = 3 \neq \{k^3\} - 9 \neq \{k^2\} + 6 \neq \{k\} - (1)$$

donde

$$\{z,k\} = \frac{z}{(1-z)^2}$$
 - (a)

$$Z\{k^2\} = \frac{z^2 + z}{(1-z)^3}$$
 - (b)

En general, se puede demostrar que

$$\mathcal{Z}\left\{k^{r}\right\} = \theta^{r} \frac{1}{1-z}$$
 - (2)

donde $\boldsymbol{\theta}$ es un operador que se define como

$$\theta = z \frac{d}{dz}$$

$$\theta^3 = \left(z \frac{d}{dz}\right)^3 = z \frac{d}{dz} \left[z \frac{d}{dz} \left(z \frac{d}{dz}\right) \right]$$

desarrollando:

$$(z \frac{d}{dz})^3 = z^3 \frac{d^3}{dz^3} + 3 z^2 \frac{d^2}{dz^2} + z \frac{d}{dz}$$

Sustituyendo en (2), con r = 3

$$Z \left\{ k^{3} \right\} = \left(z^{3} \frac{d^{3}}{dz^{3}} + 3 z^{2} \frac{d^{2}}{dz^{2}} + z \frac{d}{dz} \right) \frac{1}{1-z}$$

$$= z^{3} \frac{d^{3}}{dz^{3}} \left(\frac{1}{1-z} \right) + 3 z^{2} \frac{d^{2}}{dz^{2}} \left(\frac{1}{1-z} \right) + z \frac{d}{dz} \left(\frac{1}{1-z} \right)$$

$$Z \left\{ k^{\frac{1}{3}} \right\} = \frac{6z^{\frac{3}{3}}}{(1-z)^{\frac{1}{3}}} + \frac{6z^{2}}{(1-z)^{\frac{3}{3}}} + \frac{z}{(1-z)^{\frac{3}{2}}} - (c)$$

Sustituyendo (a), (b) y (c) en (1) y simplificando:

$$Z \left\{ 3k^{(3)} \right\} = Z \left\{ 3k^3 - 9k^2 + 6k \right\} = \frac{18 z^3}{(1-z)^4}$$

2º Método

Empleando las tablas

$$Z \left\{ k^{(r)} \right\} = \frac{r!}{(1-z)^{r+1}}$$

con r = 3

$$\neq \{3 k^{(3)}\} = \frac{3. 3! z^3}{(1-z)^{3+1}}$$

$$= \{3 k^{(3)}\} = \frac{18 z^3}{(1-z)^4}$$

VII-4 Obtener la T. G. I. de las funciones:

a)
$$F(z) = 3 z^4 - \frac{z}{(z-3)^2} + \frac{2}{(2-4z)^2}$$

b)
$$F(z) = \frac{z}{4z^2 - 4z + 1}$$

c)
$$F(z) = \frac{5z-2}{4z^2-1}$$

d)
$$F(z) = \frac{9z^2 - 11z + 4}{(1-z)^3}$$

SOLUCION

a)
$$F(z) = 3 z^4 - \frac{z}{(z-3)^2} + \frac{2}{(2-4z)^2}$$

Aplicando linealidad

$$\Xi^{-1}\left\{3z^{4} - \frac{z}{(z-3)^{2}} + \frac{2}{(2-4z)^{2}}\right\} = 3 \ \Xi^{-1}\left\{z^{4}\right\} - \Xi^{-1}\left\{\frac{z}{(z-3)^{2}}\right\} + \Xi^{-1}\left\{\frac{2}{(2-4z)^{2}}\right\}$$

donde:

$$\Xi^{-1}\left\{z^4\right\} = \delta(k-4)$$

$$\mathcal{Z}^{-1} \left\{ \begin{array}{c} \frac{z}{(z-3)^2} \right\} = \mathcal{Z}^{-1} \left\{ \frac{z}{(3-z)^2} \right\} = \frac{1}{3} \mathcal{Z}^{-1} \left\{ \begin{array}{c} \frac{1}{3} z \\ (1-\frac{1}{3}z)^2 \end{array} \right\} = \frac{1}{3} \left(\frac{1}{3}\right)^k \mathcal{Z}^{-1} \left\{ \begin{array}{c} z \\ (1-z)^2 \end{array} \right\}$$

$$\mathcal{Z}^{-1}\left\{-\frac{z}{(z-3)^2}\right\} = (\frac{1}{3})^{k+1} k$$

$$Z^{-1}\left\{\begin{array}{ccc} \frac{2}{(2-4z)^2} \end{array}\right\} = 2 \quad Z^{-1}\left\{\begin{array}{ccc} \frac{1}{(16z^2-16z+4)} \end{array}\right\} = 2 \quad Z^{-1}\left\{\begin{array}{ccc} \frac{1}{4} \\ (1-2z)^2 \end{array}\right\} = \frac{1}{2}(k+1) \quad Z^k$$

Sustituyendo:

$$\mathcal{Z}^{-1}\left\{ F(z) \right\} = f_k = 3 \delta(k-4) - k \left(\frac{1}{3}\right)^{k+1} + \frac{1}{2} (k+1) 2^k$$

b)
$$F(z) = \frac{z}{4z^2 - 4z + 1}$$

$$F(z) = \frac{z}{(1-2z)^2} = \frac{1}{2} \frac{2z}{(1-2z)^2}$$

De tablas:

$$Z^{-1}\{F(z)\} = \frac{1}{2} k 2^k$$

c)
$$F(z) = \frac{5z-2}{4z^2-1}$$

Empleando fracciones parciales:

$$\frac{5z-2}{4z^2-1} = \frac{A}{2z+1} + \frac{B}{2z-1}$$

$$5z - 2 = A(2z - 1) + B(2z + 1)$$

= $2Az - A + 2Bz + B$

de donde:

$$2A + 2B = 5$$

$$-A + B = -2$$

Resolviendo el sistema anterior

$$A = \frac{9}{4}$$
 , $B = \frac{1}{4}$

Por lo que

$$Z \left\{ \frac{5z-2}{4z^2-1} \right\} = Z^{-1} \left\{ \frac{9}{4} \right\} + Z^{-1} \left\{ \frac{\frac{1}{4}}{2z-1} \right\}$$

$$= \frac{9}{4} \ \ Z^{-1} \left\{ \frac{1}{1+2z} \right\} \ - \frac{1}{4} \ \ \ Z^{-1} \left\{ \frac{1}{1-2z} \right\}$$

De tablas

$$\mathbb{Z}^{-1}\left\{ F(z) \right\} = \frac{9}{4} (-2)^k - \frac{1}{4} 2^k$$

d)
$$F(z) = \frac{9 z^2 - 11 z + 4}{(1-z)^3}$$

Empleando fracciones parciales

$$\frac{9z^2 - 11z + 4}{(1-z)^3} = \frac{A}{(1-z)^3} + \frac{B}{(1-z)^2} + \frac{C}{1-z}$$

$$9z^2 - 11z + 4 = A + B(1-z) + C(1-z)^2$$

Dando el sistema:

$$A + B + C = 4$$

$$-B - 2C = -11$$

Resolviendo el sistema anterior

$$A = 2$$
 , $B = -7$, $C = 9$

Por lo que

$$\vec{z}^{-1}\left\{\begin{array}{ccc} \frac{9z^2-11}{(1-z)^3} & z+4 \end{array}\right\} \ = \ \vec{z}^{-1}\left\{\begin{array}{ccc} \frac{2}{(1-z)^3} \end{array}\right\} \ - \ \vec{z}^{-1}\left\{\begin{array}{ccc} \frac{7}{(1-z)^2} \end{array}\right\} \ + \vec{z}^{-1}\left\{\begin{array}{ccc} \frac{9}{1-z} \end{array}\right\}$$

De tablas:

$$\Xi^{-1}\left\{\begin{array}{c} \frac{9}{1-z} \end{array}\right\} = 9$$

$$\mathcal{I}^{-1}\left\{\begin{array}{c} 7\\ \overline{(1-z)_2} \right\} = 7(k+1) \ 1^k = 7(k+1)$$

$$\vec{z}^{-1}\left\{\frac{2}{(1-z)^3}\right\} = 2 \cdot \vec{z} \left\{\frac{1}{(1-z)^{2+1}}\right\} = 2 {k+2 \choose 2}$$

Recordando que $\binom{n}{r} = \frac{n!}{r! (n-r)!}$

Entonces

$$\mathcal{Z}^{-1}\left\{\frac{2}{(1-z)^3}\right\} = 2 \cdot \frac{(k+2)!}{2!(k+2-2)!} = \frac{2(k+2)(k+1)k!}{2!k!} = k^2 + 3 k + 2$$

$$\mathcal{Z}^{-1}\left\{F(z)\right\} = k^2 + 3 k + 2 - 7 (k+1) + 9$$

$$\mathcal{Z}^{+1}\left\{F(z)\right\} = k^2 - 4 k + 4$$

VII-5 Empleando el método de Transformada Geométrica obtener la solución de las ecua-

a)
$$y_{k+2} = 5y_{k+1} + 4y_k = 0$$
 ; $y(0) = 10$, $y(1) = 20$

b)
$$y_{k+2} - 3y_{k+1} + 2y_k = 2^k$$
; $y_0 = y_1 = 0$

a)
$$y_{k+2} - 5y_{k+1} + 4y_k = 0$$
; $y(0) = 10$, $y(1) = 20$
b) $y_{k+2} - 3y_{k+1} + 2y_k = 2^k$; $y_0 = y_1 = 0$
c) $y_{k+2} - 4y_k = 3(-1)^k$; $y(0) = 0$, $y(1) = -1$

SOLUCION

a)
$$y_{k+2} - 5y_{k+1} + 4y_k = 0$$
 ; $y(0) = 10$, $y(1) = 20$

Aplicando T. G.

$$\frac{2\{y_k\} - y_0 - zy_1}{z^2} - 5 \frac{2\{y_k\} - y_0}{z} + 4 2\{y_k\} = 0$$

haciendo $\neq \{y_k\} = y_z$

$$y_{z} - y_{o} - zy_{1} - 5z y_{2} + 5zy_{o} + 4z^{2} y_{2} = 0$$

Sust. condiciones iniciales y factorizando

$$y_z(4z^2-5z+1) = -30z+10$$

$$y_z = \frac{-30z}{4z^2 - 5z + 1} + \frac{10}{4z^2 - 5z + 1}$$

$$y_z = \frac{-30z + 10}{(1-z)(1-4z)}$$

Por fracciones parciales

$$\frac{-30z + 10}{(1-z)(1-4z)} = \frac{A}{1-z} + \frac{B}{1-4Z}$$

$$-30z + 10 = A - 4AZ + B - BZ$$

de donde:
$$A = \frac{20}{3}$$
 , $B = \frac{10}{3}$...

$$y_z = \frac{20}{3} \quad \frac{1}{1-z} + \frac{10}{3} \quad \frac{1}{1-4z}$$

Antitransformando:

$$y_k = \frac{20}{3} + \frac{10}{3} 4^k$$

b)
$$y_{k+2} - 3y_{k+1} + 2y_k = 2^k$$
; $y_0 = y_1 = 0$

Aplicando T. G.

$$\frac{y_{z} - y_{0} - zy_{1}}{z^{2}} - 3 \frac{y_{z} - y_{0}}{z} + 2 y_{z} = \frac{1}{1-2z}$$

$$y_z - y_0 - zy_1 - 3z y_2 + 3zy_0 + 2 z^2 y_z = \frac{z^2}{1-2z}$$

Sustituyendo condiciones iniciales y factorizando

$$y_z(2z^2 - 3z + 1) = \frac{z^2}{1-2z}$$

$$y_z = \frac{z^2}{(2z^2-3z+1)(1-2z)} = \frac{z^2}{(1-2z)(1-z)(1-2z)}$$

Por fracciones parciales

$$\frac{z^2}{(1-2z)^2(1-z)} = \frac{A}{(1-2z)^2} + \frac{B}{(1-2z)} + \frac{C}{1-z}$$

$$z^2 = A(1-z) + B(1-2z) (1-z) + C(1-2z)^2$$

con lo que se obtiene el sistema

$$A + B + C = 0$$

$$-A - 3B - 4C = 0$$

$$2B + 4C = 1$$

$$A = \frac{1}{2}$$
 , $B = -\frac{3}{2}$, $C = -\frac{3}{2}$

Sustituyendo

$$\frac{z^2}{(1-2z)^2(1-z)} = \frac{1}{2} \cdot \frac{1}{(1-2z)^2} - \frac{3}{2} \cdot \frac{1}{(1-2z)} + \frac{1}{1-z}$$

Antitransformando:

$$\mathcal{Z}^{-1}\left\{ y_{2}^{} \right\} = y_{k}^{} = \frac{1}{2} (k+1) 2^{k} - \frac{3}{2} 2^{k} + 1$$

finalmente:

$$y_k = \frac{1}{2} k 2^k - 2^k + 1$$

c)
$$y_{k+2} - 4y_k = 3(-1)^k$$
; $y_0 = 0$, $y_1 = -1$

$$\frac{y_{z} - y_{0} - zy_{1}}{z^{2}} - 4y_{z} = \frac{3}{1+z}$$

Sustituyendo condiciones iniciales

$$\frac{y_z + z - 4z^2 y_z}{z^2} = \frac{3}{1+z}$$

factorizando:

$$y_{z} = \frac{1-4z^{2}}{z^{2}} = \frac{3}{1+z} - \frac{z}{z^{2}} = \frac{3z^{2} - z - z^{2}}{z^{2}(1+z)}$$
$$= \frac{2z-1}{(1+z)z}$$

$$y_z (1-4z^2) = \frac{(2z-1)z}{(1+z)} = \frac{-(1+2z)z}{1+z}$$

$$y_z = \frac{-(1+2z)z}{(1+z)(1-4z)^2} = \frac{-(1-2z)z}{(1+z)(1-2z)(1+2z)}$$

$$y_z = \frac{-z}{(1+z)(1+2z)}$$

Por fracciones parciales

$$\frac{-z}{(1+z)(1+2z)} = \frac{A}{1+z} + \frac{B}{1+2z}$$

donde
$$A = 1$$
 , $B = 1$...

$$y_z = -\frac{1}{1+z} + \frac{1}{1+2z}$$

Antitransformando:

$$\mathcal{Z}^{-1}\{y_z\} = y_k = -(-1)^k + (-2)^k$$

VII-6 Empleando T. G. obtener la solución del sistema

$$x_{k+1} = 2 x_k + 2y_k + 1$$

 $y_{k+1} = 3 x_k + y_k + 1$; $x_0 = y_0 = 1$

SOLUCION

Aplicando T. G.

$$\frac{x_z - x_o}{z} = 2 x_z + 2y_z + \frac{1}{1-z}$$

$$\frac{y_z - y_0}{z} = 3x_z + y_z + \frac{1}{1-z}$$

Sustituyendo condiciones iniciales

$$\frac{x_z - 1}{z} = 2 x_z + 2 y_z + \frac{1}{1 - z}$$

$$\frac{y_z - 1}{z} = 3 x_z + y_z + \frac{1}{1-z}$$

Agrupando

$$x_{z} (1-2z) - y_{z} 2z = \frac{z}{1-z} + 1$$

$$x_z (-3z) + y_z (1-z) = \frac{z}{1-z} + 1$$

Resolviendo este último sistema

$$x_{z} = \begin{vmatrix} \frac{z}{1-z} + 1 & -2z \\ \frac{z}{1-z} + 1 & 1-z \\ \frac{1}{1-2z} & -2z \\ -3z & 1-z \end{vmatrix} = -\frac{\left(\frac{z}{1-z} + 1\right)(1-z) + 2z\left(\frac{z}{1-z} + 1\right)}{(1-27)(1-z) - 6z^{2}}$$

Simplificando

$$x_{z} = \frac{\frac{1+z}{1-z}}{\frac{1-3z-4z^{2}}{1-3(1-4z)}} = \frac{1+z}{(1-z)(1-3z-4z^{2})} = \frac{1+z}{(1-z)(1+z)(1-4z)}$$

$$x_{z} = \frac{1}{(1-z)(1-4z)}$$

Por fracciones parciales

$$\frac{1}{(1-z)(1-4z)} = \frac{A}{1-z} + \frac{z}{1-4z}$$

$$1 = A(1-4z) + B(1-z)$$

de donde:

$$A = -\frac{1}{3}$$

$$B = \frac{4}{3}$$

$$x_z = -\frac{1}{3} \frac{1}{1-z} + \frac{4}{3} \frac{1}{1-4z}$$

Antitransformando

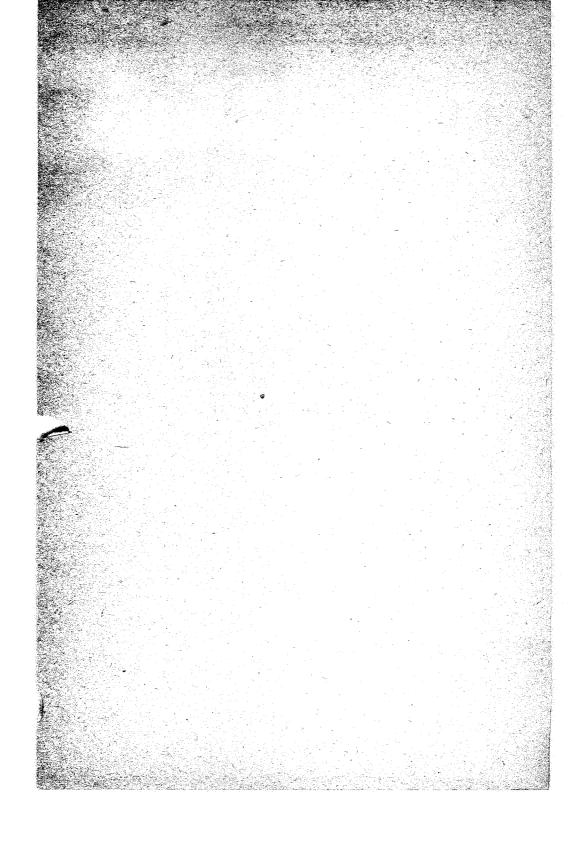
$$x_{k} = -\frac{1}{3} + \frac{4}{3} 4^{k}$$

$$y_{z} = \begin{vmatrix} 1-2z & \frac{z}{1-z} + 1 \\ -3z & \frac{z}{1-z} + 1 \end{vmatrix}$$

$$(1+z) (1-4z)$$

Simplificando

$$y_z = \frac{1+z}{(1+z)(1-4z)} = \frac{1}{(1-z)(1-4z)}$$


$$y_z = \frac{1}{(1-z)(1-4z)}$$

Observamos que ambas incógnitas son iguales

$$x_k = -\frac{1}{3} + \frac{4}{3} 4^k$$

$$y_{k} = -\frac{1}{3} + \frac{4}{3} 4^{k}$$

- VII.1 Emplear la definición para obtener la T.G. de las funciones
 - a) $y_b = 3^k$
 - b) $g_k = sen \frac{\Pi k}{2}$
- VII.2 Obtener la T.G. de las funciones
 - a) $y_k = 8^k \cos 2\pi k k^2 + 10$
 - b) $g_k = k^{\{4\}} + 5k \cdot 6^k \frac{k!}{3!(k-3)!}$
- VII.3 Obtener la T.G.I. de las funciones
 - a) $F(z) = 7 z^3 \frac{z}{(5-10z)^2}$
 - $6(z) = \frac{18z^2 21z}{4 \cdot 16z + 21z^2 9z^3}$
- VII.4 Empleando T.G., obtener la solución de cada una de las ecuaciones
 - a) $y_{k+2} 6y_{k+1} + 8y_k = 0$; $y_0 = 0$, $y_1 = 2$
 - b) $2y_{k+1} y_k = 1$, $y_0 = 0$
 - c) $y_{k+2} 4 y_k = 3(-1)^k$; $y_0 = 0$, $y_1 = 3$.
 - d) $y_{k+2} 5y_{k+1} + 6y_k = 5^k$, $y_0 = 1$, $y_1 = 1$
- VII.5 Empleande T.G. obtener la solución del sistema:
 - $2x_{k+1} = x_k 3y_k + 4$ $2u_{k+1} = x_k 3y_k + 4$ $x_0 = y_0 = 0$
 - $u_{k+1} = v_k \qquad u_0 = 1/6$ $v_{k+1} = -2u_k + 3v_k + 4^k \quad ; \quad v_0 = 4/6$

FACULTAD DE INGENIERIA

Coordinación de Bibliotecas

Impreso por la
Coordinación de Servicios Generales
a través de la Unidad de Difusión,
Departamento de Impresión.
El tiraje consta de 1500 ejemplares
y se terminó de imprimir
en el mes de julio de 1990.