

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

EVALUACIÓN DE ÓRTESIS DE MANO MEDIANTE PRUEBAS DE DESTREZA CDMIT

T E S I S

QUE PARA OBTENER EL TÍTULO DE:
INGENIERO MECÁNICO

P R E S E N T A:

RICARDO ALEJANDRO LÓPEZ VILLANUEVA

DIRECTORA DE TESIS: M.I. ROSA ITZEL FLORES LUNA 2016

Agradecimientos

Antes que nada, agradezco a Dios por haberme ayudado a cumplir todos mis proyectos, por haberme brindado sabiduría e inteligencia, porque sus palabras son como asedio en mi mente, gracias por haberme despojado de mi soberbia y dejarme en el mejor camino para desarrollar mis aptitudes y habilidades. Sé que el camino fue largo, con sus altos y bajos pero recibo con gratitud todas esas experiencias, sintiéndome muy orgulloso de haber vivido todos esos momentos.

También agradezco a todos mis amigos y compañeros de la facultad, la cual siempre me brindaron su alegría y sirvieron de apoyo, aprendizaje e inspiración, especialmente agradezco a: David de Jesús Cruz, Jorge Marroquín, José Luz Chaves, José Lira Montañez y Tomas Cedillo, mi amigo y colega de confianza de toda la carrera.

Gracias a todos mis profesores y maestros que me brindaron su paciencia y conocimiento en todo el transcurso de la carrera, gracias por todos sus consejos y enseñanzas ya que son como oro sólido para mí. Agradezco especialmente a la M.I Rosa Itzel Flores Luna, quien se convirtió en mi mentora en los últimos pasos de mi carrera y hago constar que es la mejor asesora de tesis de toda la facultad de ingeniería ya que siempre estuvo muy al pendiente de mí trabajo y la de todos mis compañeros.

Finalmente agradezco a una persona muy especial, quien estuvo destinada a ser mi madre desde antes de los tiempos, quien fue la única persona preparada para tenerme como hijo, muchas gracias por haber soportado todas mis ideas, travesuras, desvaríos y locuras. Gracias por quererme y haber cuidado por mí todo este tiempo mamá. Gracias Dios porque nunca me hizo faltó nada.

El que aprende y pone en práctica lo aprendido, se estima así mismo y prospera.

Proverbios 19,2

Esta tesis se realizó en el marco del proyecto UNAM-DGAPA PAPIIT IT101915 "Mecatrónica en los sistemas biomédicos" y del proyecto CONACYT FINNOVA 224052 "Desarrollo del paquete tecnológico ortoprótesis para mano"

Contenido

Objetivo	5
Planteamiento del problema	5
Introducción	5
Capítulo 1. Marco teórico	7
1.1 Sistemas de valoración	7
1.1.1 Sistema de valoración Valpar	7
1.2.2 Sistema de valoración DASH	8
1.2.3 Sistema de valoración SHAP	8
1.2.4 Sistema de valoración NHD	8
1.2 Diseño de experimentos estadísticos	9
1.2.1 Procedimiento de aplicación de DEE	9
1.2.2 Hipótesis y procedimientos de prueba	9
1.2.3 Tipos de error	10
1.2.4 Análisis de la varianza ANOVA	10
1.2.5 Procedimiento de Tukey (el método T)	12
1.3 Diseño para ensamble manual	. 13
1.3.1 Método de Boothroyd Dewhurst	13
1.3.2 Efectos del peso en el tiempo de sujeción manual	17
Capítulo 2. Diseño del experimento para la prueba CDMIT	18
2.1 Aplicación de DEE en el diseño de la prueba de destreza CDMIT	18
2.2 Diagrama de árbol y combinaciones totales.	19
2.4 Caracterización de piezas con base en diseño para ensamble manual	23
2.6 Plan, diseño y descripción de la aplicación de ANOVA y Tukey para análisis de resultados	28
Capítulo 3. Descripción de las pruebas destreza CDMIT	38
3.1 Materiales	38
3.2 Procedimiento	38
Capítulo 4 Resultados de la prueba de destreza CDMIT	41
Capítulo 5 Análisis de resultados ANOVA y Tukey	51
5.1 Resultados de eficiencias de ensamble de las órtesis.	61
Conclusiones	61
Trabajo a futuro	62

APENDICE	63
Hoja de tiempos de ensamble	63
Tabla de tiempos para manipulación manual	65
Tabla de tiempos para inserción manual	66
Referencias	67

Objetivo

Diseñar un experimento para evaluar la destreza manual que adquiere un usuario con la ayuda de dos diferentes órtesis y determinar cuál tiene mejor desempeño.

Planteamiento del problema

Se debe evaluar el desempeño y funcionalidad de dos órtesis que se desarrollaron en Centro de Diseño e Innovación Tecnológica de la UNAM, se creó un experimento capaz de evaluar las respuestas objetivas y subjetivas de los usuarios, con el uso de las órtesis.

Introducción

En el Centro de Diseño e Innovación Tecnológica de la UNAM (CDMIT) se desarrollaron dos dispositivos mecánicos que auxilian a un usuario con discapacidad en mano. Dichos dispositivos están especialmente enfocados al tratamiento de parálisis por lesión en plexo braquial, así como la de restituir la función de prensión en un punta fina. La norma (UNE-EN ISO 9999-1999) define una ayuda técnica como "cualquier producto, instrumento, equipo o sistema técnico usado por una persona con discapacidad, fabricado especialmente o disponible en el mercado, para prevenir compensar, mitigar o neutralizar la deficiencia, discapacidad o minusvalía". Por otra parte (ISO 8549-1:1989) define una órtesis como "dispositivo o aparato externo aplicado al cuerpo para modificar los aspectos funcionales o estructurales del sistema neuromusculoesquelético". Mientras que la (UNE 111909-90-1) define una prótesis como "un aparato externo usado para reemplazar, total o parcialmente, un segmento de un miembro ausente o deficiente. Se incluye cualquier aparato que tenga una parte interior del cuerpo humano por necesidades estructurales o funcionales".

Debido a que los dispositivos desarrollados en el Centro de Diseño no reemplazan parcialmente, ni compensan el déficit de longitud de algún miembro del usuario (efecto protésico) y permiten desplazamientos y giros relativos con respecto al cuerpo, guiando y sosteniendo una articulación;

Imagen 1, Órtesis dinámica de mecanismo flexibles.

Imagen 2, Órtesis dinámica de mecanismo rígido

Dichos dispositivos se contemplarán en esta tesis como ayudas técnicas, en la categoría de órtesis articuladas, dinámicas o activas con base en las definiciones que se presentaron. La primera órtesis que se muestra en la imagen 1, fue desarrollada por el ingeniero Torres. P. (2012) es también conocida como órtesis dinámica de mecanismo de seis eslabones u órtesis rígida. La segunda órtesis que se muestra en la imagen 2, surge del rediseño a la propuesta de Torres, por el ingeniero Gómez. C. (2013) también conocida como órtesis dinámica de mecanismo flexible. Esta órtesis funciona con un

mecanismo flexible principio, Howell. L (2002) define un mecanismo flexible como "un dispositivo mecánico que se utiliza para transmitir o transformar un movimiento, una fuerza o energía basándose en la deflexión de sus miembros y la energía se almacena en forma de energía de deformación en los elementos flexibles".

Algunas características del usuario de la órtesis se describen de la manera siguiente, tiene una parálisis completa del antebrazo y mano por una lesión en plexo braquial, por daño en las raíces del nervio cutáneo medial del antebrazo y el nervio músculo cutáneo originando ausencia de sensibilidad en mano. La flacidez de la mano y deformación ósea en metacarpos y falanges es por causa postural y desuso de los miembros. Tiene la posibilidad abducción del hombro, flexión en codo, pero la función de flexión en muñeca es inexistente, debido a la presencia de una varilla metálica que recorre su miembro superior, desde la zona medial del antebrazo sobre la diáfisis del radio, cruza el complejo carpiano y termina cerca de la epífisis distal del segundo metacarpiano.

Para poder determinar cuál de las dos órtesis ayudan al usuario a adquirir mayor destreza realizando la prensión en punta fina, se investigó si existía algún sistema de valoración que brindara información para realizar una comparación entre las dos órtesis. Al finalizar el proceso de búsqueda se presentó el problema de que actualmente no existe un sistema de valoración que proporcionara un estudio completo de datos objetivos y subjetivos de la destreza manual que adquieren los usuarios con el uso de las órtesis. Por lo tanto se planteó y desarrolló un experimento capaz de cumplir los requerimientos de evaluación, es así como se concibe las

Imagen 3, prueba de destreza manual

"Pruebas de destreza manual CDMIT". Las pruebas de destreza manual CDMIT que se muestra en la imagen 3, lleva este nombre debido a que es una prueba orientada a evaluar la destreza, siendo la habilidad o arte con el cual se realiza una determina acción, trabajo o actividad [1], la principal misión de evaluar la destreza es lograr el mejoramiento de las cualidades físicas del sujeto. Estas pruebas fueron creadas con apoyo de una exhaustiva interacción con el usuario, utilizando principios de diseño para ensamble (Boothroyd) y conceptos de sistemas de valoración como: Valpar, SHAP y NHD. Aparte, utiliza como base analítica de resultados, métodos de inferencia estadística como ANOVA y TUKEY con el objetivo de analizar los diferentes factores que resulten significativos al momento de que el usuario realice la prueba de ensamble. Es así que la prueba de destreza manual CDMIT permite filtrar información para comparar los resultados a un nivel de confianza del 95%, valor requerido en estudios de fenómenos sociales y biológicos [2].

Capítulo 1. Marco teórico

1.1 Sistemas de valoración

Un sistema de valoración es una prueba que cuantifica las habilidades físicas y psicológicas de una persona realizando una tarea específica [3]. Se describen los cinco sistemas de valoración que se estudiaron y se utilizaron como base para la creación de la Prueba de destreza CDMIT.

1.1.1 Sistema de valoración Valpar

Son pruebas que se aplican a personas que han sufrido lesiones en el trabajo o personas con discapacidad. Las habilidades a evaluar son:

- Destreza
- Potencial educativo
- Potencial laboral

Las pruebas de evaluación de Valpar se basan en las "Muestras de trabajo". Una muestra de trabajo es una simulación que contempla actividades que se desarrollan en industrias, oficinas y talleres. Las simulaciones que se llevan a cabo en dichos escenarios laborales son:

- Actividades de oficina
- Electrónica
- Trabajos de ensamblado
- Control de calidad
- Diseño

Las muestras de trabajo son las siguientes:

Muestra de trabajo 1. Herramientas mecánicas

Muestra de trabajo 2. Discriminación de tamaño

Muestra de trabajo 3. Clasificación numérica

Muestra de trabajo 4. Rango de movimiento de las extremidades superiores

Muestra de trabajo 5. Habilidad y aptitud para actividades de oficina

Muestra de trabajo 6. Solución de problemas independientes

Muestra de trabajo 7. Clasificación multinivel

Muestra de trabajo 8. Simulación de ensamblado

Muestra de trabajo 9. Rango de movimientos corporales

Muestra de trabajo 10. Medición en tres niveles

Muestra de trabajo 11. Coordinación ojo-mano-pie

Muestra de trabajo 12. Soldadura e inspección electrónica

Muestra de trabajo No.8 de Valpar

Es una prueba representativa de trabajos en líneas de ensamble en una banda. Esta prueba mide la habilidad que requiere la manipulación física repetitiva y evalúa el uso bilateral de las extremidades superiores. Dicho equipo tiene un costo de \$95,000 pesos mexicanos.

1.2.2 Sistema de valoración DASH

Sistema de valoración DASH por sus siglas en inglés (Disabilities of Arm, Shoulder and Hand). Esta prueba fue desarrollada por el Instituto de Salud y del Trabajo y a la Academia Americana de Cirujanos Ortopédicos (AAOS). Dicho sistema de valoración es un cuestionario de treinta artículos auto reportado. Este sistema ayuda a describir la incapacidad que enfrentan las personas con limitaciones o problemas en miembro superior. El cuestionario pregunta sobre síntomas así como las actividades que puede realizar la persona. La cédula del sistema de valoración DASH se muestra en el anexo de tablas de sistemas de valoración.

Imagen 4, Muestra de trabajo No. 8

1.2.3 Sistema de valoración SHAP

Por sus siglas en inglés (Southampton Hand Assesment Procedure) es una prueba con validez clínica que cumple la función de evaluar las funciones de la mano. Esta prueba fue desarrollada originalmente para estudiar la efectividad de la prótesis de miembro superior.

Actualmente SHAP es aplicada para asistir en el estudio del sistema músculo esquelético y neurológico. Este sistema de valoración fue desarrollado por Collin Light, Paul Chappell y Peter Kyberd en el año 2002 en la Universidad de Southampton. El sistema de valoración SHAP tiene un costo de £ 3000.00 libras esterlinas

Imagen 5, Sistema de valoración SHAP, [16]

1.2.4 Sistema de valoración NHD

Por sus siglas en inglés (Nine Hole Peg Test Instruction) ésta prueba evalúa tiempos de ensamble de piezas en un tablero.

Esta prueba debe empezar con el brazo dominante y al finalizar con el siguiente brazo. Se le debe permitir al usuario un tiempo de preparación, entrenamiento o práctica antes de comenzar. La prueba se realiza con un cronómetro y se registra el tiempo en segundo. El contador del cronómetro se activa cuando la persona toca la primera pieza y éste se detiene cuando el usuario coloca la última en el lugar correspondiente en el tablero. El tablero debe ser cuadrado con 9 agujeros, la distribución de estos debe tener una distancia entre centros de 3.2 cm. Cada agujero debe tener 1.3 cm de profundidad. El tablero de tener en su base algún tipo de adhesivo para evitar que haya deslizamiento de este sobre la superficie en el que esté puesto.

Imagen 6, Sistema de valoración NHD, [17]

Con respecto a las piezas, deben ser 9 piezas de madera de 64 mm de diámetro y 3.2 cm de largo. Dicho sistema es de reproducción libre.

1.2 Diseño de experimentos estadísticos

Se describe la metodología experimental que se utilizó para desarrollar la prueba de destreza CDMIT y poder evaluar al usuario utilizando las órtesis.

El objetivo de la experimentación es obtener información de calidad para comprender mejor un sistema y comprobar hipótesis. El diseño estadístico de experimentos (DEE) es una metodología basada en análisis matemáticos e inferencia estadística [4]. Dicha metodología se aplica en los casos en donde se observan la presencia de una o más variables experimentales dependientes también llamadas respuestas, y cuyo valor depende de los valores de una o más variables independientes controlables, también llamados factores.

Los objetivos que se suelen perseguir al estudiar sistemas que tengan presencia de varios factores son:

- 1. Valores en que los factores se pueden centrar en la investigación
- 2. Determinar la influencia de los factores sobre las respuestas observada
- 3. Optimizar respuestas, factores que proporcionan las respuestas de mayor calidad

1.2.1 Procedimiento de aplicación de DEE

- 1. Comprender el problema y definir claramente el objetivo, así como definir y seleccionar las respuestas experimentales.
- 2. Identificar los factores que podrían influir en las respuestas experimentales y los valores que estos pueden tomar.
- 3. Establecer la estrategia experimental, también llamada plan de experimentación en esta etapa se propone el tipo de diseño experimental que se pueden aplicar a cada caso.
- 4. Efectuar los experimentos, al realizarlos suelen estar descritos mediante variables decodificadas
- 5. Interpretación de resultados y responder a las preguntas planteadas, cuando se disponen de los resultados se procede a calcular los efectos de los factores así como sus interacciones. Las pruebas estadísticas permiten comprobar si los efectos calculados son significativos comparándolos con el error experimental.

1.2.2 Hipótesis y procedimientos de prueba

Una prueba de hipótesis se basa en utilizar datos muestrales para decidir si una hipótesis nula debe ser rechazada.

Una **hipótesis nula** es la pretensión que inicialmente se supone cierta. La hipótesis nula se denota por H_o .

Una **hipótesis alternativa** es la aseveración contradictoria a H_o . La hipótesis alternativa se denota por H_a .

"La hipótesis nula será rechazada en favor de la hipótesis alternativa si y solo si la evidencia muestral sugiere que $\mathbf{H_o}$ es falsa. Si la muestra no contradice fuertemente a $\mathbf{H_o}$, se continuará creyendo en la verdad de la hipótesis nula. Las dos posibles conclusiones derivadas de un análisis de prueba de hipótesis son entonces rechazar $\mathbf{H_o}$ o no rechazar $\mathbf{H_o}$ ". Devore. L. (2008),

Un **estadístico de prueba** es una función de los datos muestrales en los cuales ha de basarse la decisión de rechazar o no rechazar H_o .

Una región de rechazo es el conjunto de todos los valores estadísticos de prueba por los cuales H_o será rechazada.

"La hipótesis nula será rechazada entonces sí y solo si el valor estadístico de prueba observado o calculado queda en la región de rechazo". Devore. L. (2008),

1.2.3 Tipos de error

Un error de tipo I consiste en rechazar H_o cuando es verdadera.

Un error de tipo II implica no rechazar H_o cuando es falsa.

1.2.4 Análisis de la varianza ANOVA

ANOVA o análisis de la varianza se refiere a un conjunto de situaciones experimentales y procedimientos estadísticos para el análisis de respuestas cuantitativas de unidades experimentales.

Factor: característica que diferencia los tratamientos o poblaciones una de otra.

Niveles: son el distinto tratamiento o poblaciones.

Cuando el factor A consta de I niveles y el factor B consta de J niveles se obtienen IJ combinaciones también llamados tratamientos. Por lo tanto se define ANOVA $K_{ij} = b$, siendo "b" el número de observaciones en el tratamiento compuesto del factor A al nivel "i" y del factor B al nivel "j". De tal manera, se describen los procedimientos de prueba para ANOVA $K_{ij} = 1$. [5]

 X_{ij} = la variable aleatoria que denota la medición cuando el factor A se mantiene al nivel i y el factor B al nivel j.

 x_{ii} = el valor observado de X_{ii} .

 \bar{X}_{i} = el promedio de las mediciones obtenidas cuando el factor A se mantiene al nivel i.

$$\bar{X}_{i\cdot} = \frac{\sum_{j=1}^{J} X_{ij}}{I}$$

 \bar{X}_{ij} el promedio de las mediciones obtenidas cuando el factor B se mantiene al nivel j.

$$\bar{X}_{i\cdot} = \frac{\sum_{i=1}^{I} X_{ij}}{I}$$

 \bar{X} ...= la gran media

$$\bar{X}_{\cdot \cdot \cdot} = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} X_{ij}}{IJ}$$

En ANOVA $K_{ij} = 1$, se presentan dos hipótesis que se deben de evaluar.

- 1. H_{0A} , establece que los distintos niveles del factor A no tienen efecto en la respuesta promedio verdadera.
- 2. H_{0B} , establece que los distintos niveles del factor B no tienen efecto en la respuesta promedio verdadera.

$$\boldsymbol{H}_{0A}$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_I = 0$

contra \mathbf{H}_{aA} : por lo menos una $\alpha_i \neq 0$

$$\boldsymbol{H}_{0B}: \beta_1 = \beta_2 = \dots = \beta_I = 0$$

contra \mathbf{H}_{aB} : por lo menos una $\beta_j \neq 0$

Los procedimientos de prueba utilizados se muestran en la tabla 1

Tabla 1. Procedimientos de prueba para ANOVA bifactorial, [5].

Expresión	Descripción
$STC = \sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X}_{})^{2}$	Suma total de los cuadrados
$SCA = J \sum_{i=1}^{I} (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot})^2$	Suma de los cuadrados del factor A
$SCB = I \sum_{j=1}^{J} (\bar{X}_{\cdot j} - \bar{X}_{\cdot \cdot})^2$	Suma de los cuadrados del factor B
$SCE = \sum_{i=1}^{l} \sum_{j=1}^{J} (X_{.j} - \bar{X}_{i.} - \bar{X}_{.j} + \bar{X}_{})^{2}$	Suma de los cuadrados del error
$MCB = \frac{SCB}{J - 1}$	Media del cuadrado del factor B
$MCA = \frac{SCA}{I - 1}$	Media del cuadrado del factor A
$MCE = \frac{SCE}{(J-1)(I-1)}$	Media del cuadrado del error

Hipótesis	Valor del estadístico de prueba	Región de rechazo
$H_{0A}\;\;contra\;H_{aA}$	$f_a = \frac{MCA}{MCE}$	$f_a \ge F_{\alpha, m_{fa}, v_{fa}}$ $m_{fa} = I - 1$ $v_{fa} = (J - 1)(I - 1)$
H_{0B} contra H_{aB}	$f_b = \frac{MCB}{MCE}$	$f_b \ge F_{\alpha, m_{fb}, v_{fb}}$ $m_{fb} = J - 1$ $v_{fb} = (J - 1)(I - 1)$

1.2.5 Procedimiento de Tukey (el método T)

Este método sirve para identificar las μ_i significativamente diferentes. Dicho procedimiento utiliza una distribución llamada distribución de rango estudentizado y depende de dos parámetros.

- Un "m" grados de libertad asociados con el numerador.
- Un "n" grados de libertad asociados con el denominador.

Definidos estos dos parámetros sea $Q_{\alpha,m,v}$ el valor crítico α de cola superior de la distribución de rango estudentizado con "m" grados de libertad asociados con el numerador y "v" grados libertad asociados con el denominador.

Las comparaciones múltiples Tukey se puede utilizar cuando H_{0A} o H_{0B} han sido rechazadas. Los pasos para de análisis son los siguientes:

- 1. Para comparar niveles del factor A, se obtiene $Q_{\alpha,I,(I-1)(J-1)}$. De tal manera que $m_{1a} = I$ niveles del factor A y es definido como los grados de libertad del numerador de A. Mientras que $n_{1a} = (I-1)(J-1)$ de los factores A y B, se define como los grados de libertad del denominador.
- 2. Para comparar niveles del factor B, se obtiene $Q_{\alpha,J,(I-1)(J-1)}$ De tal manera que $m_{2b} = J$ niveles del factor B y es definido como los grados de libertad del numerador de B. Mientras que $n_{2b} = (I-1)(J-1)$ de los factores A y B, se define como los grados de libertad del denominador de B.
- 3. Se selecciona α , se extrae $Q_{\alpha,m,n}$ de tablas de distribución de rango estudentizado.
- 4. Se calcula

 $w = \mathbf{Q} \cdot (desviación estandar estimada de las medias muestrales)$

$$w_a = \mathbf{Q}_{\alpha, I(I-1)(J-1)} \cdot \sqrt{\frac{MCE}{J}}$$
 Para comparaciones en el factor A $w_b = \mathbf{Q}_{\alpha, J(I-1)(J-1)} \cdot \sqrt{\frac{MCE}{J}}$ Para comparaciones en el factor B

5. Se procede a ordenar las medias muestrales en orden creciente, se subrayan los pares que difieren menos de "w" y se identifican los pares no subrayados por la misma línea como correspondientes a niveles significativamente diferentes del factor dado.

El resultado obtenido por el procedimiento de Tukey es obtener un conjunto de intervalos de confianza con nivel de confianza simultáneo de $100(1-\alpha)\%$ para todas las μ_i observadas.

1.3 Diseño para ensamble manual

Se utilizó la metodología de diseño para ensamble manual para obtener la eficiencia en tiempo que adquiere el usuario al momento de realizar los ensambles de las piezas del banco de pruebas con la ayuda de las órtesis.

Diseño para manufactura y ensamble o DFMA por sus siglas en inglés, es una técnica en ingeniería utilizada para reducir tiempos de ensamble, costos de producción y eficientar procesos de ensamble y diseños de productos.

1.3.1 Método de Boothroyd Dewhurst

El método de Boothroyd Dewhurts de diseño para manufactura y ensamble, trabaja bajo dos principios; reducir tiempos de operación y que los procesos sean de fácil ejecución. Para cumplir dichos principios, el método establece que cada parte a ensamblar debe ser examinada y clasificada.

Los recursos que se utilizaron del método de Boothroyd fueron, el primer dígito de manipulación automática para obtener una caracterización geométrica de las piezas, el código de dos dígitos de manipulación manual para obtener el tiempo de manipulación de las piezas y el código de dos dígitos de inserción manual para obtener el tiempo de inserción manual de las piezas.

Para obtener el primer dígito de manipulación automática se define si la pieza es rotacional o no rotacional. Una pieza rotacional será un cilindro o prisma regular donde la sección transversal sea un polígono regular, también será una pieza triangular o cuadrada que repita su orientación cuando es rotada sobre su eje principal. Primero se caracteriza todos los lados de las piezas analizar cómo se muestra en la imagen 7. Después se caracteriza con respecto a los criterios de la tabla 2, para determinar el primer dígito.

A: Es el lado más largo del prisma rectangular que encierra la pieza.

B: Es el lado intermedio del prisma rectangular que encierra las pieza.

C: Es el lado más pequeño del prisma rectangular encierra las pieza.

D: Es el diámetro del cilindro más pequeño que encierra una pieza rotacional.

L: Es el cilindro del cilindro más pequeño que encierra una pieza rotacional.

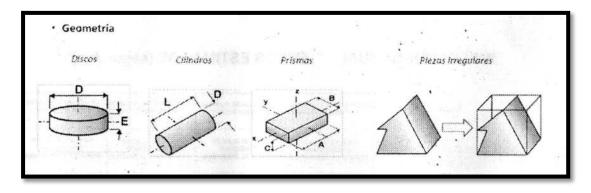


Imagen 7, Descripción de caracterización de lados de la piezas, [6]

Tabla 2, Primer dígito de manipulación automática, [6].

Clasificac	Clasificación		
	Discos	0	
	L/D < 0.8	ŭ	
Rotacionales	Cilindros cortos	1	
Rotacionales	$0.8 \le L/D \le 1.5$	1	
	Cilindros largos	2	
	L/D > 1.5	2	
	Planos		
	$A/B \leq 3$	6	
	A/C > 4		
No rotacionales (prisma)	Largos	7	
No rotacionales (prisma)	A/B > 3	/	
	Cúbicos		
	$A/B \leq 3$	8	
	$A/C \leq 4$		

Para obtener el código de dos dígitos para manipulación manual e inserción manual, se procede a realizar un análisis de simetría utilizando las letras griegas $\alpha y \beta$, que se definen de la manera siguiente:

Simetría α : es la orientación en grados que la pieza puede girar q con respecto a un eje perpendicular al eje de inserción, para que pueda ser ensamblada correctamente.

Simetría β : es la orientación en grados que la pieza puede girar con respecto al eje de inserción y ensamblarse correctamente.

Una descripción gráfica se muestra en la imagen 8.

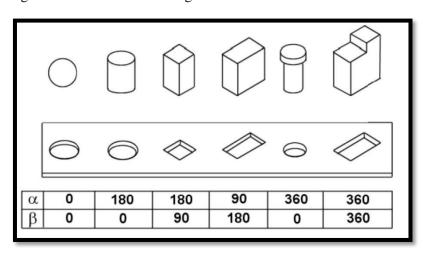
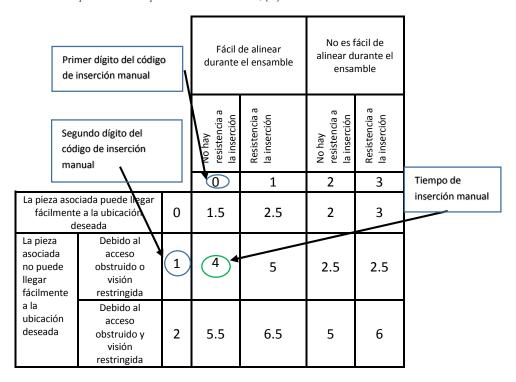


Imagen 8. Simetría alfa y beta, [6]


Ya que se seleccionaron α y β se procede a determinar los dígitos restantes que se presentan en las tablas de tiempos para manipulación e inserción manual, tabla 3.

Primero se considera la fila y después la columna tomando las consideraciones que especifica cada tabla, el número que resulta de la intersección de la fila y la columna es el tiempo estimado para realizar la operación. Dichas tablas se muestran completas en el apéndice.

Tabla 3, Extracto de tabla de tiempos estimados para manipulación manual, [6].

			Parte	s que son fá	iciles de	sujetar y	manipular		
			Esp	$Espesor > 2 mm$ $Espesor \le 2mm$			$or \leq 2mm$		
			Tamaño > 15 mm	6 mm ≤ Tamaño > 15 mm	Tamaño < 6 mm	Tamaño > 6 mm	Tamaño ≤ 6 mm		Primer dígito del código de manipulación
			0	1 ←	2	3	4		manual
ıs ⁄uda	$(\alpha + \beta)$ < 360°	0	1.13	1.43	1.88	1.69	2.18		
Piezas que pueden ser sujetadas y manipuladas con una mano, sin la ayuda	360° $\leq (\alpha + \beta)$ $\leq 540^{\circ}$	1	1.5	1.8	2.25	2.06	2.55		
Piezas que pueden ser sujetadas y manipulad con una mano, sin la a	$540^{\circ} \le (\alpha + \beta)780^{\circ}$	2	1.8	2.1	2.55	2.36	2.85		Tiempo de
Pieza sujet	$(\alpha + \beta)$ $= 720^{\circ}$	3	1.95	2.25	2.7	2.51	3		manipulación
		del có	ndo dígito odigo de oulación al					-	

Tabla 4, Extracto de tabla de tiempos estimados para inserción manual, [6].

Una vez clasificadas las piezas se procede determinar el tiempo de ensamble de cada pieza.

$$t_{ensamble} = t_{manipulación} + t_{inserción}$$

Se presenta un ejemplo de la clasificación de una pieza del experimento en la imagen 9.

Nombre de la pieza	Clasificación Manual	Medidas de las piezas en [mm]
Pieza Circular Acrílico	D=31.5 mm L=15.75 mm L/D=0.43 Disco Rotacional Simetría alfa:360° Simetría beta: 0° Código de ensamble: 1,1,0,3,0 Tiempo manipulación: 1.5 [s] Tiempo de inserción: 2[s] Tiempo de ensamble:3.5[s] Masa: 18.9 gr	\$31.5 \$31.5

Imagen 9, Ejemplo de clasificación de una pieza de la prueba de ensamble.

1.3.2 Efectos del peso en el tiempo de sujeción manual

El efecto del peso en las piezas, cuando se realizar la acción de sujetar y controlar las piezas está expresado con un tiempo de penalización que se puede sumar al $t_{manipulación}$.

Se asume que el máximo peso de una pieza que puede ser sujetada con una mano es alrededor de 10-20 [lb] o 4.53-9.07 [lb] lo que daría como resultado un tiempo de penalización de 0.25-0.5 [s]. El tiempo de penalización debido al peso se calcula de la siguiente forma.

$$t_{pw} = 0.0125 * W + 0.011 * W * t_{manipulation}$$

 t_{pw} : tiempo de penalización debido al peso

W: peso en libras de la pieza

Habiendo mencionado lo anterior se despreciará el tiempo de penalización debido al peso medido de las piezas.

Capítulo 2. Diseño del experimento para la prueba CDMIT

Se describe el proceso para el diseño de las pruebas CDMIT, el cual contempla la aplicación de la DEE, la caracterización de la piezas a ensamblar con base en diseño para ensamble manual, la nomenclatura a seguir durante el experimento, el plan de experimentación y como se aplicó el análisis de ANOVA y Tukey para el análisis de resultados.

2.1 Aplicación de DEE en el diseño de la prueba de destreza CDMIT.

Aplicando el procedimiento DEE para diseñar un experimento para evaluar la destreza, se plantearon los siguientes puntos:

- 1. El objetivo es medir la destreza manual que adquiere el usuario con la ayuda de dos diferentes órtesis y determinar cuál de las dos órtesis tienen un mejor desempeño en el usuario.
- 2. Comparar los resultados donde salgan significativas las órtesis en las diferentes respuestas experimentales que son:
- **Tiempo de ensamble:** El tiempo requerido para ser sujetada y ensamblada las piezas.
- **Intentos de sujeción:** Son los intentos que el usuario realiza para sujetar la pieza con uno de sus miembros superiores.
- Fallos en el ensamble: Son los intentos fallidos antes de realizar con éxito el ensamble.
- **Dificultad para sujetar:** Es dificultad para sujetar percibida por el usuario, dicha dificultad se evaluará en la escala del 1 al 5, siendo el de 1 muy sencillo y 5 difícil.
- **Dificultad para soltar:** Es dificultad para sujetar percibida por el usuario, dicha dificultad se evaluará en la escala del 1 al 5, siendo el de 1 muy sencillo y 5 difícil.
- 3. En el caso de que las órtesis sean significativas en la respuesta tiempo de ensamble, se obtendrá la eficiencia de ensamble de cada órtesis, tomando como referencia los tiempos de ensamble teóricos del apartado 2.4.

Ejemplo:

$$Eficiencia_{0.D.F} = \frac{tiempo\ de\ en\ ensamble\ de\ las\ pieza\ boothroyd}{tiempo\ promedio\ obtenido\ O.\ D\ flexible}$$

4. Los factores que se identificaron y tienen una intervención directa en las respuestas experimentales son: la geometría de las piezas, el tipo de superficie y el tipo de órtesis. Sus respectivos niveles se muestran en la tabla 5.

Tabla 5, Sele			

Factor	Nivel 1	Nivel 2	Nivel 3	Nivel 4
Orientación,				
simetría β de la	0°	45°	90°	180°
pieza ensamble				
Altura de la	15.75 mm	20.6 mm	51.5 mm	101.5 mm
pieza	13.73 111111	20.0 11111	31.3 11111	101.5 11111
Tipo de	Lisa	Dugoso		
superficie	Lisa	Rugosa	-	-
Tipo de órtesis	Rígida	Flexible	-	-

Se manuf

Nota 1: No se considerará el peso de las piezas como un factor a estudiar debido a lo mencionado en el apartado 1.3.2 Efectos del peso en el tiempo de sujeción manual. No se considerará al usuario como un factor en el experimento y se considerará como una variable de entrada como se muestra en la imagen 10.

- 5. Se analizarán los datos utilizando, análisis de la varianza ANOVA y el método Tukey.
- 6. Las Hipótesis nulas se plantearan de acuerdo al método utilizado en este caso serán: Los factores no tiene efecto en las respuestas obtenidas.

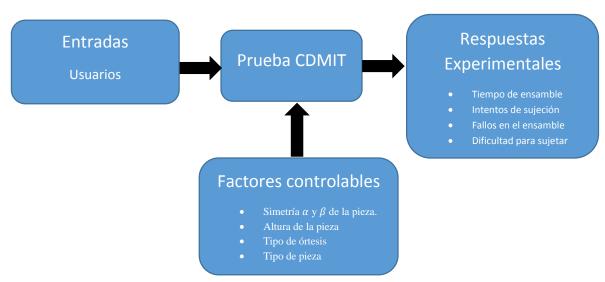


Imagen 10, Diagrama de trabajo de las pruebas CDMIT

2.2 Diagrama de árbol y combinaciones totales.

El cálculo de combinaciones totales en un experimento se expresa de la siguiente forma:

$$C_T = N^F$$

 C_T : Combinaciones totales N: Número de niveles del factor F: Número de factor

De tal manera se tiene que el factor tipo de altura y tipo de orientación con número de niveles igual a 4 y el factor tipo de órtesis y el factor tipo de rugosidad con número de niveles igual a 2, en el cálculo de combinaciones totales se expresa de la siguiente forma:

$$C_T = 4^2 \cdot 2^2 = 64$$
 combinaciones

Las 64 combinaciones representan el número de tratamientos a realizar durante el experimento y este considera todas las combinaciones entre los factores antes mencionados. Sin embargo, por acuerdos y requerimientos, se estipuló que solo se fabricarían piezas rugosas y lisas para piezas con 21 mm de altura a todas las orientaciones. De tal forma el experimento queda acotado a 40 tratamientos.

En el diagrama de árbol de la tabla 6, se muestra de manera esquemática el número de combinaciones. Las secciones marcadas con las letras N/A, están referidas al término "No aplica", siendo las combinaciones que se excluyeron del experimento. Esto debido a que no se manufacturaron las piezas que tenían esas características y por acuerdos internos para reducir el número de tratamientos en los experimentos

En la tabla 7, se muestra el código de arreglo que se utiliza para llevar acabo el experimento y análisis de datos. Sin embargo, por acuerdos y requerimientos se clasificaron las piezas bajo dos diferentes descripciones: Una descripción genérica de la pieza y una por nivel de factor de cada pieza.

Ejemplo:

Imagen 11, Pieza estrella acrílico

Tabla 6. Diagrama de árbol de combinaciones totales a analizar

Órtesis	Superficie	Orientación	Altura	No. de combinacio nes	
			15	1	
		00	21	2	
		0°	50	3	
			100	4	
			15	5	
		450	21	6	
		45°	50	7	
	isa		100	8	
	Li		15	9	
		90°	21	10	
			50	11	
	-		100	12	
				15	13
		180°	21	14	
			50	15	
Rígida			100	16	
Ríg		0°	15	N/A	
			21	17	
		U ^s	50	N/A	
			100	N/A	
			15	N/A	
		450	21	18	
		45°	50	N/A	
	gosa		100	N/A	
	Rugosa		15	N/A	
		90°	21	19	
		90-	50	N/A	
			100	N/A	
			15	N/A	
		180°	21	20	
		100	50	N/A	
			100	N/A	

Part					
15 22 50 23 100 24 15 25 21 26 50 27 100 28 21 30 50 31 100 32 15 33 100 36 35 100 36 36 36 36 37 37 50 N/A 100 N/A 15 N/A 15 N/A 100 N/A	Órtesis	Superficie	Orientación	Altura	No. de combinacio nes
15 25 21 26 50 27 100 28 15 29 21 30 50 31 100 32 15 33 100 32 15 33 21 34 50 35 100 36 15 N/A 21 37 50 N/A 100 N/A 15 N/A 100 N/A 15 N/A 100 N/A				15	21
100 24 15 25 21 26 50 27 100 28 28 21 30 50 31 100 32 33 21 34 50 35 100 36 36 37 50 N/A 100 N/A 15 N/A 15 N/A 15 N/A 15 N/A 100 N/A 15 N/A 15 N/A 100 N/A 15 N/A 100 N/A 15 N/A 15 N/A 100			00	21	22
15 25 21 26 50 27 100 28 15 29 21 30 50 31 100 32 15 33 21 34 50 35 100 36 35 100 36 36 37 50 N/A 100 N/A 15 N/A 15 N/A 15 N/A 100 N/A 15 N/A 100 N/A 100 N/A 15 N/A 100 N/A			0	50	23
45° 21 26 50 27 100 28 15 29 21 30 50 31 100 32 15 33 21 34 50 35 100 36 15 N/A 21 37 50 N/A 100 N/A 15 N/A 100 N/A 15 N/A 100 N/A 100 N/A 15 N/A 100 N/A 100 N/A 100 N/A 15 N/A 100 N/A 100 N/A 100 N/A 100 N/A				100	24
90° 15 90° 21 30 50 31 100 32 15 33 180° 15 33 21 34 50 35 100 36 15 N/A 21 37 50 N/A 100 N/A 15 N/A 21 38 50 N/A 100 N/A				15	25
90° 15 29 90° 21 30 50 31 100 32 15 33 180° 35 100 36 15 N/A 21 37 50 N/A 100 N/A 15 N/A 21 38 50 N/A 100 N/A 100 N/A			150	21	
90° 21 30 50 31 100 32 15 33 21 34 50 35 100 36 15 N/A 21 37 50 N/A 100 N/A 15 N/A 100 N/A 15 N/A 100 N/A 15 N/A 100 N/A 15 N/A 100 N/A 15 N/A 15 N/A 100 N/A 15 N/A 15 N/A 100 N/A 15 N/A 100 N/A 100 N/A 100 N/A			43	50	
90° 21 30 50 31 100 32 15 33 21 34 50 35 100 36 15 N/A 21 37 50 N/A 100 N/A 15 N/A 15 N/A 100 N/A 15 N/A 15 N/A 100 N/A 15 N/A 15 N/A 100 N/A 15 N/A 15 N/A 100 N/A 15 N/A 100 N/A 100 N/A 100 N/A		sa		100	28
90° 50 31 100 32 15 33 21 34 50 35 100 36 36 37 50 N/A 100 N/A 15 N/A 15 N/A 15 N/A 100 N/A 100 N/A 100 N/A 100 N/A 100 N/A 15 N/A 100 N/A 15 N/A 100 N/A 15 N/A 100 N		Ľ		15	29
180° 180° 180° 15 33 21 34 50 35 100 36 15 N/A 21 37 50 N/A 100 N/A 15 N/A 21 38 50 N/A 100 N/A			000	21	
180° 15 33 21 34 50 35 100 36 15 N/A 21 37 50 N/A 100 N/A 15 N/A 100 N/A 100 N/A 15 N/A 100 N/A 15 N/A 100 N/A 15 N/A 100 N/A			90	50	
180° 21 34 50 35 100 36 100 36 15 N/A 21 37 50 N/A 100 N/A 100 N/A 21 38 50 N/A 100 N/A 100 N/A 21 39 50 N/A 100 N/A 100 N/A				100	
180° 50 35 100 36 100 36 15 N/A 21 37 50 N/A 100 N/A 100 N/A 21 38 50 N/A 100 N/A 100 N/A 21 39 50 N/A 100 N/A 15 N/A 100 N/A			180°	15	33
150 35 100 36 15 N/A 21 37 50 N/A 100 N/A 15 N/A 100 N/A 100 N/A 15 N/A 100 N/A 15 N/A 100 N/A 15 N/A 21 39 50 N/A 100				21	34
0° 21 37 50 N/A 100 N/A 15 N/A 21 38 50 N/A 100 N/A 100 N/A 15 N/A 21 39 50 N/A 100 N/A				50	35
0° 21 37 50 N/A 100 N/A 15 N/A 21 38 50 N/A 100 N/A 100 N/A 15 N/A 21 39 50 N/A 100 N/A	ible			100	
0° 21 37 50 N/A 100 N/A 15 N/A 21 38 50 N/A 100 N/A 100 N/A 15 N/A 21 39 50 N/A 100 N/A	Flex			15	N/A
45° N/A 100 N/A 100 N/A 15 N/A 21 38 50 N/A 100 N/A 15 N/A 100 N/A 15 N/A 100 N/A 15 N/A 100 N/A 15 N/A 100 N/A			O _o	21	
45° 15 N/A 21 38 50 N/A 100 N/A 15 N/A 21 39 50 N/A 100 N/A 100 N/A			U	50	
45° 21 38 50 N/A 100 N/A 15 N/A 21 39 50 N/A 100 N/A				100	
45° 50 N/A 100 N/A 15 N/A 21 39 50 N/A 100 N/A 100 N/A				15	N/A
90° 100 N/A 100 N/A 15 N/A 21 39 50 N/A 100 N/A			150	21	
90° 15 N/A 21 39 50 N/A 100 N/A			43	50	
90° 21 39 50 N/A 100 N/A		çosa		100	
90° 50 N/A 100 N/A		Rug		15	
50 N/A 100 N/A			000	21	
			90	50	
15 N/A				100	
				15	
180° 21 40			1800	21	
50 N/A			100	50	
100 N/A				100	N/A

Tabla 7, Plan de experimentación.

No. de	Código del arreglo					Fac	tores	
tratamiento	А	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
1	1	1	1	-	Rígida	45°	15.75	-
2	1	2	1	-	Rígida	0°	15.75	-
3	1	1	2	1	Rígida	45°	20.6	Lisa
4	1	2	2	1	Rígida	0°	20.6	Lisa
5	1	1	2	2	Rígida	45°	20.6	Rugosa
6	1	2	2	2	Rígida	0°	20.6	Rugosa
7	1	1	3	-	Rígida	45°	51.5	-
8	1	2	3	-	Rígida	0°	51.5	-
9	1	1	4	-	Rígida	45°	101.5	-
10	1	2	4	-	Rígida	0°	101.5	-
11	1	3	1	-	Rígida	90°	15.75	-
12	1	4	1	-	Rígida	180°	15.75	-
13	1	3	2	1	Rígida	90°	20.6	Lisa
14	1	4	2	1	Rígida	180°	20.6	Lisa
15	1	3	2	2	Rígida	90°	20.6	Rugosa
16	1	4	2	2	Rígida	180°	20.6	Rugosa
17	1	3	3	-	Rígida	90°	51.5	-
18	1	4	3	-	Rígida	180°	51.5	-
19	1	3	4	-	Rígida	90°	101.5	-
20	1	4	4	-	Rígida	180°	101.5	-
21	2	1	1	-	Flexible	45°	15.75	-
22	2	2	1	-	Flexible	0°	15.75	-
23	2	1	2	1	Flexible	45°	20.6	Lisa
24	2	2	2	1	Flexible	0°	20.6	Lisa
25	2	1	2	2	Flexible	45°	20.6	Rugosa
26	2	2	2	2	Flexible	0°	20.6	Rugosa
27	2	1	3	-	Flexible	45°	51.5	-
28	2	2	3	-	Flexible	0°	51.5	-
29	2	1	4	-	Flexible	45°	101.5	-
30	2	2	4	-	Flexible	0°	101.5	-
31	2	3	1	-	Flexible	90°	15.75	-
32	2	4	1	-	Flexible	180°	15.75	-
33	2	3	2	1	Flexible	90°	20.6	Lisa
34	2	4	2	1	Flexible	180°	20.6	Lisa
35	2	3	2	2	Flexible	90°	20.6	Rugosa
36	2	4	2	2	Flexible	180°	20.6	Rugosa
37	2	3	3	-	Flexible	90°	51.5	-
38	2	4	3	-	Flexible	180°	51.5	-
39	2	3	4	-	Flexible	90°	101.5	-
40	2	4	4	-	Flexible	180°	101.5	-

2.4 Caracterización de piezas con base en diseño para ensamble manual

La clasificación de las piezas se realizó según la categorización para ensamble manual con el fin de tener una clasificación particular de cada pieza el tiempo ideal de manipulación e inserción.

Descripción	Clasificación Manual	Medidas de las piezas en [mm]
Pieza Circular Acrílico	D=31.5 mm L=15.75 mm L/D=0.5 Disco Rotacional Simetría alfa:360° Simetría beta: 0° Código de ensamble: 0,1,0,3,0 Tiempo manipulación: 1.5 s Tiempo de inserción: 2s Tiempo de ensamble:3.5 s Masa: 18.9 gr	Ø 31.5
Pieza Circular Plástico	D=31.5 mm L=20.6 mm L/D=0.653 Disco Rotacional Simetría alfa:360° Simetría beta: 0° Código de ensamble: 0,1,0,3,0 Tiempo manipulación: 1.5[s Tiempo de inserción: 2 s Tiempo de ensamble:3.5 s Masa: 11.5 gr	20.6 Ø 31.5
Pieza Circular Plástico Rugosa	D=31.5 mm L=20.6 mm L/D=1.53 Disco Rotacional Simetría alfa:360° Simetría beta: 0° Código de ensamble: 0,1,0,3,0 Tiempo manipulación: 1.5 s Tiempo de inserción: 2 s Tiempo de ensamble: 3.5 s Masa= 11.6 gr	Ø 31.5
Pieza Circular Madera Baja	D=31.5 mm L=51.5 mm L/D=1.63 Cilindro Largo Simetría alfa:360° Simetría beta: 0° Código de ensamble: 2,1,0,3,0 Tiempo manipulación: 1.5 s Tiempo de inserción: 2 s Tiempo de ensamble: 3.5 s Masa= 30.7 gr	51,5

Pieza Circular Madera Alta	D=31.5mm L=51.5 mm L/D=1.635 Cilindro Largo Simetría alfa:360° Simetría beta: 0° Código de ensamble: 2,1,0,3,0 Tiempo manipulación: 1.5 s Tiempo de inserción: 2 s Tiempo de ensamble: 3.5 s Masa= 57.5 gr	931.5
Pieza Estrella Acrílico	L= 15.75 mm D= 35.5 mm L/D=0.445 Disco Simetría alfa:360° Simetría beta:45° Código de ensamble:0,1,0,3,0 Tiempo de manipulación:1.5s Tiempo de inserción: 2 s Tiempo de ensamble:3.5 s Masa= 16.2 gr	35.4 35.4 14.2 15.7 15.7
Pieza Estrella Plástico	L= 20.6 mm D= 35.5 mm L/D=0.583 Disco Simetría alfa: 360° Simetría beta: 45° Código de ensamble:0,1,0,3,0 Tiempo de manipulación:1.5 s Tiempo de inserción: 2 s Tiempo de ensamble:3.5 s Masa= 9.4 gr	35.36
Pieza Estrella Plástico Rugosa	L= 20.6 mm D= 35.36 mm L/D=0.583 Disco Simetría alfa: 360° Simetría beta: 45° Código de ensamble:0,1,0,3,0 Tiempo de manipulación:1.5 s Tiempo de inserción: 2 s Tiempo de ensamble:3.5 s Masa= 9.9 gr	35.36

Pieza Estrella Madera Baja	L= 51.5 mm D= 35.5 mm L/D=1.456 Cilindro corto Simetría alfa: 360° Simetría beta: 45° Código de ensamble:1,1,0,3,0 Tiempo de manipulación:1.5 s Tiempo de inserción: 2 s Tiempo de ensamble: 3.5 s Masa= 25.8 gr	25.55 25.55 25.50 25
Pieza Estrella Madera Alta	L= 01.5 mm D= 35.5 mm L/D=2.86 Cilindro largo Simetría alfa: 360° Simetría beta: 45° Código de ensamble:1,1,0,3,0 Tiempo de manipulación:1.5 s Tiempo de inserción: 2 s Tiempo de ensamble:3.5 s Masa= 41.5 gr	
Pieza Cuadrado Acrílico	A=25 mm B=25 mm C=15.75 mm A/B=1 A/C=1.58 Cúbico Simetría alfa:360° Simetría beta: 90° Código de ensamble: 8,1,0,3,0 Tiempo de manipulación:1.5 s Tiempo de inserción: 2 s Tiempo de ensamble:3.5 s Masa= 14.2 gr	25.75
Pieza Cuadrado Plástico	A=25 mm B=25 mm C=20.6 mm A/B=1 A/C=1.21 Cúbico Simetría alfa:360° Simetría beta: 90° Código de ensamble: 1,1,0,3,0 Tiempo de manipulación:1.5 s Tiempo de inserción: 2 s Tiempo de ensamble:3.5 s Masa= 9.5 gr	20.8

Pieza Cuadrado Plástico Rugosa	A=25 mm B=25 mm C=20.6 mm A/B=1 A/C=1.21 Cúbico Simetría alfa: 360° Simetría beta: 90° Código de ensamble: 8,1,0,3,0 Tiempo de manipulación:1.5 s Tiempo de inserción: 2 s Tiempo de ensamble:3.5 s Masa= 11.6 gr	20.6
Pieza Cuadrado Madera Baja	A=51.5 mm B= 25 mm C= 25 mm A/B= 2.06 A/C= 2.06 Cúbico Simetría alfa: 360° Simetría beta: 90° Código de ensamble: 8,1,0,3,0 Tiempo de manipulación:1.5 s Tiempo de inserción: 2 s Tiempo de ensamble:3.5 s Masa= 26.1 gr	25.15
Pieza Cuadrado Madera Alta	A=101.5 mm B=35.4 mm C=35.4 mm A/B= 2.867 A/C= 2.867 Cúbico Simetría alfa: 360° Simetría beta: 90° Código de ensamble: 8,1,0,3,0 Tiempo de manipulación:1.5 s Tiempo de inserción: 2 s Tiempo de ensamble:3.5 s Masa= 51.9 gr	101.5
Pieza Óvalo Acrílico	L= 15.75 mm D= 40.7 mm L/D=0.387 Disco Simetría alfa: 360° Simetría beta: 90° Código de ensamble: 0,1,0,3,0 Tiempo de manipulación:1.5 s Tiempo de inserción: 2 s Tiempo de ensamble:3.5 s Masa= 22.4 gr	8°12 40.7

Pieza Óvalo Plástico	L= 20.6 mm D= 40.7 mm L/D=0.506 Disco Simetría alfa: 360° Simetría beta: 180° Código de ensamble: 0,2,0,3,0 Tiempo de manipulación:1.8 s Tiempo de inserción: 2 s Tiempo de ensamble:3.8 s Masa= 16.2 gr	6.72
Pieza Óvalo Plástico Rugosa	L= 20.6 mm D= 40.7 mm L/D=0.5061 Disco rotacional Simetría alfa: 360° Simetría beta: 180° Código de ensamble: 0,2,0,3,0 Tiempo de manipulación:1.8 s Tiempo de inserción: 2 s Tiempo de ensamble:3.8 s Masa= 16.9 gr	1.61
Pieza Óvalo Madera Baja	L= 51.5 mm D= 40.7 mm L/D=1.265 Cilindro corto Simetría alfa: 360° Simetría beta: 180° Código de ensamble: 1,2,0,3,0 Tiempo de manipulación:1.8 s Tiempo de inserción: 2 s Tiempo de ensamble:3.8 s Masa= 29.3 gr	\$2.7 \(\frac{1}{2\chi}\)
Pieza Óvalo Madera Alta	Pieza óvalo madera alta L= 101.5 mm D= 40.7 mm L/D=2.49 Cilindro largo Simetría alfa: 360° Simetría beta:180° Código de ensamble: 2,2,0,3,0 Tiempo de manipulación:1.8 s Tiempo de inserción:2 s Tiempo de ensamble: 3.8 s Masa=57.5 gr	3101

2.6 Plan, diseño y descripción de la aplicación de ANOVA y Tukey para análisis de resultados

Aplicando el análisis ANOVA y Tukey. Se realizaron 21 análisis en las diferentes categorías: tiempo de ensamble, intentos de sujeción, fallos en el ensamble, dificultad para sujetar, dificultad para soltar. En algunos casos se descartan la presencia de diferentes factores y niveles de los factores con el objetivo de filtrar ruido para obtener información particular.

- 1. **"O.D vs Todos los tipos de pieza":** En este caso se compara el factor órtesis contra las 20 piezas diferentes con el objetivo de realizar una análisis general al experimento.
- 2. **"O.D vs Tipos de pieza en Círculo":** En este caso se compara el factor órtesis contra el factor tipo de pieza en cuadrado, tomando como niveles los 5 tipos de pieza en cuadrado.

Tabla 8

No do		Código d	el arreglo		Factores			
No. de tratamiento	Α	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
2	1	2	1	-	Rígida	0°	15.75	-
II	1	2	2	1	Rígida	0°	20.6	Lisa
6	1	2	2	2	Rígida	0°	20.6	Rugosa
8	1	2	3	1	Rígida	0°	51.5	-
10	1	2	4	-	Rígida	0°	101.5	-
22	2	2	1	-	Flexible	0°	15.75	-
24	2	2	2	1	Flexible	0°	20.6	Lisa
26	2	2	2	2	Flexible	0°	20.6	Rugosa
28	2	2	3	-	Flexible	0°	51.5	-
30	2	2	4	-	Flexible	0°	101.5	-

3. **"O.D vs Tipos de pieza en Estrella":** En este caso se compara el factor órtesis contra el factor tipo de pieza en estrella, tomando como niveles los 5 tipos de pieza en cuadrado.

Tabla 9

No. do		Código d	el arreglo		Factores			
No. de tratamiento	А	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
1	1	1	1	-	Rígida	45°	15.75	-
3	1	1	2	1	Rígida	45°	20.6	Lisa
5	1	1	2	2	Rígida	45°	20.6	Rugosa
7	1	1	3	-	Rígida	45°	51.5	-
9	1	1	4	-	Rígida	45°	101.5	-
21	2	1	1	-	Flexible	45°	15.75	-
23	2	1	2	1	Flexible	45°	20.6	Lisa
25	2	1	2	2	Flexible	45°	20.6	Rugosa
27	2	1	3	-	Flexible	45°	51.5	-
29	2	1	4	-	Flexible	45°	101.5	-

4. **"O.D vs Tipos de Pieza en Cuadrado"**: En este caso se compara el factor órtesis contra el factor tipo de pieza en cuadrado, tomando como niveles los 5 tipos de pieza en cuadrado.

Tabla 10

No. de		Código d	el arreglo		Factores			
tratamiento	Α	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
11	1	3	1	-	Rígida	90°	15.75	-
13	1	3	2	1	Rígida	90°	20.6	Lisa
15	1	3	2	2	Rígida	90°	20.6	Rugosa
17	1	3	3	-	Rígida	90°	51.5	-
19	1	3	4	ı	Rígida	90°	101.5	-
31	2	3	1	-	Flexible	90°	15.75	-
33	2	3	2	1	Flexible	90°	20.6	Lisa
35	2	3	2	2	Flexible	90°	20.6	Rugosa
37	2	3	3	-	Flexible	90°	51.5	-
39	2	3	4	-	Flexible	90°	101.5	-

5. **"O.D vs Tipos de Pieza en Óvalo"**: En este caso se compara el factor órtesis contra el factor tipo de pieza en óvalo, tomando como niveles los 5 tipos de pieza en óvalo.

Tabla 11

No do		Código d	el arreglo		Factores			
No. de tratamiento	Α	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
12	1	4	1	-	Rígida	180°	15.75	-
14	1	4	2	1	Rígida	180°	20.6	Lisa
16	1	4	2	2	Rígida	180°	20.6	Rugosa
18	1	4	3	-	Rígida	180°	51.5	-
20	1	4	4	-	Rígida	180°	101.5	-
32	2	4	1	-	Flexible	180°	15.75	-
34	2	4	2	1	Flexible	180°	20.6	Lisa
36	2	4	2	2	Flexible	180°	20.6	Rugosa
38	2	4	3	-	Flexible	180°	51.5	-
40	2	4	4	-	Flexible	180°	101.5	-

6. **"O.D vs Tipo de altura en círculo":** En este caso se comparan el factor órtesis contra el factor tipo de pieza en círculo, en los cuatro diferentes niveles de altura, descartando la pieza con superficie rugosa.

Tabla 12

No do		Código d	el arreglo		Factores			
No. de tratamiento	А	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
2	1	2	1	-	Rígida	0°	15.75	-
4	1	2	2	1	Rígida	0°	20.6	Lisa
8	1	2	3	-	Rígida	0°	51.5	-
10	1	2	4	-	Rígida	0°	101.5	-
22	2	2	1	-	Flexible	0°	15.75	-
24	2	2	2	1	Flexible	0°	20.6	Lisa
28	2	2	3	-	Flexible	0°	51.5	-
30	2	2	4	-	Flexible	0°	101.5	-

7. **"O.D vs Tipo de altura en estrella"**: En este caso se comparan el factor órtesis contra el factor tipo de pieza en estrella, en los cuatro diferentes niveles de altura, descartando la pieza con superficie rugosa.

Tabla 13

No. de		Código d	el arreglo		Factores			
tratamiento	Α	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
1	1	1	1	-	Rígida	45°	15.75	-
3	1	1	2	1	Rígida	45°	20.6	Lisa
7	1	1	3	-	Rígida	45°	51.5	-
9	1	1	4	-	Rígida	45°	101.5	-
21	2	1	1	1	Flexible	45°	15.75	-
23	2	1	2	1	Flexible	45°	20.6	Lisa
27	2	1	3	-	Flexible	45°	51.5	-
29	2	1	4	-	Flexible	45°	101.5	-

8. **"O.D vs Tipo de altura en cuadrado"**: En este caso se comparan el factor órtesis contra el factor tipo de pieza en cuadrado, en los cuatro diferentes niveles de altura, descartando la pieza con superficie rugosa.

Tabla 14

No do		Código d	el arreglo		Factores			
No. de tratamiento	Α	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
11	1	3	1	-	Rígida	90°	15.75	-
13	1	3	2	1	Rígida	90°	20.6	Lisa
17	1	3	3	-	Rígida	90°	51.5	-
19	1	3	4	-	Rígida	90°	101.5	-
31	2	3	1	-	Flexible	90°	15.75	-
33	2	3	2	1	Flexible	90°	20.6	Lisa
37	2	3	3	-	Flexible	90°	51.5	-
39	2	3	4	-	Flexible	90°	101.5	-

9. **"O.D vs Tipo de altura en óvalo":** En este caso se comparan el factor órtesis contra el factor tipo de pieza en óvalo, en los cuatro diferentes niveles de altura, descartando la pieza con superficie rugosa.

Tabla 15

No. de		Código d	el arreglo		Factores			
tratamiento	А	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
12	1	4	1	-	Rígida	180°	15.75	-
14	1	4	2	1	Rígida	180°	20.6	Lisa
18	1	4	3	-	Rígida	180°	51.5	-
20	1	4	4	-	Rígida	180°	101.5	-
32	2	4	1	-	Flexible	180°	15.75	-
34	2	4	2	1	Flexible	180°	20.6	Lisa
38	2	4	3	-	Flexible	180°	51.5	-
40	2	4	4	-	Flexible	180°	101.5	-

10. **"O.D Vs Tipo de superficie en círculo":** En este caso se compara el factor órtesis contra el factor pieza en círculo a dos niveles, superficies lisa y rugosa.

No do		Código d	el arreglo		Factores			
No. de tratamiento	Α	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
4	1	2	2	1	Rígida	0°	20.6	Lisa
6	1	2	2	2	Rígida	0°	20.6	Rugosa
24	2	2	2	1	Flexible	0°	20.6	Lisa
26	2	2	2	2	Flexible	0°	20.6	Rugosa

11. "O.D Vs Tipo de superficie en estrella": En este caso se compara el factor órtesis contra el factor pieza en estrella a dos niveles, superficies lisa y rugosa.

Tabla 16

No do	Código del arreglo				Factores			
No. de tratamiento	Α	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
3	1	1	2	1	Rígida	45°	20.6	Lisa
5	1	1	2	2	Rígida	45°	20.6	Rugosa
23	2	1	2	1	Flexible	45°	20.6	Lisa
25	2	1	2	2	Flexible	45°	20.6	Rugosa

12. **"O.D Vs Tipo de superficie en cuadrado":** En este caso se compara el factor órtesis contra el factor pieza en cuadrado, a dos niveles, superficies lisa y rugosa.

Tabla 17

No. de		Código d	el arreglo		Factores			
tratamiento	А	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
13	1	3	2	1	Rígida	90°	20.6	Lisa
15	1	3	2	2	Rígida	90°	20.6	Rugosa
33	2	3	2	1	Flexible	90°	20.6	Lisa
35	2	3	2	2	Flexible	90°	20.6	Rugosa

13. "O.D Vs Tipo de superficie en óvalo": En este caso se compara el factor órtesis contra el factor pieza en óvalo, a dos niveles, superficies lisa y rugosa.

Tabla 18

No. de		Código d	el arreglo		Factores			
tratamiento	Α	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
14	1	4	2	1	Rígida	180°	20.6	Lisa
16	1	4	2	2	Rígida	180°	20.6	Rugosa
34	2	4	2	1	Flexible	180°	20.6	Lisa
36	2	4	2	2	Flexible	180°	20.6	Rugosa

14. **"O.D vs Tipo de orientación a altura constante de 15.75 mm"**: En este caso se compara el factor órtesis contra el factor tipo de orientación en los 4 diferentes niveles orientación; estrella (45°), círculo (0°), cuadrado (90°) y óvalo (180°) a una altura constante de 15.75mm.

Tabla 19

No. de		Código d	el arreglo		Factores			
tratamiento	Α	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
1	1	1	1	-	Rígida	45°	15.75	-
2	1	2	1	-	Rígida	0°	15.75	-
11	1	3	1	-	Rígida	90°	15.75	-
12	1	4	1	-	Rígida	180°	15.75	-
21	2	1	1	-	Flexible	45°	15.75	-
22	2	2	1	-	Flexible	0°	15.75	-
31	2	3	1	-	Flexible	90°	15.75	-
32	2	4	1	-	Flexible	180°	15.75	-

15. **"O.D vs Tipo de orientación a altura constante de 20.6 mm**" En este caso se compara el factor órtesis contra el factor tipo de orientación en los 4 diferentes niveles orientación; estrella (45°), círculo (0°), cuadrado (90°) y óvalo (180°) a una altura constante de 20.6mm.

Tabla 20

No. de		Código d	el arreglo		Factores			
tratamiento	Α	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
3	1	1	2	1	Rígida	45°	20.6	Lisa
4	1	2	2	1	Rígida	0°	20.6	Lisa
13	1	3	2	1	Rígida	90°	20.6	Lisa
14	1	4	2	1	Rígida	180°	20.6	Lisa
23	2	1	2	1	Flexible	45°	20.6	Lisa
24	2	2	2	1	Flexible	0°	20.6	Lisa
33	2	3	2	1	Flexible	90°	20.6	Lisa
34	2	4	2	1	Flexible	180°	20.6	Lisa

16. **"O.D vs Tipo de orientación a altura constante de 51.5 mm"** En este caso se compara el factor órtesis contra el factor tipo de orientación en los 4 diferentes niveles orientación; estrella (45°), círculo (0°), cuadrado (90°) y óvalo (180°) a una altura constante de 51.5mm.

Tabla 21

No do		Código d	el arreglo		Factores			
No. de tratamiento	А	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
7	1	1	3	-	Rígida	45°	51.5	-
8	1	2	3	-	Rígida	0°	51.5	-
17	1	3	3	-	Rígida	90°	51.5	-
18	1	4	3	-	Rígida	180°	51.5	-
27	2	1	3	-	Flexible	45°	51.5	-
28	2	2	3	-	Flexible	0°	51.5	-
37	2	3	3	-	Flexible	90°	51.5	-
38	2	4	3	-	Flexible	180°	51.5	-

17. **"O.D vs Tipo de orientación a altura constante de 101.5 mm"** En este caso se compara el factor órtesis contra el factor tipo de orientación en los 4 diferentes niveles orientación; estrella (45°), círculo (0°), cuadrado (90°) y óvalo (180°) a una altura constante de 101.5mm.

Tabla 22

No do		Código d	el arreglo		Factores			
No. de tratamiento	Α	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
9	1	1	4	-	Rígida	45°	101.5	-
10	1	2	4	-	Rígida	0°	101.5	-
19	1	3	4	-	Rígida	90°	101.5	-
20	1	4	4	-	Rígida	180°	101.5	-
29	2	1	4	-	Flexible	45°	101.5	-
30	2	2	4	-	Flexible	0°	101.5	-
39	2	3	4	-	Flexible	90°	101.5	-
40	2	4	4	-	Flexible	180°	101.5	-

18. "Orientación vs alturas, para O.D. rígida" En este caso se compara el factor tipo de orientación a 4 niveles diferentes; 0°,45°, 90° y 180° contra factor tipo de altura a 4 niveles diferentes; 15.75, 20.6, 51.5 y 101.5 mm.

Tabla 23

No do		Código d	el arreglo			Fac	tores	
No. de tratamiento	А	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
1	1	1	1	-	Rígida	45°	15.75	-
2	1	2	1	-	Rígida	0°	15.75	-
3	1	1	2	1	Rígida	45°	20.6	Lisa
4	1	2	2	1	Rígida	0°	20.6	Lisa
7	1	1	3	-	Rígida	45°	51.5	-
8	1	2	3	-	Rígida	0°	51.5	-
9	1	1	4	-	Rígida	45°	101.5	-
10	1	2	4	-	Rígida	0°	101.5	-
11	1	3	1	-	Rígida	90°	15.75	-
12	1	4	1	-	Rígida	180°	15.75	-
13	1	3	2	1	Rígida	90°	20.6	Lisa
14	1	4	2	1	Rígida	180°	20.6	Lisa
17	1	3	3	-	Rígida	90°	51.5	-
18	1	4	3	-	Rígida	180°	51.5	-
19	1	3	4	-	Rígida	90°	101.5	-
20	1	4	4	-	Rígida	180°	101.5	-

19. "Orientación vs alturas, para O.D. flexible" En este caso se compara el factor tipo de orientación a 4 niveles diferentes; 0°,45°, 90° y 180° contra factor tipo de altura a 4 niveles diferentes; 15.75, 20.6, 51.5 y 101.5 mm.

Tabla 24

No do		Código d	el arreglo			Fac	tores	
No. de tratamiento	А	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
21	2	1	1	-	Flexible	45°	15.75	-
22	2	2	1	-	Flexible	0°	15.75	-
23	2	1	2	1	Flexible	45°	20.6	Lisa
24	2	2	2	1	Flexible	0°	20.6	Lisa
27	2	1	3	-	Flexible	45°	51.5	-
28	2	2	3	-	Flexible	0°	51.5	-
29	2	1	4	-	Flexible	45°	101.5	-
30	2	2	4	-	Flexible	0°	101.5	-
31	2	3	1	-	Flexible	90°	15.75	-
32	2	4	1	-	Flexible	180°	15.75	-
33	2	3	2	1	Flexible	90°	20.6	Lisa
34	2	4	2	1	Flexible	180°	20.6	Lisa
37	2	3	3	-	Flexible	90°	51.5	-
38	2	4	3	-	Flexible	180°	51.5	-
39	2	3	4	-	Flexible	90°	101.5	-
40	2	4	4	-	Flexible	180°	101.5	-

20. "Orientación vs Rugosidad, O.D. rígida" En este caso se compara el factor tipo de orientación a 4 niveles diferentes; 0°,45°, 90° y 180° contra factor tipo de altura a 4 niveles diferentes; 15.75, 20.6, 51.5 y 101.5 mm.

Tabla 25

No do		Código d	el arreglo		Factores			
No. de tratamiento		В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
3	1	1	2	1	Rígida	45°	20.6	Lisa
4	1	2	2	1	Rígida	0°	20.6	Lisa
5	1	1	2	2	Rígida	45°	20.6	Rugosa
6	1	2	2	2	Rígida	0°	20.6	Rugosa
13	1	3	2	1	Rígida	90°	20.6	Lisa
14	1	4	2	1	Rígida	180°	20.6	Lisa
15	1	3	2	2	Rígida	90°	20.6	Rugosa
16	1	4	2	2	Rígida	180°	20.6	Rugosa

21. "Orientación vs Rugosidad, O.D. flexible" En este caso se compara el factor tipo de orientación a 4 niveles diferentes; 0°,45°, 90° y 180° contra factor tipo de altura a 4 niveles diferentes; 15.75, 20.6, 51.5 y 101.5 mm.

Tabla 26

No. de		Código del arreglo			Factores			
tratamiento	Α	В	С	D	Tipo de órtesis	Simetría	Altura	Rugosidad
23	2	1	2	1	Flexible	45°	20.6	Lisa
24	2	2	2	1	Flexible	0°	20.6	Lisa
25	2	1	2	2	Flexible	45°	20.6	Rugosa
26	2	2	2	2	Flexible	0°	20.6	Rugosa
33	2	3	2	1	Flexible	90°	20.6	Lisa
34	2	4	2	1	Flexible	180°	20.6	Lisa
35	2	3	2	2	Flexible	90°	20.6	Rugosa
36	2	4	2	2	Flexible	180°	20.6	Rugosa

Debido a que se están analizando 5 respuestas diferentes. Los resultados se presentarán de la manera siguiente en las tablas de resultados:

El primer dígito hará referencia al análisis ANOVA correspondiente que se menciona en el apartado, 2.6 aplicación de ANOVA y Tukey para el análisis de resultados. El segundo digito hace referencia al tipo de respuesta que se está analizando, siendo: 1. Tiempos de ensamble, 2. Intentos de sujeción, 3. Fallos en el ensamble, 4. Dificultad para sujetar, 5. Dificultad para soltar.

Ejemplo como se muestra en tabla:

Tabla ANOVA	Tabla de comparaciones múltiples Tukey
Análisis 1.4, O.P vs Todos los tipos de pieza. Resultados "Dificultad para sujetar"	Análisis 1.4 O.P vs Todos los tipos de pieza Resultados "Dificultad para sujetar"

Capítulo 3. Descripción de las pruebas destreza CDMIT

3.1 Materiales

Los instrumentos con los cuales se lleva acabo el experimento son mostrados en la imagen 12 y son:

- Dos bancos de pruebas de destreza, 1 y 2.
- 20 piezas con diferentes características geométricas
- 1 Cronómetro.
- 3 cámaras webcam.
- 3 examinadores.
- 1 Secretario
- Cédula de Prueba ensamble.
- Órtesis de mecanismo rígido
- Órtesis de mecanismo flexible

Imagen 12, Material utilizado para el desarrollo de las pruebas de destreza.

3.2 Procedimiento

Para dar comienzo a las pruebas, se le explica al usuario el procedimiento en el cual se va desarrollar el experimento, permitiendo un entrenamiento de 15 minutos en cada banco de pruebas antes de comenzar el experimento.

El usuario debe dar comienzo a la prueba moviendo las piezas de izquierda a derecha desde la zona de reposo, que es la zona donde las piezas están colocadas en un inicio como se muestra en la imagen 13.

Imagen 13, Banco de pruebas, zona de reposo y zona de ensamble.

Cuando se mueve la pieza de dicha zona, se activa el contador del cronómetro y esta pieza deberá ser colocada en la zona de ensamble para que el contador del cronómetro se detenga.

El usuario elige de manera aleatoria la órtesis con la cual dará comienzo al experimento. La prueba debe dar comienzo con el banco de pruebas 1, el cual contempla el siguiente juego de piezas:

- 1. Estrella de acrílico (altura de 15.75 mm)
- 2. Estrella de plástico(altura de 20.6 mm)
- 3. Estrella de plástico con superficie rugosa (altura de 20.6)
- 4. Estrella de madera baja(altura de 51.5 mm)
- 5. Estrella de madera alta(altura de 101.5 mm)
- 6. Círculo de acrílico(altura de 15.75 mm)
- 7. Círculo de plástico(altura de 20.6 mm)
- 8. Círculo de plástico con superficie rugosa (altura de 20.6)
- 9. Círculo de madera baja (altura de 51.5)
- 10. Círculo de madera alta (altura de 101.5)

Una vez finalizado con el primer banco, se procede terminar la prueba con el segundo banco de pruebas el cual contempla el siguiente juego de piezas:

- 1. Cuadrado de acrílico(altura de 15.75 mm)
- 2. Cuadrado de plástico (altura de 20.6 mm)
- 3. Cuadrado de plástico con superficie rugosa (altura de 20.6 mm)
- 4. Cuadrado de madera baja (altura de 51.5 mm)
- 5. Cuadrado de madera alta (altura de 101.5 mm)
- 6. Óvalo de acrílico (altura de 15.75 mm)
- 7. Óvalo de plástico (altura de 20.6 mm)
- 8. Óvalo de plástico con superficie rugosa (altura de 20.6 mm)
- 9. Óvalo de madera baja(altura de 51.5)
- 10. Óvalo de madera alta (altura de 101.5 mm)

El examinador anotará el tiempo respectivo de cada pieza en la cédula de tiempos de ensamble y deberá realizar las preguntas pertinentes que contenga la cédula.

Los examinadores requeridos para realizar las pruebas son tres:

Examinador 1: su tarea es la de dar inicio a las pruebas de ensamble y mencionar cuando se haya detenido el conteo del cronómetro anunciando la palabra "tiempo". El examinador 1 dicta el tiempo de ensamble respectivo al secretario.

Examinador 2: su tarea es la de observar los intentos de sujeción que realiza el usuario cuando empieza la prueba de ensamble. No se contabiliza el primer intento que acciona el contador del cronómetro. Una vez que el examinador 1 haya mencionado la palabra "tiempo", el examinador 2 dicta al secretario los respectivos intentos de sujeción.

Examinador 3: su tarea es la de observar los intentos fallidos de ensamble que realiza el usuario en la prueba de ensamble. El número de intentos de fallos en el ensamble son contabilizados hasta que el

examinador 1 anuncie la palabra "tiempo". El examinador 3 dicta al secretario los respectivos fallos en el ensamble.

Secretario: su función es la de anotar los datos anunciados por los examinadores y la de preguntar por la dificultad para sujetar y soltar para cada pieza de la prueba de ensamble.

Funciones de las cámaras webcam

Para obtener un completo registro de las pruebas de ensamble y realizar posteriormente un análisis minucioso a las pruebas. Se colocaron tres cámaras PS3 Eye Camera como la que se muestra en la imagen 14, en tres diferentes posiciones; Superior, Frontal y lateral derecha del usuario, como se

Imagen 14, PS3 Eye Camera

Imagen 15, Ubicación de las cámaras para el registro del experimento.

Capítulo 4 Resultados de la prueba de destreza CDMIT

Se muestran los resultados obtenidos del usuario en la pruebas de destreza CDMIT. La tabla 28, son los resultados que se obtuvieron de la órtesis rígida. La tabla 29, son los resultados obtenido de la órtesis flexible.

Tabla 27 Resultados de las pruebas de destreza, ejercicio realizado con órtesis rígida.

	Resultados de órtesis rígida					
Evento	Figura	Tiempo[s]	Intentos de sujeción	Fallos en el ensamble	Dificultad para sujetar	Dificultada para soltar
1	Estrella, acrílico	34.347	3	0	4	1
2	Círculo, acrílico	43.115	2	1	5	1
3	Estrella, plástico lisa	42.776	0	0	2	1
4	Círculo, plástico lisa	47.758	2	2	5	1
5	Estrella, plástico rugosa	16.419	1	0	2	4
6	Círculo, plástico rugosa	30.8	2	0	4	1
7	Estrella, madera baja	33.043	2	2	1	3
8	Círculo, madera baja	19.189	2	0	2	1
9	Estrella, madera alta	42.006	1	1	1	5
10	Círculo, madera alta	9.72	0	0	2	1
		Resultac	los de órtesis	rígida		
Evento	Figura	Tiempo[s]	Intentos de sujeción	Fallos en el ensamble	Dificultad para sujetar	Dificultada para soltar
1	Cuadrado, acrílico	71.33	3	1	5	1
2	Óvalo, acrílico	37.521	2	1	3	1
3	Cuadrado, plástico lisa	6.081	0	0	1	1
4	Óvalo, plástico lisa	34.594	2	2	3	1
5	Cuadrado, plástico rugosa	90.745	4	5	2	5
6	Óvalo, plástico rugosa	5.022	0	0	1	1
7	Cuadrado, madera baja	120.801	4	5	1	5
8	Óvalo, madera baja	6.906	0	1	1	5
9	Cuadrado, madera alta	24.283	0	1	3	4
10	Óvalo, madera alta	14.314	1	2	3	3

Tabla 28 Resultados de las pruebas de destreza manual 2, ejercicio realizado con órtesis flexible.

	Resultados de órtesis flexible						
Essente	F:	Tiana [a]	Intentos de	Fallos en el	Dificultad para	Dificultada	
Evento	nto Figura	Tiempo[s]	sujeción	ensamble	sujetar	para soltar	
1	Estrella, acrílico	45.502	3	0	4	1	
2	Círculo, acrílico	59.1	7	1	5	1	
3	Estrella, plástico lisa	8.283	3	1	1	4	
4	Círculo, plástico lisa	4.815	0	0	1	1	
5	Estrella, plástico rugosa	6.3	0	0	1	3	
6	Círculo, plástico rugosa	3.308	0	0	1	4	
7	Estrella, madera baja	12.562	0	1	1	4	
8	Círculo, madera baja	6.243	0	0	1	2	
9	Estrella, madera alta	8.378	0	0	1	1	
10	Círculo, madera alta	39.418	3	0	3	2	
		Resultad	os de órtesis f	lexible			
E	F	TP1 []	Intentos de	Fallos en el	Dificultad para	Dificultada	
Evento	Figura	Tiempo[s]	sujeción	ensamble	sujetar	para soltar	
1	Cuadrado, acrílico	243.641	1	1	5	3	
2	Óvalo, acrílico	56.307	4	3	3	2	
3	Cuadrado, plástico lisa	4.553	0	0	1	1	
4	Óvalo, plástico lisa	49.167	2	1	1	2	
5	Cuadrado, plástico rugosa	30.524	0	1	1	3	
6	Óvalo, plástico rugosa	10.994	0	0	1	2	
7	Cuadrado, madera baja	8.015	0	1	1	2	
8	Óvalo, madera baja	14.26	1	1	1	2	
9	Cuadrado, madera alta	30.376	2	3	3	1	
10	Óvalo, madera alta	39.418	0	0	1	1	

A continuación se presentan solo los las tablas de los análisis de resultados que surgieron significativos.

Tabla 29, análisis de resultados ANOVA y Tukey.

Tabla ANOVA Análisis 1.4, O.D vs Todos los tipos de pieza. Resultados "Dificultad para sujetar"		Tabla de comparaciones múltiples Tukey Análisis 1.4 O.D vs Todos los tipos de pieza. Resultados "Dificultad para sujetar"		
PROMEDIO O.F. = 2.55 PROMEDIO O.R.= 1.85 I= 2 J= 20 STC= 82.4 SCA= 4.9 SCB= 63.4 SCE= 14.1 MCA= 4.9 MCB= 3.34 MCE= 0.7321	$m_{fa} = 1$ $v_{fa} = 19$ $m_{fb} = 19$ $v_{fb} = 19$ $\alpha = 0.05$ $F_{0.05,1,19} = 4.38$ $F_{0.05,19,19} = 2.17$ $f_a = 6.603$ $f_b = 4.5$	$m_{1a} = 2$ $n_{1a} = 19$ $m_{2b} = 20$ $n_{2b} = 19$ $Q_A = 2.96$ $Q_B = 5.75$ $W_A = 0.57$ $W_B = 3.5$	GRUPO I={7,9,13,16,17,18,3,5,8,15,14,20,6,10,4,12,19,1} GRUPO II={3,5,8,15,14,20,6,10,4,12,19,1,2,11,}	

Tabla 30, análisis de resultados ANOVA y Tukey.

Tabla ANOVA Observación 3.4, O.D vs Todos los tipos de pieza en estrella, "Dificultad para sujetar"		Observación 3.4	raciones múltiples Tukey , O.D vs Todos los tipos de pieza en estrella. icultad para sujetar"
PROMEDIO	$m_{fa} = 1$	$m_{1a} = 2$	GRUPO
O.F. = 2	$v_{fa} = 4$	$n_{1a}=4$	I={2,3,4,5}
PROMEDIO O.R.= 1.6	$m_{fb} = 4$	$m_{2b} = 5$	
I= 2	$v_{fb} = 4$	$n_{2b} = 4$	GRUPO
J= 5	$\alpha = 0.05$	$Q_A = 3.64$	II={1}
STC= 13.6	$F_{0.05,1,4} = 7.71$	$Q_B = 5.67$	
SCA= 0.4	$F_{0.05,4,4} = 6.39$	$w_A = 0.63$	
SCB= 12.6	$f_a = 2.667$	$w_B = 1.55$	
SCE= 0.6	$f_b = 21$		
MCA= 0.4			
MCB= 3.15			
MCE= 0.15			

Tabla 31, análisis de resultados ANOVA y Tukey .

Tabla ANOVA Análisis 4.4, O.D vs Todos los tipos de pieza en cuadrado, Resultados "Dificultad para sujetar"		Tabla de comparaciones múltiples Tukey Análisis 4.4, O.D vs Todos los tipos de pieza en cuadrado, Resultados "Difícultad para sujetar"		
PROMEDIO	$m_{fa} = 1$	$m_{1a} = 2$	GRUPO	
O.F. = 2.4	$v_{fa} = 4$	$n_{1a}=4$	I={2,3,4}	
PROMEDIO O.R.= 2.2	$m_{fb} = 4$	$m_{2b} = 5$		
I= 2	$v_{fb} = 4$	$n_{2b}=4$	GRUPO	
J= 5	$\alpha = 0.05$	$Q_A = 3.64$	II={5}	
STC= 24.1	$F_{0.05,1,4} = 7.71$	$Q_B = 5.67$		
SCA= 0.1	$F_{0.05,4,4} = 6.39$	$w_A = 0.51$	GRUPO	
SCB= 23.6	$f_a = 1$	$w_B = 1.27$	III={1}	
SCE= 0.4	$f_b = 59$			
MCA= 0.1				
MCB= 5.9				
MCE= 0.1				

Tabla 32, análisis de resultados ANOVA y Tukey.

	vs Todos los tipos de esultados "Tiempo de	Análisis 5.1, Ô.I	raciones múltiples Tukey O vs Todos los tipos de pieza en óvalo. mpo de ensamble"
PROMEDIO	$m_{fa} = 1$	$m_{1a} = 2$	GRUPO
O.F. = 19.671	$v_{fa} = 4$	$n_{1a} = 4$	I={3,4,5}
PROMEDIO O.R.= 34.029	$m_{fb} = 4$	$m_{2b} = 5$	
I= 2	$v_{fb} = 4$	$n_{2b} = 4$	GRUPO
J= 5	$\alpha = 0.05$	$Q_A = 3.64$	II={2,5}
STC= 3138.855	$F_{0.05,1,4} = 7.71$	$Q_B = 5.67$	
SCA= 515.366	$F_{0.05,4,4} = 6.39$	$w_A = 9.18$	GRUPO
SCB= 2496.233	$f_a = 16.199$	$w_B = 22.61$	III={1,2}
SCE= 127.255	$f_b = 19.616$		
MCA= 515.366			
MCB= 624.058			
MCE= 31.814			

Tabla 33, análisis de resultados ANOVA y Tukey.

Tabla ANOVA Análisis 7.4, O.D vs Todos los tipos de altura en estrella, Resultados "Dificultad para sujetar"		Análisis 7.4, Ô.I	raciones múltiples Tukey D vs Todos los tipos de altura en estrella icultad para sujetar"
PROMEDIO	$m_{fa} = 1$	$m_{1a} = 4$	GRUPO
O.F. = 2	$v_{fa} = 4$	$n_{1a} = 3$	I={3,4,2}
PROMEDIO O.R.= 1.75	$m_{fb} = 4$	$m_{2b} = 2$	
I= 2	$v_{fb} = 4$	$n_{2b} = 3$	GRUPO
J= 4	$\alpha = 0.05$	$Q_A = 3.64$	II={1}
STC= 12.875	$F_{0.05,1,3} = 10.1$	$Q_B = 3.64$	
SCA= 0.125	$F_{0.05,3,3} = 9.28$	$w_A = 0.64$	
SCB= 12.375	$f_a = 1$	$w_B = 0.91$	
SCE= 0.375	$f_b = 33$		
MCA= 0.125			
MCB= 4.125			
MCE= 0.125			

Tabla 34, análisis de resultados ANOVA y Tukey.

	vs Todos los tipos de Lesultados "Tiempo de	Análisis 9.1, Ô.I	raciones múltiples Tukey O vs Todos los tipos de altura en óvalo mpo de ensamble"
PROMEDIO	$m_{fa} = 1$	$m_{1a} = 2$	GRUPO
O.F. = 23.334	$v_{fa} = 3$	$n_{1a}=3$	I={3,4}
PROMEDIO O.R.= 39.788	$m_{fb} = 3$	$m_{2b} = 4$	
I= 2	$v_{fb} = 3$	$n_{2b} = 3$	GRUPO
J= 4	$\alpha = 0.05$	$Q_A = 3.64$	II={2,4}
STC= 2233.442	$F_{0.05,1,3} = 10.1$	$Q_B = 52$	
SCA= 541.485	$F_{0.05,3,3} = 9.28$	$w_A = 9.59$	GRUPO
SCB= 1608.652	$f_a = 19.5$	$w_B = 19.45$	III={2,1}
SCE= 83.304	$f_b = 19.311$		
MCA= 541.485			
MCB= 536.217			
MCE= 27.768			

Tabla 35, análisis de resultados ANOVA y Tukey.

Tabla ANOVA Análisis 18.4, Orientación vs alturas para O.D. Rígida, Resultados "Dificultad para sujetar"		Tabla de comparaciones múltiples Tukey Análisis 18.4, Orientación vs alturas para O.D. Rígida Resultados "Dificultad para sujetar"	
I= 4	$m_{fa} = 3$	$m_{1a}=4$	GRUPO
J= 4	$v_{fa} = 9$	$n_{1a} = 9$	I={2,3,4}
STC= 34.938	$m_{fb} = 3$	$m_{2b}=4$	
SCA= 3.188	$v_{fb} = 9$	$n_{2b} = 9$	GRUPO
SCB= 28.188	$\alpha = 0.05$	$Q_A = 4.41$	II={1}
SCE= 3.563	$F_{0.05,3,9} = 3.86$	$Q_B=4.41$	
MCA= 1.063	$F_{0.05,3,9} = 2.81$	$w_A = 1.39$	
MCB= 9.396	$f_a = 2.684$	$w_B = 1.39$	
MCE= 0.396	$f_b = 23.737$		

Tabla 36, análisis de resultados ANOVA y Tukey.

Tabla ANOVA Análisis 19.4, Orientación vs alturas para O.D, Resultados "Dificultad para sujetar"		Tabla de comparaciones múltiples Tukey Análisis 19.4, Orientación vs alturas para O.D, Resultados "Dificultad para sujetar"		
I= 4	$m_{fa} = 3$	$m_{1a}=4$	GRUPO	
J= 4	$v_{fa} = 9$	$n_{1a} = 9$	I={2,3,4}	
STC= 33.75	$m_{fb} = 3$	$m_{2b} = 4$		
SCA= 4.75	$v_{fb} = 9$	$n_{2b}=9$	GRUPO	
SCB= 18.75	$\alpha = 0.05$	$Q_A = 4.41$	$II=\{1,2,4\}$	
SCE= 10.25	$F_{0.05,3,9} = 3.86$	$Q_B=4.41$		
MCA= 1.583	$F_{0.05,3,9} = 2.81$	$w_A = 2.35$		
MCB= 6.25	$f_a = 1.39$	$w_B = 2.35$		
MCE= 1.139	$f_b = 5.488$			

Tabla 37, análisis de resultados ANOVA y Tukey.

Tabla ANOVA Análisis 19.5, O.P vs Todos los tipos de altura, Resultados "Dificultad para sujetar"		Tabla de comparaciones múltiples Tukey Análisis 19.5, O.P vs Todos los tipos de altura en estrella Resultados "Dificultad para sujetar"	
I= 4	$m_{fa} = 3$	$m_{1a}=4$	GRUPO
J= 4	$v_{fa} = 9$	$n_{1a} = 9$	I={1,2,3,4}
STC= 42.438	$m_{fb} = 3$	$m_{2b}=4$	
SCA= 7.688	$v_{fb} = 9$	$n_{2b} = 9$	
SCB= 22.688	$\alpha = 0.05$	$Q_A = 4.41$	
SCE= 12.063	$F_{0.05,3,9} = 3.86$	$Q_B=4.41$	
MCA= 2.563	$F_{0.05,3,9} = 2.81$	$w_A = 2.55$	
MCB= 7.563	$f_a = 1.912$	$w_B = 2.55$	
MCE= 1.34	$f_b = 5.64$		

Capítulo 5 Análisis de resultados ANOVA y Tukey

Los análisis ANOVA mostraron la presencia de una intervención significativa de los factores en las siguientes observaciones. El nivel de significación para validar la presencia de dichos factores en los resultados obtenidos fue de: $\alpha=0.05$

Tabla 38 Se presentan las observaciones que obtuvieron presencia significativa de los factores.

1	Análisis 1.4	Descripción "O.P vs Todos los tipos de pieza"	 Categoría y Factor significativo Categoría: Dificultad para sujetar Se rechaza la hipótesis nula y los factores significativos son: Tipo de pieza, Tipo de O.D.
2	3.4	"O.P vs Tipos de pieza en Estrella"	Categoría: Dificultad para sujetar. Se rechaza la hipótesis nula y el factor significativo es: Tipo de pieza
3	4.4	"O.P vs Tipos de Pieza en Cuadrado"	Categoría: Dificultad para sujetar. Se rechaza la hipótesis nula y el factor significativo es: Tipo de pieza
4	5.1	"O.P vs Tipos de Pieza en Óvalo"	Categoría: Tiempo de ensamble. Se rechaza la hipótesis nula y los factores significativos son: Tipo de pieza, Tipo de O.D.
5	6.4	"O.P vs Tipo de altura en estrella"	Categoría: Dificultad para sujetar. Se rechaza la hipótesis nula y el Factor significativo es: Tipo de altura
6	9.1	"O.P vs Tipo de altura en óvalo"	Categoría: Tiempo de ensamble. Se rechaza la hipótesis nula y los factores significativos son: Tipo de altura, Tipo de O.D.
9	18.4	"Orientación vs alturas, para O.P. rígida"	Categoría: Dificultad para sujetar. Se rechaza la hipótesis nula y el factor significativo es: Tipo de altura
10	19.4 19.5	"Orientación vs alturas, para O.P. flexible"	 Categoría: Dificultad para sujetar. Se rechaza la hipótesis nula y el factor significativo es: Tipo de altura. Categoría: Dificultad para soltar Factor significativo: Tipo de altura

Tabla 39, Análisis con presencia significativa del factor tipo de órtesis

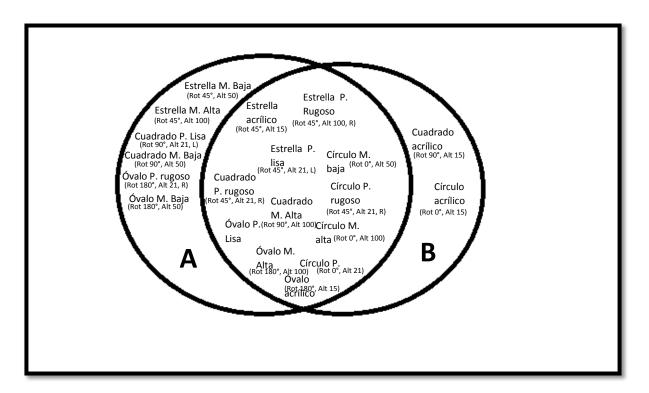
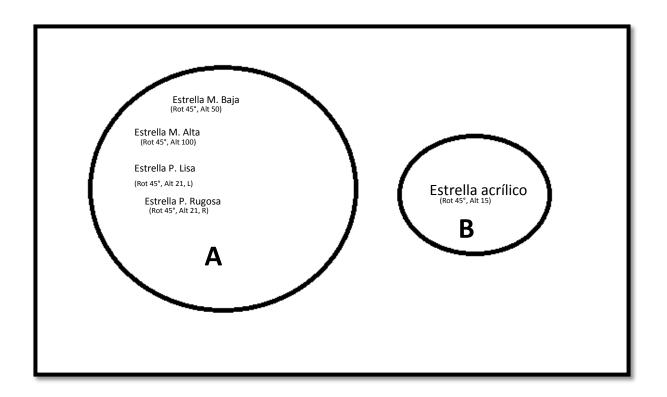

#	Análisis y categoría	Resultado promedio obtenido	Diferencia absoluta	O.P. Ganadora
1	Análisis 1.4 "O.P vs Todos los tipos de pieza" "Dificultad para sujetar"	• O.P. Flexible 2.55 • O.P. Rígida 1.85	.7	RÍGIDA
2	Análisis 5.1 "O.P vs Tipos de Pieza en Óvalo" "Tiempo de ensamble"	 O.P. Flexible 19.671 [s] O.P. Rígida 34.029 [s] 	14.358 [s]	FLEXIBLE
3	Análisis 9.1 "O.P. vs Todos los tipos de altura en óvalo" "Tiempo de ensamble"	 O.P. Flexible 23.334 [s] O.P. Rígida 39.708 [s] 	16.454 [s]	FLEXIBLE

Tabla 40, Se presentan las observaciones con presencia significativa de los factores, manteniendo constante el factor órtesis.

#	Observación y categoría	Resultado promedio obtenido
4	Análisis 18.4 "Orientación vs alturas en rígida" "Dificultad para sujetar"	2.06
5	Análisis 19.4"Orientación vs alturas en flexible" "Dificultad para sujetar"	2.62

Diagrama del análisis "Tukey" de la análisis 1.4 "Dificultad para sujetar"

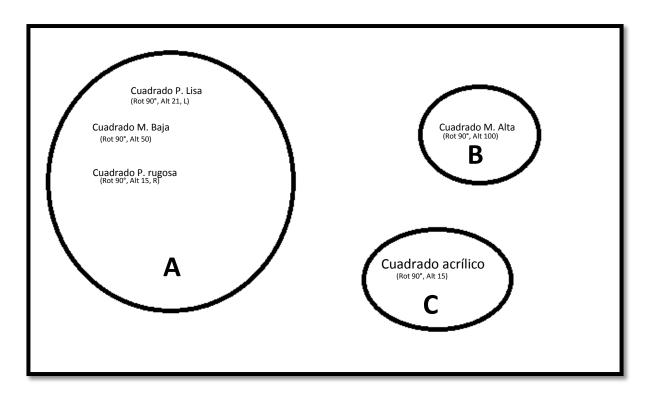
Conjunto	Dificultad para sujetar promedio
A	1.88
В	2.71



Las piezas más fáciles de sujetar para las dos órtesis son: Estrella M. Baja (Rot 45°,Alt 50), Estrella M. Alta (Rot 45°,Alt 100), Cuadrado P. Lisa (Rot 90°,Alt 21), Cuadrado M. Baja (Rot 90°,Alt 50), Óvalo P. Rugosa (Rot 180°,Alt 21) y Óvalo M. Baja (Rot 180°,Alt 50).

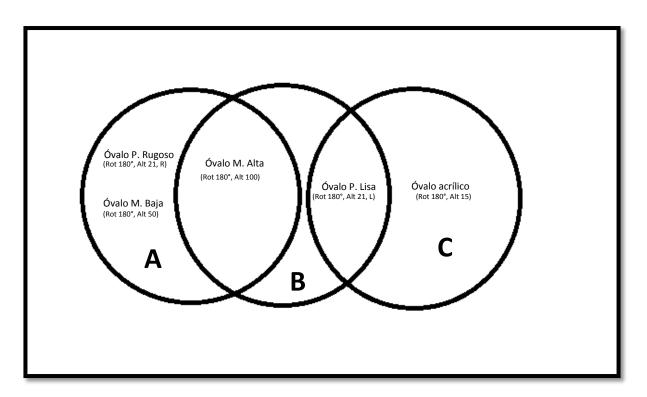
Las piezas más difíciles de sujetar son las piezas Cuadrado acrílico (Rot 90°, Alt 15) y Círculo acrílico (Rot 0°, Alt 15). Esto quiere decir que la orientación beta igual a 0 y 90 grados con una altura menor o igual a 16 mm, aumenta la dificultad para sujetar cuando el usuario está utilizando las órtesis.

Diagrama del análisis "Tukey" de la análisis 2.4 "Dificultad para sujetar"


Conjunto	Dificultad para sujetar promedio
A	1.25
В	4

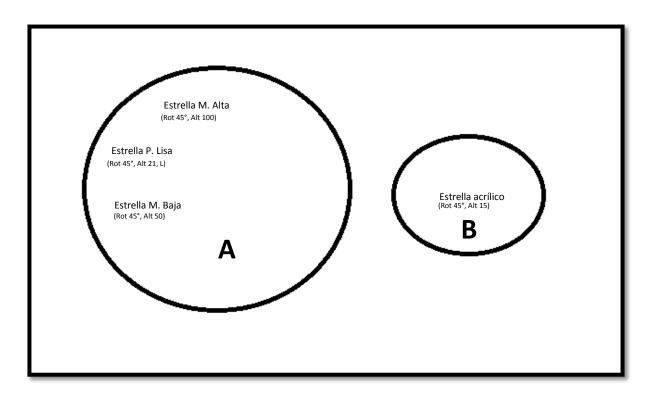
Las piezas más fáciles de sujetar son las piezas Estrella M. Baja (Rot 45°,Alt 50), Estrella M. Alta (Rot 45°,Alt 100), Estrella P. Lisa (Rot 45°,Alt 21), Estrella P. Rugosa (Rot 45°,Alt 21). Esto quiere decir que la pieza con orientación beta igual a 45 con una altura menor o igual a los 16 mm aumenta la dificultad para sujetar percibida del usuario.

Diagrama del análisis "Tukey" de la análisis 4.4 "Dificultad para sujetar"


Conjunto	Dificultad para sujetar promedio
A	1.67
В	3
С	5

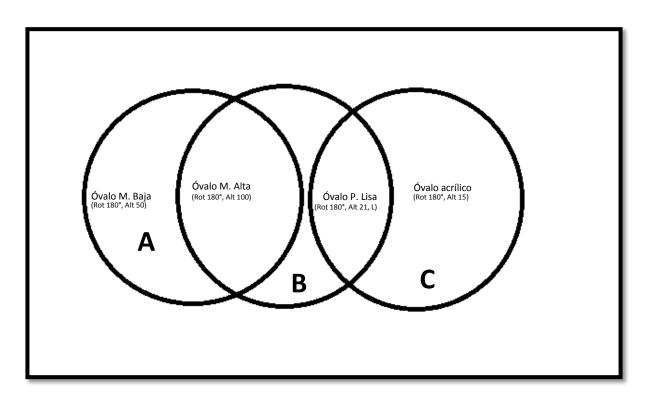
Las piezas más fáciles de sujetar son las piezas Cuadrado P. Lisa (Rot 90°, Alt 21,L), Cuadrado M. Baja (Rot 90°, Alt 50), Cuadrado P. rugosa (Rot 90°, Alt 15,R). Por lo tanto las piezas con orientación beta igual a 90 con una altura menor o igual a los 16 mm aumenta la dificultad para sujetar percibida del usuario.

Diagrama del análisis "Tukey" de la análisis 5.1 "Tiempo de ensamble"


Conjunto	Tiempo de ensamble promedio
A	15.152
В	34.373
С	44.397

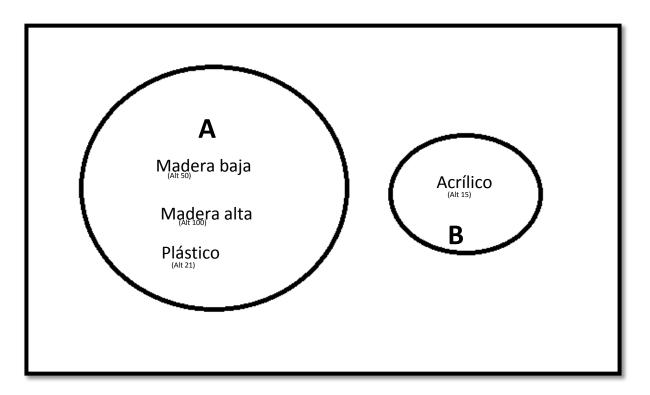
Considerando a las órtesis, las piezas con el menor tiempo de ensamble son las piezas Óvalo P. Rugosa (Rot 180°, Alt 21, R) y Óvalo M. baja (Rot 180°, Alt 50). Mientras que la pieza con el mayor tiempo de ensamble sería la pieza Óvalo acrílico (Rot 180°, Alt 15).

Diagrama del análisis "Tukey" de la análisis 6.4 "Dificultad para sujetar"


Conjunto	Dificultad para sujetar promedio
A	1.67
В	4

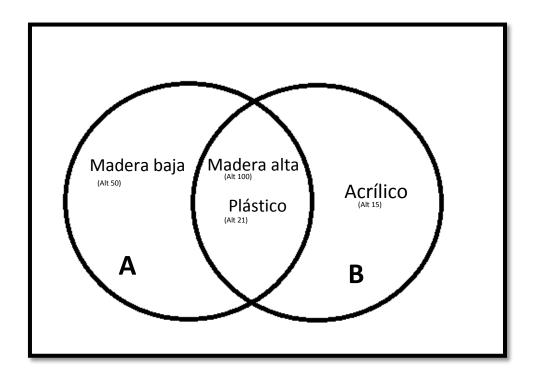
Las piezas más fáciles de sujetar son las piezas Estrella M. Baja (Rot 45°, Alt 50), Estrella M. Alta (Rot 45°, Alt 100) y Estrella P. Lisa (Rot 45°, Alt 21, L). Esto quiere decir que la pieza con orientación beta igual a 45° con una altura menor o igual a los 16 mm aumenta la dificultad para sujetar percibida del usuario.

Diagrama del análisis "Tukey" de la análisis 9.1 "Tiempo de ensamble"


Conjunto	Tiempo de ensamble promedio
A	18.724
В	34.373
С	44.397

Considerando a las órtesis, las piezas con el menor tiempo de ensamble son las piezas Óvalo M. Baja (Rot 180°, Alt 50), Mientras que la pieza con el mayor tiempo de ensamble sería la pieza Óvalo acrílico (Rot 180°, Alt 15).

Diagrama del análisis "Tukey" de la análisis 18.4 "Dificultad para sujetar" para O.D Rígida


Conjunto	Dificultad para sujetar promedio
A	1.32
В	4.25

Para la órtesis rígida las piezas más difíciles de sujetar fueron las piezas acrílico (Alt 15). Por lo tanto, las piezas con altura menor a 16 mm presentarán una mayor dificultad para sujetar las piezas con la ayuda de las órtesis rígida. Este diagrama muestra que siempre habrá una exclusión con respecto a las piezas de altura menor a 16mm.

Diagrama del análisis "Tukey" de la análisis 19.4 "Dificultad para sujetar" para O.D. Flexible

Conjunto	Dificultad para sujetar promedio
A	2.08
В	3.08

Para la órtesis flexible las piezas más difíciles de sujetar fueron las piezas acrílico (Alt 15), pero la dificultad es mejor en una unidad en comparación con la órtesis rígida. Las piezas con altura menor a 16 mm presentarán una mayor dificultad para sujetar las piezas con la ayuda de las órtesis rígida. Este diagrama muestra que hay un intento de homologación con respecto a la dificultad para sujetar.

5.1 Resultados de eficiencias de ensamble de las órtesis.

Se presentan las eficiencias de tiempo de ensamble para las observaciones 5.1 y 9.1

$$Eficiencia_{O.D.F} = \frac{tiempo\ de\ en\ ensamble\ de\ las\ pieza\ boothroyd}{tiempo\ promedio\ obtenido\ O.\ P\ flexible} = \frac{3.74}{19.671} \times 100\%$$

$$= 19.01\%$$

$$Eficiencia_{O.D.R} = \frac{tiempo\ de\ en\ ensamble\ de\ las\ pieza\ boothroyd}{tiempo\ promedio\ obtenido\ O.\ P\ r\'igida} = \frac{3.74}{34.029} \times 100\%$$

$$= 10.99\%$$

$$Eficiencia_{0.P.F} = \frac{tiempo\ de\ en\ ensamble\ de\ las\ pieza\ boothroyd}{tiempo\ promedio\ obtenido\ O.\ P\ flexible} = \frac{3.725}{23.334} \times 100\%$$

$$= 15.96\%$$

$$Eficiencia_{\textit{O.P.R}} = \frac{\textit{tiempo de en ensamble de las pieza boothroyd}}{\textit{tiempo promedio obtenido O.P rigida}} = \frac{3.725}{39.708} \times 100\%$$

$$= 9.38\%$$

Conclusiones

Se concluyen los siguientes puntos:

- 1. Se cumple con el objetivo de la tesis, en crear un experimento capaz de evaluar la destreza en mano de los usuarios con el uso de órtesis en las pruebas de ensamble.
- 2. El usuario obtiene una mejor eficiencia en tiempos de ensamble con la ayuda de la órtesis flexible al momento de realizar dichas operaciones.
- 3. El usuario siente que la dificultad para sujetar de las piezas es menor con la órtesis rígida.
- 4. La altura es un factor significativo con la órtesis flexible en la respuesta dificultad para soltar.
- 5. Para sujetar piezas con una altura de 20 a 15 mm, la dificultad para sujetar es menor con la órtesis flexible.
- 6. Para sujetar piezas con una altura de 20 a 100 mm, la dificultad para sujetar es menor con la órtesis rígida.
- 7. Cuando el usuario realice la operación sujeción de cualquier objeto el factor determinante para realizar con éxito dicha será la altura de las piezas.
- 8. Las características geométricas de las piezas tipo óvalo orientación beta 180°, favorecen las operaciones de sujeción y ensamble de las piezas.
- 9. Las respuestas experimentales fallos en el ensamble, intentos de sujeción y dificultad para soltar, no están asociadas con los factores tipos de órtesis, tipos de altura en las piezas, tipo de superficie y orientación de ensamble de las piezas.

10. Se obtuvo como producto un sistema de valoración para evaluación de órtesis de mano.

Trabajo a futuro

- 1. Se debe realizar una segunda versión del banco de pruebas para mejorar la presentación y funcionalidad del mismo, respetando los principios analíticos con los que
- 2. Con los datos obtenidos se puede someter a comparación las diferentes órtesis que se desarrollen en el Centro de Ingeniería Avanzada.
- 3. Se deberá crear una base de datos de las diferentes órtesis que se vayan evaluando para poder mapear mejoras o retrocesos con respecto a la funcionalidad de los dispositivos en los usuarios.

Apendice

1.1 Hoja de tiempos de ensamble

Material:

- 1. Banco de pruebas con cronómetro integrado.
- 2. Hoja de datos de tiempos.
- 3. Hoja de datos de percepción.

Instrucciones:

Llenar el formato con los datos correspondientes. Al momento de llenar las tablas, registrar el *número de intentos de sujeción de las piezas;* el tiempo que da el cronómetro, es un tiempo diferente por cada pieza; en la línea de fallos se debe registrar si, una vez que la persona tomó la pieza, la soltó y el número de veces que la suelta; dificultad para sujetar la pieza, el número 1 indica el más sencillo y 5 el más difícil.

Hoia de registro

	Tioja de Tegistro
Númer	o de filiación al IMSS:
Nombi	e del usuario:
Género	o: F M
Edad:	
Peso [1	gg]:
Ocupa	ción:
Latera	idad: Izquierda Derecha
Realiza	a ejercicio
	Nunca
0	1 vez a la semana
0	3 veces a la semana
0	5 o más
Enfern	nedades crónico-degenerativas
0	Ninguna
0	Diabetes
0	Hipertensión
0	Colesterol
0	Otra

Banco de destreza 1

En la dificultad para sujetar, 1 es el más sencillo y 5 el más difícil.

Evento	Figura	Intentos de sujeción	Tiempo	Fallos	Dificultar para sujetar 1,2,3,4,5	Dificultar para soltar 1,2,3,4,5
1	Estrella, acrílico					
2	Círculo, acrílico					
3	Estrella, plástico lisa					
4	Círculo, plástico lisa					
5	Estrella, plástico rugosa					
6	Círculo, plástico rugosa					
7	Estrella, madera baja					
8	Círculo, madera baja					
9	Estrella, madera alta					
10	Círculo, madera alto					

Banco de destreza 2

Evento	Figura	Intentos de		Fallos	Dificultar para	Dificultar para		
		sujeción	Tiempo		sujetar	soltar		
		Sujecion			1,2,3,4,5	1,2,3,4,5		
1	Cuadrado, acrílico							
2	Óvalo, acrílico							
3	Cuadrado, plástico							
3	lisa							
4	Óvalo, plástico lisa							
5	Cuadrado, plástico							
5	rugosa							
6	Óvalo, plástico							
O	rugosa							
7	Cuadrado, madera							
	baja							
8	Óvalo, madera baja							
9	Cuadrado, madera							
	alta							
10	Óvalo, madera alto							

Comentarios

1.2 Tabla de tiempos para manipulación manual

1.001	iu u	e tremp	l aoc				ING-EST	IMATED		conds)					
					Parts are easy to grasp and manipulate					Parts present handling difficulties (1)					
					Thic	kness >2	mm	Thicknes	s ≤2 mm	Thic	Thickness >2 mm			Thickness ≤2 mm	
Key:		ONE HA	ND		Size >15 mm	6 mm ≤ size >15 mm	Size <6 mm	Size >6 mm	Size ≤6 mm	Size >15 mm	6 mm ≤ size ≤15 mm	Size <6 mm	Size >6 mm	Size ≤6 mm	
					0	1	2	3	4	5	6	7	8	9	
ols	(α +	- β) < 360°		0	1.13	1.43	1.88	1.69	2.18	1.84	2.17	2.65	2.45	2.98	
ing to	360	$0^{\circ} \le (\alpha + \beta)$		1	1.5	1.8	2.25	2.06	2.55	2.25	2.57	3.06	3	3.38	
ped and ne hand f grasping tools		< 540°	· β)		1.8	2.1	2.55	2.36	2.85	2.57	2.9	3.38	3.18	3.7	
Parts can be grasped and manipulated by one hand without the aid of graspin	540	$0^{\circ} \le (\alpha + \beta)$ $< 720^{\circ}$			1.95	2.25	2.7	2.51	3	2.73	3.06	3.55	3.34	4	
can b vulate ut th		Y /			Parts	need twe	ezers for g	rasping an	d manipul						
Parts manip withor	$(\alpha + \beta) = 720^{\circ}$					Parts need tweezers for grasping and manipulation Parts can be manipulated without optical magnification for manipulation							ırd		
		ONE I			-	e easy to	Parts p handlir difficul	ng		e easy to Parts present handling late difficulties (1)			Parts need standard tools other than tweezers	Parts need special tools for grasping and manipulation	
	GRASPING AIDS				Thickness >0.25 mm		Thickness >0.25 mm		Thickness >0.25 mm	Thickness ≤0.25 mm		Thickness ≤0.25 mm	Parts nee tools othe tweezers	Parts n tools fo and ma	
only	0,0	0 ≤ β ≤ 180°		0	1	2	3	4	5	6	7	8	9		
d dbut tools	α≤ 180°			4	3.6	6.85	4.35	7.6	5.6	8.35	6.35	8.6	7	7	
Parts can be grasped and manipulated by one hand but only with the use of grasping tools		β = 360°		5	4	7.25	4.75	8	6	8.75	6.75	9	8	8	
egrasj edby o e of gr	0(α ≤ β ≤ 180°		6	4.8	8.05	5.55	8.8	6.8	9.55	7.55	9.8	8	9	
Parts can begri manipulated by with the use of	t = 360°		7	5.1	8.35	5.85	9.1	7.1	9.55	7.85	10.1	9	10		
Parts manj with	ö	$\beta = 360^{\circ}$	/			Parts present no additional Parts present additional ha								iculties	
			\vee		handling difficulties						. sticky, de	ppery, etc.) (1)			
						α ≤ 180°	ı	α =	360°		α ≤ 180°		α =	360°	
			or		Size >15 mm	6 mm ≤ size ≤ 15 mm	Size <6 mm	Size >6 mm	Size ≤6 mm	Size >15 mm	6 mm ≤ size ≤ 15 mm	Size <6 mm	Size >6 mm	Size ≤6 mm	
		_ MANIPU	LATIC	N	0	1	2	3	4	5	6	7	8	9	
Parts seve				8	4.1	4.5	5.1	5.6	6.75	5	5.25	5.85	6.35	7	
can be gr by one ha		and lifted	/			_									
use of gra			/				n be hand					sistance		nical	
necessary	necessary) (2) Parts do not severely nest or tangle and are not flexible									0 c	echa d for n				
		TWO H	ANDS		Part weight <10 lb Parts are hear Parts are easy to Parts present Parts are easy to						-	nest	or me		
or assistance required for					grasp an manipul	d '	Parts present other handling difficulties (1)		grasp an manipul	nd other handling		Parts severely r tangle or are flexible (2)	Two persons or mechanical assistance required for parts manipulation		
Two han-	ds. tw		SIZE		α ≤ 180°	$\alpha = 360^{\circ}$	$\alpha \le 180^{\circ}$	$\alpha = 360^{\circ}$	α ≤ 180°	$\alpha = 360^{\circ}$	α ≤ 180°	$\alpha = 360^{\circ}$	Parts tangle flexib	Two passista parts n	
	nical	assistance	\		0	1	2	3	4	5	6	7	8	9	
and trans				9	2	3	2	3	3	4	4	5	7	9	

1.3 Tabla de tiempos para inserción manual MANUAL INSERTION-ESTIMATED TIMES (seconds)

				Alter assembly no holding down required to maintain orientation and location (3)					Holding down required during subsequent processes to maintain orientation at location (3)						
				positi	o align and on during bly (4)		Not easy to position do assembly		Easy to align and position during assembly (4)			Not easy to align or position during assembly			
	Key:	PART ADDED but		No resistance to insertion	Resistar to insertio	nce n	lo esistance o nsertion	Resistance to insertion (5)	No resistance to insertion	Resista to insertic	res	sistance	Resistance to insertion (5)		
l		NOT SECURED		0	1		2	3	6	7		8	9		
	Part and tool (inc	associated luding	0	1.5	2.5		2.5	3.5	5.5	6.5	5	6.5	7.5		
ither	hands) can easily reach the desired location		1	4	5		5	6	8	9		9	10		
r part i	ation	Due to obstructed	2	5.5	6.5		6.5	7.5	9.5	10.	5	10.5	11.5		
Addition of any part (1) where neither the part itself nor any other part is finally secured immediately	nnot red loc	access or restricted					,								
ny part nor an d imme	Due to obstructed access or restricted vision (2) Due to obstructed access or restricted vision (2) Due to obstructed access and restricted vision (2)			No screwing opera- tion or plastic			Plastic de	formation im	mediately after insertion Rivetting or simi operation						
on of a tritself secure				deformation mediately	after in-	fter in-		ling			ilar	Screw tightening immediately after insertion			
Additi the par finally				sertion (sn fits, circlip nuts, etc.)			Not eas	y to align or		Not easy	Not easy to align or		sertion		
					- B. F	_	position duri assembly			position during assembly		T ig ⊕	_ B		
	In	PART SECURED IMMEDIATELY		Easy to align and position with no resistance to insertion (4) Not easy to align or position during assembly and/or resistance to resistance to resistance to		Easy to align and position during assembly (4)	No resistance to insertion	Resistance to insertion (5)	Easy to align and position during assembly (4)	No resistance to insertion	Resistance to insertion (5)	Easy to align and position with no tor- sional resistance (4)	Not easy to align or position and/or torsional resistance (5)		
	(including	hands) can h the desired		Easy t positi resistz insert	Not e or pos assem resista insert	Easy t positi assem	No re to ins	Resist	Easy t positi assem	No re to ins	Resist	Easy t positi sional	Not easy or positic torsional resistance		
he y	location and the tool can be operated easily			0	1	2	3	4	5	6	7	8	9		
where t arts are	Due to obstructed access or reach desired fund with the control of	Dont	3	2	5	4	5	6	7	8	9	6	8		
rt (1) v other pa		access or restricted	4	4.5	7.5	6.5	7.5	8.5	9.5	10.5	11.5	8.5	10.5		
fany pa nd/or c y secur		sociatec ls) cann ed locat operatec	sociatec ls) cann ed locat operatec	Due to	5	6	9	8	9	10	11	12	13	10	12
Addition of any part (1) where the part itself and/or other parts are being finally secured immediately		access and restricted		(part(s) already in place but not (part					n-mechanical fastening processes t(s) already in place but not ured immediately after insertion)			Non-fastening processes			
				l .	e or localize tic deformat				tallurgical processes			-	,		
SEPARATE OPERATION					vs.	ing	nof nof	g fastening d etc.)	Addition material		æss es bonding,	of parts oly fitting or narre(s) etc)	tion, etc.)		
				Bending or similar process	Rivetting or similar processes	Screw tightening or other processe	Bulk plastic deformation (large proportion of part is plastically	deformed during fastening) No additional material required (e.g. resistance, friction welding etc.)	Soldering processes	Weld/braze processeses	Chemical proces (e.g. adhesive bor etc.)	Manipulation of parts or sub-assembly (e.g. orienting, fitting or adjustment of parts(s)	Other processes (e.g. liquid insertion, etc.)		
V	Assembly pro where all soli	1	_	0	1	2	3	4	5	6	7	8	9		
P	arts are in p	ace	9	4	7	5	12	7	8	12	12	9	12		

Referencias

- [1] www.definicionabc.com/deporte/destreza.php, 2015.
- [2] D. Manterola y N. Pineda, El valor "p" y la significancia estadística, asperctos generales y su valor en la práctica clínica, Chile: Revista clínica de cirugía, "Interpretation of medical stadistics", 2008.
- [3] http://www.valparint.com, 2015.
- [4] L. Howell, Complaint Mechanism, New York: John Wiley & Sons, 2002.
- [5] J. L. Devore, «Probabilidad y Estadística para Ingeniería y Ciencias,» Cengage Learning, México, 2010.
- [6] J. a. R. Ferré y X. F., Introducción al diseño estádistico de experimentos, Universitat Rovira i Virgili Tarragona.
- [7] V. Mathiowtz, K. Weber, N. Kashman y G. Volland, The occupational therapy journal of research, 1985.
- [8] P. Torres, Diseño de ortoprótesis de mano, México: Tesis de licenciatura, Universidad Nacional Autonoma de México, 2012.
- [9] A. I. Hernández Contreras, Diseño para ensamble de mano CDMIT ", México: Tesis de licenciatura, Universidad Nacional Autónoma de México, 2013.
- [10 C. Gomez, Diseño de una ortoprótesis flexible, México: Tesis de licenciatura, Universidad
 Nacional Autonoma de México, 2013.
- [11 G. Boothroyd, Product Design for manufacture and assembly, New York: Marcel Dekker, Inc, 2002.
- [12 http://www.rehabmeasures.org/default.aspx, 2015.
- [13 http://www.itch.edu.mx/academic/industrial/ingcalidad/unidad3.html, 2015.]

```
[14 http://www.ugr.es/~bioestad/_private/cpfund3.pdf, 2015.
]
[15 http://www.orthopaedicscore.com/scorepages/disabilities_of_arm_shoulder_hand_score_dash.
] html, 2015.
[16 http://www.shap.ecs.soton.ac.uk/, 2015.
]
[17 http://www.amazon.com/Rolyan-9-Hole-Peg-Test-Kit/dp/B007G4S7XA, 2015.
]
```