

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Vniver4dad NacionaL AvFnºma de Mexico

FACULTAD DE INGENIERÍA

Diseño geométrico de un Dispositivo para el Aprovechamiento del Oleaje en Zonas Costeras

TESIS

Que para obtener el título de:

INGENIERO CIVIL

PRESENTA:

HECTOR ALEXANDER SERRANO NAVARRO

DIRECTOR DE TESIS:

Dr. RODOLFO SILVA CASARÍN

MEXICO, D.F.

ENERO 2008

AGRADECIMIENTOS

Al Dr. Rodolfo Silva Casarín por las oportunidades, el apoyo, las enseñanzas y el ejemplo que me ha brindado en ésta etapa del conocimiento.

Al Dr. Edgar Mendoza por la paciencia, la ayuda, el compañerismo y sobre todo por la paciencia para el desarrollo de éste trabajo.

A todos los integrantes del Grupo de Costas y Puertos en quienes he descubierto a grandes personas.

Desde luego, a mi familia, por su apoyo y cariño incondicional. A Lizbeth por su consciencia y comprehensión y a mis amigos con quienes comparto siempre los lugares comunes de la existencia.

A todos ustedes gracias por las anécdotas, las experiencias, la libertad y la formación necesaria para ser cada día un mejor ser humano, en éste camino que apenas comienza....

ÍNDICE	I
LÍSTA DE SÍMBOLOS	III
LÍSTA DE FIGURAS	V
LÍSTA DE TABLAS	VI
INTRODUCCIÓN	1
I.1. Energías renovables	3
I.2. Utilización de la energía del mar	3
I.2.1. Energía térmica	4
I.2.2. Energía de las mareas	5
I.2.3. Energía del viento	5
I.2.4. Energía de las corrientes	6
I.2.5. Energía de las olas	6
I.2.6. Energía salina	8
I.2.7. Energía de biomasa	9
I.3. TAPCHAN	10
I.4. Objetivos	12
I.5. Hipótesis	12
I.6. Metodología	12
I.7. Organizacion del trabajo	13
	15
II.1. Introduccion	[7
II.2. Clasificación desde el punto de vista físico	17
II.2.1. Clasificación de acuerdo con la profundidad relativa	1 /
II.2.2. Clasificación de las ondas oceanicas	I /
II.2.3. Clasificación de de al punto de vieto motomótico.	19
II.3. Caracterización desde el punto de vista matematico	19
II.4. Descripción estadística del ofeaje	22
II.5. Analisis temporar de los estados de mar	25
	20
III 1 Introducción	51
	35
III 2 1 Descripción del ascenso máximo	35
III 2.2 Métodos para la estimación del ascenso máximo	35
III 3 Rebase	36
III.3.1. Descripción del rebase	36
III.3.2. Formulaciones existentes para el rebase	
III.4. Modelo numérico de paredes convergentes y fondo variable	40
EXPERIMENTACIÓN EN LABORATORIO	45
IV.1. Diseño del modelo	48
IV.1.1. Amplificador de oleaie	49
IV.1.2. Estructura receptora	50
IV.1.2. Caja de almacenamiento	51
IV.2. Experimentación	52
IV.2.1. Experimentación con el amplificador e la playa	52
IV.2.2. Experimentación con la playa	53
IV.3. Medición	54

IV.3.1. Condiciones de oleaje	54
IV.3.2. Mediciones en la caja	57
IV.3.3. Mediciones sobre la playa	57
ANÁLISIS DE RESULTADOS	59
V.1. Comparación con los modelos existentes	63
V.1.1. Modelo numérico de paredes convergentes y fondo variable	63
V.1.2. Formulaciones para el ascenso máximo	64
V.1.3. Formulaciones de rebase	64
V.2. Efecto de la profundidad relativa en el caudal obtenido	67
V.2.1. Puertas cerradas	67
V.2.2. Puertas abiertas	69
V.3. Efecto del ángulo de la rampa en el caudal obtenido	72
V.3.1. Puertas cerradas	72
V.3.2. Puertas abiertas	73
V.4. Efecto de la posición de las paredes en el caudal obtenido	74
CONCLUSIONES Y FUTURAS LÍNEAS DE TRABAJO	77
REFERENCIAS	81
APÉNDICE A RESULTADOS EXPERIMENTALES	85

а

b

app

Lista de símbolos

Amplitud de la onda

Ancho del canal

Apertura de las puertas

b_0	Ancho inicial del canal
g	Aceleración de la gravedad
ĥ	Profundidad
h_0	Profundidad inicial del canal
h_c	Carga hidráulica en la caja de almacenamiento
h_p	Altura de la playa
h_s	Profundidad al pie de la estructura
k	Número de onda
l	Longitud del canal
l_1	Longitud del paramento
n	Porosidad
q	Caudal medio
t	Tiempo
и	Velocidad de flujo
х, у	Posición espacial de la onda
Au	Coeficiente experimental de la ecuación de Losada para ascenso máximo
Bu	Coeficiente experimental de la ecuación de Losada para ascenso máximo
Cr	Coeficiente de reflexión
E_r	Espectro de energía reflejado
E_i	Espectro de energía incidente
Ĥ	Altura de ola
H_r	Altura de ola reflejada
H_i	Altura de ola incidente
H_s	Altura de ola significante
Ir	Número de Iribarren
L	Longitud de onda
L_0	Longitud de onda en aguas profundas
P	Potencia hidráulica
Р	Parámetro de porosidad de Van der Meer
Q	Caudal adimensional
Rc	Bordo libre
R_u	Ascenso máximo
$R_{u2\%}$	Ascenso máximo para 2% de probabilidad de excedencia
Т	Periodo de la onda
V	Volumen
α	Altura relativa de la onda
α*	Coeficiente de amplificación
β	Peralte de la onda
E	Fase de la onda
ϕ	Ángulo del talud de la estructura

- Coeficientes de reducción debidos a distintos parámetros i γ_i
- λ Profundidad relativa

- Superficie libre del agua
- $\eta \\ heta$ Ángulo de incidencia del oleaje
- Frecuencia angular σ
- σ^* Dispersión de las olas de crestas pequeñas
- Intervalo de tiempo τ

Lista de figuras

Fig.	I.1 Diagrama de la planta OTEC, India	4
Fig.	I.2 Imagen del Wave Dragon en NissumBedding, Dinamarca.	7
Fig.	I.3 Diagrama del Salter Duck	8
Fig.	I.4 Diagrama del funcionamiento del TAPCHAN	10
Fig.	I.5 TAPCHAN en Trofstallen,1986	11
Fig.	II.1 Clasificación según Kinsman 1965.	18
Fig.	II.2 Características del oleaje	19
Fig.	II.3 Límite de validez de las diferentes teorías de oleaje	21
Fig.	II.4 Señal producida por el sensor en la caja de almacenamiento	24
Fig.	III.1 Ascenso y descenso máximo. Run-up y Run-down	33
Fig.	III.2 Ascenso máximo y rebase (overtopping)	33
Fig.	III.4 Descripción del parámetro <i>Rc</i>	36
Fig.	III.5 Canal de ancho y fondo variable	41
Fig.	IV.1 Sistema de generación, pala y motor.	47
Fig.	IV.2 Vista lateral del canal.	47
Fig.	IV.3 Componentes principales del modelo.	48
Fig.	IV.4 Detalle de la unión.	49
Fig.	IV.5 Colocación de la rampa a 30°.	50
Fig.	IV.6 Rampas de 45 y 30°.	50
Fig.	IV.7 Molde para la fabricación de la estructura receptora.	50
Fig.	IV.8 Dispositivo de amplificación puertas abiertas	51
Fig.	IV.9 Modelo sobre playa de grava	51
Fig.	IV.10 Arreglos experimentales.	52
Fig.	IV.11 Playa de grava gruesa frente al amplificador.	53
Fig.	IV.12 Llenado de la caja durante la experimentación	53
Fig.	IV.13 Arreglo horizontal de sensores	54
Fig.	IV.14 Arreglo de sensores visto en planta.	54
Fig.	IV.15 Arreglo de sensores frente a la estructura	55
Fig.	IV.16 Comparación método de Goda y Mansard	55
Fig.	IV.17 Sistema de coordenadas para el acomodo de los sensores	56
Fig.	IV.17 Arreglo de sensores, playa.	57
Fig.	V.1 Definición de variables, vista horizontal.	61
Fig.	V.2 Definición de variables, vista en planta	61
Fig.	V.3 Variación de la superfície libre del agua sobre la rampa	63
Fig.	V.4. - Comparación entre $Q_{experimental}$ y $Q_{teorico}$.	64
Fig.	V.5 Comparación entre $Q_{experimental}$ y $Q_{teorico}$.	65
Fig.	V.6. - Comparación entre $Q_{experimental}$ y $Q_{teorico}$.	65
Fig.	V.7 Comparación entre $Q_{experimental}$ y $Q_{teorico}$.	65
Fig.	V.8. - Comparación entre $Q_{experimental}$ y $Q_{teorico}$.	66
Fig.	v.9 Comparacion entre $Q_{experimental}$ y $Q_{teorico}$.	66
Fig.	v.10. Q y P v _S kh, puertas cerradas rampa a 15°	68
Fig.	V.II. - Q y P v _s kh, puertas cerradas rampa a 30°	68
Fig.	V.12. \mathcal{Q} y P v _S kh, puertas cerradas rampa a 45°	68
Fig.	V.13 Q y P v _S kh , puertas abiertas sin rampa	69

Fig. V.14 $Q \neq P \neq v_S kh$, puertas abiertas rampa a 15°	69
Fig. V.15. - \tilde{Q} y P v _s kh, puertas abiertas rampa a 30°	70
Fig. V.16. \tilde{Q} y P v _s kh, puertas abiertas rampa a 45°	71
Fig. V.17 Comparación entre las rampas de 30° y 45°	72
Fig. V.18 Comparación entre las rampas de 15° y 30°	73
Fig. V.19 Comparación entre las rampas de 30° y 45°	73
Fig. V.20 Comparación entre las rampas de 15° y 30°	74
Fig. V.21 Amplificación del caudal	75

Lista de tablas

Tabla. II.1 Clasificación de las teorías referidas a los parámetros adimension	ales
	21
Tabla. II.2 Tipos de rotura según Ir.	28
Tabla. III.1 Au y Bu para varios tipos de diques.	35
Tabla. III.2 Coeficientes para la ecuación de Owen.	38
Tabla. III.3 Coeficientes de reducción para la ecuación de Owen	38
Tabla. V.1 Comparación entre η y <i>Rc</i>	63
Tabla. V.2 Puntos críticos para las distintas geometrías.	71
Tabla. V.3 Rangos de operación para cada ángulo de rampa	71

...and the Ocean's purple waves, climbing the land, howled to the lashing winds."

"

Prometheus Unbound

CAPÍTULO I INTRODUCCIÓN

Introducción

I.1. Energías renovables.

Hoy en día el tema de las energías renovables toma cada vez mayor importancia. El agotamiento y la sobreexplotación de los recursos energéticos tradicionales como los combustibles fósiles, han llevado a un gran número de investigadores hacía el necesario camino de las energías renovables. Otro factor decisivo y desde algunos puntos de vista más importante es la necesidad de reducir las emisiones de gases efecto invernadero que actualmente contribuyen al calentamiento global. El protocolo de Kyoto en este tema plantea la reducción del 5% en los gases efecto invernadero producidos en 1990 para el año 2012. Buena parte de esta meta podría lograrse mediante la implementación de fuentes de energía renovable.

De acuerdo con la definición de la Comisión Nacional para el Ahorro de Energía (CONAE), las energías renovables se definen como formas de energía que tienen una fuente prácticamente inagotable con respecto al tiempo de vida de un ser humano en el planeta, y cuyo aprovechamiento es técnicamente viable. Dentro de estos tipos de energía se encuentran: la solar, la eólica, la minihidráulica (ríos y pequeñas caídas de agua), la biomasa, la geotermia (calor de las capas internas de la Tierra) y la oceánica, principalmente.

Como se puede ver las energías renovables tienen un doble reto, por una parte reducir la presión sobre los hidrocarburos y convertirse en una fuente de energía rentable y por otra parte, contribuir a la reducción en la emisión de gases efecto invernadero.

I.2. Utilización de la energía del mar.

La utilización de la energía del mar es un tema muy amplio y en dónde se presenta un panorama muy abierto a la realización de nuevas técnicas para su extracción. Sin embargo el tema es complejo ya que el medio marino es muy variable, su superficie se encuentra siempre en movimiento y la fuerza del mar puede llegar a ser muy destructora, sobrepasando la resistencia de cualquier estructura diseñada para aprovechar la energía.

Aquí se encuentra el gran reto para los diseñadores de sistemas de aprovechamiento de la energía marina que consiste en diseñar un dispositivo lo suficientemente flexible y ajustable a los diferentes estados de mar y lo suficientemente robusto para resistir a los embates del clima marino bajo condiciones de tormenta. Otros grandes retos para el diseño son la corrosión y el crecimiento de organismos marinos que reducen la eficiencia hidráulica de los aparatos y muchas veces son causa de desperfectos.

Actualmente las fuentes de energía existentes para su aprovechamiento en el mar se dividen en ocho grandes categorías:

I.2.1. Energía térmica

Están basados en la diferencia de temperaturas del mar. Se aprovecha el gradiente térmico existente entre la capa superficial (con una profundidad media de 100 m) y las capas profundas más frías para crear un ciclo Carnot. Así, el líquido utilizado en el ciclo se evapora en la superficie para después condensarse en las capas profundas a menor temperatura. Uno de los fluidos empleados es el amoniaco ya que presenta un bajo punto de ebullición, 25°C, y se condensa a los 5°C, estos dos puntos obtenidos bajo presión. Cabe señalar que éste tipo de energía es la de mayor magnitud y que las plantas se pueden combinar con sistemas de desalación de agua de mar (ciclos abiertos e híbridos).

Figura I.1.- Diagrama de la planta OTEC, India.

El gradiente térmico en zonas tropicales puede llegar a ser de 20 grados centígrados, sin embargo en zonas alejadas del ecuador esta diferencia puede disminuir haciendo más difícil su aprovechamiento. El pionero de esta idea fue D'Arsonval en 1881, aunque la primera central de este tipo no se construyó hasta 1930 en Cuba, central que tuvo una corta vida. Hoy día a este tipo de plantas se le conoce como OTEC (Ocean Thermal Energy Conversion) y como ejemplo se puede ver la figura I.1. Algunas plantas OTEC en el mundo son:

- Mini-OTEC de Hawai, creada en 1979. Tiene 53 KW de generación bruta y 18 neta. Ciclo cerrado.

- OTEC-1, también en Hawai, de un MW. Ciclo cerrado.
- Toshiba, en Nauru, creada en 1981. Posee cien KW de salida bruta.
- Hawai, Universidad de Saga, instalación de 210 KW. Ciclo abierto.

- Hawai, planta de 50 KW.
- India, en un barco existe una planta de un MW.
- Tokunoshima, una planta de un MW.

Desde un punto de vista económico OTEC parece ser la más competitiva con los sistemas convencionales de producción de energía. La eficiencia de producción de energía oscila entre 60 y 70%. Estimaciones acerca del impacto energético que podrían tener las plantas OTEC, concluyen que estas tipo de plantas podrían producir la 1/800 parte de las necesidades energéticas del planeta, lo que equivaldría al consumo energético de los estados unidos durante los 80's.

I.2.2. Energía de las mareas

Se utiliza desde hace cientos de años, en la antigüedad se utilizaba en las costas de Inglaterra y de España, principalmente para la trituración de granos mediante molinos. El funcionamiento es simple: se espera el momento de máxima elevación de la marea para crear una presa artificial y cerrar las esclusas, en el momento de bajamar se abren las compuertas y deja pasar el flujo por turbinas de baja carga. Aunque el sitio geográfico para este tipo de generación puede ser una limitante ya que se requieren grandes rangos de marea (mayores a 5m) y una bahía estrecha, el desarrollo de las turbinas de baja carga y de los materiales para las componentes móviles han permitido el desarrollo de estos sistemas.

Actualmente en varios países, como en China, Rusia, Francia y Canadá, se han construido centrales mareomotrices. La más grande de éstas centrales es la de La Rance en Fracia, con una generación anual de 540 GWh/año, generados por medio de 24 turbinas de bulbo con un área de embalse de 17 km2. Después de esta central se encuentra la mareomotriz de Anápolis Royal, Fundy en Canadá con una generación anual de 30 GWh/año, generados por medio de una turbina de tipo Straflow con un área de embalse de sólo 6 km2.

I.2.3. Energía del viento

El aprovechamiento de la energía eólica marina es una aplicación con mucho dinamismo hoy día y tiene un futuro prometedor, particularmente en países con una alta densidad de población, con las consiguientes dificultades para encontrar un emplazamiento adecuado en tierra. La producción de energía eólica marina es muy superior a la generación de energía eólica en la tierra, debido a la densidad del aire y las velocidades de los vientos. El problema de los generadores eólicos marinos es el costo de su construcción. Debido a que los aerogeneradores son altos, hasta 120m de alto, y diámetros significantes, hasta de 48 m, provocan problemas de estabilidad y de anclaje, lo que incrementa considerablemente su costo.

El parque eólico offshore más reciente es el Nysted en Rodsand, Dinamarca. Consta de ocho hileras de nueve aerogeneradores cada una. Los aerogeneradores son cada uno de una altura de 70m y los alabes tienen una longitud de 41m. Esta central alcanza los 165.5 MW, generando al año la energía de 145,000 hogares daneses.

I.2.4. Energía de las corrientes

La energía de las corrientes se aprovecha mediante turbinas marinas. Existen varios tipos, como ejemplo sólo mencionaremos dos, la Seaflow y Stingray. El principio de la turbina Seaflow es similar a un aerogenerador eólico pero en este caso el flujo de la corriente marina hace girar un rotor bipala. El buje del rotor gira 360°. El Stingray consiste en un alabe plano horizontal que varía su ángulo de inclinación para obtener un movimiento ascendente y descendente.

El potencial aprovechable está estimado ser mayor a 30 GW. Las ventajas de este aprovechamiento son que se tiene con el agua de mar una mayor densidad energética que la del viento: mientras que con una corriente de viento de 15m/s se generan 2KW/m2, con una corriente marina de 2m/s, se obtienen 4KW/m2.

El principal inconveniente de éste tipo de plantas es el impacto a la navegación, ya que las corrientes marinas más fuertes se ubican principalmente en estrechos o en desembocaduras de ríos con gran tránsito marino.

I.2.5. Energía de las olas

De los diferentes tipos de ondas que se presentan en el océano, el oleaje generado por la acción del viento normalmente tiene la mayor concentración de energía. El oleaje es formado a medida que el viento sopla a través del océano. Esta transferencia de energía provee un sistema de almacenamiento natural de energía en el agua cerca de la superficie libre del mar

Como muchas fuentes de energía renovables, la energía de las olas es benéfica al medio ambiente pero el costo económico, en las primeras fases de las nuevas tecnologías, es usualmente muy alto cuando se compite con los combustibles fósiles. La energía de las olas ha sido utilizada desde hace mucho tiempo para activar boyas, para sonar campanas y para alumbrar un faro en California. Este tipo de energía puede ser capturada de distintas maneras.

Los generadores de energía activados por las olas se dividen en dos grandes categorías: generadores costeros y generadores de aguas profundas. Los dispositivos costeros están normalmente fijos a la línea de costa y tienen una modesta capacidad eléctrica. Han sido instalados en numerosos países siendo estructuras fijas que proveen un marco perfecto contra las fuerzas y ataques de las olas y pueden así lograr tasas más eficientes de conversión de energía. Los más conocidos son las columnas oscilantes de agua OWC y los sistemas de rebase como el que se presentará en esta tesis.

Las columnas oscilantes de agua son las más populares. Se trata de estructuras fijas que funcionan por resonancia. La cresta incidente de la ola aumentará la presión del agua dentro de la columna, forzando a que el nivel de agua se eleve y empujando así al aire hacia arriba al interior de una turbina. Cuando el valle de la ola aparezca en la boca del aparato el flujo de aire cambiará de sentido haciendo que la turbina gire al revés. La frecuencia natural de las columnas oscilantes está determinada por su tamaño físico.

El Tapchan, de la familia de los dispositivos de rebase o overtopping es un dispositivo montado en la costa que almacena la energía en forma de carga hidráulica en un recipiente. Conforme las olas se acercan a la boca del canal se comprimen en ancho y transforman su energía cinética en potencial aumentando así la cresta y haciéndola pasar por una barrera artificial.

Otro dispositivo de rebase que actualmente se encuentra en funcionamiento es el llamado Wave Dragon. Funciona bajo el mismo principio que el TAPCHAN, se elevan las olas del mar hacia un recipiente donde se almacena el agua que finalmente se libera al pasarla por varias turbinas. La diferencia del Wave Dragon es que se trata de un dispositivo móvil, que se puede transportar hacía aguas más profundas aprovechando así las ola más energéticas. El dispositivo se ancla al fondo y con ayuda del peso del agua almacenada se logra una mejor estabilidad.

Fig I.2.- Imagen del Wave Dragon en NissumBedding, Dinamarca.

Dentro de los dispositivos de aguas profundas se encuentran el sea Coventry Clam, el Salter Duck, el Pelamos, el AquaBuoy, la Migthy Whale, el dispositivo de Energetech y muchos más. El Salter Duck se trata de un dispositivo que tiene una forma singular que se mueve casi exactamente como el movimiento de las olas. Debido a esta forma ingeniosa muy poca energía es reflejada en las pruebas de laboratorio con oleaje ideal o monocromático. Para condiciones reales el Salter Duck aún no ha sido probado; sin embargo, el gobierno británico ha aprobado este mecanismo como uno de sus favoritos para el programa de generación de energía mediante las olas.

Fig. I.3.- Diagrama del Salter Duck

El potencial de la energía de las olas es considerable, el gobierno de Inglaterra con la agencia central general de electricidad ha estimado que todas las necesidades energéticas de Inglaterra se podrían satisfacer si se aprovechara la energía de las olas. El potencial energético por kilómetro de playa de una ola promedio se estima usualmente en 40 MW. Todos los dispositivos de aprovechamiento de las olas son muy caros de construir debido a que son sujetos a daños severos en condiciones de tormenta. La corrosión constituye un problema adicional debido a las piezas metálicas que bajo el clima marino se pueden dañar fácilmente. Par estos casos se puede aprender mucho de la experiencia francesa de la planta mareomotriz de la Rance debido que ahí se utilizan partes mecánicas de las turbinas de plásticos de alta densidad capaces de trabajar a grandes presiones.

Presupuestos estimados han puesto un precio de dos mil dólares por kilowatts (\$ 2 000.00) para la energía generada de las olas, sin embargo, estimaciones más recientes han aumentado estas cifras a ocho mil dólares (\$ 8 000.00). El precio de esta generación se espera que disminuya conforme se desarrollen nuevas tecnologías más eficientes y durables.

I.2.6. Energía salina

Investigadores británicos han estimado que el potencial energético resultante del contacto de agua dulce y agua salada puede igualarse al de una caída de agua o de una presa hidroeléctrica de 250 metros de alto. La energía liberada por los grandes ríos como el Amazonas y el Congo al llegar al océano Atlántico es enorme. Mientras todas las otras formas de energía del océano han sido puestas a prueba la energía salina es un campo casi virgen de este rubro. Los convertidores energéticos del gradiente salino se basan en el proceso de osmosis. Cuando una solución de agua salada se separa de un volumen de agua

dulce mediante una membrana semipermeable existe una presión que se ejerce sobre la membrana impidiendo que las dos soluciones tengan la misma concentración de sal.

Estas llamadas baterías dialíticas utilizan una membrana que permiten el tránsito de iones positivos (Na⁺) y una segunda membrana que permite el paso de iones negativos (Cl⁻). Así el flujo de iones sodio se establece en una dirección y los iones cloro en otra dirección. Una corriente eléctrica —que consiste en flujo de cargas eléctricas— resulte, entonces, entre los electrodos generando así electricidad como un resultado de la mezcla de agua de mar y de agua de río. En teoría 3.54 x 10⁹ KW serían disponibles de diferentes gradientes salinos. Los lugares donde las plantas podrían construirse son numerosos debido a esto la energía salina es de considerable importancia.

I.2.7. Energía de biomasa

Como ya es conocido la gran parte de la energía solar que llega a la tierra es recibida por los océanos; la acuacultura u *ocean farming* es una manera de capturar algo de esta energía. Las plantas marinas pueden ser usadas como una fuente de combustible en forma de metano o de hidrocarburo líquido. La conversión de biomasa se puede basar en cultivos costeros o en cultivo de plantas marinas en climas templados teniendo en cuenta que la productividad en el mar por hectárea sobre pasa considerablemente aquella de la tierra, la biomasa marina puede ser usada como una forma de energía.

I.3. TAPCHAN

El Tapchan pertenece, como se mencionó antes, a los dispositivos costeros del aprovechamiento del oleaje. Donde la naturaleza o la topografía del fondo del mar es tal que obstáculos en el fondo tienden a refractar, peraltar y concentrar la energía de las olas, un incremento en la altura ola puede ocurrir después de esos obstáculos. Generalmente esta ganancia sería insuficiente para propósitos de extracción de energía, sin embargo, si éste proceso toma lugar en la boca de un canal de paredes convergentes cuya geometría concentre la energía disponible de las olas los efectos pueden ser tales que el agua se vea forzada a ir hacia arriba sobrepasando alturas considerables. Una vez que el agua gana esta energía potencial y es almacenada en un recipiente, al igual que el vaso de una presa, puede ser regresada a nivel del mar pasando primero por una casa de máquina generando así electricidad. El concepto del Tapchan es elegante y simple, con pocas partes móviles representa un bajo costo de mantenimiento y una gran confiabilidad.

Fig I.4.- Diagrama del funcionamiento del TAPCHAN.

El recipiente donde se almacena el agua tiene dos funciones: la primera es almacenar la energía potencial del agua y la segunda es regular el flujo hacia las turbinas. Transformándose así el caudal intermitente generado por las olas en un caudal constante distribuido hacia la casa de máquinas y muy probablemente hacia una turbina Kaplan de baja potencia; así se elimina el factor de variabilidad de estado de mar, pudiendo controlar el flujo a la salida y la generación de energía.

Otra ventaja del TAPCHAN es la capacidad de almacenar energía, cosa que lo distingue de otros dispositivos de generación de energía en el mar. Al contar con lo que se asemeja mucho al vaso de regulación de una presa, la energía se encuentra disponible para utilizarse cuando la ley de demanda lo requiera. De igual forma, al tratarse de un dispositivo costero, el TAPCHAN presenta una considerable ventaja en cuanto a la transmisión de energía. Si se selecciona adecuadamente el lugar para poner este dispositivo el TAPCHAN podría surtir de energía a una pequeña cuidad en la costa, reduciéndose así los gastos por transmisión.

Los puntos negativos del TAPCHAN serían el costo de la obra civil, la corrosión en las turbinas y las condiciones naturales que se deben encontrar para poner el sistema: se debe contar con un rango de mareas preferentemente menor a 1m y con una profundidad considerable a la entrada del contenedor.

A nivel de impacto ambiental, el TAPCHAN podría presentar problemas de tipo visual, de emisión de ruido, efectos sobre la reproducción de algunas especies y sobre la sedimentación en costas y playas.

El TAPCHAN ya ha sido probado en Trofstallen cerca de Bergen en Noruega en 1985 con una capacidad de 350 kW. Produciendo la energía a un costo de 1.12 pesos/kWh.

Fig. I.5.- TAPCHAN en Trofstallen, 1986.

Actualmente la empresa Indonor AS está construyendo un TAPCHAN de 1,1 MW, en Indonesia, en la isla de Java; consiste en un canal de siete metros de ancho por siete metros de profundidad cuyas paredes convergen hasta un ancho de 25 cm en una longitud de sesenta metros. La bahía tiene su propio vaso natural con un área de siete mil quinientos metros cuadrados (7 500 m²) capaz de almacenar el agua hasta cuatro metros sobre el nivel medio del mar. El costo total del sistema se espera sea de seis millones de libras esterlinas (6 000 000 libras esterlinas).

Como se puede ver el TAPCHAN es una buena alternativa para la generación de energía limpia. La idea original de éste trabajo surgió como una inquietud por el problema de recambio de agua en la Laguna de Bojórquez, Cancún. El sistema de concentración de oleaje fue entonces utilizado por el Dr. Miguel Angel Alatorre Mendieta del Instituto de Ciencias del Mar y Limnología de la UNAM para bombear agua desde la costa hacia la laguna. Debido a la falta de literatura existente para el diseño de sistemas de rebase con amplificadores de oleaje se ha desarrollado este trabajo para determinar una geometría optima que eficiente el rebase. Dentro de los trabajos existentes se pueden destacar el de Kubune y Osato (1976) y el de Burcharth y Kofoed (2002).

I.4. Objetivos

- Determinar la influencia que tiene la geometría del amplificador de olas en la eficiencia del rebase.
- ~ Determinar un rango óptimo para las distintas características geométricas del amplificador.
- ~ Describir el comportamiento del rebase para cada geometría en función de sus componentes físicas, como la altura de ola y el periodo.
- ~ Describir los parámetros necesarios para la caracterización del oleaje y los procesos asociados al flujo en estructuras.

I.5. Hipótesis

- Las paredes convergentes amplifican la magnitud de la ola en su interior en forma significativa.
- La rampa impermeable ayuda de igual forma a la amplificación.
- Existe un rango en el cual los parámetros de diseño son óptimos para el rebase.
- La estructura dentro del canal es estática y sus movimientos no influyen de manera significativa en su funcionamiento.
- La presencia de una playa al pie de la estructura favorece el amortiguamiento de la reflexión, para obtener una señal más homogénea.

I.6. Metodología

Para el llevar acabo los objetivos planteados se realizo la construcción de un modelo en acrílico, con un contenedor para almacenar el agua de 60x70 cm y distintos tipos de rampas de manera a variar la geometría del amplificador. Para cada geometría se probaron distintas profundidades, distintos periodos y alturas de ola, siempre para oleaje monocromático.

Las pruebas se realizaron en el canal de oleaje del Grupo de Ingeniería de Costas y Puertos del Instituto de Ingeniería, UNAM. Este canal cuenta con un generador tipo pistón con el cual se pudieron simular las condiciones necesarias para los experimentos. Para la adquisición de los datos se emplearon sensores de nivel dispuestos a lo largo del canal.

I.7 Organización del trabajo.

Estandarización de la nomenclatura y las convenciones de signo.

Lista del material gráfico.

Capítulo 1. Descripción general del estado del arte en cuanto a dispositivos de generación de energía por medio del mar.

Capítulo 2. Presentación de los conceptos fundamentales del oleaje. Caracterización del oleaje y metodología de análisis.

Capítulo 3. Caracterización de los procesos del flujo en estructuras. Formulaciones y modelos existentes para la estimación del rebase.

Capítulo 4. Descripción de los experimentos en laboratorio. Diseño del modelo, mediciones y resultados.

Capítulo 5. Análisis de resultados. Caudal generado. Geometrías optimas y comparación con los modelos existentes para la estimación del rebase.

Capítulo 6. Conclusiones y futuras líneas de trabajo.

Referencias.

CAPÍTULO II

OLEAJE

Oleaje

II.1. Introducción.

Hasta la fecha no existe una teoría que explique completamente el oleaje marino. Sin embargo, a lo largo de la historia se han realizado logros relevantes en el estudio analítico del oleaje. En 1802 se desarrolla la teoría trocoidal de las olas en aguas azules por Gersnert. En 1844, Airy publica la teoría lineal para las olas en aguas someras y profundas. Esta teoría sigue siendo utilizada ampliamente ya que pese a su simplicidad sus resultados son bastantes congruentes. En 1847 se logra un avance significante con el perfeccionamiento de la teoría lineal y su extensión hacia mayores ordenes de aproximación. Esto gracias a la teoría de Stokes. En 1871 y 76 Raleigh y Boussinesq explican la teoría de la onda solitaria. Con fines militares durante la segunda guerra mundial en los años 1943 a 1947 Sbredup y Munk desarrollan los primeros estudios de predicción del oleaje. En 1852 Pierson *et al.*, desarrollan un modelo de predicción de oleaje irregular. Actualmente se considera que el oleaje no puede ser modelado como una onda debido a su variabilidad en el espacio y en el tiempo.

El oleaje es un fenómeno que está determinado por la acción de la fuerza de la naturaleza en cualquier superficie libre de agua. La más obvia de estas fuerzas es la acción del viento sobre la superficie del mar. Siguiendo las ideas anteriores existen al menos tres formas de clasificar el movimiento oscilatorio que se presenta en el mar: la profundidad sobre la que se propaga la onda, la fuerza que genera el oleaje y su periodo de onda.

II.2. Clasificación desde el punto de vista físico.

II.2.1. Clasificación de acuerdo con la profundidad relativa.

a) Aguas profundas

Cuando la profundidad h es igual o mayor que la longitud de su onda L, el oleaje no experimenta modificaciones debidas a la profundidad.

b) Aguas poco profundas

Cuando la profundidad h es igual o menor que un vigésimo de su longitud de onda L, el oleaje está controlado por la profundidad del agua.

II.2.2. Clasificación de las ondas oceánicas

Existen tres tipos de ondas: ondas capilares, gravitatorias y de largos periodo. La mayor energía se encuentra en las olas producidas por el viento. Las olas son, entonces, una forma de recabar y concentrar la energía eólica disponible sobre la extensión del océano.

Las fuerzas generadoras y restauradoras de las olas son, para las ondas capilares, el viento y la tensión superficial respectivamente. Las ondas capilares tienen como característica uno a dos milímetros.

Para las ondas gravitatorias la fuerza generadora es el viento y la fuerza restauradora es la gravedad. Su altura es decímetros a pocos metros y la longitud de ondas de metros a decenas de metros.

Las ondas largas tienen como fuerza generadora los sismos, derrumbes y atracción de cuerpos celestes. Las fuerzas restauradoras son la gravedad y la fuerza de Coriolis. La altura es de decímetros a metros y la longitud de onda de centenas de metros a miles de kilómetros.

Existen, también, las llamadas ondas internas que se producen cuando existe un gradiente de densidad fuerte; estas ondas son amplitudes y longitudes de onda muy superiores a las superficiales.

La mayor amplitud se presenta en las ondas largas pero su ocurrencia en el tiempo es ocasional. Por el contrario las ondas gravitacionales están presentes en todo momento. Un estudio realizado por Kinsman determina que 55 % de la energía total del mar corresponde a un oleaje con altura menor a 1.2 metros 25% a un oleaje con altura entre 1.2 y 4 metros y sólo 10% a un oleaje mayor a 4 metros.

Fig.II.1.- Clasificación según Kinsman 1965

II.2.3. Clasificación del oleaje

Los tipos de oleaje suelen ubicarse entre dos extremos los cuales se distinguen entre otras características por su posición respecto a la zona de generación, esta zona se define como la región en donde se lleva a cabo la transferencia de la energía del viento a la superficie del mar. Esta área de generación se llama Fetch. En esa zona el fenómeno es completamente aleatorio, la propagación del oleaje sigue diferentes direcciones aunque la dirección predominante es la del viento. Se puede, entonces, separar al oleaje en oleaje local o Sea y en oleaje distante Swell.

El oleaje local se produce en alta mar, en esta parte el oleaje no tiene un periodo definido presenta gran irregularidad asimetría entre el valle y la cresta de las olas y gran peralte. En el caso del oleaje distante, las olas pierden energía y sufren una doble dispersión, una angular y otra radial produciéndose así un filtrado de las olas. Para este tipo de oleaje se presenta, también, el fenómeno de soldadura para el cual dos olas de periodo semejante se fusionan en largas crestas de onda. Esto tiene como consecuencia una simplificación de la superficie del mar. Cuando se abandona el área de generación, el oleaje tiende a ser de tipo Swell. De igual forma, se produce el fenómeno de refracción haciendo que las olas tiendan a viajar en patrones paralelos a las isobatas. Lo cual isomorfisa, también, el oleaje.

II.3. Caracterización desde el punto de vista matemático.

La clasificación matemática se basa en la utilización de parámetros adimensionales. Estos parámetros son función de la altura de ola H, la longitud de onda L y la profundidad h que son variables necesarias y suficientes para poder caracterizar el oleaje.

Fig.II.2.- Características del oleaje.

Los parámetros adimensionales utilizados para dicha clasificación son la altura relativa de la onda α , que indica la relación existente entre la oscilación vertical con respecto a la profundidad; el peralte de la onda β que muestra la variación vertical de la onda respecto a un longitud de onda dada y la profundidad relativa λ que señala la penetración del movimiento de la onda con respecto a la profundidad.

$$\alpha = H/h \tag{2.1}$$

$$\beta = H/L \tag{2.2}$$

$$\lambda = h/L \tag{2.3}$$

A partir de la definición del parámetro γ y dependiendo de los valores que adquiera al sustituir los valores *h* y *L* el oleaje se puede clasificar de acuerdo a la profundidad en la que se propaga. Se clasifica así: en aguas profundas, aguas intermedias y aguas someras.

$$h/L > 0.5$$
 (2.4)

$$0.05 < h/L < 0.5 \tag{2.5}$$

$$h/L < 0.05$$
 (2.6)

Una forma alternativa de expresar el parámetro landa es en función del número de onda k, dicho número indica el número de longitud de onda por ciclo y es a su vez función de la longitud de onda; cuyo valor se determina a partir de la ecuación de la dispersión mediante un proceso iterativo.

$$k = 2\pi/L \tag{2.7}$$

$$\sigma^2 = kg \tanh(kh) \tag{2.8}$$

$$\sigma = 2\pi/T \tag{2.9}$$

En la ecuación precedente σ es la frecuencia angular, se obtiene, entonces, una relación para determinar el valor de *L* en función de *h*, *T* y *k*.

$$L = (gT^2/2\pi) \tanh(kh) \tag{2.10}$$

Despejando L de (2.7) y sustituyendo en (2.4), (2.5) y (2.6), se obtiene:

 $kh > \pi \tag{2.11}$

$$(\pi/10) < kh < \pi \tag{2.12}$$

$$kh < (\pi/10)$$
 (2.13)

Los parámetros anteriormente mencionados son, también, utilizados para definir el régimen de aplicación de las diferentes teorías concernientes al oleaje; así para cuando landa adquiere valores grandes, y alfa y beta valores pequeños se considera válida la teoría de la pequeña amplitud. Por otro lado, si landa adquiere valores pequeños las teorías relativas a las ondas largas son válidas.

Teoría	$\lambda = h/L$	$\alpha = H/h$	$\beta = H/L$
Pequeña amplitud	≥1	<<1	<<1
Ondas largas	<<1		
Onda larga lineal		$\alpha << \lambda^2$	
Boussinesq		$\alpha \sim \lambda^2$	
Onda larga no lineal		$\alpha >> \lambda^2$	

Tabla. II.1.- Clasificación de las teorías referidas a los parámetros adimensionales.

Además de los parámetros mencionados, también, se utilizan las siguientes relaciones para definir el intervalo de aplicación de las teorías relativas al oleaje.

$$H/(gT^2) y h/(gT^2)$$
 (2.14)

Fig.II.3.- Límite de validez de las diferentes teorías de oleaje.

II.4. Descripción estadística del oleaje

El oleaje como proceso estocástico

El oleaje es un proceso esencialmente aleatorio que puede ser considerado en términos prácticos como un conjunto de ondas viajando en diferentes direcciones, θ_i , con diferentes amplitudes, a_i , frecuencias, σ_i y fases ε_i .

El oleaje puede, entonces, ser estudiado como una superposición lineal de ondas armónicas simples. Esto quiere decir que la superficie libre del agua se puede, entonces, describir con la ecuación siguiente:

$$\eta(x, y, t) = \sum_{i} a_{i} \cos\left[\frac{\sigma_{i}^{2}}{g} (x \cos \theta_{i} + y sen \theta_{i}) - \sigma_{i} t + \varepsilon_{i}\right]$$
(2.15)

donde

a : amplitud

- σ : frecuencia angular ($2\pi/T$)
- T: periodo de la onda
- θ : ángulo de incidencia con respecto al eje x
- $\epsilon: fase$
- x, y : posición espacial de la onda
- t: tiempo

Dado que el oleaje es un fenómeno aleatorio se debe analizar, estadísticamente, considerándolo como un proceso estocástico. Para este caso una realización corresponde a una función muestra resultado de una observación o medición que se denota $\eta_k(t)$, ya que la función $\eta(t)$ varía para cada instante de tiempo. La variable de $\eta(t_1, t_2, t_3, ..., t_n)$, es una variable n-dimensional. El proceso $\eta(t)$ se puede considerar definido si se conoce para cualquier instante la función de distribución de la variable aleatoria n-dimensional $\eta(t_1, t_2, t_3, ..., t_n)$.

$$F_{t_1,t_2,...,t_n}(x_1, x_2, ..., x_n) = \Pr{ob[\eta(t_1) \le x_1, \eta(t_2) \le x_2..., \eta(t_n) \le x_n]}$$
(2.16)

Estas distribuciones deben, por ende, satisfacer las condiciones de simetría y de compatibilidad. Se puede concluir, entonces, que sería necesario conocer todas las funciones de distribución para cualquier $\eta(t)$; sin embargo, si se utiliza la teoría de la correlación se pueden simplificar estos procesos al tomar en cuenta, exclusivamente, los dos primeros momentos del proceso: el valor medio y la función de correlación.

$$\mu_n(k) = \lim_{T \to \infty} \frac{1}{T} \int_{-\infty}^{\infty} \eta_k(t) dt$$
(2.17)

$$R_{\eta\eta}(k) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \eta_k(t) \eta_k(t+\tau) dt$$
(2.18)

Estos dos primeros momentos determinan y complementan el proceso $\eta(t)$ si se considera que todas las distribuciones dadas por la ecuación (2.16) son normales (*gaussianas*). El proceso sigue siendo muy complejo por lo que se deben considerar dos hipótesis extras: la *estacionariedad* y la *ergodicidad*.

El oleaje como un proceso estacionario

Se puede considerar estacionario si las características externas permanecen constantes durante un cierto período de tiempo. En este lapso debe existir un cierto equilibrio entre las fuerzas generadoras y las fuerzas restauradoras; este periodo de tiempo se conoce como estado de mar. Cuando se admite esta hipótesis se deduce que el valor medio es una constante y la función de correlación depende sólo de la diferencia $\tau=t+\tau$, así:

$$\mu(k) = \mu \tag{2.19}$$

$$R_{\eta\eta}(k) = R_{\eta\eta} \tag{2.20}$$

El oleaje como un proceso ergódico

"Si un proceso aleatorio $\eta(t)$ es estacionario y $\mu(k)$ y $R_{\eta\eta}(k)$ definido en las ecuaciones (2.19) y (2.20) no difiere cuando se calcula en diferentes muestras, se dice que el proceso es ergódico" (ref.8). La descripción de un proceso de un estado de mar a partir de un único registro temporal se basa en admitir que se trata de un proceso ergódico y estacionario.

II.5. Análisis temporal de los estados de mar

En 1952, Longuet Higgins por un lado, y Pearson y Marks por otro, propusieron que los registros de los desplazamientos de las superficies libres del mar, $\eta(t)$, con respecto al nivel medio pueden representarse a través de la suma de gran número de olas sinusoidales de diferentes amplitudes, así como de frecuencias y fases aleatorias, esto sería entonces un proceso determinista. El oleaje se representa de una forma más aproximada a la realidad introduciendo un componente aleatorio. Implícitamente se aborda el estudio por medio de un modelo lineal

Definición de estado de mar

Una definición distinta a la mencionada con anterioridad en el trabajo es la que establece que el estado de mar representa cada una de las posiciones de la dinámica del oleaje, admitiendo que estas tienen una variación lo suficientemente lenta para considerar al proceso como estacionario. Se puede considerar que el oleaje esta conformado por dos tipos de variaciones:

- Una variación de periodo corto, muy rápida del orden de segundos durante la cual el proceso se considera estacionario.
- Una variación de periodo largo, lenta del orden de horas y en la que evoluciona el estado de mar

Se debe fijar un periodo de medición que sea, por un lado, lo suficientemente corto, para poder admitir la hipótesis de estacionariedad y por otro, lo suficientemente largo para que al analizar la muestra se tenga un número representativo de olas para su tratamiento. Actualmente existen dos vertientes muy extendidas para el tratamiento de una señal de oleaje: la descripción estadística temporal del estado del mar, la cual considera las propiedades estadísticas directamente de una serie de tiempo y la descripción estadística espectral del estado de mar que toma en cuenta el estudio del espectro y sus propiedades en el dominio de la frecuencia. Para el análisis de las señales generadas tanto en la caja del concentrador de olas, así como las generadas por el estado de mar que incide sobre el amplificador de oleaje se utilizará la descripción estadística del estado de mar.

A continuación se presentarán las operaciones matemáticas que se realizaron a la muestra de una señala para reducir los errores al efectuar ciertas consideraciones necesarias.

Como se puede ver, en la siguiente figura la señal registrada en la caja de amplificador de olas presenta una serie de variaciones que corresponden al movimiento de la caja inducido por el movimiento de las olas. Así, para los dos últimos periodos de la señal presentada se tuvo que utilizar un método de corrección del nivel medio lineal el cual se presenta a continuación, así como una parte del código utilizado en el programa para el procesamiento de los datos.

Fig.II.4.- Señal producida por el sensor en la caja de almacenamiento. Experimento E090F015H0717T170838.
Corrección del nivel medio

El procedimiento es el siguiente: Se calcula el valor medio que puede ser de orden cero o promedio aritmético de primer orden o una recta. Una vez calculado el valor medio se resta del valor original de cada uno de los datos, tal que:

$$\overline{\eta}_{i_corregida} = \eta_{i_original} - \overline{\eta}_i \tag{2.21}$$

A continuación se presentan las ecuaciones para evaluar el nivel medio.

Corrección lineal.

.

A través del uso de la técnica de ajuste por mínimos cuadrados se obtiene una expresión que representa una variación lineal del nivel medio. Las ecuaciones para realizar este procedimiento son:

$$\eta_n = A_0 + A_1 n$$
 : $n = 1, 2, 3, \dots, N$ (2.22)

donde N es el número de datos y A_0 y A_1 son los coeficientes del ajuste por mínimos cuadrados, que se definen como sigue:

$$A_{0} = \frac{N_{2}Y_{0} - N_{1}Y_{1}}{N_{0}N_{2} - N_{1}^{2}} \qquad A_{1} = \frac{N_{0}Y_{1} - N_{1}Y_{0}}{N_{0}N_{2} - N_{1}^{2}}$$
(2.23)

Parte del código fuente utilizado para el ajuste de una recta en los últimos dos periodos de la señal.

CORRECCIÓN UTILIZANDO LA ECUACIÓN DE UNA RECTA

```
if (flag(j).eq.0) then
     N0=0
     N1=0
     N2=0.
     Y0=0.
     Y1=0.
     conta=0
     rango=rank(j)
     print*, j,dim,rango
     do k=1,rango
          NO = (1.+NO)
          N1 = (k+N1)
          N2=(k**2+N2)
                                      !Cierro el loop del k
     end do
     print*, 'enes',n0,n1,n2
print*, dim-(rango-1)
     do m=dim-(rango-1),dim
          conta=conta+1
          Y0 = dat(m) + Y0
          Y1=conta*dat(m)+Y1
     end do
                                      !Cierro el loop delm
     Print*, 'yes',conta,y0,y1
A0=(N2*Y0-N1*Y1)/(N0*N2-N1**2)
A1=(N0*Y1-N1*Y0)/(N0*N2-N1**2)
     correcdim=a0+a1*real(rango)
print*, 'aes',a0,a1,rango,correcdim
     correcini=a0+a1*1
     altur(j)=correcdim-dinicio(j)
```

II.6. Procesos de transformación

La transformación del oleaje es importante en los procesos relacionados al transporte de sedimentos y de diseño de estructuras, ya que generan eventualmente cambios en la batimetría del fondo y falló de estructuras. La presencia de variaciones en el fondo marino, obstáculos naturales como islas, cabos, etc.; o artificiales como rompeolas, puertos, escolleras, entre otros, inducen procesos como la refracción, difracción, someramiento, rotura, reflexión y resonancia.

Refracción

Se caracteriza a la refracción porque a medida que el oleaje siente el fondo y éste presenta un ángulo diferente a la orientación de las batimétricas, el frente de ola tiende a hacerse paralelo a la conformación del fondo.

La ecuación que rige la refracción en la ley de Snell que para dos medios adyacentes es:

$$\frac{senA_i}{C_i} = \frac{senA_r}{C_r}$$
(2.24)

Donde *Ai* y *Ar* son los ángulos de incidencia y refracción. En un caso más general donde hay variación irregular del fondo la ecuación es:

$$\frac{\partial k \sin \theta}{\partial x} - \frac{\partial k \cos \theta}{\partial y} = 0$$
(2.25)

Donde θ es el ángulo. Esta ecuación debe resolverse por medio de métodos numéricos. El coeficiente de refracción es:

$$k = \sqrt{\frac{d_0}{d_1}} \tag{2.26}$$

 d_0 y d_1 son las profundidades en los dos medios

Difracción

Cuando existe un cambio abrupto en la altura de la ola debido a la presencia de un obstáculo se origina un fenómeno de difracción o de flujo transversal de energía del oleaje denominado difracción. La difracción es entonces por definición la cesión lateral de energía. Su evaluación es importante en la planeación y diseño de estructuras, como también en la propagación del oleaje a grandes distancias, a través de lo cual se pueden identificar zonas de concentración de energía y de convergencia.

Los modelos que explican la difracción son complejos, una forma usual de valorar la difracción es por medio de diagramas como los que presenta el Shore Protection Manual de

1984 SPM. En el caso de un rompeolas semi-infinito con incidencia normal la solución de Sommerfeld de 1896 es aceptada:

$$Ae^{-iky} = \frac{1+i}{2} \left[e^{-iky} \int_{-\infty}^{\beta} e^{-i(\pi/2)u^2} du + e^{iky} \int_{-\infty}^{\beta} e^{-i(\pi/2)u^2} du \right]$$
(2.27)

$$\beta^2 = \frac{4}{\lambda}(r - y) \tag{2.28}$$

$$\beta^{\prime 2} = \frac{4}{\lambda}(r+y) \tag{2.29}$$

Someramiento

Cuando el cambio de profundidad modifica la celeridad de la olas provoca un aumento de las elevaciones y disminución de los valles, en otras palabras existe una transferencia de energía cinética a potencial. La solución al problema de someramiento requiere plantear un problema de contorno cuya solución analítica es elaborada. El coeficiente de someramiento tiene relación con las velocidades en los dos medios y es:

$$k_{s} = \sqrt{2 \frac{C_{g0}}{C_{g1}}}$$
(2.30)

Donde c_g es la velocidad de grupo.

Rotura

Los mecanismos que intervienen en éste proceso son complejos y es una forma en que la energía del oleaje es disipada en forma turbulenta. En general, la rotura del oleaje se origina cuando alcanza un estado crítico en su movimiento y el cual se encuentra afectado por la configuración del fondo o bien por la presencia de una pendiente pronunciada.

Originalmente Iribarren y Nogales en 1949 introdujeron el número de Iribarren I_r como un indicador de cuando ocurría la reflexión o rotura en el talud. El número de Iribarren se define como sigue:

$$Ir = \frac{\tan\phi}{\sqrt{\frac{H}{L_0}}}$$
(2.31)

Donde $tan\phi$ representa la pendiente de la estructura, H, la altura de ola y L_0 la longitud de onda en aguas profundas.

Tipo de rotura	Número de Iribarren
Decrestamiento	$I_r < 1.0$
(Spilling)	
Voluta	$1.0 < I_r < 2.6$
(Plunging)	
Colapso	$2.6 < I_r < 3.1$
(Colapsing)	
Oscilación	$3.1 < I_r < 4.0$
(Surging)	
No hay rotura	$I_r < 4.0$

Tabla. II.2.- Tipos de rotura según Ir

Reflexión

Al incidir sobre un objeto sólido, las olas se reflejan sin aparente pérdida de energía. Dicha alteración se manifiesta en un incremento en la altura de ola.

En particular, para este estudio uno de los principales problemas que se presentan a la hora de experimentar es precisamente la reflexión. El problema se presenta cuando el oleaje reflejado interactúa con el oleaje incidente y se crea así un nuevo oleaje sobre el cual se pierde el control de sus parámetros. Es por eso que es importante identificar cual es oleaje incidente y el oleaje reflejado cuando se analizan los datos. Hay que tomar también en cuenta no sólo el oleaje que se refleja sobre la estructura analizada sino también el que se refleja sobre la pala generadora. Para eliminar los efectos de esta última reflexión es indispensable contar con un buen sistema de absorción, como con el que se cuenta en el laboratorio, en la pala generadora. Para disminuir la reflexión provocada por la estructura probada y por las paredes del canal, se debe contar con una buena estructura disipadora de energía. Los métodos más usuales para reducir ésta reflexión son el empleo de playas artificiales de arena, grava o roca. Para el caso del TAPCHAN se colocó una playa de grava antes de la estructura ya que ésta ocupaba todo el ancho del canal. La playa colocada ayuda así a simular el amplificador de oleaje en condiciones más reales, más apegado a las condiciones de mar a las que podría estar sometida la estructura bajo estudio.

Para tomar en cuenta el efecto de la reflexión y evaluar que tan disipativa es una estructura se utiliza el concepto de coeficiente de reflexión:

$$C_r = \frac{H_r}{H_i} \tag{2.31}$$

El coeficiente de reflexión muestra la proporción entre la altura de ola incidente y la reflejada, obtenidas de la separación del oleaje incidente y reflejado de una señal de oleaje en el dominio del tiempo. El coeficiente de reflexión se puede evaluar también como una relación entre el espectro de energía incidente y el espectro de energía reflejado, en el dominio de la frecuencia:

$$C_r = \sqrt{\frac{E_r}{E_i}} \tag{2.32}$$

Resonancia

En éste fenómeno el periodo de oscilación natural de un puerto o bahía coincide con el de la ola incidente y con poca energía la ola se amplifica notablemente.

Para la extracción de energía de las olas este fenómeno puede ser importante, ya que se podrían localizar zonas geográficas de resonancia para aprovechar ahí de mejor manera la energía. Sin embargo, diseñar bajo este parámetro es muy complicado.

CAPÍTULO III

FLUJO EN ESTRUCTURAS

Flujo en estructuras.

III.1. Introducción

Para describir las acciones que tiene el oleaje sobre estructuras, se dividen los fenómenos en cuatro categorías: la transmisión, el ascenso máximo (Run-up), el descenso máximo (Run-down) y el rebase (overtopping). En lo referente al diseño de estructuras, el conocimiento del runup influye en su diseño geométrico ya que con este proceso se logra la determinación de la altura del francobordo para evitar el rebase del oleaje al lado protegido. El rebase o overtopping se define como la cantidad de agua que pasa a la zona protegida medido como caudal medio por longitud del rompeolas (m³/s por m). La diferencia fundamental entre el rebase y la transmisión es que este último mantiene la información del movimiento oscilatorio.

En el caso del TAPCHAN el rebase es un fenómeno deseado ya que constituye el principio mismo de funcionamiento del dispositivo. Así, se utilizarán las formulaciones existentes de ascenso máximo y de rebase para compararlas con los resultados obtenidos en la fase experimental. Se presentará también un modelo analítico utilizado por el Dr. Miguel Ángel Alatorre para comparar también los resultados. En un futuro, se esperaría, al ser validados los resultados y con ayuda de estas comparaciones, desarrollar una fórmula para la predicción del caudal que rebasaría hacia la parte del concentrador.

Fig. III.1.- Ascenso y descenso máximo. Run-up y Run-down

Fig. III.2.- Ascenso máximo y rebase (overtopping)

III.2. Ascenso máximo.

III.2.1 Descripción del ascenso máximo

La acción del oleaje sobre un talud provoca que la superficie del agua oscile en un rango vertical, generalmente mayor que la altura de la ola incidente. El ascenso máximo es el valor extremo que alcanza la lámina de agua al subir por la pendiente, éste se mide en forma vertical a partir de la superficie quieta del agua (SWL).

III.2.2. Métodos para la estimación del ascenso máximo

Günbak en 1979 presenta un informe con una serie de experimentos realizados por él mismo y otros autores como Hudson en 1958, Jackson en 1968, Dai y Kamel en 1969, Wallingford en 1970 y Carver en 1977. La importancia de éste informe reside en que sus datos han servido para validar resultados de formulaciones posteriores. A continuación se presentan sus formulaciones empíricas:

$$0 < \text{Ir} < 2.5$$
 $\frac{R_{u2\%}}{H_s} = 1.6Ir$ (3.1)

Ir > 2.5
$$\frac{R_{u2\%}}{H_s} = 4.5 - 0.2Ir$$
 (3.2)

Allosp et al en 1985 presentan una ecuación complementaria:

$$2.8 < \text{Ir} < 6 \qquad \frac{R_{u2\%}}{H_s} = 3.39 - 0.21 Ir \tag{3.3}$$

En estas formulaciones el número de Iribarren Ir se calcula para el periodo pico y Ru_{2%} es el ascenso máximo con una probabilidad de excedencia de dos por ciento.

En 1981 Losada et al proponen un modelo experimental para oleaje regular con la expresión:

$$\frac{R_u}{H} = Au(1 - e^{Bulr}) \tag{3.4}$$

Au y Bu son coeficientes de ajuste que dependen del tipo de piezas del manto principal. Y actualmente, dada la aceptación del modelo de Losada y gracias a diversos investigadores se cuenta con los valores siguientes para los coeficientes de ajuste, se muestra también un parámetro de porosidad P introducido por Van der Meer en 1988. Este parámetro toma el valor de 0.6 para diques permeables y de 0.1 para impermeables.

		Homogéneos		Impermeables			
Material	Р	Au	Bu	Autor	Au	Bu	Autores
Escollera	0.31	1.80	0.46	Abrana 1075	2.00	0.32	Abrens 1068
clasificar	0.51	1.60	0.40	AIIICIIS, 1973	2.00	0.32	Allens, 1908
Escollera clasificada	0.40	1.37	0.60	Gümbak,1976	1.89	0.40	Seeling, 1980
Cubos	0.47	1.05	0.72	Jackson, 1968			
Tetrápodos	0.50	0.93	0.75	Jackson, 1978	1.40	0.45	Dai y Kamel, 1969
Dolos	0.56	0.70	0.82	Wallingford, 1970	1.19	0.53	Wallingford, 1970

Tabla. III.1.- Au y Bu para varios tipos de diques

Las ecuaciones que relacionan a la porosidad *n* con los coeficientes de ajuste son:

Para diques homogéneos:

Au = -4.706n + 3.293	(3	3.:	5)
	· ·			

$$Bu = -1.569n + 0.038 \tag{3.6}$$

Para diques impermeables:

$$Au = -3.825n + 3.344 \tag{3.7}$$

$$Bu = -1.179n + 0.081 \tag{3.8}$$

En nuestro caso se utilizará para estimar el run-up los coeficientes para diques impermeables por lo que los valores de Au y Bu, para una porosidad nula, son respectivamente:

$$Au = 3.344$$

Bu = 0.081

La ecuación es entonces:

$$\frac{R_u}{H} = 3.344(1 - e^{0.081Ir})$$
(3.9)

III.3. Rebase

III.3.1. Descripción del rebase

El rebase es un proceso intermitente que ocurre cuando los nieles máximos de run-up sobrepasan la cresta del bordo libre de la estructura, *Rc*, como se muestra en la figura.

Fig.III.4.- Descripción del parámetro *Rc*

El grado de rebase se mide por la cantidad de agua que pasa por dicha zona. Esto se puede cuantificar como volumen de agua por unidad de longitud del rompe olas o como descarga media de rebase por unidad de longitud (m^3 /s por m)

III.3.2. Formulaciones existentes para el rebase

Las formulas existentes para el rebase son empíricas debido a que son el resultado de experimentaciones par una geometría dada de rompeolas. En general la descarga promedio de rebase por unidad de longitud de la estructura, q, es función de los siguientes parámetros.

 $q = f(H_s, T, \sigma^*, \theta, Rc, h_s, g, geometría de la estructura)$

 H_s : altura significante de la olaT: periodo σ^* : dispersión de las olas de crestas pequeñas θ : ángulo de incidencia de las olasRc: bordo libre h_s : profundidad del agua al pie de la estructurag: aceleración de la gravedad

El francobordo relativo Rc/H_s es un parámetro adimensional simple muy utilizado para la predicción del rebase.

Existen principalmente dos modelos adimensionales para la predicción del rebase:

$$Q = a * (exp(-b*R)) \quad y \quad Q = a * R^{(-b)}$$

Donde Q es la descarga adimensional por metro y R es el bordo libre adimensional.

Se presentan a continuación los distintos modelos existentes en la literatura para la predicción del rebase. Nota: Se define al parámetro s_o como $s_o = H_s/L_o$

Flujo en estructuras

Autores	Estructuras	Modelo	Descarga adimensional <i>O</i>	Bordo libre adimensional <i>R</i>
Owen (1980,1982)	Pendientes rectas y con berma, impermeables	Q=a*(exp(-b*R))	$\frac{2}{gH_sT_0}$	$\frac{R_c}{H_s} \left(\frac{s_0}{2\pi}\right)^{0.5} \frac{1}{\gamma_r}$
Bradbury y Allsap (1988)	Pendientes impermeables recubiertas con roca, con corona	$Q=a*R^{(-b)}$	$\frac{q}{gH_sT_0}$	$\left(\frac{R_c}{H_s}\right)^2 \left(\frac{s_0}{2\pi}\right)^{0.5}$
Adminti y Franco (1988)	Pendientes impermeables, recubiertas con dos capas de roca, cubos y/o tetrápodos, con corona	$Q=a*R^{(-b)}$	$rac{q}{gH_sT_0}$	$\left(\frac{R_c}{H_s}\right)^2 \left(\frac{s_0}{2\pi}\right)^{0.5}$
Ahrens y Heinbourgh (1988)	7 diseños distintos	Q = a*(exp(-b*R))	$rac{q}{\sqrt{gH_s^3}}$	$\frac{R_c}{\left(H_s^2 L_0\right)^{\frac{1}{3}}}$
Pedersen y Burcharth (1992)	Pendientes impermeables, recubiertas con roca, con corona	Q=a*R	$\frac{qT_{_0}}{L_0^2}$	$\frac{H_s}{R_c}$
Van der Meer y Janssen (1995)	Pendientes con y sin berma, rectas impermeables, suaves o pronunciadas	<i>Q</i> = <i>a</i> *(<i>exp</i> (- <i>b</i> * <i>R</i>))	$\frac{q}{\sqrt{gH_s^3}} \sqrt{\frac{s_0}{\tan \phi}}$ para Ir < 2 $\frac{q}{\sqrt{gH_s^3}}$ para Ir > 2	$\frac{\frac{R_{c}}{H_{s}}\sqrt{s_{o}}}{\frac{1}{\gamma}}$ para Ir < 2 $\frac{\frac{R_{c}}{H_{s}}}{\frac{1}{\gamma}}$ para Ir > 2
Franco, de Gerloni y Van der Meer (1994)	Muros rectos verticales sin frente perforado	Q=a*(exp(-b*R))	$\frac{q}{\sqrt{gH_s^3}}$	$rac{R_c}{H_s}rac{1}{\gamma}$
Pedersen (1996)	Pendientes permeables recubiertas con roca	Q=R	$rac{qT_{_0}}{L_0^2}$	$3.2 \times 10^{-5} \frac{H_s^5 \tan \phi}{R_c^3 A_c B}$

Como se puede ver en la tabla precedente, los coeficientes de ajuste a y b son específicos para la geometría del frente de la estructura. Hasta el momento no se ha desarrollado ningún modelo que tome en cuenta la influencia de la geometría.

De los modelos presentados en la tabla anterior se utilizaron el modelo de Owen, el de van der Meer y Jansen y el de Franco, de Gerloni y Van der Meer para compararlos con los resultados obtenidos durante la experimentación.

A continuación se describen con mayor detalle éstos modelos así como los coeficientes *a* y *b* a utilizar.

a) Ecuación de Owen:

$$\frac{q}{gH_sT_0} = a \exp\left(-b\frac{R_c}{H_s}\sqrt{\frac{s_0}{2\pi}}\frac{1}{\gamma}\right)$$
(3.10)

Coeficientes a y b para la ecuación de Owen:

Pendiente	а	b
1:1	0.008	20
1:1.5	0.010	20
1:2	0.013	22
1:3	0.016	32
1:4	0.019	47
		1.0

Tabla. III.2.- Coeficientes para la ecuación de Owen

Coeficiente de reducción y para a ecuación de Owen:

Tipo de superficie	Coeficiente de reducción γ	
Suave, impermeable	1.0	
Una capa de boleo sobre una base	0.8	
impermeable		
Grava y gaviones	0.7	
Riprap con un espesor mayor a 2D _{n50}	0.5-0.6	
Tabla. III.3 Coeficientes de reducción para la ecuación de Owen		

b) Ecuación de Van der Meer y Janssen

Ir < *2*

$$\frac{q}{\sqrt{gH_s^3}}\sqrt{\frac{s_0}{\tan\phi}} = 0.06 \exp\left(-5.2\frac{R_c}{H_s}\frac{\sqrt{s_o}}{\tan\phi}\frac{1}{\gamma_r\gamma_b\gamma_h\gamma_\beta}\right)$$
(3.11)
para $0.3 < \frac{R_c}{H_s}\frac{\sqrt{s_o}}{\tan\phi}\frac{1}{\gamma_r\gamma_b\gamma_h\gamma_\beta} < 2$

Ir > 2

$$\frac{q}{\sqrt{gH_s^3}} = 0.2 \exp\left(-2.6 \frac{R_c}{H_s} \frac{1}{\gamma_r \gamma_b \gamma_h \gamma_\beta}\right)$$
(3.12)

Para nuestras condiciones se tiene:

$$\gamma_r = \gamma_b = \gamma_h = \gamma_\beta = 1 \tag{3.13}$$

Esto se debe a que se trata de una estructura lisa y sin berma y a que el oleaje para el cual se probó el modelo no tuvo ángulo de incidencia y fue monocromático.

Sin embargo, el mínimo valor para la combinación de los coeficientes de Van der Meer es 0.5 por lo que:

$$\gamma_r \gamma_b \gamma_h \gamma_\beta = 0.5 \tag{3.14}$$

c) Formulación de Franco

$$\frac{q}{\sqrt{gH_s^3}} = 0.082 \exp\left(-3.0\frac{R_c}{H_s}\frac{1}{\gamma_b\gamma_s}\right)$$
(3.15)

En el caso del presente trabajo, una vez más los coeficientes γ_{β} y γ_s son igual a 1, debido al ángulo de incidencia del oleaje y al tipo de superficie, pendiente lisa.

III.4. Modelo numérico de paredes convergentes y fondo variable.

Otro modelo utilizado para la comparación de resultados fue el modelo numérico de paredes convergentes y fondo variable, se basa en la ecuación de ondas largas propuesto por Rahma en 1995. El modelo se sustenta en los fundamentos de la óptica geométrica que describen los fenómenos de reflexión, refracción y someramiento.

A continuación se describe brevemente la deducción presentada por Rahma en 1995 para obtener la expresión para el cálculo de la sobre elevación en un canal de ancho y fondo variable.

La ecuación de cantidad de movimiento simplificada y la ecuación de continuidad se pueden expresar como (3.16) y (3.17) respectivamente:

$$\frac{\partial u}{\partial t} + g \frac{\partial \eta}{\partial x} = 0 \tag{3.16}$$

$$\frac{\partial \eta}{\partial t} + \frac{1}{b} \frac{\partial (bhu)}{\partial x} = 0 \tag{3.17}$$

Donde:

- *u* Velocidad de flujo [m/s]
- η Superficie libre [m]
- *b* Ancho del canal [m]
- *h* Profundidad del canal [m]

Combinando las ecuaciones anteriores se puede escribir la ecuación de onda como sigue:

$$\frac{\partial^2 \eta}{\partial t^2} = \frac{g}{b} \frac{\partial}{\partial x} \left(bh \frac{\partial \eta}{\partial x} \right)$$
(3.18)

La variación en la apertura de las puertas y el fondo se describe con las ecuaciones siguientes, para x=0 y x=l:

Fig. III.5.- Canal de ancho y fondo variable.

Al remplazar los valores anteriores en (3.16) se tiene que:

$$\frac{\partial^2 \eta}{\partial t^2} = \frac{g}{b_0 \frac{x}{l} \partial x} \frac{\partial}{\partial x} \left(\frac{b_0 h_0}{l^2} x^2 \frac{\partial \eta}{\partial x} \right)$$
(3.20)

$$\frac{\partial^2 \eta}{\partial t^2} = \frac{gh_0}{lx} \frac{\partial}{\partial x} \left(x^2 \frac{\partial \eta}{\partial x} \right)$$
(3.21)

$$\frac{\partial^2 \eta}{\partial t^2} = \frac{gh_0}{l} \frac{1}{x} \left(x^2 \frac{\partial^2 \eta}{\partial x^2} + 2x \frac{\partial \eta}{\partial x} \right)$$
(3.22)

Simplificando

$$\frac{\partial^2 \eta}{\partial t^2} = \frac{gh_0}{l} \left(x \frac{\partial^2 \eta}{\partial x^2} + 2 \frac{\partial \eta}{\partial x} \right)$$
(3.23)

en *x*=0, η =amplitud

$$en x = l, \eta = a \cos(\sigma t + kl)$$
(3.24)

Si se considera que la marea en una bahía es una función armónica

$$\eta = y(x)\cos(\sigma t + kx) \tag{3.25}$$

donde
$$k = \frac{2\pi}{L}$$
 (3.26)

Sustituyendo (3.25) en (3.23) se obtiene:

$$-\sigma^{2} y = \frac{gh_{0}}{l} \left(x \frac{\partial^{2} y}{\partial x^{2}} + 2 \frac{\partial y}{\partial x} \right)$$
(3.27)

Por lo que:

$$\frac{\partial^2 y}{\partial x^2} + \frac{2}{x} \frac{\partial y}{\partial x} + \frac{\lambda^2}{x} y = 0$$
(3.28)

Donde

$$\lambda^2 = \frac{\sigma^2 l}{gh_0} \tag{3.29}$$

con

$$\sigma = \frac{2\pi}{T} \tag{3.30}$$

Por otra parte, la ecuación de Bessel general tiene la forma:

$$\frac{\partial^2 y}{\partial x^2} + \left(\frac{2\alpha - 2\beta\nu + 1}{x}\right)\frac{\partial y}{\partial x} + \left(\beta^2 \gamma^2 x^{2\beta - 2} + \frac{\alpha(\alpha - 2\beta\nu)}{x^2}\right)y = 0$$
(3.31)

Al comparar (3.31) y (3.30), se obtiene $2\alpha - 2\beta v + l = 2$, $2\beta - 2 = -1$, $\beta^2 \gamma^2 = \lambda^2$. El sistema anterior tiene como solución $\alpha = 0$, $\beta = 1/2$, $\gamma = 2\lambda$, v = 1

La expresión (3.30) tiene como solución:

$$y = x^{\beta \nu - \alpha} \left[A_{\nu} J_{\nu} \left(\gamma x^{\beta} \right) + B_{1} Y_{\nu} \left(\lambda x^{\beta} \right) \right]$$
(3.32)

Donde J_v y Y_v son las funciones de Bessel de primer y segundo tipo de orden v

Al reemplazar con los valores obtenidos de la comparación de (3.30) y (3.31) se tiene:

$$\eta = x^{-1/2} \Big[A_1 J_1 \Big(2\lambda x^{1/2} \Big) \Big] \cos(\sigma t + kx)$$
(3.32)

La expresión para calcular la sobre elevación en un canal de ancho y fondo variable se obtiene al remplazar la condición de frontera, para $x = l A_1 = \frac{al^{1/2}}{J_1(2\lambda x^{1/2})}$:

$$\eta = a \frac{J_1(2\lambda x^{\frac{1}{2}})}{J_1(2\lambda l^{\frac{1}{2}})} \left(\frac{l}{x}\right)^{\frac{1}{2}} \cos(\sigma t + kx)$$
(3.17)

donde:

- *a* : amplitud de la onda
- J_1 : función de Bessel de primer orden
- *l* : longitud del canal
- σ : frecuencia angular
- k : número de onda
- h_0 : profundidad inicial
- b_0 : ancho inicial

CAPÍTULO IV

EXPERIMENTACIÓN EN LABORATORIO

Experimentación en laboratorio.

La fase de experimentos se realizó en el laboratorio de oleaje del grupo de Costas y Puertos del Instituto de Ingeniería de la UNAM. Se trata de un canal de oleaje de 37m de longitud, 0.8m de ancho y 1.2m de profundidad. La generación de oleaje se produce gracias a una pala impulsada por un servo-motor eléctrico. El generador de oleaje cuenta con un sistema de absorción dinámica que reduce los efectos de la reflexión. Con éste mismo propósito, se colocó una playa de enrocamiento al final del canal.

Fig. IV.1.- Sistema de generación, pala y motor

Fig. IV.2.- Vista lateral del canal

Se puso como objetivo para la experimentación en laboratorio la variación de los siguientes parámetros:

- altura del francobordo
- ángulo de apertura de las paredes
- ángulo de la rampa
- altura de ola
- periodo de la ola
- profundidad

Los parámetros que restan constantes fueron:

- longitud de las paredes
- ángulo de incidencia del oleaje
- capacidad de almacenamiento en la caja receptora
- tipo de oleaje (monocromático)

IV. 1. Diseño del modelo

Para lograr la variación de los parámetros antes mencionados, en el taller de carpintería del Instituto de Ingeniería de la UNAM, se diseño un modelo en acrílico con las especificaciones que se mencionarán en ésta parte del trabajo.

El modelo se divide en tres principales partes:

Fig. IV.3.- Componentes principales del modelo.

~ Un amplificador de oleaje (A) que consiste en dos paredes convergentes, una rampa en el fondo y una estructura de control vertical. Esta es la parte fundamental del modelo ya que es la que efectúa la amplificación de la ola.

- Una estructura receptora (B) que consiste en una pared elíptica y una tapa que ayudan a minimizar la reflexión y a concentrar de manera más eficiente el flujo de agua.
- ~ Una caja de almacenamiento (C) dónde el agua se concentra de manera a generar la carga necesaria para la generación de energía.

IV.1.1. Amplificador de oleaje

El amplificador se forma de dos placas planas de acrílico, de 0.65 x 0.8 m, unidas a la caja de almacenamiento mediante un sistema de bisagras y neopreno de manera a asegurar que no existiera flujo del concentrador hacia el canal.

Fig. IV.4.- Detalle de la unión

Otra de las partes del amplificador la conforman las rampas del fondo. Se diseñaron 6 tipos de rampas de acrílico de 1cm de espesor distintas geometrías. Las rampas se sujetan a las paredes mediante rieles fijos de acero inoxidable. Éstas se sellan posteriormente con silicón a las paredes para evitar cualquier flujo de agua entre el amplificador y el canal.

Los seis diferentes tipos de rampa corresponden a las diferentes condiciones que se probaron:

- ~ fondo a 45° puertas abiertas
- ~ fondo a 45° puertas cerradas
- ~ fondo a 30° puertas abiertas
- ~ fondo a 30° puertas cerradas
- ~ fondo a 15° puertas abiertas
- ~ fondo a 15° puertas cerradas

Fig. IV.5.- Colocación de la rampa a 30° **Fig. IV.6.-** Rampas de 45 y 30°

IV.1.2. Estructura receptora

La estructura receptora es importante ya que es aquella que recibe el embate de las olas. La forma y la tapa se adecuaron para reducir la reflexión de la ola cuando ésta entra al dispositivo y evitar salpicaduras para aumentar la cantidad de agua aprovechable.

Una de las funciones principales de la estructura de recepción es reducir las oscilaciones del agua al interior de la caja de almacenamiento para obtener un registro más constante de la señal. En los resultados que se presentarán más adelante, se muestra cómo en el registro del sensor que se encuentra al interior de la caja se presentan pequeñas oscilaciones. Estas se deben a la oscilación de todo el dispositivo.

La estructura se constituye por medio cilindro elíptico atornillado a la caja de almacenamiento y separada de 10 centímetros del fondo de ésta para permitir el paso del agua hacia la caja receptora.

Fig. IV.7.- Molde para la fabricación de la estructura receptora

IV.1.3. Caja de almacenamiento

La caja receptora está diseñada para almacenar el volumen de agua aportado por el oleaje amplificado y lograr así la carga necesaria para la extracción de la energía. Se realizó para el modelo una caja de acrílico de 80 cm de largo por 60 cm de ancho y 80 cm de altura. La caja cuenta con un sistema de vaciado para drenar el agua acumulada en la caja después de cada experimento.

Fig. IV.8.- Dispositivo de amplificación puertas abiertas.

La solidez de la estructura se proporciona mediante la fijación de las rampas a las puertas. La estabilidad del dispositivo durante los ensayos de laboratorio se logra colocando pesos en el interior de la caja y con ayuda del volumen de agua acumulado. Para minimizar la oscilación del modelo debida a la acción de las olas se colocó grava a los costados y rocas en la parte posterior. Para reducir el efecto de la reflexión el modelo se colocó sobre una playa artificial de grava.

Fig. IV.9.- Modelo sobre playa de grava

IV.2. Experimentación

IV.2.1. Experimentación con el amplificador y la playa

Durante los experimentos se variaron dos tipos de parámetros, aquellos geométricos y relacionados con la forma del amplificador de oleaje y aquellos relacionados con el estado de mar. Se probaron así ocho configuraciones del amplificador que se describen en el diagrama siguiente:

Fig. IV.10.- Arreglos experimentales

Para cada una de las combinaciones geométricas se variaron a su vez distintos parámetros del oleaje. Así, cada configuración era probada con diferentes frecuencias, alturas de ola y profundidades. En cada experimento se mantenía fija la profundidad, se ensayaba con una frecuencia fija y se variaba la altura de la ola desde 15 cm hasta la altura en la cual ya no se presentara el rebase. Para cada profundidad se variaba a su vez la frecuencia desde 0.95 Hz hasta que ya no se presentara el rebase. Cada geometría se ensayaba con tres profundidades distintas. Sin embargo para cada geometría se mantuvo constante la relación entre la altura del bordo libre y la profundidad.

Los experimentos para los cuales se presentaba una oscilación transversal o para los que no se observaba rebase eran descartados. Cada experimento se repetía dos veces para corroborar la congruencia de los resultados. Se obtuvieron así más de 700 experimentos.

IV.2.2. Experimentación con la playa

Uno de los problemas que se presentaron durante los experimentos fue la existencia de una gran reflexión de las olas al golpear la caja. Esto se debe a que se trata de una estructura rígida muy reflejante con partes horizontales. El sistema de absorción de la pala resultaba insuficiente por lo cual se decidió colocar una playa de grava gruesa de 10 x 0.2 m frente al dispositivo. De esta manera se redujo de manera importante el efecto de la reflexión y se obtuvieron condiciones más estables durante el desarrollo de los experimentos.

Fig. IV.11.- Playa de grava gruesa frente al amplificador

Para evaluar el efecto de la playa se realizaron experimentos sin el dispositivo. Así, se pudo determinar la altura de ola incidente sobre el amplificador sin el efecto de la reflexión producida por el dispositivo. Cada condición de oleaje ensayada con la presencia del dispositivo se evalúo posteriormente sin dispositivo, analizando sólo el efecto de la playa. Con éste nuevo grupo de experimento se completaron un total de 1000 experimentos.

Fig. IV.12.- Llenado de la caja durante la experimentación

IV. 3. Medición

IV.3.1. Condiciones de oleaje

Con el fin de determinar las características de oleaje al cual se somete al dispositivo, se dispuso el arreglo de sensores siguiente. Las distancias entre cada sensor se muestran en los rectángulos en centímetros.

Fig. IV.13.- Arreglo horizontal de sensores

Fig. IV.14.- Arreglo de sensores visto en planta.

Los sensores 9, 10, 7 y 8 colocados a los lados, se utilizaron para evaluar la oscilación transversal durante los experimentos. Cuándo ésta se presentaba y que los registros de los sensores mostraban mayores alturas de ola cerca de las paredes del canal, el experimento se descartaba. De ésta manera se logra un mejor control de las condiciones experimentales para validar la hipótesis de que se trate de un oleaje monocromático y de un periodo fijo.

Fig. IV.15.- Arreglo de sensores frente a la estructura

Éste arreglo de sensores permitió separar la señal de oleaje en incidente y reflejado para así determinar cual es la altura de ola que incide sobre el dispositivo. Para separar la altura de ola reflejada y la incidente existen diversos métodos los cuales se dividen en dos grupos, aquellos que consideran dos registros temporales (2D) y aquellos que consideran tres o más series de oleaje (3D). Para el estudio se utilizó el método de Mansard y Funke (1980) y el método de Goda.

Al comparar los dos métodos utilizados decidimos emplear el método de Mansard ya que presenta menor dispersión en los valores calculados. El método emplea tres puntos para la medición de las oscilaciones en la superficie libre del agua. Entre ellos debe existir coherencia, es decir, que físicamente las tres series registradas deben referirse al mismo

fenómeno, a la misma ola, para ello se tienen que cumplir las siguientes condiciones en cuanto a la posición de los sensores:

Sea $x_{m1} = (x_1 - x_m, y_1 - y_m)$ la posición relativa al primer sensor es:

$$x_{m1} = (x_1 - x_m, y_1 - y_m)$$
(4.1)

Fig. IV.17 Sistema de coordenadas para el acomodo de los sensores.

Se debe cumplir para cualquier sensor:

$$M + 2\sum_{m,n=1}^{M} \cos\left(2k_{jx}^{m}(x_{m1} - x_{n1})\right) \neq M^{2}$$
(4.2)

$$\sum_{m,n}^{M} \sin\left(2k_{jx}^{m}(x_{m1} - x_{n1})\right) \neq 0$$
(4.3)

Donde *M* es el número total de sensores y *k* el número de onda.

IV.3.2. Mediciones en la caja

Finalmente, se colocó un sensor en el interior de la caja de almacenamiento para registrar la variación del nivel de agua en el tiempo. Con esta medición es con se podrá determinar el volumen de agua acumulado y la carga hidráulica en la caja de almacenamiento. Para este propósito se realizo una calibración de la caja con la cual se obtuvo una ecuación que relaciona la carga hidráulica con el volumen en el recipiente.

$$V = \frac{4248.6h_c}{1000} \tag{4.4}$$

Donde V es el volumen en litros y h_c es la carga hidráulica en la caja en cm.

Esta ecuación se utilizará también para determinar más adelante el caudal que entra a la caja mediante la relación:

$$q = \frac{V}{t} \tag{4.4}$$

Donde *t* es el tiempo de llenado y se define como el intervalo de tiempo desde que entra la primera ola hasta que la caja de almacenamiento se llena o deja de entrar el agua.

IV.3.3. Mediciones sobre la playa

El objetivo de éste grupo de experimentos es determinar la altura de ola incidente propagándose sobre la playa. Es ésta la altura de ola que se empleará para el diseño y optimización del dispositivo ya que representa la altura de ola que encontramos en condiciones naturales, la que definiría un estado de mar para un área geográfica determinada.

Para lograr éste objetivo se debe una vez más separar la señal de oleaje en incidente y reflejada, con el método mencionado anteriormente. Se colocó para éste fin el arreglo de sensores siguiente, con medidas en metros:

En los resultados finales la altura de ola incidente es la que resulta de la realización de éste grupo de experimentos.

CAPÍTULO V

ANÁLISIS DE RESULTADOS
Análisis de resultados

Los resultados de los experimentos se presentan en el anexo A en tablas, clasificadas de acuerdo con la geometría del amplificador. A continuación se definirán las variables que se presentan en cada una de las columnas.

Fig. V.1.- Definición de variables, vista horizontal

Fig. V.2.- Definición de variables, vista en planta

Las variables tanto en las gráficas como en las tablas del anexo A, se definen por las relaciones siguientes:

 \sim para la profundidad se utilizó una profundidad relativa de manera a tomar en cuenta el efecto de la playa de grava, por lo que la profundidad *h* es:

$$h = h_d - 0.6h_n \tag{5.1}$$

~ se utilizó un parámetro adimensional llamado francobordo relativo para expresar la relación entre el bordo libre y la altura de ola:

$$R = \frac{R_c}{H} \tag{5.2}$$

 \sim el caudal se expresa mediante un parámetro adimensional expresado por:

$$Q = \frac{q}{\sqrt{gH^3}} \quad \text{con } q \text{ en } \text{m}^3/\text{s} \tag{5.3}$$

 para involucrar al periodo de la onda se empleó el parámetro adimensional de la profundidad relativa:

$$kh = \frac{2\pi}{L}h\tag{5.4}$$

Donde L se calcula mediante un proceso iterativo con la formulación para aguas intermedias siguiente:

$$L = \frac{gT^2}{2\pi} \tanh(kh) \tag{5.5}$$

y h expresada como en (5.1)

~

La expresión que se utilizará para calcular la potencia hidráulica en watts se calcula como:

$$P = \rho g q R_c \tag{5.6}$$

De manera a adimensionalizar esta expresión se propone la formulación siguiente:

$$P = \frac{\rho g q R_c}{\rho g H \sqrt{g H^3}} \quad [-] \tag{5.7}$$

o bien, sustituyendo la ecuación (5.3) y simplificando:

$$P = \frac{QR_c}{H} \quad [-] \tag{5.8}$$

En la siguiente parte del trabajo se comparan los resultados obtenidos con las diferentes formulaciones de rebase, posteriormente se analizaran los efectos de los distintos parámetros, tanto geométricos como del oleaje, con respecto al caudal generado y la potencia.

V.1. Comparación con los modelos existentes.

V.1.1. Modelo numérico de paredes convergentes y fondo variable

La ecuación (3.17) describe a la superficie libre del agua en un canal de ancho y fondo variable. De ésta forma se calculó la elevación del agua en la parte final de la rampa, sobre el bordo libre, para x=l. Así, se podría conocer el área hidráulica sobre el bordo libre, al multiplicar esta área por la celeridad de la onda se obtendría entonces el caudal medio de rebase. Sin embargo, al realizar los cálculos resultó que la elevación alcanzada por el agua al final de la rampa no superaba la medida física del R_c del bordo libre. Esto se debe a que se trata de una rampa muy corta sobre la cual no se presenta un fenómeno ondulatorio, sobre la rampa, la ola se convierte en simplemente un flujo de agua. Si la rampa fuera de una longitud considerable, sobre la cual se pudieran propagar las ondas esta teoría sería valida. A continuación se muestra una gráfica describiendo la superficie libre del agua a lo largo de la rampa.

Fig. V.3.- Variación de la superficie libre del agua sobre la rampa

Se realizaron cálculos para la rampa de 45°, puertas abiertas. En cada caso se determino el η_{max} sobre el bordo libre, resultando menor que el franco. Se muestran a continuación los resultados.

phi	h(m)	app(m)	T(s)	H(m)	Rc(cm)	L(m)	σ	λ	7 (m)	a (m)	k (1/m)	η max (m)	(η max-Rc)
4/	5 0.485	0.780	2.000	0.150	16.500	4.006	3.142	0.318	0.650	0.075	1.568	0.077	-0.088
4	5 0.485	0.780	2.000	0.140	16.500	4.006	3.142	0.318	0.650	0.070	1.568	0.072	-0.093
4	5 0.485	0.780	1.818	0.150	16.500	3.574	3.456	0.333	0.650	0.075	1.758	0.078	-0.087
4	5 0.485	0.780	1.818	0.140	16.500	3.574	3.456	0.333	0.650	0.070	1.758	0.073	-0.092
4/	5 0.485	0.780	1.818	0.130	16.500	3.574	3.456	0.333	0.650	0.065	1.758	0.067	-0.098
4	5 0.485	0.780	1.667	0.150	16.500	3.208	3.770	0.348	0.650	0.075	1.958	0.078	-0.087
4	5 0.485	0.780	1.667	0.140	16.500	3.208	3.770	0.348	0.650	0.070	1.958	0.073	-0.092
4	5 0.485	0.780	1.538	0.150	16.500	2.894	4.084	0.362	0.650	0.075	2.171	0.078	-0.087
4	5 0.485	0.780	1.538	0.140	16.500	2.894	4.084	0.362	0.650	0.070	2.171	0.073	-0.092
4	5 0.485	0.780	1.538	0.130	16.500	2.894	4.084	0.362	0.650	0.065	2.171	0.068	-0.097
4	5 0.485	0.780	1.429	0.150	16.500	2.620	4.398	0.376	0.650	0.075	2.399	0.078	-0.087
4	5 0.485	0.780	1.429	0.140	16.500	2.620	4.398	0.376	0.650	0.070	2.399	0.073	-0.092
4	5 0.485	0.780	1.429	0.130	16.500	2.620	4.398	0.376	0.650	0.065	2.399	0.068	-0.097
4	5 0.435	0.780	1.333	0.150	21.500	2.303	4.712	0.369	0.650	0.075	2.729	0.078	-0.137
4/	5 0.485	0.780	1.333	0.150	16.500	2.378	4.712	0.389	0.650	0.075	2.642	0.079	-0.086
4	5 0.485	0.780	1.333	0.140	16.500	2.378	4.712	0.389	0.650	0.070	2.642	0.073	-0.092

Tabla. V.1.- Comparación entre η y *Rc*

Como se puede observar en la última columna se obtienen resultados negativos. Se concluye pues que este método no es más apropiado para las condiciones experimentales dadas.

V.1.2. Formulaciones para el ascenso máximo

Los cálculos realizados con las formulaciones para ascenso máximo arrojaron como resultado un ascenso sobre la rampa mucho menor del que se presentó en los experimentos. Esto se debe a que las formulaciones probadas fueron desarrolladas para estructuras porosas y no para medios lisos como el acrílico ensayado. La diferencia deriva también de la naturaleza misma del Run-Up. El Run-Up es un fenómeno que se presenta sobre la berma de la estructura y sin alcanzar el rebase. El rebase u overtopping podría sin embargo considerarse como un ascenso máximo sobre una superficie imaginaria, como si la berma de la estructura continuara. Sin embargo muy pocos estudios se han realizado hasta el momento para relacionar al ascenso máximo con el caudal de rebase.

V.1.3. Formulaciones de rebase

Al comparar los resultados obtenidos con las distintas formulaciones existentes se observa que las formulaciones que presentan mayor coherencia con los datos son las propuestas por Van der Meer y Janssen (1995) para los casos de puertas cerradas para las diferentes inclinaciones de rampa y la de Franco, de Gerloni y Van der Meer (1994) para el caso sin rampa. A continuación se muestran las comparaciones realizadas con la formulación de Van der Meer y Janssen (1995) para distintos casos, para un mismo periodo.

a) Puertas cerradas

Fig. V.4.- Comparación entre Qexperimental y Qteorico

Fig. V.6- Comparación entre Q_{experimental} y Q_{teorico}

b) Puertas abiertas

Fig. V.7- Comparación entre Qexperimental y Qteorico

Fig. V.8- Comparación entre Q_{experimental} y Q_{teorico}

Fig. V.9- Comparación entre Qexperimental y Qteorico

Concluyéndose que la relación entre los datos teóricamente calculados y los experimentales es casi lineal, esto indica que el caudal experimental puede representarse mediante una formulación de la forma:

$$Q = ae^{(-bR)} \tag{5.9}$$

Donde a y b son coeficientes que deberán tomar en cuenta las características geométricas del dispositivo, de manera a desarrollar una fórmula que represente de una mejor manera los resultados obtenidos experimentalmente. Esta nueva formulación deberá incluir un coeficiente para el ángulo de inclinación de la rampa, otro coeficiente para el ángulo de apertura de las puertas y un último para tomar en cuenta el efecto de la playa de grava al pié de la estructura.

V.2. Efecto de la profundidad relativa en el caudal obtenido

A continuación se muestra las gráficas que resumen la variación del caudal y de la potencia con respecto al número de onda relativo *kh* para diversos intervalos de R.

V.2.1. Puertas cerradas

a) Sin rampa

Durante los experimentos realizados no se obtuvo rebase para ninguno de los casos, por lo cual no se presentan resultados para este caso. Una conclusión preliminar importante resultado de estos experimentos es sobre el efecto del ángulo de las paredes del amplificador. Se puede decir entonces que la apertura de las puertas contribuye a la amplificación y por lo tanto al rebase.

b) Rampa a 15°

Fig. V.12.- Q y P v_s kh, puertas cerradas rampa a 45°

V.2.2. Puertas abiertas

Fig. V.13.- Q y P v_s kh, puertas abiertas sin rampa

b) Rampa a 15°

Fig. V.14.- Q y P v_s kh, puertas abiertas rampa a 15°

c) Rampa a 30°

Fig. V.15.- Q y P v_s kh, puertas abiertas rampa a 30°

Fig. V.16.- Q y P v_S kh, puertas abiertas rampa a 45°

А	continuación	se	muestra	una	tabla	resumen	para	cada	una	de	las	características
ge	ométricas.											

App (cm)	<i>ф</i>	Rango de R[-]	Puntos crí	ticos kh[-]	Puntos crí	ticos Q[-]
	Ψ	Trange de Tr[-]	Max	Min	Max	Min
18	0	-	-	-	-	-
18	15	1.573 ; 2.222	0.40	0.80	0.013	0.001
18	30	1.067 ; 1.611	0.75	0.90	0.005	0.001
18	45	1.111 ; 1.433	1.80	1.35	0.0018	0.0001
78	0	1.100 ; 1.533	1.70	1.20	0.07	0.001
78	15	1.571 ; 3.667	0.40	0.80	0.035	0.005
78	30	1.067 ; 2.000	1.10	0.70	0.012	0.005
78	45	1.100 ; 1.165	1.80	0.90	0.011	0.0001

Tabla. V.2.- Puntos críticos para las distintas geometrías

Sin considerar para esta parte la apertura de las puertas, se puede generalizar rangos de operación para el dispositivo como sigue:

φ	Rango de operación probado para R[-]	Rango de operación optimo para kh[-]
0*	[1.100 ; 1.533]	[1.20 ; 1.70]
15	[1.570 ; 3.667]	[0.40 ; 0.80]
30	[1.067 ; 2.000]	[0.70 ; 1.10]
45	[1.100 ; 1.433]	[0.90 ; 1.80]

*Se restringe el uso del dispositivo sin rampa para el caso de puertas cerradas

Tabla. V.3.- Rangos de operación para cada ángulo de rampa

Al observar las gráficas presentadas se puede establecer una conclusión simple, pero importante, sobre la influencia del parámetro R[-] sobre el caudal medio de rebase. Conforme el parámetro R disminuye el caudal aumenta. Es decir que conforme se aumenta la elevación del bordo libre Rc el rebase se vuelve menos frecuente, disminuyendo así el caudal medio. Es importante resaltar este fenómeno, ya que si se piensa en la operación de un sistema de generación eléctrica el parámetro Rc se encuentra directamente relacionado con la carga sobre las turbinas. Así, para un Rc grande la carga será importante pero el gasto aportado por el oleaje será poco.

Se debe entonces considerar, a la hora de diseñar un sistema como el que se propone, en el funcionamiento de la planta de generación. Si se desea construir una planta que funcione como planta de pico el parámetro *Rc* debe ser grande, la aportación de agua mediante las olas del mar pude ser pequeña si se permite que el gasto turbinable sea poco y se vierta durante un periodo corto. En cambio si se desea operar la planta como planta de base *Rc* deberá ser pequeño para permitir una aportación constante de agua proveniente de mar para que el gasto turbinable sea más constante y lograr así una generación por más tiempo.

V.3. Efecto del ángulo de la rampa en el caudal obtenido

A continuación se muestra la comparación entre los distintos ángulos de inclinación de las rampas para un mismo periodo.

V.3.1. Puertas cerradas

a) Rampas de 30° y 45°

b) Rampas de 15° y 30°

Fig. V.18.- Comparación entre las rampas de 15° y 30°

V.3.2. Puertas abiertas

a) Rampas de 30° y 45°

Fig. V.20.- Comparación entre las rampas de 15° y 30°

Observando los ejemplos mostrados y del conjunto de experimentos realizados, se puede concluir que para todos los casos la rampa de 15° es la que más caudal aporta a la caja de almacenamiento. En orden de eficiencia el ángulo de las rampas es el siguiente:

- \sim rampa de 15°
- \sim rampa de 30°
- \sim rampa de 45°

V.4. Efecto de la posición de las paredes en el caudal obtenido

Para validar ésta comparación se debe tomar en cuenta que al inicio del amplificador, para los casos de puertas abiertas y puertas cerradas el área hidráulica captada por el dispositivo no es la misma.

En un caso, el frente de ola captado por el dispositivo es mayor, lo que de manera lógica incrementará el gasto aportado. Ahora bien, si de desea evaluar de una manera más objetiva el efecto que tiene del ángulo de apertura de las paredes sobre la aportación de caudal al sistema se debe hacer intervenir el parámetro l_1 , que representa la longitud del paramento sobre el cual rebasa el caudal:

$$\frac{Q_1}{l_1} = \alpha * \frac{Q_2}{l_1}$$
(5.10)

Donde Q_1 y Q_2 son los caudales medios aportados en el caso de puertas cerradas y puertas abiertas respectivamente, l_1 es el ancho del paramento y α^* es un parámetro adimensional que se nombrará como *coeficiente de amplificación* y que presenta el efecto de las paredes sobre el rebase.

Se presenta a continuación ejemplos que relaciona el caudal obtenido con puertas abiertas y con puertas cerradas.

Fig. V.21.- Amplificación del caudal

Con el análisis realizado y de la observación de los experimentos realizados, se puede concluir que el ángulo de apertura de las puertas contribuye al incremento del rebase. Al calcular con el método de mínimos cuadrados la regresión lineal para las gráficas mostradas, obtenemos las ecuaciones siguientes:

$$\frac{Q_1}{l_1} = 2.38 \frac{Q_2}{l_1} + 0.0005 \tag{5.11}$$

$$\frac{Q_1}{l_1} = 1.29 \frac{Q_2}{l_1} + 0.0001 \tag{5.12}$$

Por lo tanto, para la rampa de 30° el coeficiente de amplificación para la rampa de 30°:

$$1.29 < \alpha^* < 2.38$$

Como una conclusión preliminar se puede decir que para obtener un mejor rebase es necesario contar con paredes convergentes.

CAPÍTULO VI

CONCLUSIONES Y FUTURAS LÍNEAS DE TRABAJO

Conclusiones y futuras líneas de trabajo

El TAPCHAN es un sistema noble y sencillo. Su funcionamiento es simple, sin partes móviles, una estructura bastante robusta que puede soportar climas adversos y el embate de las olas. No representa un gran riesgo para la navegación y su impacto ambiental en la costa es mínimo. Se trata de un sistema ya probado para la generación de energía limpia y renovable. Durante este trabajo se trataron diversos aspectos de su geometría y de las condiciones físicas a las cuales puede estar sometido. De esta forma, se ha logrado una optimización del modelo de manera a mejorar su funcionamiento. Así la balanza costo/beneficio se inclina hacía el beneficio, en el desarrollo de nuevas y mejores tecnologías para la producción de energía limpia y la disminución en el uso de los hidrocarburos.

Las mejoras en el TAPCHAN, desarrolladas en éste trabajo, van sobre dos ejes, mejoras geométricas y mejoras en cuanto a rangos de operación para las condiciones de oleaje dadas. En cuanto al estudio de la geometría, se recomienda para obtener una mayor ganancia de caudal el uso de una rampa de 15° y las puertas a 30°. Es notoria la importancia de la apertura de las puertas ya que contribuyen de manera importante a la amplificación de la ola y al aumento del rebase. Sobre las condiciones de operación para la profundidad relativa de entre 1.20 y 1.70.

Sobre el tema del los modelos analizados para el rebase, se concluye satisfactoriamente que los resultados obtenidos son comparables a los calculados con la formulación de Van der Meer y Janssen (1995). El paso siguiente es desarrollar una formulación que tome en cuenta los cambios en la geometría del dispositivo para poder estimar, con la información de oleaje para una zona determinada zona geográfica, el caudal medio de rebase y como consecuencia la potencia a generar. De esta manera se podría diseñar el sistema de generación, adecuándolo de forma más eficiente a la demanda de energía de una población dada. Con toda la información obtenida, un futuro trabajo, consistiría elaborar una guía completa de diseño para sistemas de éste tipo.

El campo de los dispositivos de generación de energía mediante el oleaje es aún vasto y representa un terreno fértil para la investigación científica. Queda aún a investigar el funcionamiento del mismo sistema con otras geometrías, como las paredes parabólicas y formas distintas. Un aspecto interesante es encontrar la manera de aprovechar de una manera más completa la energía total de la ola. En el rebase se utiliza sólo la energía de la parte superior, queda sin utilizar la energía de la parte baja o de olas de menor tamaño que no pueden rebasar, ésta energía se podría ser utilizada con una combinación del TAPCHAN con un dispositivo de columna oscilante de agua.

En general una línea importante de trabajo es desarrollar las posibilidades para la extracción de energía oceánica en nuestro país dado su extenso litoral.

APÉNDICE A

RESULTADOS EXPERIMENTALES

APÉNDICE A RESULTADOS EXPERIMENTALES, AMPLIFICADOR DE OLEAJE

Puertas cerradas, rampa a 15° (*app* = 0.18, ϕ =15°)

archivo	ф	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E100F007H1002T175444.txt	15.00	0.31	0.20	0.19	0.18	1.00	0.07	0.22	11.00	0.94	15.30	15.30	0.0614	0.980	1.045	8.03	6.45	4.79	1.571	1.238	0.0011
E090F007H1002T171510.txt	15.00	0.31	0.20	0.19	0.18	1.11	0.07	1.00	11.00	4.25	47.40	42.66	0.0896	1.106	1.175	6.22	5.75	2.37	1.571	1.096	0.0015
E080F007H1002T153818.txt	15.00	0.31	0.20	0.19	0.18	1.25	0.07	3.16	11.00	13.44	59.43	47.55	0.2261	1.262	1.206	6.93	6.23	3.05	1.571	0.961	0.0039
E075F006H1002T150750.txt	15.00	0.31	0.20	0.19	0.18	1.33	0.06	3.65	/ 11.00	15.50	58.97	44.23	0.2629	1.355	1.389	5.48	5.04	2.16	1.833	0.895	0.0057
E070F006H1002T144137.txt	15.00	0.31	0.20	0.19	0.18	1.43	0.06	4.18	, 11.00	17.76	64.00	44.80	0.2775	1.460	1.311	6.76	6.09	2.92	1.833	0.831	0.0060
E065F006H1002T135934.txt	15.00	0.31	0.20	0.19	0.18	1.54	0.06	7.51	11.00	31.90	63.70	41.41	0.5008	1.581	1.408	6.82	5.72	3.70	1.833	0.767	0.0109
E060F006H1002T133238.txt	15.00	0.31	0.20	0.19	0.18	1.67	0.06	6.63	11.00	28.18	63.30	37.98	0.4452	1.721	1.417	7.31	6.16	3.95	1.833	0.705	0.0097
E055F006H1001T200914.txt	15.00	0.31	0.20	0.19	0.18	1.82	0.06	9.32	11.00	39.58	66.47	36.56	0.5955	1.886	1.378	7.79	7.13	3.14	1.833	0.643	0.0130
E080F005H1002T155238.txt	15.00	0.31	0.20	0.19	0.18	1.25	0.05	1.55	11.00	6.60	41.70	33.36	0.1582	1.262	1.448	4.77	4.32	2.02	2.200	0.961	0.0045
E075F005H1002T151618.txt	15.00	0.31	0.20	0.19	0.18	1.33	0.05	1.62	. 11.00	6.89	53.63	40.23	0.1285	1.355	1.538	4.47	4.11	1.77	2.200	0.895	0.0037
E070F005H1002T145619.txt	15.00	0.31	0.20	0.19	0.18	1.43	0.05	1.61	11.00	6.85	58.27	40.79	0.1175	1.460	1.511	5.15	4.59	2.33	2.200	0.831	0.0034
E065F005H1002T140529.txt	15.00	0.31	0.20	0.19	0.18	1.54	0.05	2.90	11.00	12.31	60.63	39.41	0.2029	1.581	1.553	5.54	4.71	2.91	2.200	0.767	0.0058
E060F005H1002T134153.txt	15.00	0.31	0.20	0.19	0.18	1.67	0.05	3.72	. 11.00	15.81	59.97	35.98	0.2637	1.721	1.493	6.42	5.54	3.24	2.200	0.705	0.0075
E055F005H1001T201456.txt	15.00	0.31	0.20	0.19	0.18	1.82	0.05	5.38	11.00	22.87	62.80	34.54	0.3642	1.886	1.444	6.99	6.50	2.58	2.200	0.643	0.0104
E050F005H1001T194543.txt	15.00	0.31	0.20	0.19	0.18	2.00	0.05	6.63	11.00	28.17	62.30	31.15	0.4521	2.083	1.357	9.37	8.12	4.67	2.200	0.582	0.0129
E055F007H1001T153204.txt	15.00	0.26	0.20	0.14	0.18	1.82	0.07	1.83	16.00	7.79	59.13	32.52	0.1317	1.433	1.208	8.07	7.04	3.93	2.286	0.627	0.0023
E065F006H1001T161212.txt	15.00	0.26	0.20	0.14	0.18	1.54	0.06	1.32	16.00	5.60	48.37	31.44	0.1157	1.206	1.348	6.51	4.77	4.43	2.667	0.745	0.0025
E060F006H1001T155801.txt	15.00	0.26	0.20	0.14	0.18	1.67	0.06	1.87	16.00	7.95	53.30	31.98	0.1492	1.310	1.384	6.36	4.91	4.05	2.667	0.686	0.0032
E055F006H1001T154101.txt	15.00	0.26	0.20	0.14	0.18	1.82	0.06	1.95	16.00	8.30	59.13	32.52	0.1403	1.433	1.287	7.26	6.21	3.75	2.667	0.627	0.0031
E050F006H1001T150516.txt	15.00	0.26	0.20	0.14	0.18	2.00	0.06	1.22	16.00	5.17	54.30	27.15	0.0951	1.580	1.115	10.77	9.12	5.72	2.667	0.569	0.0021
E060F004H1002T134752.txt	15.00	0.31	0.20	0.19	0.18	1.67	0.04	2.03	11.00	8.64	53.30	31.98	0.1621	1.721	1.702	4.99	4.26	2.58	2.750	0.705	0.0065
E055F004H1001T202048.txt	15.00	0.31	0.20	0.19	0.18	1.82	0.04	1.97	11.00	8.36	59.13	32.52	0.1414	1.886	1.659	5.37	4.92	2.14	2.750	0.643	0.0057
E050F004H1001T195222.txt	15.00	0.31	0.20	0.19	0.18	2.00	0.04	2.80	11.00	11.90	62.30	/ 31.15	0.1910	2.083	1.521	7.39	6.46	3.58	2.750	0.582	0.0076
E055F005H1001T154708.txt	15.00	0.26	0.20	0.14	0.18	1.82	0.05) 1.19	16.00	5.07	40.80	22.44	0.1244	1.433	1.341	6.62	5.72	3.34	3.200	0.627	0.0036
E050F005H1001T151136.txt	15.00	0.26	0.20	0.14	0.18	2.00	0.05	1.55	16.00	6.58	54.30	27.15	0.1211	1.580	1.178	9.92	8.17	5.62	3.200	0.569	0.0035
E050F004H1001T151711.txt	15.00	0.26	0.20	0.14	0.18	2.00	0.04	0.55	16.00	2.35	10.30	5.15	0.2283	1.580	1.441	6.36	5.46	3.25	4.000	0.569	0.0091

Puertas cerradas, rampa a 30° (*app* = 0.18, ϕ =30°)

archivo	¢	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E075F015H0823T135738.txt	30.00	0.46	0.20	0.34	0.18	1.33	0.15	8.58	16.00	36.43	61.63	46.23	0.5911	1.934	2.125	15.67	14.28	6.46	1.067	1.114	0.0033
E070F015H0823T144434.txt	30.00	0.46	0.20	0.34	0.18	1.43	0.15	11.01	16.00	46.77	64.00	44.80	0.7307	2.102	2.192	16.07	14.58	6.76	1.067	1.025	0.0040
E065F015H0823T153405.txt	30.00	0.46	0.20	0.34	0.18	1.54	0.15	11.12	16.00	47.26	63.70	41.41	0.7419	2.293	2.189	18.13	15.96	8.61	1.067	0.940	0.0041
E060F015H0823T170633.txt	30.00	0.46	0.20	0.34	0.18	1.67	0.15	12.67	16.00	53.84	66.63	39.98	0.8080	2.515	2.315	16.47	15.64	5.16	1.067	0.857	0.0044
E095F014H0823T085059.txt	30.00	0.46	0.20	0.34	0.18	1.05	0.14	9.91	16.00	42.09	62.97	59.82	0.6685	1.425	1.885	14.43	13.36	5.45	1.143	1.512	0.0041
E090F014H0823T101521.txt	30.00	0.46	0.20	0.34	0.18	1.11	0.14	9.97	16.00	42.35	65.00	58.50	0.6515	1.533	1.929	14.68	13.73	5.19	1.143	1.406	0.0040
E075F014H0823T140827.txt	30.00	0.46	0.20	0.34	0.18	1.33	0.14	6.30	16.00	26.76	61.63	46.23	0.4341	1.934	2.222	14.05	13.06	5.19	1.143	1.114	0.0027
E070F014H0823T145201.txt	30.00	0.46	0.20	0.34	0.18	1.43	0.14	9.29	16.00	39.45	64.00	44.80	0.6165	2.102	2.155	16.18	15.09	5.83	1.143	1.025	0.0038
E065F014H0823T154135.txt	30.00	0.46	0.20	0.34	0.18	1.54	0.14	12.14	16.00	51.56	63.70	41.41	0.8094	2.293	2.192	17.23	15.92	6.59	1.143	0.940	0.0049
E060F014H0823T171329.txt	30.00	0.46	0.20	0.34	0.18	1.67	0.14	11.74	16.00	49.86	63.30	37.98	0.7876	2.515	2.405	15.23	14.50	4.68	1.143	0.857	0.0048
E055F014H0823T180443.txt	30.00	0.46	0.20	0.34	0.18	1.82	0.14	11.84	16.00	50.32	62.80	34.54	0.8013	2.773	2.359	17.27	16.61	4.73	1.143	0.777	0.0049
E095F013H0823T085913.txt	30.00	0.46	0.20	0.34	0.18	1.05	0.13	9.69	16.00	41.16	65.10	61.85	0.6323	1.425	1.923	14.04	12.85	5.66	1.231	1.512	0.0043
E090F013H0823T102539.txt	30.00	0.46	0.20	0.34	0.18	1.11	0.13	9.61	16.00	40.84	65.00	58.50	0.6282	1.533	1.982	13.92	13.01	4.95	1.231	1.406	0.0043
E085F013H0823T115900.txt	30.00	0.46	0.20	0.34	0.18	1.18	0.13	7.52	16.00	31.96	64.80	55.08	0.4932	1.653	2.107	13.13	12.41	4.30	1.231	1.304	0.0034
E075F013H0823T142002.txt	30.00	0.46	0.20	0.34	0.18	1.33	0.13	3.35	16.00	14.25	56.30	42.23	0.2531	1.934	2.229	13.80	12.98	4.71	1.231	1.114	0.0017
E070F013H0823T150124.txt	30.00	0.46	0.20	0.34	0.18	1.43	0.13	5.52	16.00	23.44	61.13	42.79	0.3834	2.102	2.309	14.14	13.15	5.21	1.231	1.025	0.0026
E065F013H0823T154818.txt	30.00	0.46	0.20	0.34	0.18	1.54	0.13	9.51	16.00	40.40	60.63	39.41	0.6663	2.293	2.320	15.25	14.20	5.56	1.231	0.940	0.0045
E060F013H0823T172011.txt	30.00	0.46	0.20	0.34	0.18	1.67	0.13	10.78	16.00	45.80	63.30	37.98	0.7235	2.515	2.456	14.57	13.90	4.37	1.231	0.857	0.0049
E055F013H0823T181120.txt	30.00	0.46	0.20	0.34	0.18	1.82	0.13	10.38	16.00	44.10	62.80	34.54	0.7022	2.773	2.465	15.85	15.22	4.43	1.231	0.777	0.0048
E095F012H0823T090802.txt	30.00	0.46	0.20	0.34	0.18	1.05	0.12	7.13	16.00	30.31	62.97	59.82	0.4814	1.425	2.002	12.81	11.85	4.84	1.333	1.512	0.0037
E090F012H0823T103325.txt	30.00	0.46	0.20	0.34	0.18	1.11	0.12	7.68	16.00	32.63	65.00	58.50	0.5020	1.533	2.060	12.87	12.04	4.54	1.333	1.406	0.0039
E085F012H0823T122432.txt	30.00	0.46	0.20	0.34	0.18	1.18	0.12	4.42	16.00	18.79	57.80	49.13	0.3251	1.653	2.046	13.75	13.16	3.97	1.333	1.304	0.0025
E075F012H0823T142733.txt	30.00	0.46	0.20	0.34	0.18	1.33	0.12	2.03	16.00	8.62	53.63	40.23	0.1606	1.934	2.421	11.71	11.00	3.99	1.333	1.114	0.0012
E070F012H0823T150931.txt	30.00	0.46	0.20	0.34	0.18	1.43	0.12	4.18	16.00	17.77	58.27	40.79	0.3050	2.102	2.469	12.25	11.49	4.22	1.333	1.025	0.0023
E065F012H0823T155447.txt	30.00	0.46	0.20	0.34	0.18	1.54	0.12	7.25	16.00	30.79	60.63	39.41	0.5078	2.293	2.461	13.63	12.62	5.15	1.333	0.940	0.0039
E060F012H0823T172754.txt	30.00	0.46	0.20	0.34	0.18	1.67	0.12	8.44	16.00	35.86	63.30	37.98	0.5665	2.515	2.568	13.30	12.71	3.92	1.333	0.857	0.0044
E055F012H0823T181734.txt	30.00	0.46	0.20	0.34	0.18	1.82	0.12	8.34	16.00	35.41	62.80	34.54	0.5639	2.773	2.620	14.14	13.46	4.33	1.333	0.777	0.0043

Puertas cerradas, rampa a 30° (*app* = 0.18, ϕ =30°)

archivo	ф	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E090F015H0822T200617.txt	30.00	0.41	0.20	0.29	0.18	1.11	0.15	1.69	21.00	7.19	43.00	38.70	0.1673	1.424	1.907	14.38	13.05	6.04	1.400	1.292	0.0009
E085F015H0822T210330.txt	30.00	0.41	0.20	0.29	0.18	1.18	0.15	1.90	21.00	8.06	48.47	41.20	0.1664	1.530	1.972	14.28	13.12	5.66	1.400	1.203	0.0009
E080F015H0822T213113.txt	30.00	0.41	0.20	0.29	0.18	1.25	0.15	2.97	21.00	12.61	51.83	41.47	0.2432	1.647	2.088	13.70	12.59	5.40	1.400	1.118	0.0013
E075F015H0822T220854.txt	30.00	0.41	0.20	0.29	0.18	1.33	0.15	4.57	21.00	19.41	61.63	46.23	0.3149	1.779	2.125	14.68	13.13	6.55	1.400	1.035	0.0017
E095F011H0823T091527.txt	30.00	0.46	0.20	0.34	0.18	1.05	0.11	6.18	16.00	26.24	60.83	57.79	0.4313	1.425	2.067	11.82	11.12	4.03	1.455	1.512	0.0038
E090F011H0823T104007.txt	30.00	0.46	0.20	0.34	0.18	1.11	0.11	5.28	16.00	22.45	60.60	54.54	0.3704	1.533	2.178	11.50	10.77	4.02	1.455	1.406	0.0032
E085F011H0823T125549.txt	30.00	0.46	0.20	0.34	0.18	1.18	0.11	2.08	16.00	8.82	50.80	43.18	0.1736	1.653	2.207	11.87	11.30	3.61	1.455	1.304	0.0015
E075F011H0823T143618.txt	30.00	0.46	0.20	0.34	0.18	1.33	0.11	0.50	16.00	2.13	40.30	30.23	0.0529	1.934	2.510	10.89	10.23	3.72	1.455	1.114	0.0005
E070F011H0823T152221.txt	30.00	0.46	0.20	0.34	0.18	1.43	0.11	2.93	16.00	12.45	52.53	36.77	0.2369	2.102	2.609	10.92	10.29	3.64	1.455	1.025	0.0021
E065F011H0823T160121.txt	30.00	0.46	0.20	0.34	0.18	1.54	0.11	5.43	16.00	23.08	60.63	39.41	0.3806	2.293	2.617	12.15	11.16	4.79	1.455	0.940	0.0033
E060F011H0823T173758.txt	30.00	0.46	0.20	0.34	0.18	1.67	0.11	6.14	16.00	26.09	59.97	35.98	0.4351	2.515	2.680	12.19	11.67	3.53	1.455	0.857	0.0038
E055F011H0823T183201.txt	30.00	0.46	0.20	0.34	0.18	1.82	0.11	5.55	16.00	23.58	59.13	32.52	0.3987	2.773	2.640	13.82	13.26	3.87	1.455	0.777	0.0035
E090F014H0822T201502.txt	30.00	0.41	0.20	0.29	0.18	1.11	0.14	1.13	21.00	4.79	45.20	40.68	0.1060	1.424	1.930	13.45	12.75	4.30	1.500	1.292	0.0006
E085F014H0822T211037.txt	30.00	0.41	0.20	0.29	0.18	1.18	0.14	0.37	21.00	1.56	34.47	29.30	0.0454	1.530	2.056	12.91	12.06	4.60	1.500	1.203	0.0003
E080F014H0822T214251.txt	30.00	0.41	0.20	0.29	0.18	1.25	0.14	1.54	21.00	6.52	46.77	37.41	0.1395	1.647	2.045	14.00	13.13	4.86	1.500	1.118	0.0009
E075F014H0822T221757.txt	30.00	0.41	0.20	0.29	0.18	1.33	0.14	2.46	21.00	10.47	53.63	40.23	0.1952	1.779	2.159	13.86	12.72	5.50	1.500	1.035	0.0012
E065F014H0822T234751.txt	30.00	0.41	0.20	0.29	0.18	1.54	0.14	2.10	21.00	8.92	45.30	29.45	0.1968	2.098	2.249	15.73	13.82	7.51	1.500	0.878	0.0012
E060F014H0823T002619.txt	30.00	0.41	0.20	0.29	0.18	1.67	0.14	0.31	21.00	1.33	66.30	39.78	0.0201	2.294	2.276	15.91	14.77	5.91	1.500	0.802	0.0001
E055F014H0823T004716.txt	30.00	0.41	0.20	0.29	0.18	1.82	0.14	0.89	21.00	3.80	37.13	20.42	0.1023	2.525	2.358	16.05	15.14	5.34	1.500	0.729	0.0006
E095F010H0823T092753.txt	30.00	0.46	0.20	0.34	0.18	1.05	0.10	5.04	16.00	21.43	58.70	55.77	0.3650	1.425	2.180	10.51	10.00	3.24	1.600	1.512	0.0037
E090F010H0823T104803.txt	30.00	0.46	0.20	0.34	0.18	1.11	0.10	3.11	16.00	13.23	56.20	50.58	0.2354	1.533	2.226	10.90	10.31	3.52	1.600	1.406	0.0024
E085F010H0823T130313.txt	30.00	0.46	0.20	0.34	0.18	1.18	0.10	0.38	16.00	1.63	18.13	15.41	0.0900	1.653	2.186	12.02	11.52	3.41	1.600	1.304	0.0009
E070F010H0823T152816.txt	30.00	0.46	0.20	0.34	0.18	1.43	0.10	0.99	16.00	4.21	38.20	26.74	0.1102	2.102	2.670	10.33	9.83	3.17	1.600	1.025	0.0011
E065F010H0823T160819.txt	30.00	0.46	0.20	0.34	0.18	1.54	0.10	3.13	16.00	13.29	54.50	35.43	0.2438	2.293	2.664	11.47	10.77	3.95	1.600	0.940	0.0025
E060F010H0823T174421.txt	30.00	0.46	0.20	0.34	0.18	1.67	0.10	3.97	16.00	16.87	56.63	33.98	0.2979	2.515	2.800	11.19	10.69	3.29	1.600	0.857	0.0030
E055F010H0823T183844.txt	30.00	0.46	0.20	0.34	0.18	1.82	0.10	3.74	16.00	15.87	59.13	32.52	0.2684	2.773	2.866	11.80	11.25	3.56	1.600	0.777	0.0027
E095F013H0822T191236.txt	30.00	0.41	0.20	0.29	0.18	1.05	0.13	0.40	21.00	1.71	18.17	17.26	0.0941	1.329	1.885	13.35	12.47	4.77	1.615	1.385	0.0006

Puertas cerradas, rampa a 30° (*app* = 0.18, ϕ =30°)

archivo	ф	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E075F013H0822T222637.txt	30.00	0.41	0.20	0.29	0.18	1.33	0.13	1.40	21.00	5.93	48.30	36.23	0.1228	1.779	2.286	12.27	11.35	4.68	1.615	1.035	0.0008
E070F013H0822T230542.txt	30.00	0.41	0.20	0.29	0.18	1.43	0.13	3.44	21.00	14.63	55.40	/ 38.78	0.2641	1.927	2.323	13.24	11.90	5.80	1.615	0.955	0.0018
E065F013H0822T235459.txt	30.00	0.41	0.20	0.29	0.18	1.54	0.13	, 1.51	21.00	6.43	42.23	27.45	0.1523	2.098	2.252	15.57	13.78	7.25	1.615	0.878	0.0010
E080F012H0822T220103.txt	30.00	0.41	0.20	0.29	0.18	1.25	0.12	0.85	21.00	3.61	68.27	54.61	0.0528	1.647	2.208	11.95	11.26	4.00	1.750	1.118	0.0004
E075F012H0822T223459.txt	30.00	0.41	0.20	0.29	0.18	1.33	0.12	0.36	21.00	1.51	32.30	/ 24.23	0.0468	1.779	2.388	11.21	10.40	4.18	1.750	1.035	0.0004
E070F012H0822T231319.txt	30.00	0.41	0.20	0.29	0.18	1.43	0.12	2.41	21.00	10.25	52.53	36.77	0.1951	1.927	2.422	12.26	10.95	5.50	1.750	0.955	0.0015
E065F012H0823T000138.txt	30.00	0.41	0.20	0.29	0.18	1.54	0.12	0.48	21.00	2.03	23.83	15.49	0.0851	2.098	2.447	13.00	11.68	5.70	1.750	0.878	0.0007
E095F009H0823T093613.txt	30.00	0.46	0.20	0.34	0.18	1.05	0.09	2.82	16.00	11.98	60.83	57.79	/ 0.1969	1.425	2.334	9.17	8.72	2.85	1.778	1.512	0.0023
E090F009H0823T105601.txt	30.00	0.46	0.20	0.34	0.18	1.11	0.09	0.87	16.00	3.69	40.80	/ 36.72	0.0904	1.533	2.402	9.42	8.86	3.20	1.778	1.406	0.0011
E065F009H0823T165413.txt	30.00	0.46	0.20	0.34	0.18	1.54	0.09	/ 1.85	16.00	7.85	45.30	/ 29.45	0.1733	2.293	2.936	9.50	8.87	3.40	1.778	0.940	0.0021
E060F009H0823T175043.txt	30.00	0.46	0.20	0.34	0.18	1.67	0.09	2.34	16.00	9.93	46.63	27.98	0.2130	2.515	2.951	10.04	9.62	2.88	1.778	0.857	0.0025
E055F009H0823T182424.txt	30.00	0.46	0.20	0.34	0.18	1.82	0.09	1.52	16.00	6.45	48.13	26.47	0.1340	2.773	2.967	11.00	10.50	3.29	1.778	0.777	0.0016
E070F011H0822T232223.txt	30.00	0.41	0.20	0.29	0.18	1.43	0.11	1.27	21.00	5.41	46.80	32.76	0.1156	1.927	2.496	11.31	10.31	4.65	1.909	0.955	0.0010
E095F008H0823T095352.txt	30.00	0.46	0.20	0.34	0.18	1.05	0.08	0.58	16.00	2.48	43.77	41.58	0.0567	1.425	2.445	8.35	7.95	2.54	2.000	1.512	0.0008

Puertas cerradas, rampa a 45° (*app* = 0.18, ϕ =45°)

archivo	ф	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E095F015H0816T130045.txt	45.00	0.65	0.17	0.55	0.18	1.05	0.15	4.56	16.50	19.39	62.97	59.82	0.3079	1.647	3.335	15.74	14.80	5.37	1.100	2.103	0.0017
E090F015H0816T143723.txt	45.00	0.65	0.17	0.55	0.18	1.11	0.15	1.79	16.50	7.62	65.00	58.50	0.1172	1.801	3.515	15.55	14.58	5.41	1.100	1.922	0.0006
E075F015H0816T195818.txt	45.00	0.65	0.17	0.55	0.18	1.33	0.15	0.24	16.50	1.00	16.30	12.23	0.0615	2.378	4.244	13.81	13.20	4.04	1.100	1.456	0.0003
E070F015H0817T141554.txt	45.00	0.65	0.17	0.55	0.18	1.43	0.15	0.54	16.50	2.29	23.87	16.71	0.0960	2.620	4.493	13.31	12.98	2.97	1.100	1.322	0.0005
E095F014H0816T133757.txt	45.00	0.65	0.17	0.55	0.18	1.05	0.14	2.51	16.50	10.68	52.30	49.69	0.2042	1.647	3.289	16.16	15.22	5.43	1.179	2.103	0.0012
E090F014H0816T150437.txt	45.00	0.65	0.17	0.55	0.18	1.11	0.14	1.82	16.50	7.75	62.80	56.52	0.1234	1.801	3.630	14.58	13.67	5.06	1.179	1.922	0.0008
E095F013H0816T135112.txt	45.00	0.65	0.17	0.55	0.18	1.05	0.13	1.37	16.50	5.81	52.30	49.69	0.1112	1.647	3.478	14.48	13.61	4.94	1.269	2.103	0.0008
E090F013H0816T151414.txt	45.00	0.65	0.17	0.55	0.18	1.11	0.13	0.96	16.50	4.06	5.60	5.04	0.7258	1.801	3.754	13.61	12.78	4.69	1.269	1.922	0.0050
E095F012H0816T140214.txt	45.00	0.65	0.17	0.55	0.18	1.05	0.12	0.46	16.50	1.97	41.63	39.55	0.0473	1.647	3.741	12.30	11.77	3.58	1.375	2.103	0.0004
E095F015H0820T123236.txt	45.00	0.60	0.17	0.50	0.18	1.05	0.15	1.77	21.50	7.52	58.70	55.77	0.1281	1.616	3.364	15.07	14.28	4.81	1.433	1.948	0.0007
E090F015H0820T130713.txt	45.00	0.60	0.17	0.50	0.18	1.11	0.15	0.97	21.50	4.11	58.40	52.56	0.0704	1.762	3.541	15.13	14.05	5.61	1.433	1.787	0.0004
E085F015H0820T150959.txt	45.00	0.60	0.17	0.50	0.18	1.18	0.15	0.52	21.50	2.22	67.82	57.65	0.0327	1.923	3.816	13.58	13.21	3.17	1.433	1.637	0.0002
E080F015H0820T153333.txt	45.00	0.60	0.17	0.50	0.18	1.25	0.15	0.35	21.50	1.48	67.82	54.26	0.0218	2.102	3.922	14.25	13.67	4.04	1.433	1.497	0.0001
E095F011H0816T141239.txt	45.00	0.65	0.17	0.55	0.18	1.05	0.11	0.77	16.50	3.26	67.38	64.01	0.0484	1.647	3.874	11.49	10.97	3.40	1.500	2.103	0.0004
E095F014H0820T124746.txt	45.00	0.60	0.17	0.50	0.18	1.05	0.14	0.87	21.50	3.71	52.30	49.69	0.0709	1.616	3.387	14.75	14.09	4.36	1.536	1.948	0.0004
E095F013H0820T125724.txt	45.00	0.60	0.17	0.50	0.18	1.05	0.13	0.43	21.50	1.81	28.83	27.39	0.0628	1.616	3.577	13.08	12.63	3.40	1.654	1.948	0.0004
E090F015H0820T190926.txt	45.00	0.55	0.17	0.45	0.18	1.11	0.15	0.45	26.50	1.90	16.60	14.94	0.1144	1.712	3.437	16.01	14.50	6.79	1.767	1.655	0.0006

archivo	¢	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E090F015H0806T170818.txt	0.00	0.65	0.17	0.55	0.78	1.11	0.15	16.50	16.50	70.10	66.10	59.49	1.0605	1.801	0.000	15.55	14.58	5.41	1.100	1.922	0.0058
E085F015H0807T201846.txt	0.00	0.65	0.17	0.55	0.78	1.18	0.15	16.50	16.50	70.10	63.63	54.09	1.1016	1.973	0.000	15.38	15.13	2.81	1.100	1.755	0.0061
E080F015H0807T220034.txt	0.00	0.65	0.17	0.55	0.78	1.25	0.15	10.30	16.50	43.76	64.50	51.60	0.6785	2.164	0.000	15.03	14.52	3.87	1.100	1.600	0.0037
E075F015H0808T133203.txt	0.00	0.65	0.17	0.55	0.78	1.33	0.15	7.36	16.50	31.29	58.97	44.23	0.5306	2.378	0.000	13.81	13.20	4.04	1.100	1.456	0.0029
E070F015H0808T141314.txt	0.00	0.65	0.17	0.55	0.78	1.43	0.15	1.67	16.50	7.09	49.67	34.77	0.1427	2.620	0.000	13.31	12.98	2.97	1.100	1.322	0.0008
E090F014H0807T183552.txt	0.00	0.65	0.17	0.55	0.78	1.11	0.14	16.09	16.50	68.37	62.80	56.52	1.0887	1.801	0.000	14.58	13.67	5.06	1.179	1.922	0.0066
E085F014H0807T202749.txt	0.00	0.65	0.17	0.55	0.78	1.18	0.14	12.96	16.50	55.08	64.80	55.08	0.8500	1.973	0.000	12.81	12.54	2.61	1.179	1.755	0.0052
E080F014H0807T221800.txt	0.00	0.65	0.17	0.55	0.78	1.25	0.14	6.35	16.50	26.97	64.50	51.60	0.4181	2.164	0.000	12.98	12.45	3.68	1.179	1.600	0.0026
E075F014H0808T134138.txt	0.00	0.65	0.17	0.55	0.78	1.33	0.14	3.63	16.50	15.41	56.30	42.23	0.2737	2.378	0.000	12.68	12.19	3.48	1.179	1.456	0.0017
E090F013H0807T185338.txt	0.00	0.65	0.17	0.55	0.78	1.11	0.13	12.23	16.50	51.95	62.80	56.52	0.8272	1.801	0.000	13.61	12.78	4.69	1.269	1.922	0.0056
E085F013H0807T204811.txt	0.00	0.65	0.17	0.55	0.78	1.18	0.13	9.51	16.50	40.42	64.80	55.08	0.6238	1.973	0.000	12.74	12.51	2.40	1.269	1.755	0.0043
E080F013H0807T223117.txt	0.00	0.65	0.17	0.55	0.78	1.25	0.13	3.68	16.50	15.63	59.43	47.55	0.2629	2.164	0.000	12.17	11.61	3.64	1.269	1.600	0.0018
E075F013H0808T134928.txt	0.00	0.65	0.17	0.55	0.78	1.33	0.13	2.01	16.50	8.52	45.63	34.23	0.1867	2.378	0.000	11.98	11.44	3.57	1.269	1.456	0.0013
E090F012H0807T191910.txt	0.00	0.65	0.17	0.55	0.78	1.11	0.12	7.74	16.50	32.89	62.80	56.52	0.5237	1.801	0.000	12.54	11.77	4.33	1.375	1.922	0.0040
E085F012H0807T212636.txt	0.00	0.65	0.17	0.55	0.78	1.18	0.12	4.68	16.50	19.89	62.47	53.10	0.3184	1.973	0.000	11.15	10.94	2.14	1.375	1.755	0.0024
E080F012H0807T224817.txt	0.00	0.65	0.17	0.55	0.78	1.25	0.12	1.31	16.50	5.58	51.83	41.47	0.1077	2.164	0.000	12.41	11.89	3.55	1.375	1.600	0.0008
E075F012H0808T135557.txt	0.00	0.65	0.17	0.55	0.78	1.33	0.12	0.39	16.50	1.64	16.30	12.23	0.1006	2.378	0.000	11.22	10.68	3.45	1.375	1.456	0.0008
E090F015H0808T182805.txt	0.00	0.60	0.17	0.50	0.78	1.11	0.15	8.23	21.50	34.97	60.60	54.54	0.5770	1.762	0.000	15.13	14.05	5.61	1.433	1.787	0.0032
E085F015H0808T191129.txt	0.00	0.60	0.17	0.50	0.78	1.18	0.15	6.32	21.50	26.84	64.80	55.08	0.4142	1.923	0.000	13.58	13.21	3.17	1.433	1.637	0.0023
E080F015H0808T194051.txt	0.00	0.60	0.17	0.50	0.78	1.25	0.15	4.44	21.50	18.88	59.43	47.55	0.3176	2.102	0.000	14.25	13.67	4.04	1.433	1.497	0.0017
E075F015H0808T200127.txt	0.00	0.60	0.17	0.50	0.78	1.33	0.15	0.86	21.50	3.66	45.63	34.23	0.0801	2.303	0.000	13.57	12.81	4.46	1.433	1.367	0.0004
E070F015H0808T201439.txt	0.00	0.60	0.17	0.50	0.78	1.43	0.15	1.33	21.50	5.66	23.87	16.71	0.2373	2.529	0.000	13.27	12.87	3.25	1.433	1.245	0.0013
E090F011H0807T193002.txt	0.00	0.65	0.17	0.55	0.78	1.11	0.11	3.67	16.50	15.61	58.40	52.56	0.2672	1.801	0.000	11.52	10.85	3.87	1.500	1.922	0.0023
E085F011H0807T214348.txt	0.00	0.65	0.17	0.55	0.78	1.18	0.11	1.80	16.50	7.65	48.47	41.20	0.1579	1.973	0.000	9.99	9.79	1.95	1.500	1.755	0.0014
E090F014H0808T183613.txt	0.00	0.60	0.17	0.50	0.78	1.11	0.14	5.68	21.50	24.14	60.60	54.54	0.3983	1.762	0.000	14.32	13.31	5.29	1.536	1.787	0.0024
E085F014H0808T192313.txt	0.00	0.60	0.17	0.50	0.78	1.18	0.14	4.21	21.50	17.87	64.80	55.08	0.2757	1.923	0.000	12.48	12.18	2.72	1.536	1.637	0.0017
E080F014H0808T195130.txt	0.00	0.60	0.17	0.50	0.78	1.25	0.14	1.49	21.50	6.32	51.83	41.47	0.1219	2.102	0.000	12.92	12.37	3.74	1.536	1.497	0.0007

archivo	ф	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E090F010H0807T195159.txt	0.00	0.65	0.17	0.55	0.78	1.11	0.10	1.12	16.50	4.78	49.60	44.64	0.0963	1.801	0.000	10.59	9.93	3.68	1.650	1.922	0.0010
E090F013H0808T184401.txt	0.00	0.60	0.17	0.50	0.78	1.11	0.13	3.18	21.50	13.52	62.80	56.52	0.2153	1.762	0.000	13.56	12.62	4.95	1.654	1.787	0.0015
E085F013H0808T193002.txt	0.00	0.60	0.17	0.50	0.78	1.18	0.13	1.27	21.50	5.38	50.80	43.18	0.1059	1.923	0.000	12.00	11.75	2.43	1.654	1.637	0.0007
E085F015H0809T141835.txt	0.00	0.55	0.17	0.45	0.78	1.18	0.15	2.63	26.50	11.19	50.80	43.18	0.2204	1.862	0.000	12.77	12.24	3.63	1.767	1.522	0.0012
E090F012H0808T185037.txt	0.00	0.60	0.17	0.50	0.78	1.11	0.12	1.15	21.50	4.89	45.20	40.68	0.1082	1.762	0.000	12.40	11.52	4.60	1.792	1.787	0.0008
E085F012H0808T193542.txt	0.00	0.60	0.17	0.50	0.78	1.18	0.12	0.24	21.50	1.03	22.80	19.38	0.0451	1.923	0.000	10.70	10.47	2.24	1.792	1.637	0.0003
E090F009H0807T200240.txt	0.00	0.65	0.17	0.55	0.78	1.11	0.09	0.23	16.50	0.99	67.06	60.36	0.0148	1.801	0.000	9.40	8.86	3.12	1.833	1.922	0.0002
E090F014H0809T140014.txt	0.00	0.55	0.17	0.45	0.78	1.11	0.14	1.52	26.50	6.47	49.60	44.64	0.1305	1.712	0.000	13.62	12.78	4.69	1.893	1.655	0.0008
E090F011H0808T185907.txt	0.00	0.60	0.17	0.50	0.78	1.11	0.11	0.30	21.50	1.26	5.60	5.04	0.2248	1.762	0.000	11.49	10.65	4.32	1.955	1.787	0.0020

Puertas abiertas, rampa a 15° (*app* = 0.78, ϕ =15°)

archivo	ф	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E120F007H0925T144349.txt	15.00	0.31	0.20	0.19	0.78	0.83	0.07	4.06	11.00	17.24	59.13	70.96	0.2915	0.786	1.313	6.64	3.28	5.78	1.571	1.542	0.0050
E115F007H0925T141133.txt	15.00	0.31	0.20	0.19	0.78	0.87	0.07	3.05	11.00	12.94	51.83	59.61	0.2497	0.829	1.317	5.77	3.43	4.64	1.571	1.463	0.0043
E110F007H0925T134719.txt	15.00	0.31	0.20	0.19	0.78	0.91	0.07	3.30	11.00	14.03	62.00	68.20	0.2262	0.875	1.166	6.13	4.62	4.03	1.571	1.386	0.0039
E105F007H0925T130114.txt	15.00	0.31	0.20	0.19	0.78	0.95	0.07	6.05	11.00	25.70	59.60	62.58	0.4312	0.925	1.061	7.34	5.90	4.37	1.571	1.311	0.0074
E100F007H0921T192440.txt	15.00	0.31	0.20	0.19	0.78	1.00	0.07	10.52	11.00	44.68	61.30	61.30	0.7289	0.980	1.045	8.03	6.45	4.79	1.571	1.238	0.0126
E090F007H0921T172504.txt	15.00	0.31	0.20	0.19	0.78	1.11	0.07	10.57	11.00	44.91	65.00	58.50	0.6910	1.106	1.175	6.22	5.75	2.37	1.571	1.096	0.0119
E125F006H0925T163327.txt	15.00	0.31	0.20	0.19	0.78	0.80	0.06	1.97	11.00	8.36	56.30	70.38	0.1486	0.747	1.260	6.83	3.38	5.93	1.833	1.623	0.0032
E120F006H0925T150145.txt	15.00	0.31	0.20	0.19	0.78	0.83	0.06	1.93	11.00	8.20	60.80	72.96	0.1349	0.786	1.683	5.55	1.99	5.18	1.833	1.542	0.0029
E115F006H0925T142259.txt	15.00	0.31	0.20	0.19	0.78	0.87	0.06	2.48	11.00	10.54	53.57	61.60	0.1967	0.829	1.508	4.74	2.62	3.95	1.833	1.463	0.0043
E110F006H0925T135638.txt	15.00	0.31	0.20	0.19	0.78	0.91	0.06	2.02	11.00	8.57	56.60	62.26	0.1513	0.875	1.267	5.20	3.91	3.42	1.833	1.386	0.0033
E105F006H0925T130829.txt	15.00	0.31	0.20	0.19	0.78	0.95	0.06	2.47	11.00	10.49	57.67	60.55	0.1819	0.925	1.163	5.99	4.91	3.42	1.833	1.311	0.0040
E100F006H0921T193242.txt	15.00	0.31	0.20	0.19	0.78	1.00	0.06	7.47	11.00	31.76	63.30	63.30	0.5017	0.980	1.141	6.66	5.41	3.89	1.833	1.238	0.0109
E095F006H0921T182854.txt	15.00	0.31	0.20	0.19	0.78	1.05	0.06	7.47	11.00	31.72	58.70	55.77	0.5403	1.040	1.195	5.97	5.23	2.89	1.833	1.166	0.0118
E090F006H0921T173340.txt	15.00	0.31	0.20	0.19	0.78	1.11	0.06	7.89	11.00	33.51	62.80	56.52	0.5336	1.106	1.262	5.38	4.98	2.02	1.833	1.096	0.0116
E085F006H0921T165224.txt	15.00	0.31	0.20	0.19	0.78	1.18	0.06	9.54	11.00	40.55	62.47	53.10	0.6491	1.180	1.344	5.10	4.69	2.00	1.833	1.028	0.0141
E110F005H0925T140457.txt	15.00	0.31	0.20	0.19	0.78	0.91	0.05	1.76	11.00	7.48	49.40	54.34	0.1514	0.875	1.371	4.48	3.34	2.99	2.200	1.386	0.0043
E105F005H0925T131845.txt	15.00	0.31	0.20	0.19	0.78	0.95	0.05	2.00	11.00	8.51	53.80	56.49	0.1582	0.925	1.263	5.09	4.17	2.93	2.200	1.311	0.0045
E100F005H0921T193851.txt	15.00	0.31	0.20	0.19	0.78	1.00	0.05	3.06	11.00	13.01	55.30	55.30	0.2352	0.980	1.248	5.58	4.51	3.27	2.200	1.238	0.0067
E095F005H0921T184541.txt	15.00	0.31	0.20	0.19	0.78	1.05	0.05	4.16	11.00	17.69	60.83	57.79	0.2909	1.040	1.309	4.90	4.36	2.24	2.200	1.166	0.0083
E080F005H0921T160444.txt	15.00	0.31	0.20	0.19	0.78	1.25	0.05	9.45	11.00	40.16	64.50	51.60	0.6226	1.262	1.448	4.77	4.32	2.02	2.200	0.961	0.0178
E075F005H0921T135930.txt	15.00	0.31	0.20	0.19	0.78	1.33	0.05	9.54	11.00	40.52	64.30	48.23	0.6301	1.355	1.538	4.47	4.11	1.77	2.200	0.895	0.0180
E070F005H0920T185134.txt	15.00	0.31	0.20	0.19	0.78	1.43	0.05	11.00	11.00	46.73	48.23	33.76	0.9689	1.460	1.511	5.15	4.59	2.33	2.200	0.831	0.0277
E075F006H0919T183021.txt	15.00	0.26	0.20	0.14	0.78	1.33	0.06	0.90	16.00	3.83	45.63	34.23	0.0839	1.039	1.260	5.22	4.69	2.29	2.667	0.865	0.0018
E070F006H0919T174227.txt	15.00	0.26	0.20	0.14	0.78	1.43	0.06	2.93	16.00	12.45	55.40	38.78	0.2248	1.116	1.207	6.52	5.50	3.50	2.667	0.805	0.0049
E065F006H0919T171949.txt	15.00	0.26	0.20	0.14	0.78	1.54	0.06	3.39	16.00	14.42	60.63	39.41	0.2379	1.206	1.348	6.51	4.77	4.43	2.667	0.745	0.0052
E060F006H0919T165538.txt	15.00	0.26	0.20	0.14	0.78	1.67	0.06	3.69	16.00	15.66	59.97	35.98	0.2612	1.310	1.384	6.36	4.91	4.05	2.667	0.686	0.0057
E050F006H0919T153504.txt	15.00	0.26	0.20	0.14	0.78	2.00	0.06	2.70	16.00	11.46	62.30	31.15	0.1840	1.580	1.115	10.77	9.12	5.72	2.667	0.569	0.0040

Puertas abiertas, rampa a 15° (*app* = 0.78, ϕ =15°)

archivo	ф	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E100F004H0921T194558.txt	15.00	0.31	0.20	0.19	0.78	1.00	0.04	1.23	11.00	5.24	51.30	51.30	0.1021	0.980	1.394	4.41	3.62	2.51	2.750	1.238	0.0041
E095F004H0921T190121.txt	15.00	0.31	0.20	0.19	0.78	1.05	0.04	2.73	11.00	11.62	58.70	55.77	0.1979	1.040	1.461	3.89	3.50	1.70	2.750	1.166	0.0079
E090F004H0921T180000.txt	15.00	0.31	0.20	0.19	0.78	1.11	0.04	1.65	, 11.00	6.99	54.00	48.60	/ 0.1294	1.106	1.528	3.66	3.40	1.36	2.750	1.096	0.0052
E085F004H0921T171129.txt	15.00	0.31	0.20	0.19	0.78	1.18	0.04	2.57	11.00	10.92	57.80	49.13	0.1890	1.180	1.569	3.70	3.44	1.36	2.750	1.028	0.0076
E080F004H0921T161943.txt	15.00	0.31	0.20	0.19	0.78	1.25	0.04	5.10	/ 11.00	21.65	59.43	47.55	0.3643	1.262	1.648	3.69	3.34	1.57	2.750	0.961	0.0146
E075F004H0921T141850.txt	15.00	0.31	0.20	0.19	0.78	1.33	0.04	6.94	- 11.00	29.47	64.30	48.23	0.4583	1.355	1.731	3.53	3.25	1.40	2.750	0.895	0.0183
E070F004H0920T185836.txt	15.00	0.31	0.20	0.19	0.78	1.43	0.04	8.17	11.00	34.73	64.00	44.80	0.5426	1.460	1.707	4.02	3.60	1.79	2.750	0.831	0.0217
E065F004H0920T180330.txt	15.00	0.31	0.20	0.19	0.78	1.54	0.04	11.00	/ 11.00	46.73	65.23	42.40	0.7164	1.581	1.585	5.00	4.52	2.15	2.750	0.767	0.0286
E060F004H0920T165937.txt	15.00	0.31	0.20	0.19	0.78	1.67	0.04	11.00	/ 11.00	46.73	58.30	34.98	0.8016	1.721	1.702	4.99	4.26	2.58	2.750	0.705	0.0320
E055F004H0920T160739.txt	15.00	0.31	0.20	0.19	0.78	1.82	0.04	10.94	11.00	46.49	62.80	34.54	0.7403	1.886	1.659	5.37	4.92	2.14	2.750	0.643	0.0296
E050F004H0920T144808.txt	15.00	0.31	0.20	0.19	0.78	2.00	0.04	11.00	/ 11.00	46.73	56.30	28.15	0.8301	2.083	1.521	7.39	6.46	3.58	2.750	0.582	0.0332
E070F005H0919T181300.txt	15.00	0.26	0.20	0.14	0.78	1.43	0.05	1.32	16.00	5.62	43.93	30.75	0.1280	1.116	1.312	5.61	4.66	3.12	3.200	0.805	0.0037
E060F005H0919T170855.txt	15.00	0.26	0.20	0.14	0.78	1.67	0.05	2.01	16.00	8.53	53.30	31.98	0.1601	1.310	1.473	5.56	4.33	3.48	3.200	0.686	0.0046
E050F005H0919T154927.txt	15.00	0.26	0.20	0.14	0.78	2.00	0.05	3.16	16.00	13.42	62.30	31.15	0.2155	1.580	1.178	9.92	8.17	5.62	3.200	0.569	0.0062
E100F003H0921T195052.txt	15.00	0.31	0.20	0.19	0.78	1.00	0.03	0.97	11.00	4.13	37.30	37.30	/ 0.1108	0.980	1.587	3.38	2.79	1.90	3.667	1.238	0.0068
E085F003H0921T171738.txt	15.00	0.31	0.20	0.19	0.78	1.18	0.03	1.64	11.00	6.97	53.13	45.16	0.1311	1.180	1.782	2.89	2.67	1.10	3.667	1.028	0.0081
E080F003H0921T162815.txt	15.00	0.31	0.20	0.19	0.78	1.25	0.03	, 1.26	/ 11.00	5.34	44.23	35.39	/ 0.1208	1.262	1.927	2.71	2.44	1.18	3.667	0.961	0.0074
E075F003H0921T142827.txt	15.00	0.31	0.20	0.19	0.78	1.33	0.03	2.05) 11.00	8.72	53.63	40.23	0.1625	1.355	1.999	2.63	2.43	0.99	3.667	0.895	0.0100
E070F003H0920T190607.txt	15.00	0.31	0.20	0.19	0.78	1.43	0.03	2.27	11.00	9.63	61.13	42.79	0.1575	1.460	1.911	3.20	2.87	1.41	3.667	0.831	0.0097
E065F003H0920T180858.txt	15.00	0.31	0.20	0.19	0.78	1.54	0.03	5.23	11.00	22.20	63.70	41.41	0.3485	1.581	1.903	3.48	3.13	1.52	3.667	0.767	0.0214
E060F003H0920T170722.txt	15.00	0.31	0.20	0.19	0.78	1.67	0.03	7.30	/ 11.00	31.02	63.30	37.98	0.4901	1.721	1.912	3.88	3.38	1.90	3.667	0.705	0.0302
E050F003H0920T145701.txt	15.00	0.31	0.20	0.19	0.78	2.00	0.03	7.32	. 11.00	31.09	62.30	31.15	0.4990	2.083	1.769	5.45	4.78	2.61	3.667	0.582	0.0307
E060F002H0920T171713.txt	15.00	0.31	0.20	0.19	0.78	1.67	0.02	0.59	/ 11.00	2.49	23.30	13.98	0.1068	1.721	2.270	2.73	2.40	1.30	5.500	0.705	0.0121

archivo	ф	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E075F015H0829T174242.txt	30.00	0.46	0.20	0.34	0.78	1.33	0.15	16.00	16.00	67.98	38.97	29.22	1.7445	1.934	2.125	15.67	14.28	6.46	1.067	1.114	0.0096
E070F015H0829T192055.txt	30.00	0.46	0.20	0.34	0.78	1.43	0.15	16.00	16.00	67.98	48.23	33.76	1.4094	2.102	2.192	16.07	14.58	6.76	1.067	1.025	0.0078
E065F015H0829T203841.txt	30.00	0.46	0.20	0.34	0.78	1.54	0.15	15.13	16.00	64.29	63.70	41.41	1.0093	2.293	2.189	18.13	15.96	8.61	1.067	0.940	0.0056
E060F015H0830T113657.txt	30.00	0.46	0.20	0.34	0.78	1.67	0.15	16.53	16.00	70.23	63.30	37.98	1.1095	2.515	2.315	16.47	15.64	5.16	1.067	0.857	0.0061
E050F015H0830T140658.txt	30.00	0.46	0.20	0.34	0.78	2.00	0.15	15.30	16.00	65.02	66.30	33.15	0.9806	3.081	2.221	23.60	20.81	11.13	1.067	0.700	0.0054
E095F014H0829T113249.txt	30.00	0.46	0.20	0.34	0.78	1.05	0.14	16.00	16.00	67.98	38.43	36.51	1.7687	1.425	1.885	14.43	13.36	5.45	1.143	1.512	0.0108
E090F014H0829T134729.txt	30.00	0.46	0.20	0.34	0.78	1.11	0.14	16.00	16.00	67.98	33.10	29.79	2.0537	1.533	1.929	14.68	13.73	5.19	1.143	1.406	0.0125
E085F014H0829T152743.txt	30.00	0.46	0.20	0.34	0.78	1.18	0.14	16.00	16.00	67.98	33.30	28.31	2.0414	1.653	1.964	15.04	14.29	4.71	1.143	1.304	0.0125
E075F014H0829T175218.txt	30.00	0.46	0.20	0.34	0.78	1.33	0.14	16.00	16.00	67.98	44.30	33.23	1.5345	1.934	2.222	14.05	13.06	5.19	1.143	1.114	0.0094
E070F014H0829T193002.txt	30.00	0.46	0.20	0.34	0.78	1.43	0.14	16.00	16.00	67.98	56.83	39.78	1.1961	2.102	2.155	16.18	15.09	5.83	1.143	1.025	0.0073
E065F014H0829T204646.txt	30.00	0.46	0.20	0.34	0.78	1.54	0.14	14.70	16.00	62.45	63.70	41.41	0.9804	2.293	2.192	17.23	15.92	6.59	1.143	0.940	0.0060
E060F014H0830T114756.txt	30.00	0.46	0.20	0.34	0.78	1.67	0.14	12.99	16.00	55.21	66.63	39.98	0.8285	2.515	2.405	15.23	14.50	4.68	1.143	0.857	0.0051
E055F014H0830T130619.txt	30.00	0.46	0.20	0.34	0.78	1.82	0.14	16.00	16.00	67.98	49.97	27.48	1.3605	2.773	2.359	17.27	16.61	4.73	1.143	0.777	0.0083
E050F014H0830T141305.txt	30.00	0.46	0.20	0.34	0.78	2.00	0.14	11.79	16.00	50.07	66.30	33.15	0.7552	3.081	2.394	19.38	17.91	7.40	1.143	0.700	0.0046
E095F013H0829T114039.txt	30.00	0.46	0.20	0.34	0.78	1.05	0.13	16.00	16.00	67.98	38.43	36.51	1.7687	1.425	1.923	14.04	12.85	5.66	1.231	1.512	0.0121
E090F013H0829T135428.txt	30.00	0.46	0.20	0.34	0.78	1.11	0.13	16.00	16.00	67.98	41.90	37.71	1.6224	1.533	1.982	13.92	13.01	4.95	1.231	1.406	0.0111
E085F013H0829T153410.txt	30.00	0.46	0.20	0.34	0.78	1.18	0.13	16.00	16.00	67.98	37.97	32.27	1.7905	1.653	2.107	13.13	12.41	4.30	1.231	1.304	0.0122
E075F013H0829T180216.txt	30.00	0.46	0.20	0.34	0.78	1.33	0.13	16.00	16.00	67.98	52.30	39.23	1.2998	1.934	2.229	13.80	12.98	4.71	1.231	1.114	0.0089
E070F013H0829T193740.txt	30.00	0.46	0.20	0.34	0.78	1.43	0.13	15.79	16.00	67.08	64.00	44.80	1.0482	2.102	2.309	14.14	13.15	5.21	1.231	1.025	0.0072
E065F013H0829T205142.txt	30.00	0.46	0.20	0.34	0.78	1.54	0.13	11.20	16.00	47.59	60.63	39.41	0.7848	2.293	2.320	15.25	14.20	5.56	1.231	0.940	0.0054
E060F013H0830T115801.txt	30.00	0.46	0.20	0.34	0.78	1.67	0.13	10.20	16.00	43.33	63.30	37.98	0.6845	2.515	2.456	14.57	13.90	4.37	1.231	0.857	0.0047
E055F013H0830T131314.txt	30.00	0.46	0.20	0.34	0.78	1.82	0.13	14.49	16.00	61.58	62.80	34.54	0.9806	2.773	2.465	15.85	15.22	4.43	1.231	0.777	0.0067
E050F013H0830T142144.txt	30.00	0.46	0.20	0.34	0.78	2.00	0.13	7.29	16.00	30.95	62.30	31.15	0.4968	3.081	2.504	17.79	16.38	6.94	1.231	0.700	0.0034
E095F012H0829T114631.txt	30.00	0.46	0.20	0.34	0.78	1.05	0.12	16.00	16.00	67.98	44.83	42.59	1.5162	1.425	2.002	12.81	11.85	4.84	1.333	1.512	0.0117
E090F012H0829T140229.txt	30.00	0.46	0.20	0.34	0.78	1.11	0.12	16.00	16.00	67.98	48.50	43.65	1.4016	1.533	2.060	12.87	12.04	4.54	1.333	1.406	0.0108
E085F012H0829T154017.txt	30.00	0.46	0.20	0.34	0.78	1.18	0.12	16.00	16.00	67.98	47.30	40.21	1.4372	1.653	2.046	13.75	13.16	3.97	1.333	1.304	0.0111
E075F012H0829T181755.txt	30.00	0.46	0.20	0.34	0.78	1.33	0.12	. 14.71	16.00	62.51	61.63	46.23	1.0142	1.934	2.421	11.71	11.00	3.99	1.333	1.114	0.0078

archivo	ф	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E070F012H0829T194640.txt	30.00	0.46	0.20	0.34	0.78	1.43	0.12	12.73	16.00	54.09	61.13	42.79	0.8848	2.102	2.469	12.25	11.49	4.22	1.333	1.025	0.0068
E065F012H0830T103121.txt	30.00	0.46	0.20	0.34	0.78	1.54	0.12	9.46	16.00	40.19	60.63	39.41	0.6628	2.293	2.461	13.63	12.62	5.15	1.333	0.940	0.0051
E060F012H0830T120531.txt	30.00	0.46	0.20	0.34	0.78	1.67	0.12	8.85	16.00	37.61	63.30	37.98	0.5942	2.515	2.568	13.30	12.71	3.92	1.333	0.857	0.0046
E055F012H0830T131914.txt	30.00	0.46	0.20	0.34	0.78	1.82	0.12	12.70	16.00	53.97	62.80	34.54	0.8595	2.773	2.620	14.14	13.46	4.33	1.333	0.777	0.0066
E050F012H0830T135636.txt	30.00	0.46	0.20	0.34	0.78	2.00	0.12	4.03	16.00	17.12	62.30	31.15	0.2748	3.081	2.409	18.72	17.70	6.10	1.333	0.700	0.0021
E090F015H0828T120756.txt	30.00	0.41	0.20	0.29	0.78	1.11	0.15	11.57	21.00	49.14	62.80	56.52	0.7825	1.424	1.907	14.38	13.05	6.04	1.400	1.292	0.0043
E085F015H0828T142919.txt	30.00	0.41	0.20	0.29	0.78	1.18	0.15	10.28	21.00	43.66	62.47	53.10	0.6989	1.530	1.972	14.28	13.12	5.66	1.400	1.203	0.0038
E080F015H0828T153958.txt	30.00	0.41	0.20	0.29	0.78	1.25	0.15	8.28	21.00	35.16	59.43	47.55	0.5916	1.647	2.088	13.70	12.59	5.40	1.400	1.118	0.0033
E095F011H0829T115339.txt	30.00	0.46	0.20	0.34	0.78	1.05	0.11	16.00	16.00	67.98	53.37	50.70	1.2738	1.425	2.067	11.82	11.12	4.03	1.455	1.512	0.0112
E090F011H0829T141007.txt	30.00	0.46	0.20	0.34	0.78	1.11	0.11	16.00	16.00	67.98	52.90	47.61	1.2850	1.533	2.178	11.50	10.77	4.02	1.455	1.406	0.0113
E085F011H0829T154759.txt	30.00	0.46	0.20	0.34	0.78	1.18	0.11	15.66	16.00	66.52	64.80	55.08	1.0265	1.653	2.207	11.87	11.30	3.61	1.455	1.304	0.0090
E075F011H0829T183227.txt	30.00	0.46	0.20	0.34	0.78	1.33	0.11	10.34	16.00	43.93	61.63	46.23	0.7127	1.934	2.510	10.89	10.23	3.72	1.455	1.114	0.0062
E070F011H0829T195802.txt	30.00	0.46	0.20	0.34	0.78	1.43	0.11	8.22	16.00	34.91	61.13	42.79	0.5711	2.102	2.609	10.92	10.29	3.64	1.455	1.025	0.0050
E065F011H0830T110701.txt	30.00	0.46	0.20	0.34	0.78	1.54	0.11	6.47	16.00	27.48	60.63	39.41	0.4533	2.293	2.617	12.15	11.16	4.79	1.455	0.940	0.0040
E060F011H0830T121313.txt	30.00	0.46	0.20	0.34	0.78	1.67	0.11	5.56	16.00	23.61	56.63	33.98	0.4169	2.515	2.680	12.19	11.67	3.53	1.455	0.857	0.0037
E055F011H0830T132547.txt	30.00	0.46	0.20	0.34	0.78	1.82	0.11	8.65	16.00	36.76	59.13	32.52	0.6216	2.773	2.640	13.82	13.26	3.87	1.455	0.777	0.0054
E050F011H0830T151004.txt	30.00	0.46	0.20	0.34	0.78	2.00	0.11	1.11	16.00	4.70	54.30	27.15	0.0866	3.081	2.606	15.84	15.12	4.73	1.455	0.700	0.0008
E090F014H0828T121630.txt	30.00	0.41	0.20	0.29	0.78	1.11	0.14	9.51	21.00	40.39	60.60	54.54	0.6665	1.424	1.930	13.45	12.75	4.30	1.500	1.292	0.0041
E085F014H0828T144042.txt	30.00	0.41	0.20	0.29	0.78	1.18	0.14	7.10	21.00	30.16	60.13	51.11	0.5015	1.530	2.056	12.91	12.06	4.60	1.500	1.203	0.0031
E080F014H0828T154933.txt	30.00	0.41	0.20	0.29	0.78	1.25	0.14	5.28	21.00	22.42	59.43	47.55	0.3772	1.647	2.045	14.00	13.13	4.86	1.500	1.118	0.0023
E075F014H0828T162404.txt	30.00	0.41	0.20	0.29	0.78	1.33	0.14	2.97	21.00	12.62	45.63	34.23	0.2765	1.779	2.159	13.86	12.72	5.50	1.500	1.035	0.0017
E065F014H0828T171729.txt	30.00	0.41	0.20	0.29	0.78	1.54	0.14	2.22	21.00	9.44	42.23	27.45	0.2236	2.098	2.249	15.73	13.82	7.51	1.500	0.878	0.0014
E060F014H0828T175451.txt	30.00	0.41	0.20	0.29	0.78	1.67	0.14	2.59	21.00	10.99	56.63	33.98	0.1941	2.294	2.276	15.91	14.77	5.91	1.500	0.802	0.0012
E055F014H0828T181753.txt	30.00	0.41	0.20	0.29	0.78	1.82	0.14	9.99	21.00	42.43	59.13	32.52	0.7175	2.525	2.358	16.05	15.14	5.34	1.500	0.729	0.0044
E095F010H0829T120026.txt	30.00	0.46	0.20	0.34	0.78	1.05	0.10	13.32	16.00	56.60	60.83	57.79	0.9305	1.425	2.220	10.20	9.64	3.34	1.600	1.512	0.0094
E090F010H0829T141812.txt	30.00	0.46	0.20	0.34	0.78	1.11	0.10	13.57	16.00	57.67	62.80	56.52	0.9184	1.533	2.226	10.90	10.31	3.52	1.600	1.406	0.0093
E085F010H0829T155500.txt	30.00	0.46	0.20	0.34	0.78	1.18	0.10	13.02	16.00	55.30	64.80	55.08	0.8533	1.653	2.186	12.02	11.52	3.41	1.600	1.304	0.0086

archivo	ф	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E075F010H0829T184122.txt	30.00	0.46	0.20	0.34	0.78	1.33	0.10	7.91	16.00	33.61	61.63	46.23	0.5453	1.934	2.628	9.82	9.34	3.05	1.600	1.114	0.0055
E070F010H0829T200558.txt	30.00	0.46	0.20	0.34	0.78	1.43	0.10	3.44	16.00	14.61	52.53	36.77	0.2781	2.102	2.670	10.33	9.83	3.17	1.600	1.025	0.0028
E065F010H0830T111359.txt	30.00	0.46	0.20	0.34	0.78	1.54	0.10	3.15	16.00	13.39	48.37	31.44	0.2768	2.293	2.664	11.47	10.77	3.95	1.600	0.940	0.0028
E060F010H0830T122025.txt	30.00	0.46	0.20	0.34	0.78	1.67	0.10	3.19	16.00	13.55	46.63	27.98	0.2906	2.515	2.800	11.19	10.69	3.29	1.600	0.857	0.0029
E055F010H0830T133254.txt	30.00	0.46	0.20	0.34	0.78	1.82	0.10	4.81	16.00	20.42	55.47	30.51	0.3681	2.773	2.866	11.80	11.25	3.56	1.600	0.777	0.0037
E050F010H0830T152001.txt	30.00	0.46	0.20	0.34	0.78	2.00	0.10	0.46	16.00	1.95	67.82	33.91	0.0287	3.081	2.786	13.86	13.23	4.11	1.600	0.700	0.0003
E095F013H0828T105814.txt	30.00	0.41	0.20	0.29	0.78	1.05	0.13	8.27	21.00	35.14	62.97	59.82	0.5581	1.329	1.885	13.35	12.47	4.77	1.615	1.385	0.0038
E090F013H0828T124227.txt	30.00	0.41	0.20	0.29	0.78	1.11	0.13	7.35	21.00	31.23	60.60	54.54	0.5154	1.424	1.980	12.88	12.11	4.38	1.615	1.292	0.0035
E085F013H0828T145019.txt	30.00	0.41	0.20	0.29	0.78	1.18	0.13	5.83	21.00	24.76	57.80	49.13	0.4283	1.530	1.996	13.47	12.80	4.20	1.615	1.203	0.0029
E080F013H0828T155647.txt	30.00	0.41	0.20	0.29	0.78	1.25	0.13	3.13	21.00	13.32	54.37	43.49	0.2450	1.647	2.205	12.10	11.29	4.37	1.615	1.118	0.0017
E075F013H0828T163215.txt	30.00	0.41	0.20	0.29	0.78	1.33	0.13	1.16	21.00	4.94	40.30	30.23	0.1226	1.779	2.286	12.27	11.35	4.68	1.615	1.035	0.0008
E070F013H0828T173519.txt	30.00	0.41	0.20	0.29	0.78	1.43	0.13	0.59	21.00	2.50	23.87	16.71	0.1048	1.927	2.323	13.24	11.90	5.80	1.615	0.955	0.0007
E065F013H0828T172647.txt	30.00	0.41	0.20	0.29	0.78	1.54	0.13	1.17	21.00	4.99	39.17	25.46	0.1274	2.098	2.252	15.57	13.78	7.25	1.615	0.878	0.0009
E060F013H0828T180135.txt	30.00	0.41	0.20	0.29	0.78	1.67	0.13	0.88	21.00	3.73	46.63	27.98	0.0801	2.294	2.399	14.30	13.29	5.29	1.615	0.802	0.0005
E055F013H0828T182851.txt	30.00	0.41	0.20	0.29	0.78	1.82	0.13	6.75	21.00	28.67	55.47	30.51	0.5169	2.525	2.414	15.12	14.44	4.48	1.615	0.729	0.0035
E095F012H0828T111308.txt	30.00	0.41	0.20	0.29	0.78	1.05	0.12	5.88	21.00	24.98	60.83	57.79	0.4107	1.329	1.967	12.29	11.45	4.48	1.750	1.385	0.0032
E090F012H0828T135003.txt	30.00	0.41	0.20	0.29	0.78	1.11	0.12	5.15	21.00	21.87	58.40	52.56	0.3745	1.424	2.045	12.01	11.36	3.91	1.750	1.292	0.0029
E085F012H0828T145740.txt	30.00	0.41	0.20	0.29	0.78	1.18	0.12	4.61	21.00	19.59	55.47	47.15	0.3531	1.530	2.163	11.52	10.90	3.72	1.750	1.203	0.0027
E080F012H0828T160309.txt	30.00	0.41	0.20	0.29	0.78	1.25	0.12	1.42	21.00	6.05	46.77	37.41	0.1293	1.647	2.208	11.95	11.26	4.00	1.750	1.118	0.0010
E075F012H0828T164006.txt	30.00	0.41	0.20	0.29	0.78	1.33	0.12	0.23	21.00	0.97	10.97	8.23	0.0882	1.779	2.388	11.21	10.40	4.18	1.750	1.035	0.0007
E055F012H0828T183727.txt	30.00	0.41	0.20	0.29	0.78	1.82	0.12	4.42	21.00	18.78	48.13	26.47	0.3902	2.525	2.512	13.98	13.34	4.16	1.750	0.729	0.0030
E095F009H0829T120707.txt	30.00	0.46	0.20	0.34	0.78	1.05	0.09	9.79	16.00	41.61	62.97	59.82	0.6608	1.425	2.334	9.17	8.72	2.85	1.778	1.512	0.0078
E090F009H0829T142509.txt	30.00	0.46	0.20	0.34	0.78	1.11	0.09	9.36	16.00	39.77	62.80	56.52	0.6332	1.533	2.402	9.42	8.86	3.20	1.778	1.406	0.0075
E085F009H0829T160126.txt	30.00	0.46	0.20	0.34	0.78	1.18	0.09	10.43	16.00	44.31	62.47	53.10	0.7093	1.653	2.426	9.81	9.36	2.92	1.778	1.304	0.0084
E075F009H0829T184918.txt	30.00	0.46	0.20	0.34	0.78	1.33	0.09	4.67	16.00	19.86	58.97	44.23	0.3368	1.934	2.797	8.71	8.24	2.82	1.778	1.114	0.0040
E070F009H0829T201941.txt	30.00	0.46	0.20	0.34	0.78	1.43	0.09	1.04	16.00	4.40	29.60	20.72	0.1486	2.102	2.840	9.08	8.68	2.64	1.778	1.025	0.0018
E065F009H0830T112028.txt	30.00	0.46	0.20	0.34	0.78	1.54	0.09	0.97	16.00	4.11	33.03	21.47	0.1244	2.293	2.936	9.50	8.87	3.40	1.778	0.940	0.0015

archivo	ф	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E060F009H0830T124931.txt	30.00	0.46	0.20	0.34	0.78	1.67	0.09	1.30	16.00	5.51	29.97	17.98	0.1840	2.515	2.951	10.04	9.62	2.88	1.778	0.857	0.0022
E055F009H0830T134012.txt	30.00	0.46	0.20	0.34	0.78	1.82	0.09	1.85	16.00	7.86	44.47	24.46	0.1767	2.773	2.967	11.00	10.50	3.29	1.778	0.777	0.0021
E095F011H0828T112505.txt	30.00	0.41	0.20	0.29	0.78	1.05	0.11	4.07	21.00	17.30	58.70	55.77	0.2948	1.329	2.074	11.08	10.30	4.08	1.909	1.385	0.0026
E090F011H0828T140418.txt	30.00	0.41	0.20	0.29	0.78	1.11	0.11	3.44	21.00	14.61	56.20	50.58	0.2599	1.424	2.149	10.88	10.28	3.57	1.909	1.292	0.0023
E085F011H0828T150432.txt	30.00	0.41	0.20	0.29	0.78	1.18	0.11	2.85	21.00	12.09	55.47	47.15	0.2179	1.530	2.201	11.05	10.53	3.36	1.909	1.203	0.0019
E055F011H0828T184922.txt	30.00	0.41	0.20	0.29	0.78	1.82	0.11	1.77	21.00	7.53	37.13	20.42	0.2028	2.525	2.643	12.65	12.05	3.85	1.909	0.729	0.0018
E095F008H0829T121418.txt	30.00	0.46	0.20	0.34	0.78	1.05	0.08	6.22	16.00	26.44	60.83	57.79	0.4346	1.425	2.445	8.35	7.95	2.54	2.000	1.512	0.0061
E090F008H0829T145539.txt	30.00	0.46	0.20	0.34	0.78	1.11	0.08	5.98	16.00	25.41	60.60	54.54	0.4193	1.533	2.544	8.42	7.90	2.92	2.000	1.406	0.0059
E085F008H0829T161235.txt	30.00	0.46	0.20	0.34	0.78	1.18	0.08	6.32	16.00	26.86	62.47	53.10	0.4300	1.653	2.603	8.57	8.13	2.71	2.000	1.304	0.0061
E075F008H0829T185833.txt	30.00	0.46	0.20	0.34	0.78	1.33	0.08	1.46	16.00	6.22	45.63	34.23	0.1363	1.934	2.979	7.61	7.26	2.29	2.000	1.114	0.0019
E095F010H0828T113733.txt	30.00	0.41	0.20	0.29	0.78	1.05	0.10	2.76	21.00	11.74	54.43	51.71	0.2157	1.329	2.183	9.97	9.30	3.61	2.100	1.385	0.0022
E090F010H0828T141449.txt	30.00	0.41	0.20	0.29	0.78	1.11	0.10	1.59	21.00	6.75	49.60	44.64	0.1360	1.424	2.206	10.29	9.76	3.27	2.100	1.292	0.0014
E085F010H0828T151614.txt	30.00	0.41	0.20	0.29	0.78	1.18	0.10	1.30	21.00	5.50	43.80	37.23	0.1256	1.530	2.391	9.42	8.92	3.03	2.100	1.203	0.0013
E055F010H0828T185646.txt	30.00	0.41	0.20	0.29	0.78	1.82	0.10	0.54	21.00	2.30	18.80	10.34	0.1222	2.525	2.698	12.09	11.56	3.53	2.100	0.729	0.0012
E095F007H0829T125905.txt	30.00	0.46	0.20	0.34	0.78	1.05	0.07	3.63	16.00	15.43	58.70	55.77	0.2629	1.425	2.635	7.17	6.84	2.15	2.286	1.512	0.0045
E090F007H0829T150606.txt	30.00	0.46	0.20	0.34	0.78	1.11	0.07	3.35	16.00	14.23	58.40	52.56	0.2436	1.533	2.711	7.40	6.95	2.54	2.286	1.406	0.0042
E085F007H0829T161907.txt	30.00	0.46	0.20	0.34	0.78	1.18	0.07	3.25	16.00	13.83	57.80	49.13	0.2392	1.653	2.896	7.00	6.57	2.43	2.286	1.304	0.0041
E095F009H0828T115157.txt	30.00	0.41	0.20	0.29	0.78	1.05	0.09	1.34	21.00	5.71	50.17	47.66	0.1138	1.329	2.295	9.06	8.41	3.38	2.333	1.385	0.0013
E095F006H0829T133107.txt	30.00	0.46	0.20	0.34	0.78	1.05	0.06	1.20	16.00	5.08	48.03	45.63	0.1058	1.425	2.847	6.13	5.86	1.80	2.667	1.512	0.0023
E090F006H0829T151310.txt	30.00	0.46	0.20	0.34	0.78	1.11	0.06	0.99	16.00	4.22	47.40	42.66	0.0890	1.533	2.951	6.24	5.87	2.13	2.667	1.406	0.0019

APÉNDICE A Resultados experimentales 100

Puertas abiertas, rampa a 45° (*app* = 0.78, ϕ =45°)

archivo	ф	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E090F015H0717T170838.txt	45.00	0.65	0.17	0.55	0.78	1.11	0.15	16.50	16.50	70.10	35.30	31.77	1.9859	1.801	3.515	15.55	14.58	5.41	1.100	1.922	0.0109
E085F015H0717T131256.txt	45.00	0.65	0.17	0.55	0.78	1.18	0.15	16.50	16.50	70.10	35.63	30.29	1.9673	1.973	3.611	15.38	15.13	2.81	1.100	1.755	0.0108
E080F015H0716T175534.txt	45.00	0.65	0.17	0.55	0.78	1.25	0.15	16.50	16.50	70.10	48.03	38.43	1.4595	2.164	3.860	15.03	14.52	3.87	1.100	1.600	0.0080
E075F015H0716T145349.txt	45.00	0.65	0.17	0.55	0.78	1.33	0.15	15.77	16.50	67.01	64.30	48.23	1.0421	2.378	4.244	13.81	13.20	4.04	1.100	1.456	0.0057
E070F015H0714T182026.txt	45.00	0.65	0.17	0.55	0.78	1.43	0.15	4.96	16.50	21.07	55.40	38.78	0.3803	2.620	4.493	13.31	12.98	2.97	1.100	1.322	0.0021
E065F015H0714T170055.txt	45.00	0.65	0.17	0.55	0.78	1.54	0.15	1.85	16.50	7.87	51.43	33.43	0.1530	2.894	4.485	15.28	14.39	5.15	1.100	1.196	0.0008
E060F015H0714T155047.txt	45.00	0.65	0.17	0.55	0.78	1.67	0.15	2.44	16.50	10.37	49.97	29.98	0.2076	3.208	4.689	14.89	14.59	2.99	1.100	1.079	0.0011
E055F015H0713T184243.txt	45.00	0.65	0.17	0.55	0.78	1.82	0.15	6.29	16.50	26.72	55.47	30.51	0.4818	3.574	4.774	15.84	15.68	2.21	1.100	0.969	0.0027
E050F015H0713T152232.txt	45.00	0.65	0.17	0.55	0.78	2.00	0.15	3.10	16.50	13.18	62.30	31.15	0.2115	4.006	4.547	20.54	19.38	6.82	1.100	0.864	0.0012
E095F014H0718T110139.txt	45.00	0.65	0.17	0.55	0.78	1.05	0.14	16.50	16.50	70.10	59.77	56.78	1.1729	1.647	3.289	16.16	15.22	5.43	1.179	2.103	0.0072
E090F014H0717T173007.txt	45.00	0.65	0.17	0.55	0.78	1.11	0.14	16.50	16.50	70.10	44.10	39.69	1.5896	1.801	3.630	14.58	13.67	5.06	1.179	1.922	0.0097
E085F014H0717T133345.txt	45.00	0.65	0.17	0.55	0.78	1.18	0.14	16.50	16.50	70.10	47.30	40.21	1.4821	1.973	3.966	12.81	12.54	2.61	1.179	1.755	0.0090
E080F014H0716T184146.txt	45.00	0.65	0.17	0.55	0.78	1.25	0.14	14.76	16.50	62.71	64.50	51.60	0.9723	2.164	4.170	12.98	12.45	3.68	1.179	1.600	0.0059
E075F014H0716T151623.txt	45.00	0.65	0.17	0.55	0.78	1.33	0.14	11.30	16.50	48.01	64.30	48.23	0.7467	2.378	4.417	12.68	12.19	3.48	1.179	1.456	0.0046
E070F014H0716T135047.txt	45.00	0.65	0.17	0.55	0.78	1.43	0.14	2.33	16.50	9.91	55.40	38.78	0.1788	2.620	4.424	13.67	13.39	2.75	1.179	1.322	0.0011
E065F014H0714T171609.txt	45.00	0.65	0.17	0.55	0.78	1.54	0.14	0.80	16.50	3.39	42.23	27.45	0.0803	2.894	4.507	14.94	14.24	4.50	1.179	1.196	0.0005
E060F014H0714T160727.txt	45.00	0.65	0.17	0.55	0.78	1.67	0.14	1.19	16.50	5.07	33.30	19.98	0.1524	3.208	4.877	13.77	13.49	2.79	1.179	1.079	0.0009
E055F014H0713T191131.txt	45.00	0.65	0.17	0.55	0.78	1.82	0.14	3.12	16.50	13.26	37.13	20.42	0.3570	3.574	4.994	14.47	14.33	2.02	1.179	0.969	0.0022
E050F014H0713T172601.txt	45.00	0.65	0.17	0.55	0.78	2.00	0.14	1.21	16.50	5.12	58.30	29.15	0.0879	4.006	4.737	18.96	17.85	6.38	1.179	0.864	0.0005
E095F013H0718T111943.txt	45.00	0.65	0.17	0.55	0.78	1.05	0.13	16.50	16.50	70.10	44.83	42.59	1.5636	1.647	3.478	14.48	13.61	4.94	1.269	2.103	0.0107
E090F013H0717T175320.txt	45.00	0.65	0.17	0.55	0.78	1.11	0.13	16.50	16.50	70.10	48.50	43.65	1.4454	1.801	3.754	13.61	12.78	4.69	1.269	1.922	0.0099
E085F013H0717T141608.txt	45.00	0.65	0.17	0.55	0.78	1.18	0.13	16.50	16.50	70.10	61.30	52.11	1.1436	1.973	3.971	12.74	12.51	2.40	1.269	1.755	0.0078
E080F013H0717T115143.txt	45.00	0.65	0.17	0.55	0.78	1.25	0.13	13.11	16.50	55.69	67.03	53.63	0.8308	2.164	4.318	12.17	11.61	3.64	1.269	1.600	0.0057
E075F013H0716T153655.txt	45.00	0.65	0.17	0.55	0.78	1.33	0.13	7.15	16.50	30.39	61.63	46.23	0.4931	2.378	4.560	11.98	11.44	3.57	1.269	1.456	0.0034
E070F013H0716T142108.txt	45.00	0.65	0.17	0.55	0.78	1.43	0.13	0.69	16.50	2.94	46.80	32.76	0.0629	2.620	4.630	12.46	12.22	2.46	1.269	1.322	0.0004
E065F013H0714T173218.txt	45.00	0.65	0.17	0.55	0.78	1.54	0.13	0.45	16.50	1.93	58.14	37.79	0.0331	2.894	4.856	12.94	12.27	4.09	1.269	1.196	0.0002
E055F013H0713T192400.txt	45.00	0.65	0.17	0.55	0.78	1.82	0.13	0.91	16.50	3.87	22.47	12.36	0.1723	3.574	5.009	14.37	14.25	1.89	1.269	0.969	0.0012
APÉNDICE A Resultados experimentales 101

Puertas abiertas, rampa a 45° (*app* = 0.78, ϕ =45°)

archivo	ф	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E095F012H0718T114736.txt	45.00	0.65	0.17	0.55	0.78	1.05	0.12	16.50	16.50	70.10	55.50	52.73	1.2631	1.647	3.741	12.30	11.77	3.58	1.375	2.103	0.0097
E090F012H0717T181305.txt	45.00	0.65	0.17	0.55	0.78	1.11	0.12	16.50	16.50	70.10	61.70	55.53	1.1362	1.801	3.912	12.54	11.77	4.33	1.375	1.922	0.0087
E085F012H0717T144645.txt	45.00	0.65	0.17	0.55	0.78	1.18	0.12	15.40	16.50	65.42	. 60.13	51.11	1.0878	1.973	4.246	11.15	10.94	2.14	1.375	1.755	0.0084
E080F012H0717T111822.txt	45.00	0.65	0.17	0.55	0.78	1.25	0.12	9.29	16.50	39.46	64.50	/ 51.60	0.6118	2.164	4.267	12.41	11.89	3.55	1.375	1.600	0.0047
E075F012H0716T155920.txt	45.00	0.65	0.17	0.55	0.78	1.33	0.12	3.57	16.50	15.18	56.30	42.23	0.2696	2.378	4.719	11.22	10.68	3.45	1.375	1.456	0.0021
E100F015H0711T152746.txt	45.00	0.60	0.17	0.50	0.78	1.00	0.15	16.01	21.50	68.02	63.30	63.30	1.0746	1.485	3.235	15.69	14.18	6.70	1.433	2.120	0.0059
E095F015H0711T150346.txt	45.00	0.60	0.17	0.50	0.78	1.05	0.15	20.30	21.50	86.24	65.10	61.85	1.3247	1.616	3.364	15.07	14.28	4.81	1.433	1.948	0.0073
E090F015H0711T135429.txt	45.00	0.60	0.17	0.50	0.78	1.11	0.15	21.17	21.50	89.96	62.80	56.52	1.4324	1.762	3.541	15.13	14.05	5.61	1.433	1.787	0.0079
E075F015H0711T122621.txt	45.00	0.60	0.17	0.50	0.78	1.33	0.15	0.21	21.50	0.88	32.30	24.23	0.0272	2.303	4.355	12.61	12.14	3.39	1.433	1.367	0.0001
E095F011H0718T115632.txt	45.00	0.65	0.17	0.55	0.78	1.05	0.11	16.50	16.50	70.10	59.77	56.78	1.1729	1.647	3.874	11.49	10.97	3.40	1.500	2.103	0.0103
E090F011H0717T183430.txt	45.00	0.65	0.17	0.55	0.78	1.11	0.11	14.91	16.50	63.33	65.00	58.50	0.9744	1.801	4.074	11.52	10.85	3.87	1.500	1.922	0.0085
E085F011H0717T151817.txt	45.00	0.65	0.17	0.55	0.78	1.18	0.11	9.93	16.50	42.17	57.80	49.13	0.7296	1.973	4.488	9.99	9.79	1.95	1.500	1.755	0.0064
E080F011H0717T120322.txt	45.00	0.65	0.17	0.55	0.78	1.25	0.11	4.49	16.50	19.06	59.43	47.55	0.3207	2.164	4.617	10.69	10.15	3.34	1.500	1.600	0.0028
E075F011H0716T163311.txt	45.00	0.65	0.17	0.55	0.78	1.33	0.11	1.18	16.50	5.01	34.97	26.23	0.1434	2.378	4.956	10.02	9.68	2.57	1.500	1.456	0.0013
E095F014H0712T174422.txt	45.00	0.60	0.17	0.50	0.78	1.05	0.14	17.90	21.50	76.03	65.10	61.85	1.1680	1.616	3.387	14.75	14.09	4.36	1.536	1.948	0.0071
E085F014H0711T185407.txt	45.00	0.60	0.17	0.50	0.78	1.18	0.14	7.58	21.50	32.20	57.80	49.13	0.5572	1.923	3.816	13.58	13.21	3.17	1.536	1.637	0.0034
E080F014H0711T182244.txt	45.00	0.60	0.17	0.50	0.78	1.25	0.14	1.78	21.50	7.55	49.30	39.44	0.1531	2.102	3.922	14.25	13.67	4.04	1.536	1.497	0.0009
E095F010H0718T121555.txt	45.00	0.65	0.17	0.55	0.78	1.05	0.10	12.18	16.50	51.75	62.97	59.82	0.8219	1.647	4.049	10.48	10.05	2.98	1.650	2.103	0.0083
E090F010H0717T190742.txt	45.00	0.65	0.17	0.55	0.78	1.11	0.10	7.92	16.50	33.64	60.60	54.54	0.5551	1.801	4.258	10.59	9.93	3.68	1.650	1.922	0.0056
E085F010H0717T160131.txt	45.00	0.65	0.17	0.55	0.78	1.18	0.10	6.47	16.50	27.47	64.80	55.08	0.4239	1.973	4.591	9.52	9.36	1.73	1.650	1.755	0.0043
E080F010H0717T123152.txt	45.00	0.65	0.17	0.55	0.78	1.25	0.10	2.19	16.50	9.33	54.37	43.49	0.1715	2.164	4.880	9.49	9.09	2.74	1.650	1.600	0.0017
E095F013H0712T181652.txt	45.00	0.60	0.17	0.50	0.78	1.05	0.13	13.55	21.50	57.57	65.10	61.85	0.8844	1.616	3.577	13.08	12.63	3.40	1.654	1.948	0.0060
E090F013H0712T130440.txt	45.00	0.60	0.17	0.50	0.78	1.11	0.13	17.58	21.50	74.68	65.00	58.50	1.1489	1.762	3.638	14.32	13.31	5.29	1.654	1.787	0.0078
E085F013H0712T121701.txt	45.00	0.60	0.17	0.50	0.78	1.18	0.13	6.33	21.50	26.90	64.80	55.08	0.4151	1.923	3.973	12.48	12.18	2.72	1.654	1.637	0.0028
E080F013H0711T193209.txt	45.00	0.60	0.17	0.50	0.78	1.25	0.13	0.75	21.50	3.18	67.48	53.98	0.0471	2.102	4.123	12.92	12.37	3.74	1.654	1.497	0.0003
E090F015H0720T121451.txt	45.00	0.55	0.17	0.45	0.78	1.11	0.15	9.95	26.50	42.27	60.60	54.54	0.6975	1.712	3.383	15.70	14.95	4.78	1.767	1.655	0.0038
E085F015H0720T104945.txt	45.00	0.55	0.17	0.45	0.78	1.18	0.15	6.86	26.50	29.13	60.13	51.11	0.4844	1.862	3.900	12.77	12.24	3.63	1.767	1.522	0.0027

APÉNDICE A Resultados experimentales 102

Puertas abiertas, rampa a 45° (*app* = 0.78, ϕ =45°)

archivo	¢	hd(m)	hp(m)	h(m)	app(m)	T(s)	H(m)	hc(cm)	Rc(cm)	V(I)	Tiempo(s)	Nolas	Q(I/s)	L(m)	lr	Ht(cm)	Hi(cm)	Hr(cm)	R[-]	kh[-]	Q[-]
E095F012H0713T105638.txt	45.00	0.60	0.17	0.50	0.78	1.05	0.12	11.86	21.50	50.39	62.97	59.82	0.8002	1.616	3.817	11.41	11.09	2.67	1.792	1.948	0.0062
E090F012H0712T134525.txt	45.00	0.60	0.17	0.50	0.78	1.11	0.12	8.21	21.50	34.86	65.00	58.50	0.5364	1.762	3.736	13.56	12.62	4.95	1.792	1.787	0.0041
E085F012H0712T115815.txt	45.00	0.60	0.17	0.50	0.78	1.18	0.12	2.56	21.50	10.87	53.13	45.16	0.2046	1.923	4.045	12.00	11.75	2.43	1.792	1.637	0.0016
E095F009H0718T124258.txt	45.00	0.65	0.17	0.55	0.78	1.05	0.09	6.91	16.50	29.36	62.97	59.82	0.4663	1.647	4.220	9.88	9.25	3.47	1.833	2.103	0.0055
E090F009H0717T192703.txt	45.00	0.65	0.17	0.55	0.78	1.11	0.09	3.87	16.50	16.44	60.60	54.54	0.2712	1.801	4.508	9.40	8.86	3.12	1.833	1.922	0.0032
E085F009H0717T161444.txt	45.00	0.65	0.17	0.55	0.78	1.18	0.09	2.00	16.50	8.51	50.80	43.18	0.1675	1.973	4.809	8.70	8.53	1.71	1.833	1.755	0.0020
E080F009H0717T124835.txt	45.00	0.65	0.17	0.55	0.78	1.25	0.09	0.55	16.50	2.35	23.97	19.17	0.0980	2.164	5.015	8.95	8.60	2.48	1.833	1.600	0.0012
E095F014H0718T190854.txt	45.00	0.55	0.17	0.45	0.78	1.05	0.14	5.82	26.50	24.73	62.97	59.82	0.3927	1.576	3.439	14.04	13.33	4.41	1.893	1.798	0.0024
E085F014H0720T111955.txt	45.00	0.55	0.17	0.45	0.78	1.18	0.14	3.48	26.50	14.81	57.80	49.13	0.2562	1.862	3.880	12.80	12.37	3.32	1.893	1.522	0.0016
E095F011H0713T112551.txt	45.00	0.60	0.17	0.50	0.78	1.05	0.11	6.74	21.50	28.63	60.83	57.79	0.4707	1.616	3.995	10.48	10.13	2.72	1.955	1.948	0.0041
E090F011H0712T135713.txt	45.00	0.60	0.17	0.50	0.78	1.11	0.11	4.31	21.50	18.33	62.80	56.52	0.2919	1.762	3.911	12.40	11.52	4.60	1.955	1.787	0.0026
E095F013H0718T191645.txt	45.00	0.55	0.17	0.45	0.78	1.05	0.13	3.61	26.50	15.32	56.57	53.74	0.2708	1.576	3.470	13.56	13.09	3.54	2.038	1.798	0.0018
E090F013H0720T125657.txt	45.00	0.55	0.17	0.45	0.78	1.11	0.13	2.39	26.50	10.17	60.60	54.54	0.1679	1.712	3.783	12.71	11.96	4.28	2.038	1.655	0.0011
E085F013H0720T112533.txt	45.00	0.55	0.17	0.45	0.78	1.18	0.13	0.65	26.50	2.77	34.47	29.30	0.0803	1.862	3.897	12.64	12.26	3.08	2.038	1.522	0.0005
E095F008H0718T125024.txt	45.00	0.65	0.17	0.55	0.78	1.05	0.08	2.15	16.50	9.14	54.43	51.71	0.1679	1.647	4.492	8.51	8.16	2.42	2.063	2.103	0.0024
E095F010H0713T115745.txt	45.00	0.60	0.17	0.50	0.78	1.05	0.10	2.24	21.50	9.52	56.57	53.74	0.1683	1.616	4.179	9.51	9.26	2.19	2.150	1.948	0.0017
E090F010H0712T142153.txt	45.00	0.60	0.17	0.50	0.78	1.11	0.10	1.34	21.50	5.69	47.40	42.66	0.1200	1.762	4.068	11.49	10.65	4.32	2.150	1.787	0.0012
E090F012H0720T130213.txt	45.00	0.55	0.17	0.45	0.78	1.11	0.12	0.61	26.50	2.60	45.20	40.68	0.0576	1.712	3.903	11.94	11.24	4.04	2.208	1.655	0.0004
E095F009H0713T122145.txt	45.00	0.60	0.17	0.50	0.78	1.05	0.09	0.45	21.50	1.90	28.83	27.39	0.0660	1.616	4.411	8.56	8.31	2.09	2.389	1.948	0.0008
E095F011H0718T204731.txt	45.00	0.55	0.17	0.45	0.78	1.05	0.11	0.23	26.50	0.99	16.03	15.23	0.0620	1.576	3.758	11.61	11.16	3.20	2.409	1.798	0.0005
E095F011H0718T204117.txt	45.00	0.55	0.17	0.45	0.78	1.05	0.11	0.25	26.50	1.04	24.57	23.34	0.0424	1.576	3.927	10.67	10.22	3.07	2.409	1.798	0.0004

REFERENCIAS

Referencias

1. Burchartch, H. F. and S Hughes (2000). Coastal Engineering Manual, Fundamentals of Design. Chapter 5, Part VI. Coastal Eng. Research Center, Waterways Experiment Station, US Army Corps of Eng., Vicksburg, USA.

2. Van der Meer and Janssen (1995). "Wave Run-Up and Wave Overtopping at Dikes", *In Wave Forces on Inclined and Vertical Wall Structures*, Kobayashi and Demirbilek, eds., American Society of Civil Engineers, pp 1-27.

3. Kofoed, J.P. and Burcharth (2002). "Estimations of Overtopping Rates on Slopes in Power Devices and other Low Crested Structures", Proc. Coastal Engineering 2002. pp 2191-2202

4. Alatorre M. Miguel A. (2003). Sistema de bombeo de agua marina utilizando la energía del oleaje y marea. Tesis doctoral, Universidad Nacional Autónoma de México. 201 p.

5. Ruiz, F., M. Merino, M.A. Alatorre, S.P.R. Czitrom y V. Franco (1994). "Un. dispositivo de bombeo de agua marina activado por oleaje". *Ingeniería. Hidráulica en México*, Vol. IX, No. 2. pp. 45-51

6. Baquerizo A. (1995). "Reflexión de oleaje en playas". Tesis Doctoral, Departamento de Ciencias y Técnicas del Agua y Medio Ambiente, Universidad de Cantabria.

7. Silva R. (2001) "Apuntes del curso: Hidráulica Marítima". DEPFI, UNAM

8. Silva R. (2005) "Análisis y descripción estadística del oleaje". Serie Docencia, Instituto de Ingeniería, UNAM.

9. U.S. Department of energy. Energy efficiency and Renewable energy.

http://www.eere.energy.gov/consumer/renewable_energy/ocean

http://www.marineturbines.com

10. Danish Wind Industry Association

http://www.windpower.org

http://www.rise.org.au/info/Tech/wave/index.html