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 Abstract 

 
Nowadays, the new design philosophies of structures contemplate the 
possibility that some of the elements that compose them present damage 

due to various requests to which they are subjected, for example, seismic 
events. In order to consider the damage in the structures, it is necessary 
that the structural analysis consider the non-linear behavior of the 

materials, at least in a simplified way. 
 

The Finite Element Method (FEM) is a numerical procedure commonly 
used in the study of problems in various areas of engineering. The FEM is 
used to obtain numerical approximations of problems that are too complex 

to be solved analytically, for example, the nonlinear analysis of structures. 
In this work, the FEM is used together with a strategy based on Linear 
Sequential Analysis (ALS) in the study of the nonlinear behavior of 

material structures with quasi-brittle behavior in a computationally 
efficient way. 

 
Throughout the document several application examples with different 
configurations and parameters are studied. The results obtained are 

compared with other methods and with experimental evidence. 
Additionally, a modification to the softening law of the material is proposed 
that allows obtaining results closer to what was observed in the 

experiments. 



 
 

6 
 

 



 
 

7 
 

 

 
 

 

Resumen 

 
 

En la actualidad, las nuevas filosofías de diseño de estructuras 
contemplan la posibilidad de que algunos de los elementos que las 

componen presenten daño ante diversas solicitaciones a las que son 
sometidas, por ejemplo, eventos sísmicos. Para considerar el daño en las 
estructuras, es necesario que el análisis estructural considere el 

comportamiento no-lineal de los materiales cuando menos de manera 
simplificada.  

 
El Método de los Elementos Finitos (MEF) es un procedimiento numérico 
comúnmente empleado en el estudio de problemas en diversas áreas de la 

ingeniería. El MEF se utiliza para obtener aproximaciones numéricas de 
problemas que son demasiado complejos para resolverlos analíticamente, 
por ejemplo, el análisis no-lineal de estructuras. En este trabajo, se emplea 

el MEF en conjunto con una estrategia basada en Análisis Lineales 
Secuenciales (ALS) en el estudio del comportamiento no-lineal de 

estructuras de materiales con comportamiento cuasi-frágil de manera 
computacionalmente eficiente.  
 

A lo largo del documento se estudian diversos ejemplos de aplicación con 
configuraciones y parámetros distintos. Los resultados obtenidos se 
comparan con otros métodos y con evidencia experimental. 

Adicionalmente, se propone una modificación a la ley de ablandamiento 
del material que permite la obtención de resultados más cercanos a lo 

observado en experimentos.  
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Introduction 

 
 

Problem statement 

 

The problem of analyzing the non-linear behaviour of materials, such as 
concrete, masonry or steel, can be studied by the plasticity theory which 
considers the appearance of permanent deformations. Additionally, this 

theory can contemplate that certain materials become stronger once they 
start to yield, i.e. hardening, or, in the other hand, that they become 

weaker, i.e. softening. For the second premise, the procedure called 
Sequentially Linear Analysis (SLA) can be also applied to get a 

computationally efficient damage prediction. 
 
The non-linear analysis of structures through the Finite Element Method 

(FEM) starts by the discretization of the structure subjected to external 
forces into elements of simpler geometry composed of deformable 

materials. Each of these elements contribute to the general behaviour of 
the structure by being submitted to forces that change the original 
configuration of such structure. During this process, linear-elastic or 

plastic deformations can appear. To obtain numerical results closer to the 
ones obtained by laboratory tests, in this thesis the SLA procedure are 
employed. 

 

     Objectives 
 
The main objective of this work is to improve, apply and validate a finite 
element model for the approximation of the nonlinear behaviour of 

structures, based on sequentially linear analysis and implemented through 
a stabilized reduced integration scheme for 4-node quadrilateral elements, 

through the proposal of a new softening law. 
 
In order to achieve the main objective, the following specific tasks were 

stablished: 
 

• Study the general basis of the Finite Element Method (FEM) 
emphasizing in the isoparametric formulation of the 4-node 

quadrilateral finite element. 
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• Perform linear analysis and convergence analysis employing the 
Scientific ToolKit for OpenSees software (STKO) to assimilate how 
the method works. 

• Study and discuss the effect of the use of different numerical 
integration schemes in the computation of the stiffness matrix of a 

4-node quadrilateral element and  

• Study and Stabilized Reduced Integration (SRI) scheme for the 4-
node quadrilateral finite element which allows the use of low-order 
integration rules with numerical stability. 

• Study the procedure based on SLA aimed to approximate the non-
linear behaviour of quasi-fragile materials. 

• Apply and validate the strategy composed by both SLA and SRI 
through its application to several examples. 

• Validate the procedure through the study of a plate previously tested 
in laboratory, analyzing different scenarios, assigning various 

characteristics associated with the geometry, methodology of the 
case or even the parameters implemented in the analysis. 

• Propose a new softening law which improve the behaviour 
approximated in the previous specific task. 

 

     Outline of the thesis 
 

The contents of this thesis are divided in three different parts. The first one 
discusses the FEM basis from the generation process of the mesh to the 
use of different Gauss-Legendre quadrature rules to obtain the stiffness. 

The second part describes the SLA which uses a softening law making an 
iterative process where the element that belongs to the model crack path 

have degraded properties. The last section is the main section of this 
thesis, where a specific example is included. 
 

Regarding the SLA procedure, for a saw-tooth softening law, it must 
require that the area enclosed by the saw tooth equals the area enclosed 

by the base material laws. This SLA procedure includes an iterative 
procedure that makes FEM determine the stiffness, loads and 
displacements results, but this is only a part of the method. A second 

requirement includes solving through SLA procedure by making a damage 
band where every element belonging to the area can be selected as the 
weakest element, as a result the load and deformation are computed, and 

the model is ready to make another analysis.   
 

The application example is a tension plate tested by Van Vliet (2000), 
where he expected to have a geometry of a concrete plate which have the 
highest stress concentration in the center of such plate. For this purpose, 

Van Vliet (2000) analyzed 6 different specimens with different depth and 
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all the dimensions of the geometry, for this test, a C specimen was chosen 

to compare the most desirable approach by considering non-equivalent 
characteristics.   
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Chapter I 

Finite Element Method 

 

I.I Introduction 
 

The Finite Element Method (FEM) is a numerical tool used to, among other 
applications, approximate the behaviour of structures through the 
discretization of  the complicated geometry of such structure in elements 

of  simpler geometry, e.g., triangles or quadrilaterals for two-dimensional 
analysis or hexahedrals for three-dimensional analysis among others 

(Bathe, 2006).  
 
There are several possible mesh configurations to analyse the behaviour of 

the structure. For example, Figure 1.1 describes how Orduña et. al. ( 2007) 
discretized the arcade of the monastery of São Vicente de Fora to estimate 

the seismic vulnerability of the monastery (Amezcua, 2016). 
 

 
  

Figure 1.1 Geometry of the monastery of Saó Vicente de Fora: a) photography and b) finite-element 
mesh (Orduña et al., 2007) 

If the mesh is fine, which means that contains a high quantity of elements 

on it, the problem is harder to resolve (fig. 2.1b). In the other hand, a more 
simplified mesh, i.e., a coarse mesh with a reduced number of elements, 
helps to have an easier way to analyse the problem. In terms of results, it 

is expected that a finer mesh has a better approximation of the solution. 
 

In other words, the configuration of different meshes, e.g., size, type, 
disposition, and quantity of elements, of the structure defines the quality 
of the approximation of the solution of the mathematically modeled 

problem. As expected, for  a significantly fine mesh  the results are closer 
to reality but, also, computationally demanding (Gupta & Meek, 1996). 

 

a) b) 
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The 4-node quadrilateral element is used in all the examples included in 

this thesis. For this reason, this chapter begins with a brief description of 
the formulation of a quadrilateral element. Subsequently, the stiffness 

matrix, through different integration schemes is obtained to discuss the 
differences between them. Also, an example of a problem is solved by a 
widely used software.  

 

     I.II Isoparametric formulation of the 4-node     

quadrilateral element 
 

In the context of the FEM, the shape functions describe the behaviour of 
every node of certain element. The quantity of the shape functions  is 

equal to the number of nodes of the quadrilateral. Considering only a 

middle node of an element means that only one shape function is required 
(fig. 2.2a). If one node for each apex is considered, four shape functions 
need to be contemplated in the problem (fig. 2.1b). Additionally, for a 

quadrilateral with middle nodes between the edges and another ubicated 
in the center of the quadrilateral, the number of shape functions increase 
to nine (fig. 2.2). 

 
Figure 1.1. Examples of nodes considered in a quadrilateral finite element: a) 1-node, b) 4-node and c) 

9-node  

 
To change the variables to other different coordinate system in which the 

problem can have an equivalent but simpler form, natural coordinates are 
used. For this purpose, shape functions are transformed in terms of . 

For example, the geometrical representation of this transformation can be 

observed for a 9-node quadrilateral finite element in fig. 2.3. 
 

 
Figure 1.3. Quadrilateral Coordinates transformation of a 9-node quadrilateral element: a) global and 

b) natural system 

a) b) c) 

a) b) 
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The shape functions are employed on the compatibility matrix 

construction, ,  which is given by the eq. 2.1. The geometry of the 

analyzed element and the number of nodes define the size of the matrix 
according to the degrees of freedom. As mentioned above, this research is 

focused on the employment of 4-node quadrilateral elements. Therefore, in 
this formulation two displacements and forces at each node are considered 

( Juárez, 2012), (eq. 2.1). 
 

 (2.1) 

     
Where  and , are the shape functions of every node in global 

coordinates.  is an antimetric matrix and  is the Jacobian to make the 

change of global to natural coordinates. 
 
To describe a numerical example, the 4-node quadrilateral of fig. 2.4 is 

considered. The load is applied at the top nodes of the element and the 
restrains are at the bottom. 

 

  
Figure 1.4. 4-node quadrilateral element considered  

 

The  matrix of a 4-node quadrilateral element can be represented as (eq. 

2.2): 
 

 
(2.2) 

 
Furthermore, the constitutive matrix, , is given by the  and  parameters 

of Lamé (eq. 2.3). 
 
For the material properties of the elements, such as the Young's Modulus 

( ) and the Poisson's Ratio ( ), a constitutive matrix for plane stress is 

defined as (eq. 2.4): 
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(2.3) 

 

 (2.4) 

 
                                                           

For example, for a Young's Modulus  kg/cm2and a Poisson's Ratio 

 the constitutive matrix for plane stress becomes (eq. 2.5): 
 

 

(2.5) 

 

According to kinematics, stiffness is the property of the element to resist 
displacements when applying a force. In the FEM, the stiffness matrix, ,  

is represented by an integral of a function computed by the product of the 
transposed compatibility matrix, the constitutive matrix, and the 
compatibility matrix (eq. 2.6): 

  

 (2.6) 

 
 

Where  is the thickness, or the smallest dimension of the specimen to be 

analyzed. To obtain the result of the integral of eq. 2.6 on an interval [-1,1] 
a Gauss-Legendre quadrature is used, i.e., numerical integration, which is 

an integration method to show a mathematical approximation of the real 
problem where the expression is computed as (eq. 2.7): 
 

 

(2.7) 

 

Where  is the number of integration points,  and  are the sampling 

points, and   and are the assigned weights per sampling point which 

values are expressed in the following table: 
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Table 2.1. Gauss-Legendre quadrature for one and two integration points 

 
 
Evaluating the integral of eq.2.7 by means of numerical integration 
employing 4 integration points through Gauss-Legendre quadrature, a 

stiffness matrix is obtained whose dimension is given by the number of 
degrees of freedom per node (eq. 2.8).  The stiffness matrix of eq. 2.8 is 

defined as a singular matrix. The subtract from the number of the rows or 
the columns minus the range of the matrix is equal to the number of 
restraints that need to be imposed.  

 

 

(2.8) 

 

 
Consequentially, to obtain the displacements of the quadrilateral element 
of fig 2.4 it is necessary to obtain a non-singular stiffness matrix by the 

imposition of the boundary conditions. Once the nodes with fixed 
restraints are determined in the quadrilateral element and a non-singular 
stiffness matrix is obtained, the next step is to compute the inverse matrix. 

For example, for a bottom-restrained quadrilateral, the inverse matrix is 
(eq. 2.9): 

 

 

(2.9) 

 
 
The inverse of the stiffness matrix (eq. 2.9) multiplied by the force vector,  

gives the displacements,  (eq. 2.10): 

 

 (2.10) 

 

Where the displacements results are (eq. 2.11): 
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(2.11) 

 

To obtain strains, , the expression is given by (eq. 2.12): 

 

 
 
In this case, for a unit force applied at the nodes above the quadrilateral, 

strain results are (eq. 2.13): 
 

 (2.13) 

 

In terms of stress results, constitutive matrix per strain vector will give 
them (eq. 2.14): 
 

 (2.14) 

 
And the results are (eq. 2.15): 

 

 

(2.15) 

 

 

I.III Full and reduced numerical integration 
 
In the above section, four integration points are used.  When the stiffness 
matrix of a quadrilateral is computed employing only one integration point 

is called reduced integration (RI) (fig 2.5). 
 

 
Figure 1.5. Reduced integration in the 4-node quadrilateral element 

 

(1.12) 
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Furthermore, it is well known that a 4-node quadrilateral finite element 

have eight deformation modes. When full integration (FI) is used, the first 
three modes have a rigid-body behaviour (fig. 2.6). The following two are 

the known as bending modes (fig. 2.7), and the last three, have are the 
constant strain modes (fig. 2.8). 
 

 

   
a) b) c) 

Figure 1.6. Rigid-body modes 

 

  
d) e) 

Figure 1.7. Bending modes 

 

  
 

a) b) c) 
Figure 1.8. Constant-strain modes 

 
When reduced integration is employed, hourglass modes appear. The first 

five modes are zero-energy deformation modes, but they do not have 

a rigid-body behaviour (fig. 2.9). On the other hand, the last three 

modes are the same as when full integration is used (fig. 2.10).  
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a) b) c) 

  

d) e) 

Figure 1.9. Hourglass modes 

 

  
 

a) b) c) 
Figure 1.10. Constant-strain modes 

 
 

I.IV Stabilization procedure for reduced integration 
 
It is demonstrated that the rate of convergence of the one-point quadrature 

element is comparable to that of the fully integrated elements (Belytschko 
et al., 1978). The principal disadvantage of full integration is related to 

incompressibility of materials which can be fixed by employing reduced 
integration. On the other hand, the use of reduced integration leads to 
numerically unstable sub-integrated stiffness matrix. The problem to solve 

is that this matrix has an order less than that required, i.e., rank-deficient 
matrices. The hourglass control method is used to increase the rank of the 
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one-point stiffness matrix from 3 to 5 by adding an stabilizer matrix 

(Jacquotte et al., 1986).  
 

One of the stabilization procedures developed was studied by Belytschko 
and Liu (1978). In terms of the mathematical method, the stabilizer matrix 
augments the rank of the stiffness matrix from 3 to 5 though adding 

neglected terms in the reduced integration procedure. Furthermore, the 
hourglass modes becomes rigid-body and bending modes (Amezcua, 2023) 
(eq. 2.16):  

 

 (2.16) 

 

In eq. 2.16,   is the stiffness matrix that have an deficient rank that 

depends on the area on the element , the thickness of the element , the 

strain-displacement matrix  evaluated in one integration point and , 

the constitutive matrix.  Moreover, the stabilizer matrix  can be 

calculated as (eq. 2.17):  
 

 
(2.17) 

 
Where stands for the strain-displacement matrix (Amezcua, 2023) and 

can be obtained as (eq. 1.18): 

 

 (2.18) 

 

In the previous equation, is the product of the natural coordinates, 

 and the comma stands for the lower-case subscripts in terms of 

partial differentiation with respect to the global coordinate system  

(Amezcua, 2022). Flanagan and Belytschko (1981) defined the gamma 
terms as the components of the hourglass shape vector.  
 

Also, the  can be obtained as (eq. 2.19): 

 

 

(2.19) 

 

Where  are the elements of the plane stress or plane strain of the 

constitutive matrix and  and   are obtained by the eq. 2.10 

(Belytschko and Bachrach, 1986). Moreover, when  is computed 

through numerical integration, it is necessary to use a 2 x 2 Gauss-



 
 

28 
 

Legendre quadrature to numerically evaluate  and  . Thus, for a 

one integration point, the domain of the  and   equations change 

to that of the natural coordinate system and can be obtained as (eqs. 2.20a 
to 2.20c) (Amezcua, 2023):  

 

 

(2.20a) 

 

(2.20b) 

 

(2.20c) 

 

Additionally, Amezcua (2023) describes that  and  can be computed 

as (eqs. 2.21a and 2.21b). 
 

 
(2.21a) 

 
(2.21b) 

 

Where  is an equation that depends on three different constants (eq. 

2.22):  
 

 (2.22) 

 

And the  can be computed as the eqs. 2.23a to 2.23c show: 

 

 (2.23a) 

 (2.23b) 

 (2.23c) 

 
Where eq. 2.24a to 2.24c demonstrates how to obtain the alpha vector:  
 

 (2.24a) 

 (2.24b) 

 (2.24c) 

 
 

I.V Linear FEM analysis 

 
The theorical and mathematical basis of the FEM were reviewed in the 
previous section. It is clear that in order to apply the FEM to the structural 
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analysis, a numerical implementation is required. There are several 

computational tools that can help engineers to apply the FEM to the 
mentioned task. One of the most popular is OpenSees. This open source is 

a software framework for developing applications to simulate the 
performance of structural and geotechnical systems. 
 

Additionally, there are complementary developments for OpenSees, such 
as the Scientific ToolKit for OpenSees (STKO) which is an advanced 
Graphical User Interface (GUI) for OpenSees.  

 
In the following lines, a brief description of the STKO software (ASDEA 

Software, 2018), is included. For a 4-node finite quadrilateral the main 

algorithm needs to define the geometry that can be created with a Face  

option. This option is the one that helps to draw the geometry in the 
software (fig.2.11). 

  

 
Figure 1.11. Screenshot of Face ¾ option in STKO software (ASDEA software, 2018) 

 

Also, to define the type of analysis, it is used Linear Time Series option 
(fig.2.12). 
 

 
Figure 1.12. Screenshot of Linear Time Series in STKO software (ASDEA software, 2018) 
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Moreover, the mechanical properties of the material that need to be 

assigned are defined as an Elastic Isotropic. The material properties that 
were used in this example are the following: a Young Modulus of  

, as the concrete, and a Poisson Ratio of   (fig 

2.13), to exemplify a real example.  
 

 
Figure 1.13. Screenshot of Material Properties in STKO software (ASDEA software, 2018) 

 

Then, the element property defined as an enhanced quad (option in the 
software used to define the kind of strain in the figure would be submitted 
with a unit thickness) is selected (fig 2.14). 

 

 
Figure 1.14. Screenshot of Element property in STKO software (ASDEA software, 2018) 
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In addition, a horizontal force acting at the above nodes and two restraints 

at the bottom are applied (fig. 2.15). 
 

   

 
Figure 1.15. Screenshot of Boundary conditions in STKO software (ASDEA software, 2018) 

 

To define where the analysis is going to save, there is the option of 
analysis steps. All the previous steps can be observed in the following 

items (fig. 2.16).  
 
Once the properties are defined, the next step is to create the mesh in the 

mesh tab with the option global edge seed (fig. 2.17). The type of this 
option is set on uniform by size of 2. In addition, the set mesh control of 

the quadrilateral needs to be at a structured algorithm, a topology of quad 
and linear order. It is important to remember to assign all the properties to 

the quad by dragging and set the element with them. The last step of the 
pre-processor is to build the mesh (fig. 2.18).  
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Figure 1.16. Screenshot of Items in STKO software (ASDEA software, 2018) 

 

 
 

Figure 1.17. Screenshot of Set global edge seed in STKO software (ASDEA software, 2018) 

 
Figure 1.18. Screenshot of  Set mesh controls in STKO software (ASDEA software, 2018) 
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The results of post-processor in STKO program (ASDEA Software, 2018)are 

included in fig. 2.19 for the strains and in fig. 2.20 for the displacements: 
 

 
Figure 1.19. Strains results in STKO software (ASDEA software, 2018) 

 

 
Figure 1.20. Screenshot of Displacement results in STKO software (ASDEA software, 2018) 

 
I.VI Convergence analysis 
 

Obviously, this software can be employed for problems which require a set 
of elements, i.e., meshes. For this purpose, a convergence of the Cook's 

membrane problem (Cook, 1974) is performed. The geometric 
characteristics of the test describe a trapezoidal plate with a line of 44 mm 
on the left side and another of 16 mm on the right one. These two edges 
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form a slope between their upper vertices 16 mm above the top of the left 

side. To join all the points to form a trapezoid, two parallel lines are traced 
(Simo & F. Armero, 1992) (fig. 2.21). 

  

 
Figure 1.21. Cook’s Membrane Geometry 

As for the load, a unit edge load is applied on the right-hand side, and it 

has boundary conditions that fix the x-y plane faces on the left-hand side. 
A thickness of 1 mm is assumed to ensure a plane stress problem. Also, a 

Young's Modulus of 1000 MPa and a Poisson ratio of 0.2 are considered. 
 
Once the geometry and properties are assigned in the STKO program 

(ASDEA Software, 2018), the convergence problem leads to dividing the 
membrane multiple times into 4 elements per each analysis. This 
describes an increasingly refined mesh of 2, 4, 8, 16 and 32 elements on 

the left side where the load is applied (fig. 2.22).  
 

 
Figure 1.22. Screenshot of Cook’s Membrane results for 4-element analysis in STKO software (ASDEA 

software, 2018) 
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All the results that were studied in the STKO postprocessor were plotted in 
terms of displacement in the highest point of the membrane. Once the 

results were extracted, several displacement elements were plotted. The 
plot of fig. 2.23 was obtained by increasing the numbers of elements in the 
membrane, where as mesh was finer, the closer it was to the analytical 

displacement result. 
 

 
Figure 1.23. Number of elements-displacement graphic. 

 

 

I.VII Overview of non-linear FEM analysis 

 
Plasticity is the property of materials where permanent strains appear by a 
set of applied forces associated with an irrecoverable way of acting of the 

study object. Mechanical rheological models are a useful tool to have a 
graphic representation of the physical mechanism of stress-strain curve 
that is subjected to tension, and these can describe both an elastic phase 

and a plastic one. The main feature for an elastic material is the linear 
proportionality between stress and strain as the body is loaded or 

unloaded where the relation of these two properties is represented by 
Young's Modulus  ( ), (Olivella, 2000). 

 

For an elastoplastic behaviour there is not uniqueness in the relation of 
stress and strain. The same quantity of strain can come for an infinite 
different amount of strain which also depends on the loading history. In 

addition, a non-linear model is expressed when the material suffers plastic 
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deformations. Moreover, these deformations can be directly proportional to 

the hardness of the material (Olivella, 2000). 
 

The material needs to be tested in the plastic and elastic boundaries to  
design the element based in the estimation of collapse loads, taking into 
consideration the most economical one, through the available ductility of 

the material (Olivella, 2000). 
 
The non-linear part of an elastoplastic formulation is normally associated 

with qualitative characteristics of the crack problems. The object of the 
crack theory is to stablish equilibrium to the body after damage has 

arrived, submitting to the body through a considerable quantity of finite 
strains. Summarizing the above, the material can be brittle but can resist 
before reaching the point of damage. In addition, cracks can be considered 

as discontinued surfaces (Olivella, 2000).  
 

Moreover, when a system load appears into the body, the crack theory is 
formulated finding the values of stress and strain for crack situated in an 
initial position. Acting strains of the problem need to be finite, even so, if 

the initial location of the crack is not given a finite strain is assigned to be 
sure that the material is going to suffer damage (Olivella, 2000).  
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Chapter II 

Sequentially Linear Analysis 

 

 

II.I Introduction 
 
Sequentially Linear Analysis (SLA) is a procedure, proposed by Rots et al. 
(2008), based on the performance of a series of linear finite-element 

analysis of structures in which the stiffness of certain element is decreased 
by the degradation of the material. This SLA procedure leads to a 

representation of the non-linear behaviour of structures of quasi-fragile 
materials such as masonry or concrete. Accordingly, SLA is an iterative 
aimed to acquire an approximation of the non-linear behaviour of the 

structures in terms of load-displacement curves and damage localization.  
 
In order to approximate the non-linear behaviour of structures two type of 

analysis, among others, can be used, either a non-linear analysis 
employing constitutive models or a SLA employing saw-tooth softening 

laws. Through the years, the FEM has been improved with the main 
objective of obtaining an accurate numerical approximation of the non-
linear behaviour of structures, but frequently real behaviour of structures 

have local peaks, snapbacks and valleys associated with brittle cracking 
(Rots et al., 2008).  
 

According to the SLA method, bending diagram with negative slopes can be 
replaced with a saw-tooth model with positive slope inducing a material 

crack on a specific place (Rots et al., 2008), known as the critical elements, 
to make that happen SLA is applied with the main objective of reducing 
strength and stiffness of the critical elements of the mesh trying to give the 

closest approximation of the tension behaviour of quasi-brittle materials as 
concrete or masonry. The comparison between iterative responses and SLA 

can be interpreted with space and crack depth(Rots et al., 2008). 
 
 

II.II Procedure description 
 

In furtherance to avoid iterations of the Newton-Raphson method, it is 
sought to obtain a local brittle snap-back type response through Rots and 
Invernizzi (2008) SLA procedure. 
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By means of using the saw-tooth softening approach of a mechanical 

problems in terms of a strain-stress curve, a first critical element is chosen 
to give a secant restart made from the origin. Subsequently, the following 

assumptions are used to describe the procedure through the following 
algorithm by reducing stiffness (Rots et al., 2008): 
 

1. The mesh must be created. All the elements in the mesh must be 

quadrilateral. 

2. Assign where is going to be the specific area in which the damage is 

allowed.  

3. Apply an external unit load. 

4. Perform a linear-elastic analysis. 

5. Select the critical element which is the one with the highest level of 

the principal stress. 

6. Calculate the reduced modulus of elasticity for the current critical 

element (eq. 2.1):  

  

Here,   is a parameter that the user chooses according to the 

number of teeth. 

7. Calculate the scale factor  through eq. 2.2: 

  

Here  is the current tensile strength and  is the principal tensile 

stress of the critical element. 

8. Through multiplying the scale factor and the unit load previously 

applied in step 2; the critical global load is obtained.  

9. Reduce the stiffness and strength, i.e., Young’s modulus E and 

tensile strength ft of the critical element, according to a saw-tooth 

tensile softening described above. 

10. Through the repetition of step six to ten the method identifies a new 

critical element and so as the values of Young's modulus and tensile 

strength until the approximation is accomplished (fig. 2.1). 

(3.1) 

(3.2) 
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Figure 2.2. SLA procedure. 

The softening diagram is formed by Young's modulus and the tensile 
strength, among others. The area underneath the diagram represents the 

fracture energy divided  by the crack width which can be considered 

as a discretized parameter associated with the geometry of the finite 
element (Rots et al., 2008).  

 
The procedure of a smeared cracking can be generated by a localized crack 
over a continuum stripe of finite elements with a crack opening, , which 

is repeated several times to form a certain width, . This width has 

influence in the mesh size through the tensile linear softening, although 
this parameter is not enough to define the mesh density (Rots et al., 2008). 

Furthermore, the ultimate strength, , depends on the cracking strip 

with, , width. And it can be calculated thought equation 3.3: 

 

 
(3.3) 

 
where the reduced tensile strength, , can be obtained as (eq. 3.4): 

 

 
(3.4) 

 
And , represent the tangent to the stress strain softening diagram (eq. 

3.5): 

 

 

(3.5) 

 
On the other hand, when the saw tooth diagram is being built by the SLA 

method, the regularization procedure helps to fix the underestimated loads 
and displacements. To begin with, a new expression (eq. 3.6) is provided to 
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determine the current area, , bellowing the curve. Later, it is updated the 

tensile strength, the ultimate strain, or either both in contemplation of 
keeping the invariant energy dissipated, in other words, the newly updated 
area, , of the constitutive law becomes invariant and is equal to (Rots, 

2018):  
 

 
(3.6) 

 
In addition, the tensile strength, and the ultimate strain are multiplied by 

a numerical factor known as, , (eq. 3.7): 

 

 

(3.7) 

 

Where, , varies depending on the approximation method in the saw-tooth 

diagram. The following figure (fig. 3.2) represents the regularization 

procedure.  
 

 
Figure 2.2. SLA with and without regularization procedure 

 

II.III Implementation using a stabilization procedure for 

reduced integration 
 

In the original proposal for the SLA procedure, RI techniques are normally 

used in the   on the elements where the damage is expected to occur. In 
terms of the SLA method, every element belonging to the branch of 
softening can not be used as the weakest element a lot of times during the 

analysis. Furthermore, when the Young's Modulus approaches to zero, the 
stops in order to avoid numerical issues.  
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In terms to determine the critical load where the element will suffer 
damage, the  parameter would help to determine it. On the other hand, 

the fracture energy is represented by the area down the curve of strain-

stress diagram results.  
 

II.IV Calibration example 
 

In the following lines, an example is included in order to describe the SLA 
procedure. This example consists on  a concrete notched beam that was 
analyzed in the investigation of Rots (Rots et al., 2008) and was also 

evaluated by Amezcua ((Amezcua, 2022), the main objective of this section 
is to obtain the same results to prove that the analysis was correctly 
applied.  

 
The mechanical material properties for the material are the following:  

 

• Young's modulus  

• Poisson’s ratio  

• Initial tensile strength  

• Fracture energy  

• An parameter of ,  and  for a five, ten and twenty teeth, 

respectively 

• Total depth of the beam of  

Where the geometry of the example, is described in the following fig. 2.3: 

 
Figure 2.3 Notched beam’s Geometry. 
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For this example, are considered five, ten and twenty teeth with and 

without the regularization procedure to represent the behaviour in terms of 
load and displacement. Moreover, quadrilateral elements were 

implemented in the whole structure with three different width sizes, in the 
first place, dividing with  rectangles from the sides of the beam to  

mm thought the center and a load applied at the top where this mesh size 

ends. The selected crack path can be symbolized as the red strip in the 
following fig. 3.4. 
 

 
Figure 2.4 Proposed mesh 

The results of the softening tension curve for each number of teeth are 
showed in the following figures. Here it can be observed that every tooth is 
represented for a spike. These results are comparable with the graphics of 

other authors as Amezcua (Amezcua, 2022) and Rots (Rots et al., 2008). 
 
 
II.IV.I Without regularization procedure. 
 

As it might be seen in the consequent figs. 3.5 to 3.7, the ten teeth 
graphics are more difficult to detect for the irregular form of the peaks. 
Nevertheless, it can be observed that a more accurate approximation to 

reality is stablished which proves that with a greater number or teeth the 
algorithm establishes better results. However, all the graphics are under 

the results of the real problem at least half of the steps for the SLA 
procedure.    
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Figure 2.5. Load-displacement diagram for an SLA with five teeth. 

  
 

Figure 2.6. Load-displacement diagram for an SLA with ten teeth. 

 

  
 

Figure 2.7. Load-displacement diagram for an SLA with twenty teeth. 

 

II.IV.I With regularization procedure. 
 
For the following figs. 3.8 3.10 the approximations mark subsequent peaks 

are plotted very closely to the numerical model. As can be observed, the 
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load-displacement results seem to be effective when the regularization 

procedure is applied in the SLA method. 
As the previous example, the more teeth are considered, the closer the 

results. 
 

 
 

Figure 2.8. Load-displacement diagram for an SLA with five teeth with regularization procedure. 

 

  
 

Figure 2.9. Load-displacement diagram for an SLA with ten teeth with regularization procedure. 
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Figure 2.10. Load-displacement diagram for an SLA with twenty teeth with regularization procedure. 
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Chapter III 

Application examples 

 
 

III.I Introduction 
 
To represent the previously described formulations, an analysis of a 

tension plate by using SLA as an alternative of non-linear analysis of 
structures was performed. The selected problem consists on a specimen 

that was tested by Van Vliet (Van Vliet, 2000) and studied by Retama 
(Retama, 2010). The SLA solution proposed in this chapter was studied by 
Rots (Rots et al., 2008) whose study described a method using SLA with 

saw-tooth softening.  
 
The objective of this chapter is to compare the different scenarios obtained 

for the same problem of a tension plate. The study cases considered in this 
example include stabilized reduced integration and the regularization 

procedure, as well as combinations of their absence, giving a total of 4 per 
number of teeth.  
 

Likewise, in the calculation of the new Young's modulus of the critical 
element, having different alpha values in the number of total steps in the 
repetition of runs at the time of obtaining the sawtooth diagram was 

considered in order to compare with a constant alpha analysis. 
 

III.II Tension plate example 
 

An example studied by Van Vliet (2000) was selected to obtain a numerical 
approximation of the test results obtained in the experiments carried out 
in the Technical University of Delft. The sample that was selected to be 

analyzed through the SLA procedure was the designated as "Type C"., Two 
of the three dimensions were considered to have a two-dimensional plane-
stress problem. Therefore, the thickness of the concrete specimen is 

indicated as a constant magnitude and is referred as "t". The value of this 
thickness is 100 mm. 

 
The geometry and the shape of the specimen were tested multiple times to 
determine the sections and their equivalences in function of the dimension 

"D" as is shown in fig. 4.1. The base length is determined by dimension "D" 
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which, for the type C, is considered as 200 mm. Moreover, the shape of the 

specimen is described as a concave plate that is anchored at its ends to a 
steel material. The radius of this specimen at its concave spaces is 145 

mm. 
 

 
Figure 3.1. Plate's Geometry 

These dimensions were taken from the Van Vliet's work (Van Vliet, 2000) 
in addition to the material properties and the boundary conditions which 
specify that the specimen is subject to limited conditions. Moreover, a 

prismatic sample was used to minimize shape effects in order to have the 
crack at the weakest zone of the specimen. Therefore, the initial crack 

must be further away the fixed constraints. As shown in the fig. 4.1, the 
vertical dimensions are dependent of "D" where those of the ends are 0.25 
times D.  

 
The dimension of the center is also given by D. The depth of the radius 
where the force is applied 0.2 times D from the limits of the figure to the 

center.  
 

Type C specimen had free rotations in two orthogonal directions and two 
steel hinges were used to apply a uniform load, this steel plate functions 
as a connection between the specimen and the experimental set up. 

Despite the differences of the Young Modulus or the Poisson's Ratio, stress 
concentrations cause material failure near to the glue layer. To avoid this 
situation, the cross-section is increased, and the boundary stresses are 

reduced. This shape description was designated by Van Vliet to find the 
best option for performing a uniaxial tensile test on a plate (fig. 4.2). 
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Figure 3.2 Design of the specimen shape for the size effect test (Van Vliet, 2000) 

The concrete and steel plates were joined by four fixed lower and upper 

hinges at 320 mm joints, several bolts of 2x2 and 20x2 steel angles, which 
allowed free rotation. The load plates and hinges were glued to the 

concrete specimens.  
 
Regarding the loads, a "P" load was applied with an eccentricity between 

the axis of symmetry through a hydraulic actuator and the point of 
application. This uniaxial tensile test was performed under control and the 
strains were measured by LVDTs (Linear Variable Displacement 

Transducer) at two points. The first stage consists on apply a small, 
constant load whose displacement for the control LVDTs could be 

measured. The second stage was to find the maximum deformation 
through a feedback signal known as the "MAX" control in the test report of 
Van Vliet. A total of 16 LVDTs were used at the first and second point of 

application. (fig. 3.3). 
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Figure 3.3. Study plate 

 

The center of the concrete plate was the area where failure is expected to 
occur. To guarantee the tensile state of stress in the cross-section, the 

eccentricity of the applied load was calculated as . The two reference 

points where the deformation was measured were over the middle cross-

section, which were separated by a magnitude "Ls". The calculation of this 
magnitude could be obtained by multiplying 0.6 by D (Retama, 2010). 
 

To review the final dimensions of the Type C specimen; a length of 200 
mm, radius of 145 mm, depth of 100 m, load eccentricity of about 4 mm, 
distance from the reference points of 120 mm, the height of the concrete 

bases of the plate above and below are 50 mm and the distance of the arcs 
where the radius is applied are 40 mm (fig. 4.4). 

 
The combination of all these geometry and material characteristics were 
classified as 05C04N30 in the experiment report (Van Vliet, 2000) where 

the digit 05 means the casting number, C is the letter to represent the type 
of test piece, 04 is the number in millimetres of the eccentricity, N is the 
material tested (concrete) and the 30 number was to indicate the unique 

sequential number. 
 

point 
of the 
LVDT 

point 
of the 
LVDT 
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Figure 3.4. Type C specimen. 

 

III.III Description of the numerical model 
 
Following the previous procedure of discretizing the plate in finite 

quadrilateral elements, a mesh was created to obtain an approximation of 
the physical results obtained by Van Vliet (2000). To design a suitable 

mesh of the problem, two different software were used: AutoCAD and GiD. 
The first CAD software was only used to draw the plate and mesh geometry 
(fig. 4.5) where the eccentricity needs a diagonal line to apply the load to 

have the right proportion of the quadrilateral elements throughout the 
concrete specimen.  
 

 
Figure 3.5. Plate’s mesh. 
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The second software was used to generate the mesh, i.e., the nodes, 

elements, restraints and loads, so that the program for performing the SLA 
procedure  (Amezcua, 2023) could read it.  

 
To read all the elements, a GiD file needs to be created. The following 
algorithm works to describe the exact usage of the GiD software: 

 

1. To create nodes between divisions, choose the geometry menu, go to 

Edit and Intersect, click the line option, and select the entire shape. 

Press OK. Then go back to the geometry menu and build a NURBS 

surface with the create option. Select Automatic and type the 

number 4.  

 

2. To create the mesh from the read file, go to the mesh menu and 

select the quadrilateral element type, then select generate mesh (Fig. 

4.6). 

 
3. The last step is to export the mesh register in the file menu. 

 

Figure 3.6. Plate’s mesh in Gid. 

 

As a result, the GiD Software displays a numbered mesh file that the SLA 
program reads as a discretized specimen to work by the FEM (fig. 4.7). To 
run the program, it is necessary to enter the material properties that were 

used in the Van Vliet's test. To begin with, the magnitude of Elastic 
modulus , a Poisson ratio , tensile strength 
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 and fracture energy . The other parameters to 

be entered due to SLA depend on the study model.  

 
In terms of the method, there are a series of elements that must have a 
compressive behavior in all uniaxial tensile tests because the unitary load 

stretches the specimen with an eccentricity that makes the entire element 
rotate to its right side. This behavior will imply that the central elements of 
the plate are compressed a little and they will be considered as cracking 

elements of the material. According to the analysis and the results, only 
some test where the compression is going to be analyzed. 

 
Regarding the crack, a crack band is located where the damaged area is 
already known, where the quadrilateral elements known as 48, 122, 169, 

172, 210, 211, 213 and 229 make the crack pattern, such as seen in the 
fig. 4.7. Additionally, the FEM in these elements is applied with RI 

because, otherwise, four different values of principal stresses would be 
obtained as a result. 

 
Figure 3.7. Mesh employed in the analysis 

For the numerical approximations, two case studies will be shown. First, 

the  parameter was considered as a constant for each step of the SLA 

according to the liner softening saw-tooth law. Second, the  parameter 

varies following a multi-linear global softening law. These two cases are 

studied to compare the results for the plate test. Additionally, a 
regularization procedure and the SRI scheme are used for comparison 
purposes. The results presented in the next chapter are analyzed for 5, 10 

and 20 teeth.  
 

The load-displacement experimental results of the tension plate test (fig. 
4.8) are included in Table 4.1: 
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Table 3.1. Tension test results 

Van Vliet's Test 

Displacement 

(mm) 
Load (N) 

0.000 0 

0.000 0.118 

0.001 5.093 

0.002 9.831 

0.003 15.043 

0.005 19.900 

0.006 24.163 

0.007 26.769 

0.009 24.871 

0.016 19.531 

0.020 14.668 

0.028 11.578 

0.039 8.840 

0.057 6.923 

0.080 4.526 

0.104 3.313 

0.129 2.335 

0.153 1.478 

0.173 1.336 

0.199 0.949 

 

 
 

Figure 3.8. Experimental results for the plate 
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III.IV Results 
 

A description of each considered case for the SLA is included in the 

following list. 

Case 1. Without regularization procedure (RI-NR-n) 

Case 2. With regularization procedure (RI-R-n) 

Case 3. Stabilized reduced integration without regularization 

procedure (SRI-NR-n) 

Case 4. Stabilized reduced integration with regularization procedure 

(SRI-R-n) 

Here, n indicates the number of teeth considered in the analysis. 

Additionally, in a first stage, the four cases consider  as a constant for 

each step of the SLA with a different value for each type of analysis 

depending on the number of teeth and, in a next stage,  is considered 

variable for each third of the total steps. For this purpose, an 

implementation was added to the SLA program to calculate the reduced 

modulus of elasticity for the current critical element.  

Displacement results were obtained at two different nodes of the mesh, 

numbered as node 171 and 71, where every displacement of the two points 

is added. For the other hand, load will be the same calculated for every 

step.

 

For the other hand, load will be the same calculated for every step. Once 

the results were obtained, the load-displacement diagrams were 

constructed. For the Case 1, for a 5, 10 and 20 teeth, i.e., RI-NR-5, RI-NR-

10 and RI-NR-20, the graphs are described by figs. 3.10 to 3.12 where the 

 parameter was considered as constant of ,  and .  

Also, the number of steps was determined and growing according to the 

number of teeth, for each case. 
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Figure 3.9. SLA results for case 1 (RI-NR-5) 

 

Figure 3.10. SLA results for case 1 (RI-NR-10) 
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Figure 3.11 SLA results for case 1 (RI-NR-20) 

The Case 2 is for an analysis performed with a regularization procedure 

that makes the diagram fixed for correcting the underestimated fracture 

energy. Depending on the analysis and the characteristics of the geometry 

and the case, the results obtained with SLA will represent that for the 

same displacements the plate resists more before suffering damage (figs. 

3.13 to 3.15). The different  parameters were the same as the previous 

case of study. 
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Figure 3.12 SLA results for case 2 (RI-R-5) 

 

Figure 3.13 SLA results for case 2 (RI-R-10) 
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Figure 3.14 SLA results for case 2 (RI-R-20) 

The Case 3 of study corresponds to the SRI, described in the chapter 2, 

without regularization procedure. The values of the parameter  were the 

same as the previous case (figs. 3.15 to 3.17). 

 

Figure 3.15 SLA results for case 3 (SRI-NR-5) 
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Figure 3.16 SLA results for case 3 (SRI-NR-10) 

 

Figure 3.17 SLA results for case 3 (SRI-NR-20) 

The Case 4 is considering SRI with a regularization procedure. Also, like 

the other case studies, the parameter  was the exact same as the last 

case of study (figs. 3.18 to 3.20). 
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Figure 3.18 SLA results for case 4 (SRI-R-5) 

 

Figure 3.19 SLA results for case 4 (SRI-R-10) 
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Figure 3.20. SLA results for case 4 (SRI-R-20). 

As a result of comparing the graphics for all the cases, it can be noticed 
that the case of SRI-NR-20is the one with better results; nevertheless, by 

displacement 0.01(mm), the mechanical property of the critical element 
needs to be more reduced. To obtain the best approximation, a variable  

parameter is going to be used (Table 3.2): 

 
Table 3.2. Tension test 

Step  
0-60 1.4142 

60-96 2 

96-170 1.4142 
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Figure 3.21. Results SLA-NR-20 considering a variable. 

III.V Comparison and discussion 
 

The results obtained of the application example demonstrates that the 

number of teeth used to the saw-tooth diagram are important to have a 
better approach. To obtain the number of steps that can describe the 
behaviour of an experiment in the diagram in some points that are difficult 

to be close. The number of teeth also can be affected in terms of a 
parameter, as it can be seen in the study with the best results that were 
obtained in the previous chapter. At first in the method application seems 

like does not matter the variability of the constant used to divide the 
Young's Modulus but, as the analysis was becoming more robust, the 

results were closer to reality.  
 
In terms of having another test with different parameters as the geometry, 

or the materials that are used to analyze a sequentially linear analysis, the 
 parameter or the Young's Modulus can be changed to compare if they get 

a more exact approximation, but speaking of the number of teeth, it can be 

proved that if the analysis has more teeth, more steps will be iterating 
between the curve.  
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Chapter IV 

Conclusions 

 
 

By studying the basis of the Finite Element Method, emphasizing the 

isoparametric formulation of the 4-node quadrilateral finite element, it was 
noticed that the discretization of every structure with elastic isotropic 
characteristics into relatively small elements can approximate the behavior 

of the entire structure in terms of stress, deformations or displacements. 
 

Consequently, there are several computer programs that can perform a 
Finite-Element analysis that will make it easier to study the behaviour of 
certain structure, e.g. STKO. However, it cannot be forgotten that these 

programs will give wrong results if the conditions that are introduced into 
the software are also wrong. In this regard, it is important to know how the 

Finite Element Method works. 
 
Moreover, in this thesis was studied that using full and reduced 

integration for a 4-node quadrilateral element has different effects in the 
stiffness matrix computation. It was illustrated that the stiffness matrix 

obtained through reduced numerical integration presents five zero energy 
deformation modes. Accordingly, a stabilizer stiffness matrix needs to be 
added to the sub-integrated matrix in order to have a sufficient rank to 

obtain displacements in different cases of study. 
 
Nevertheless, in terms of nonlinear behaviour structures, SLA was 

demonstrated to be a method which helps to compute the displacement of 
different structures by being implemented through FEM. This SLA 

procedure consists on degrading the material through iterations for 
approximating the damage on a specific area of the structure. In simple 
words, Young’s Modulus is reduced at each iteration. 

 
To prove that the SLA and the SRI procedures are an adequate analysis 

strategy if a structure is submitted to proportional load, two different 
plates were analyzed through this strategy with different properties, as the 
times that can be reduced each critical element. The results were very 

closed to the behaviour of the plates previously tested in laboratory.  
 
Moreover, to reduce the Young’s Modulus, it was implemented an  

parameter that was changing conforming the SLA was moving forward. 
That means that Young's modulus did not decrease proportionally because 
the structured demanded a nonlinear approximation.  
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As a result, for each plate, higher the iterations combined with SLA-SRI, 

better the results. 
 

For future works using the modified softening law, it can be studied 
different parameters geometries or even materials to prove that the method 
works for every nonlinear material implemented in the construction of 

structures.  
 
This work shows the necessity of bringing attention to the adequacy of 

certain softening laws for analyzing the global behavior of a structure. This 
is of particular interest in the SLA procedure, which can be modified 

relatively easily to follow different softening laws, e.g., bilinear, multilinear, 
nonlinear, etc. However, the use of certain softening laws must be justified 
by experimental data.  
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