

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

ACTIVIDADES TÉCNICAS DE INGENIERÍA DE YACIMIENTOS Y SIMULACIÓN NUMÉRICA PARA APOYO EN EL ANÁLISIS DE LA PERFORACIÓN DE POZOS NO CONVENCIONALES

REPORTE

QUE PARA OBTENER EL TITULO DE:

INGENIERO PETROLERO

PRESENTA:

MARCO VINICIO CASTILLO ACOSTA

ASESOR: ING. MANUEL VILLAMAR VIGUERAS

MÉXICO, D.F.

DICIEMBRE DE 2008

FACULTAD DE INGENIERÍA DIRECCIÓN 60-I-1501

SR. MARCO VINICIO CASTILLO ACOSTA Presente

En atención a su solicitud, me es grato hacer de su conocimiento el tema que propuso el profesor Ing. Manuel Villamar Vigueras y que aprobó esta Dirección para que lo desarrolle usted como Informe de su examen profesional de Ingeniero Petrolero:

ACTIVIDADES TÉCNICAS DE INGENIERÍA DE YACIMIENTOS Y SIMULACIÓN NUMÉRICA PARA APOYO EN EL ANÁLISIS DE LA PERFORACIÓN DE POZOS NO CONVENCIONALES

ANTECEDENTES Y GENERALIDADES

INTRODUCCIÓN

RESUMEN

DESARROLLO DE ACTIVIDADES

- I DOCUMENTACIÓN DE LOS POZOS CON ALTA PRODUCCIÓN DE SAL
- II SEGUIMIENTO DE ACTIVIDADES OPERATIVAS DIARIAS
- III MODELADO DE POZOS
- IV DETECCIÓN DE FORMACIONES PRODUCTORAS QUE ATRAVIESAN LAS TRAYECTORIAS DE POZO
- V CONCLUSIONES
- VI REFERENCIAS

Ruego a usted cumplir con la disposición de la Dirección General de la Administración Escolar en el sentido de que se imprima en lugar visible de cada ejemplar de la tesis el título de ésta.

Asimismo, le recuerdo que la Ley de Profesiones estipula que se deberá prestar servicio social durante un tiempo mínimo de seis meses como requisito para sustentar examen profesional.

Atentamente

"POR MI RAZA HABLARÁ EL ESPÍRITU"

CD. Universitaria, D.F., a 24 de Noviembre de 2008

EL DIRECTOR

MTRO. JOSÉ GONZALO GUERRERO ZEPEDA

JGGZ*RJFYS*srs

Le doy gracías a Díos por haberme permítido lograr esta meta, haberme puesto pruebas que gracías a Él las pude superar y por las pruebas que me faltan por superar.

Quiero agradecer a mis padres: Josefina Acosta Villegas y Francisco Castillo Uría, por haberme apoyado durante todo este camino, por la entereza y confianza que me dieron con sus palabras y acciones para conseguir este objetivo. Y sobre todo por el apoyo y amor que me han brindado durante los momentos dificiles por los que he pasado. Los quiero mucho...

A la Universidad Nacional Autónoma de México, Facultad de Ingeniería, y a todos los profesores que tuve durante mis estudios de licenciatura por haberme forjado como Ingeniero Petrolero.

A mis familiares, muy en especial a mis primos Ma. de Lourdes, Prisca, Jesús, Raúl, Armando y David. A mis sobrinos Daniela, Patricia, Carlos y Fabricio por regalarme momentos de alegría. A mis tios Antonio, Genaro, Silvia, Crispin y Elia por el apoyo que sin saberlo me proporcionaron.

A mis amigos Iliana C, Silvia D, Angélica T, Elizabeth M, Margarita B, Lourdes P, Cecília R, Alejandra M, Héctor D, Alejandro H, Alejandro N, Sergio J, Edgar De la R, Edgar A, Blanca A, Silvia B, Oswaldo H, Verónica R, Mario S, Joaquín V, Sonia C, Sandra L, Miguel G, Oscar G, Randy, gracias por su apoyo desinteresado y por estar en las buenas y en las malas conmigo. Y a todos aquellos compañeros con los que convivi durante el lapso de la carrera.

Al Ing. Míguel Ángel González y al Ing. Paul J. Hudson por haberme dado la oportunidad de ingresar a la industria petrolera, así como a los asesores con quienes trabaje Ing. Richard Hill e Ing. James Lyle.

Al Ing. Jaime Téllez y al Ing. Edgar F. De la Rosa Acevedo por haberme dado la oportunidad de pertenecer al área de perforación y por el apoyo brindado en esos momentos dificiles, así como a mis compañeros los ingenieros Juan Carlos C, Salvador C, Roberto M y Jesús M, a las cuatro cuadrillas del equipo 797. A Isahi, Marío y Adolfo, gracías por su apoyo.

Al grupo de simulación de yacimientos integrado por el Ing. Santos Reyes González, la Ing. Blanca E. Angulo Ramírez, el Ing. Carlos Esquinca Espinosa y la M.I. Ma. Eugenia González Cortés, en quienes encontré un apoyo desinteresado para lograr este objetivo y me dieron la oportunidad de pertenecer a su grupo.

Al Ing. Manuel Villamar Vigueras por el tiempo y apoyo proporcionado para la conclusión de este trabajo.

Muchas gracías....

TEMARIO

RESUMEN	•••	i
INTRODUCCIÓN		ii
ANTECEDENTES Y GENERALIDADES		iii
DESARROLLO DE ACTIVIDADES		
1 Documentación de los pozos con alta producción de sal		1
2 Seguimiento de actividades operativas diarias		10
3 Modelado de pozos		25
4 Detección de formaciones productoras que atraviesan las trayectorias de pozo	•••	49
5 Conclusiones	•••	56
6 Referencias		57

resumen

Las actividades de este trabajo iniciaron con la revisión, análisis y procesamiento de la información de los pozos, que sería utilizada en la documentación de los pozos con alta producción de sal y la generación de los modelos de pozo.

Se identificaron los pozos que producen con alta salinidad en el aceite, lo cual representa dificultades en el manejo de la producción; estos pozos pueden pertenecer a las distintas unidades de flujo de un mismo campo. Para el análisis de estos pozos se construyeron cédulas de diagnóstico, las cuales incluyen las condiciones de explotación.

Con base en los reportes diarios de operación, se elaboraron resúmenes de operación diaria, esquematización de la perforación y de las intervenciones a pozos.

Se realizó la revisión de procedimientos para el modelado de los pozos no convencionales a perforar, visualizando los métodos de análisis, para la construcción de modelos de simulación correspondientes.

Se contó con modelos predictivos actualizados lo cual implica disponer de herramientas que apoyen en la definición de la mejor estrategia de explotación para maximizar el valor económico de los yacimientos.

Se empleó el simulador composicional Eclipse-300, además de los módulos PVTi, OFM, Grid, FloGrid y Office-Eclipse disponibles en el Activo.

introducción

Brindar asistencia técnica especializada que apoye al personal de Ingeniería de Yacimientos en la elaboración y el manejo de los modelos de simulación numérica, de pozo y sectoriales para evaluar al comportamiento de los yacimientos que permita tomar decisiones para la perforación y terminación de pozos no convencionales.

Mediante el análisis de ingeniería básica de yacimientos revisar y redefinir los modelos petrofísicos y termodinámicos, los cuales fueron validados de acuerdo a los modelos estáticos existentes y la conceptualización del comportamiento de explotación de los yacimientos, incluyendo dichos conceptos en un modelo de simulación numérica que sea capaz tanto de validar el modelo estático de los campos, como de reproducir adecuadamente la historia de producción-presión y finalmente se convierta en una herramienta para predecir el comportamiento futuro de los campos, planteado en los diversos escenarios para la planeación de las alternativas de explotación convencionales y no convencionales, permitiendo hacer recomendaciones que conduzcan a la optimización de las condiciones actuales y futuras de la operación de los pozos.

antecedentes y generalidades

Pemex Exploración-Producción como empresa administradora de yacimientos tiene como una de sus funciones principales el estudio de los yacimientos que se encuentran en etapa de explotación, con el objeto de maximizar la recuperación de hidrocarburos y así alcanzar los mayores índices de rentabilidad.

En la construcción de dichos modelos se requiere desarrollar algunas herramientas como son los modelos predictivos, los cuales resultan indispensables en las labores diarias de los especialistas de Ingeniería de Yacimientos para establecer las estrategias de explotación de los campos petroleros de la empresa.

Para ello se requiere de la participación de especialistas con perfil en ingeniería petrolera, en las áreas Perforación, Ingeniería y Simulación Numérica de Yacimientos, para el apoyo de las actividades encaminadas a la programación, diseño y el seguimiento de la perforación de pozos no convencionales, para la obtención de la información utilizada en la elaboración de los modelos para calcular los perfiles óptimos de producción de distintos esquemas de explotación, bajo un esquema de seguimiento de prioridades de los pozos que han sido programados o que estén en proceso de perforación, terminación o intervención, utilizando la información geológica, la visualización, los reportes diarios de operación y los resultados de la simulación numérica, existentes o modelos de pozo, los cuales son construidos considerando una porción del yacimiento en geometría cartesiana, los cuales contienen relieves estructurales simplificados, las trayectorias del pozo y de los pozos vecinos y el poblado con propiedades promedio, las cuales son obtenidas del modelo de simulación del yacimiento. Para la construcción de estos modelos se emplearon herramientas como CMT (Completion Modelling Tool, módulo alterno de Eclipse).

TEMA 1

documentación de los pozos con alta producción de sal

Se integraron las cédulas de diagnóstico de los pozos A-10, A-26, A-42, A-44, A-63D, A-1293D, B-1D, B-3, C-406, C-414, D-22D, D-23D, D-25 y F-1, F-2D como productores de aceite con alta salinidad, la tabla 1.1 muestra la salinidad y la formación de donde producen estos pozos

		POZOS CO	ON ALTA PRO	DUCCION DE	E SAL	
POZO	PLATAFORMA	FORMACION	SALINIDAD	INTERVALO	PRODUCTOR	COMENTARIOS
P020	PLATAFORMA	FORMACION	(lb/1000 bbl)	(mdbmr)	(mvbnm)	COMENTARIOS
A-10	ALFA-A	EM	700	2660-2690	2475-2502	
A-42	ALFA-A	BP, KI, KM	1000	3048-3085	2904-2939	
7.42	ALIAA	DI , KI, KW	1000	3213-3243	3058-3086	
A-26	ALFA-A	BP, KM	7500	3420-3435	2967-2982	
7, 20	ALI AA	DI , KW	7000	3435-3445	2982-2992	
A-1293D	ALFA-F	BP	1300	3110-3150	2965-3000	
A-63D	ALFA-F	ВР	70	2894-3147	2779-3022	Agujero descubierto, liner 7 5/8" de 2892 a 3137 mdbmr, no indica disparos
B-1D	BETA-A	ВР	6000	3420-3435	3226-3239	
D-22D	DELTA-C	JSK	2000	4595-4610		
D-23D	DELTA-C	JSK	9000	3715-3724		
D-23D	DELTA-C	JSK	9000	3724-3730		
C-414	CAPPA-A	JSK	4500	3910-3960	3852-3902	
				4028-4045	3548-3562	
C-406	CAPPA-A	JSK	250	4060-4100	3575-3608	
				4110-4147	3616-3647	
F-1	FI-1	BP, JSO, KM	1900	3395-3420		
F-2D	FI-1	вР, JSO , КМ	100	5162-5189		Reperforó tapón de cemento para recuperar pozo y disparar intervalo

Tabla 1.1. Formaciones de los pozos productores de aceite con alto contenido de sal

Las figuras 1.1, 1.2, 1.3 y 1.4 muestran las cimas de los campos y la distribución de los pozos con alta producción de sal; con base en las figuras anteriores y la tabla 1.1, se puede observar que el campo Alfa es el que mayor número de pozos productores de sal tiene y que la formación BTPKS es la que mayor sal produce.

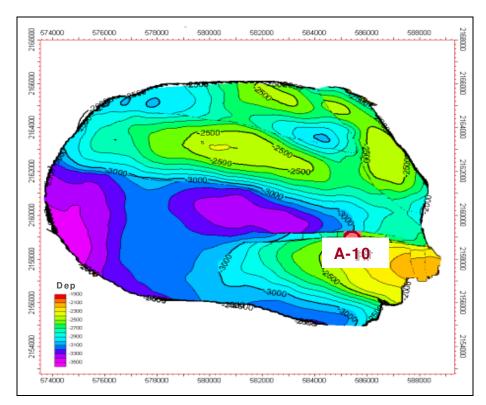


Figura 1.1. Pozos con alta producción de sal Alfa (Eoceno Medio)

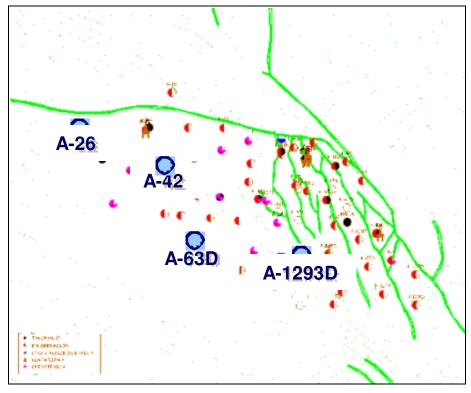


Figura 1.2. Pozos con alta producción de sal Alfa (BTPKS)

Figura 1.3. Pozos con alta producción de sal Beta (BTPKS)

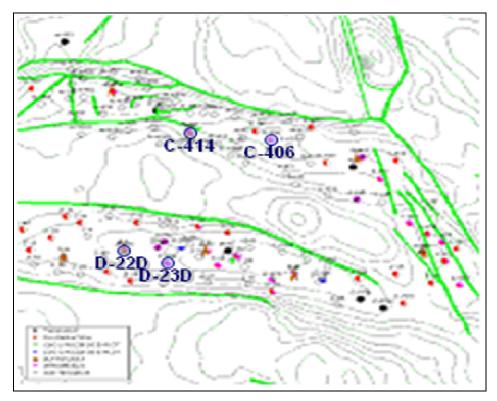
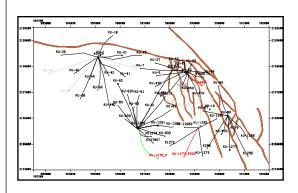


Figura 1.4. Pozos con alta producción de sal Cappa-Delta (BTPKS)

Las cédulas de diagnóstico, como se observa en la figura 1.5, contienen:

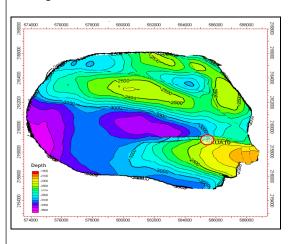

- Nombre del pozo
- Plataforma
- Antecedentes geológicos
- Periodo de producción
- Historia de perforación y estado mecánico actual.
- Historia de intervenciones y condiciones de explotación
- Información termodinámica PVT de los fluidos:
- Información petrofísica
- Pruebas de presión-producción
- Historia de presión-producción incluyendo el contenido de sal
- Registros
- Aforos
- Modelado del pozo
- Avance de los contactos agua-aceite y gas aceite

Plataforma ALFA-A Pozo A-10

Horizonte productor.

Calcarenitas del Eoceno Medio

Plano de localización.



Sección estructural

No tiene

Modelo estructural.

Configuración estructural de CCEM

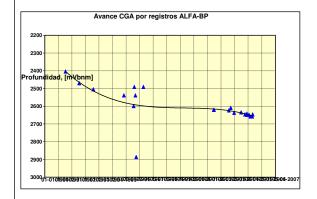
Z:\DE\IngYac\FEL\PROYECTO IMP\MODELOS_CEM_2007\GRID_MODELO_COMPLET O\ AJUSTE_5A_JUN04_PCSWH.DATA

Configuración de CAA y CGA (A)

САМРО	FORMACION	FECHA	C-AA ORIGINAL mvbnm	C-AA mbnm	C-GA mbnm
ALFA	CCEM			2600	
ALFA ^{OFM}	BTPKS	Mar-81	3244	3244	
ALFA ^{OFM}	BTPKS	Feb-05		3156	2666
ALFA ^e	BTPKS	Sep-96			2538

OFM Fuente: Tabla CONTACTOS de OFM

e Fuente: Intranet en CDE/Area: Caracterización de Yacimientos/ Configuraciones estructurales


PS Fuente: Simulación

Plano de cimas, fallas y CAA original de Eoceno Medio.

Z:\DE\lngYac\FEL\PROYECTO IMP\MODELOS_CEM_2007\GRID_MODELO_COMPLETO\AJUSTE_5 A_JUN04_PCSWH.DATA

Figura 1.5. Inicio de cédula de diagnóstico

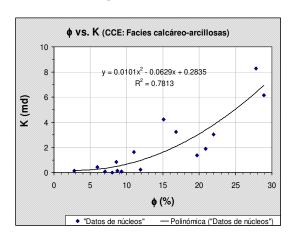
Plataforma ALFA-A Pozo A-10


 $: \label{local_por_registros} $$: \DE\IngYac\Campos\ALFA_BP\CONTACTO\C-GA\CGA_por_registros.xls $$$

Modelo estratigráfico.

Secciones estratigráficas.

Sin información


Columna geológica

Modelo de sistemas de fallas y fracturas.

 $\label{local_vac} V: \mbox{$\rm V$:DE\CYAC\CARACTERIZACION DE YACIMIENTOS\Desarrollo} \ \ de \ campos\PLANOS2001\Estructural \ 40-56$

Modelo litológico.

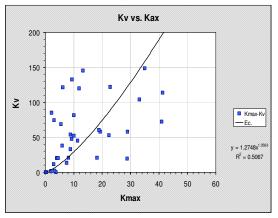
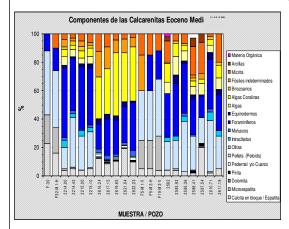
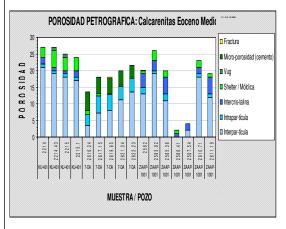




Figura 1.5. Continuación de una cédula de diagnóstico

Plataforma ALFA-A Pozo A-10

Reservas.

Reservas de ALFA

INFORMACIÓN GENERAL DEL CAMPO ALFA

Año de inicio de explotación: 1981

Tipo de yacimiento : Aceite negro pesado

Litología : dolomía

Densidad del fluido °API: 21

Presión inicial : 321 Kg/cm2 @ 3000 mvbnm Presión de saturación inicial : 187 Kg/cm2 Presión actual : 149 Kg/cm2 @ 3000 mvbnm Producción promedio diaria de aceite:

192.2 mbpd (@ 30 nov '03) Relación gas-aceite: 93 m3/m3 Flujo fraccional de agua : cero

Fecha de inicio de producción.

28 de febrero de 1986

Perforación.

Tipo de pozo = desviado

Elevación de la mesa rotaria= 28 m.

Periodo de perforación=

Coordenadas objetivo= 585109.81, 2158365.99

Resumen de perforación (estado mecánico -ppt-)

V:\DE\DSIP-BETPP\Reportes_Intervenciones\1-ALFA\ALFA-A\......)

Esquemas de intervenciones (ppt):

ALFA 10	EM	ALFA-A	
Fecha	Tipo de intervención	Cima intervalo disparado	Base intervalo disparado
04/02/86	perforation	3363	3378
05/02/86	plug	3008	3378
06/02/86	perforation	2627	2660

Z:\DE\lngYac\FEL\PROYECTO IMP 2007\IMP-7_DIAGNOSTICO_ SAL\ALTA SALINIDAD\IntervencionesPozosSalados

Figura 1.5. Cédula de diagnóstico de pozo con alta producción de sal

Con la información de perforación, reparaciones mayores y la historia de presión-producción, se construyeron las gráficas de presión-producción e intervenciones de cada pozo productor de aceite con alto contenido de sal, como se muestra en la figura 1.6.

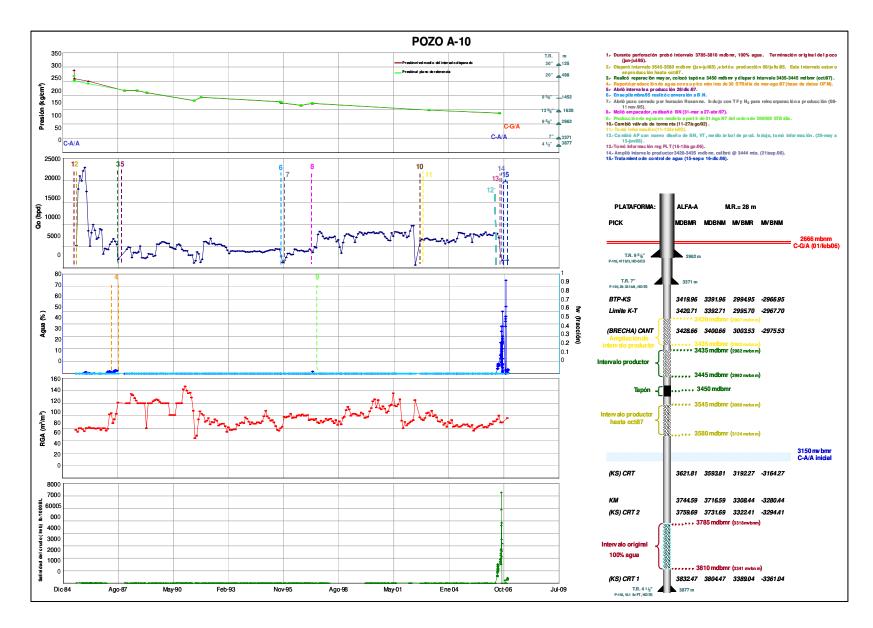


Figura 1.6. Gráfica de la historia de un pozo con alta producción de sal e intervenciones

TEMA 2

seguimiento de actividades operativas diarias

Se inició la elaboración de resúmenes a los reportes diarios de actividades de perforación y reparación de pozos, llamados **Cédulas de Seguimiento Histórico de Operaciones (CSHO*)**, como se muestra en la figura 2.1. La información que deben llevar estas cédulas es: nombre del pozo, plataforma a la que pertenece, elevación de mesa rotaria, formación(es) de interés, profundidad programada, profundidad real, tirante de agua, conductor y actividad a desarrollar. Además se esquematizaron las actividades preponderantes de cada uno de los pozos, esto es, profundidad de asentamiento de cada una de las tuberías de revestimiento, diámetro de dichas tuberías, profundidad total del pozo, zonas con pérdidas de circulación, corte de núcleos, toma de muestras de aceite y agua, intervalo(s) disparado(s), descripción del aparejo de producción, reparaciones mayores y menores que se realizaron a cada pozo.

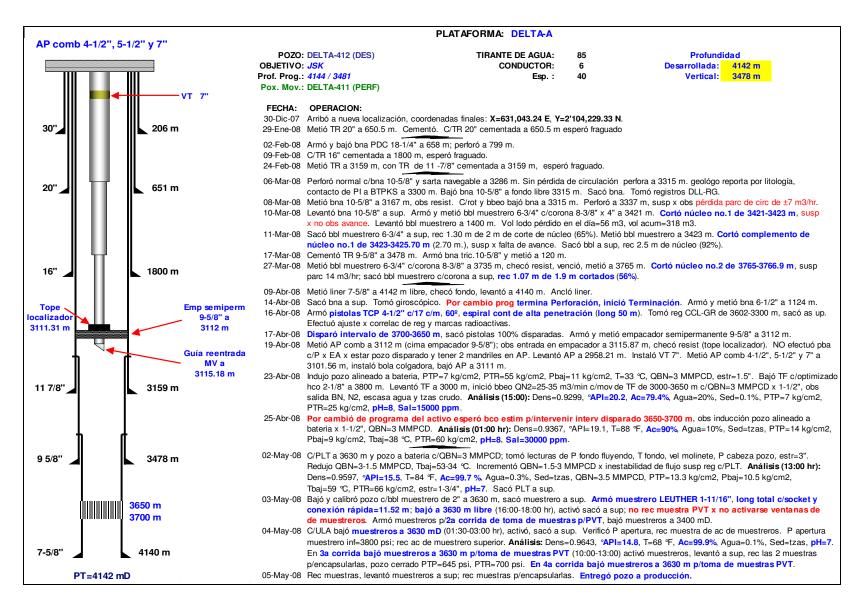


Figura 2.1. Cédula de seguimiento histórico de operaciones

Para la construcción de dichas cédulas se preparó una primera base de datos para la integración de los resúmenes de operaciones diarias de pozos, como se muestra en la figura 2.2; sin embargo, para llevar un mejor control de las actividades se modificó esta base de datos y se incluyeron algunos datos adicionales como la ubicación del pozo y la plataforma en la cima de BTPKS, así como el avance de la actividad que se esté desarrollando, ya sea perforación o reparación (menor o mayor), como se puede observar en la figura 2.3.

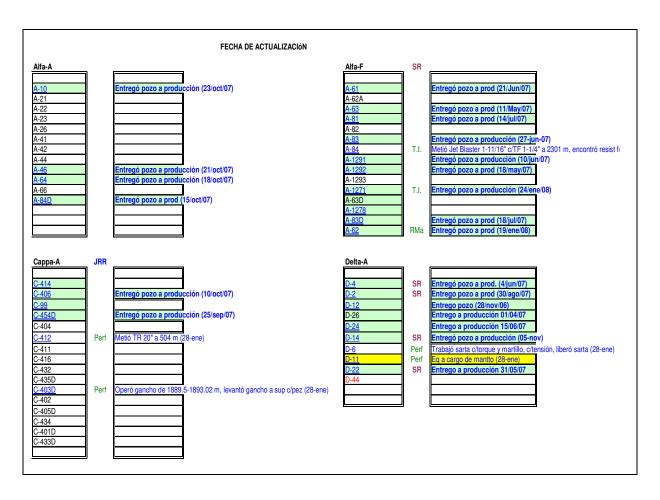
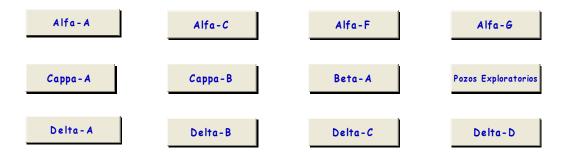
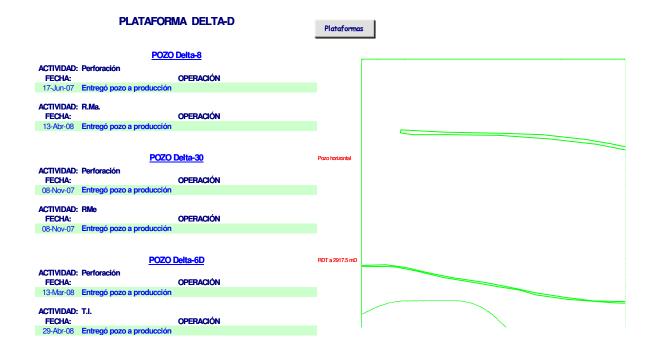




Figura 2.2. Base de datos original para la integración de cédulas

ACTIVO INTEGRAL PEMEX

PLATAFORMAS

A partir de las CSHO* se desarrollaron tablas de resumen de las actividades realizadas, denominadas Cédulas Históricas de Intervenciones (CHI*). Estas cédulas contienen: intervenciones realizadas a pozos, problemas que se presentaron durante la etapa de perforación (pescados) y que fueron causa de desviación mediante la apertura de ventana, corte de núcleos, toma de muestra de agua, longitud de los intervalos de prueba y productores, número de las corridas de disparos que se realizaron, colocación de tapones (cemento y/o sal), condiciones en las que se entrega el pozo a producción (cerrado o abierto), colocación de sensores, tipo de terminación, tipo de registros tomados (PLT, RDT), tipo de pozo (vertical u horizontal). En la tabla 2.1 se representa una Cédula Histórica de Intervenciones.

Tabla 2.1. Cédula histórica de intervenciones a pozos (CHI*)

Otra información, de la que es importante tener control, es la de los pozos que atravesaron el contacto agua-aceite (3451 mVbnm), para los cuales se elaboraron las CSHO*. La tabla 2.2 muestra una relación de estos pozos y cuales ya cuentan con CSHO*.

POZO	PROFUNDIDAD TOTAL (mvbnm)	PLATAFORMA	HISTORICO DE PERFORACION
Alfa-1001:KM	4089	ALFA-G	NO
Alfa-101:BP	3896	AA	NO
Alfa-1292:KI	3764	ALFA-F	NO
Alfa-401:JSK	3965	ALFA-G	NO
Alfa-84:BP	3610	ALFA-F	NO
Alfa-89:KI	3451	ALFA-I	NO
Alfa-339:JSK	3634	ALFA-M	SI
Alfa-407:JSK	4790	ALFA-H	NO
Alfa-445:KI	3762	ALFA-H	NO
Alfa-487:KI	3955	ALFA-M	NO
Cappa-101:JSK	4860	MM	NO
Cappa-103:JSK	5575	MM	NO
Cappa-406:JSK	4261	CAPPA-A	SI
Cappa-414:JSK	4143	CAPPA-A	SI
Cappa-456:KI	3522	CAPPA-B	SI
Delta-1A:JSK	3864	RP	NO
Delta-20:JSK	3632	DELTA-C	SI
Delta-2051:JSK	4570	ALFA-M	NO
Delta-22D:JSK	3556	DELTA-C	NO
Delta-23D:JSK	3535	DELTA-C	SI
Delta-25D:JSK	3700	DELTA-C	SI
Delta-27D:KI	3799	DELTA-C	SI
Delta-3D:JSK	3663	DELTA-C	NO
Delta-4:KI	3502	DELTA-A	SI
Delta-5D:JSK	3605	DELTA-C	NO
Delta-8:JSK	4003	DELTA-D	SI
Cuenta con CSHO* Tiene cédula histórica e No tiene cédula histórica	•		

Tabla 2.2. Pozos que atravesaron el contacto agua-aceite y que cuentan con CSHO*

Para tener control sobre las operaciones (perforación, reparaciones mayores y menores) que se desarrollarían en los años 2007-2008, se construyó una base de datos en la que se incluiría: la formación en la que fueron disparados, tipo de pozo (horizontal o vertical), avance de actividades, fecha de entrega a producción, así como indicar si los pozos para el año 2008 ya habían sido incluidos en el movimiento de equipos, la tabla 2.3 muestra cómo se ordenó dicha información.

POZO	PLATAFORMA	PT(MDBMR)	OBJETIVO	INTERVALO DISPARADO (MDBMR)	OBSERVACIONES	INICIO DE PERF	ENTREGO A PROD
ALFA-1273	ALFA-C	3554	BP	Intervalos de prueba: 1 3540-3550 2 3465-3475	PENDIENTE DISPARAR INTERVALO PRODUCTOR	25-feb-07 27-mar-07 (mantto eq) 10-jul-07 (reanudo perf)	etapa de terminación
DELTA-2	DELTA-A	4020	KM	3786-4018	POZO HORIZONTAL	05-Abr-07	27-Jul-07
DELTA-41	DELTA-B	3858	BP	3600-3625	EQUIPO EN SITIO, ETAPA DE TERMINACIÓN	17-Jul-07	etapa de terminación
CAPPA-454D	CAPPA-A	3212	BP	2854-3190	POZO INYECTOR	06-May-07	07-Sep-07
ALFA-82D	ALFA-S	3720	KI		EQUIPO EN SITIO	14-Ago-07	continua perforando
CAPPA-494D	CAPPA-B	3968	KI	3635-3710	POZO ALTAMENTE INCLINADO	18-Jul-07	28-Nov-07
DELTA-6	DELTA-A	3814	BP		EQUIPO EN SITIO	07-Sep-07	continua perforando
CAPPA-403D	CAPPA-A	3308	BP		EQUIPO EN SITIO	18-Oct-07	continua perforando
DELTA-128	DELTA-B	3410	KM	3335-3370	CIMA KM A 3300 MDBMR	16-Nov-06	10-Mar-07
DELTA-32	ZAAPC	3505	BP	3350-3385		21-Ago-06	29-Abr-07
DELTA-8	DELTA-D	4028	KM	3465-3490	PEZ A 3500 MDBMR. CIMA KI: 3548 MDBMR	24-may-05 18-oct-06 (reanudó perf)	17-ago-05 (terminó contrato 18/06/2007
CAPPA-456	CAPPA-B	3287 (T.C)	KM	3205-3255	COMUNICADO CON LA FORMACIÓN JKS	01-Nov-05	21-Abr-06
CAPPA-454D	CAPPA-A	3212	BP	2854-3190	AGUJERO DESCUBIERTO. SOLO PERFORADO EN BP	06-May-07	07-Sep-07
EXPLORATORIO	-	-	-	-	POZO EXPLORATORIO	02-Nov-07	continua perforando
DELTA-1003	DELTA-B	3503	BP	SI	POZO DEFINIDO		
CAPPA-309D	CAPPA-B	4017	BP	SI	POZO DEFINIDO	06-Dic-07	continua perforando
DELTA-5	DELTA-B	3682	КІ		POZO MULTILATERAL. EN ETAPA DE CONCEPTUALIZACIÓN.		
DELTA-11	DELTA-A	3768	BP	SI	POZO DEFINIDO	Eq a carg	o de mantto
CAPPA-454	CAPPA-B	3596	BP	SI	EN ETAPA DE DEFINICIÓN		

Tabla 2.3. Control de pozos

Por otro lado, es importante saber la fecha en que cada pozo es perforado, para lo cual se hizo resumen de los pozos que fueron perforados posterior a marzo de 2007, este resumen incluye además: profundidad total, plataforma, intervalo(s) disparado(s), fecha(s) de entrega a producción, estado actual del pozo y en algunos casos formación productora, tipo de pozo, etc., como se muestra en la tabla 2.4.

PLATAFORMA	POZO	PROFUNDIDAD TOTAL (mD)	INTERVALO DISPARADO (mD)	ENTREGO A PRODUCCION	ACTIVIDAD	
	ALFA-1295	3453	3040 - 3000	25-feb-06	Perforación	
ALFA-C	ALFA-1297	3103	3060 - 3020	13-feb-07	Perforación	_
	ALFA-1273	3611	3295 - 3330	31-dic-07	Perforación	
ALFA-F	ALFA-62	3815	3760 - 3790	19-ene-08	Reparación Mayor	
	CAPPA-414	4200	3910 - 3960	30-ene-06	Perforación	isk
CARDA A	CAPPA-406	4882	4147 - 4110 4100 - 4060 4045 - 4027 3985 - 3957	16-ago-06	Perforación	jsk
CAPPA-A	CAPPA-406	4882	3808 - 3800	05-abr-07	Tapón MPBT	
	CAPPA-406	4882	3585 - 3555	23-abr-07	Reparación Mayor	BP
	CAPPA-99	3581	3581 - 3510	20-mar-07	Perforación	agujero descubierto 8-1/2"
	CAPPA-454D	3190	3190 - 3119	07-sep-07	Perforación	agujero descubierto 8-1/2"
	CAPPA-412	4142	3700 - 3650	05-may-08	Perforación	
NLJS	CAPPA-DL3	4400	3490 - 3450	26-jul-07	Perforación	taponamiento temporal
	DELTA-12	3460	3365 - 3315	28-nov-06	Perforación	
	DELTA-24	3490	3445 - 3395	14-ene-07	Perforación	
DELTA-A	DELTA-22	3780	3743.5 - 3725 3680 - 3665	12-mar-07	Perforación	
	DELTA-26	3488	3420 - 3380	01-abr-07	Perforación	pozo horizontal; liner ranurado 5-1/
	DELTA-2	4020	4018 - 3786	27-jul-07	Perforación	
	DELTA-14	3688	3610 - 3580	05-nov-07	Perforación	

Tabla 2.4. Lista de pozos perforados después de marzo de 2007

Para llevar un control de los pozos candidatos a instalarles niple de asiento, sensor permanente o sensor de memoria para el seguimiento de mantenimiento de presión conforme al movimiento de equipos, se hizo una relación para identificar y seleccionar a éstos pozos; la principal característica que debían presentar, era encontrarse en la última etapa de perforación o bien que estuvieran siendo reparados, en la tabla 2.5 se presentan algunos de los pozos candidatos a ésta operación.

PLATAFORMA	POZO	ACTIVIDAD	INTERVALO (mD)	INICIO	TERMINO	OBSERVACIONES
			(IIID)	INICIO	TERMINO	
ALFA-F	Alfa-63D	Rep Mayor	3065 - 3088	03-Feb-08	19-Feb-08	Utilizó el sistema MOC-ONE. Tomó análisis. Entregó pozo a producción.
ALFA-I	Alfa-288	Rep Menor	2773 3275 - 3315 3235 - 3330 3100 - 3300 3235 - 2000	19-Ene-08	cont R.Me.	Colocó TDS (cima) Tuvó pez, recuperó al 100%. Efectuó estimulación a intervalo prod Corrió perfil de aportación c/molinete hco Corrió perfil de aportación c/molinete hco Tomó reg dinámico x est
CAPPA-A	Cappa-403D	Perforación	2995 2983 - 2990 2990 - 2997	10-Oct-07	cont perf	Tuvó pez. Colocó retenedor de cemento p/TR 11-7/8" Abrió ventana. Perforó agujero hoyo de ratón.
	Cappa-412	Perforación	3160	15-Nov-07	cont perf	Perfora c/bna 14-1/2"
POZOS EXPLORATORIOS	Exp-DL1	Perforación	4000 2561 2519	01-Nov-07	cont perf	Anció empacador, realizó pba admisión BL 9-5/8". Coloco T x C, cima en BL 9-5/8" Cementó complemento de TR corta 9-5/8".
	Exp-1	Perforación	1434	18-Ene-08	cont perf	perfora c/bna 12-1/4" y ampliador 16-1/2" x 20"
DELTA-A	Delta-6	Terminación	3492 - 3496 3620 - 3680 2839 2816.2 - 2822.20 2822.20 - 2828.20 3114	25-Dic-07	cont term	Cortó núcleo Primer intervalo disparado Tuvó pez Metió tapón ciego p/TR 9-5/8" Abrió ventana en TR 9-5/8" Perforó agujero de ratón Sarta atrapada
	Delta-11	Perforación	655	12-Feb-08	cont perf	Perfora c/bna 26"

Tabla 2.5. Pozos candidatos para colocar niple de asiento o sensor de memoria o permanente

Se actualizó el movimiento de equipos de acuerdo al avance de los pozos con respecto a la perforación y reparaciones.

Comparando las cédulas CSHO* de los pozos con la información que se tenía almacenada en la base de datos, se realizó la actualización de la información de cada uno de los pozos de dicha base de datos, como se puede observar en la tabla 2.6. La información actualizada se muestra en la tabla 2.7.

Pozo	Fecha Date	Fecha Date	Campo	Formación	Plataforma	Tipo de intervencion	Cima de intervalo disparado (mdbmr)	Base de intervalo disparado (mdbmr)	Cima de intervalo disparado (mvbmr)	Base de intervalo disparado (mvbmr)	Cima de intervalo disparado (mvbnm)	Base de intervalo disparado (mvbnm)	Observaciones
ALFA-1272	04-Oct-05	04/10/2005	ALFA	BP	ALFA-C	perforation	3251	3450	2875	3042	2845	3012	Intervalo productor. Agujero descubierto
ALFA-1295	13-Ene-06	13/01/2006	ALFA	KI	ALFA-C	perforation	3195	3210	3194	3209	3164	3179	Intervalo de prueba. Zona de agua
ALFA-1295	06-Feb-06	06/02/2006	ALFA	KI	ALFA-C	plug	3167	3210	3166	3209	3136	3179	Tapon
ALFA-1295	06-Feb-06	06/02/2006	ALFA	KI	ALFA-C	perforation	3000	3040	2999	3039	2969	3009	Intervalo productor
ALFA-1275	01-May-06	01/05/2006	ALFA	BP	ALFA-C	perforation	3222	3284	2986	3042	2956	3012	Intervalo productor
ALFA-1273	16-Dic-07	16/12/2007	ALFA	BP	ALFA-C	perforation	3295	3330	3021	3053	2985	3017	Intervalo productor
ALFA-65D	02-Jun-08	02/06/2008	ALFA		ALFA-C	perforation							POZO_NUEVO
	00 D: 05			1011									
CAPPA-414	20-Dic-05	20/12/2005	CAPPA	JSK	CAPPA-A	perforation	4160	4172	4159	4172	4102	4115	Intervalo de prueba
CAPPA-406	01-Ago-06	01/08/2006	CAPPA	JSK	CAPPA-A	plug	4110	4130	3673	3690	3616	3633	Tapon
CAPPA-454DINY	01-Ene-07	01/01/2007	CAPPA	BP	CAPPA-A	perforation	3119	3190	2852	2913	2810	2871	Intervalo inyector
CAPPA-99INY	01-Ene-07	01/01/2007	CAPPA	BP	CAPPA-A	perforation	3510	3581	2915	2967	2885	2937	Intervalo inyector
CAPPA-99 CAPPA-406	01-Mar-07 23-Abr-07	01/03/2007	CAPPA	BP KM	CAPPA-A	perforation	3510	3581	2915	2967 3235	2885 3154	2937	Intervalo productor. Agujero descubier
CAPPA-406 CAPPA-412	06-Ene-08	23/04/2007 06/01/2008	CAPPA	KIVI	CAPPA-A	perforation	3555 3650	3585 3700	3211	3235	3154	3178	Intervalo productor
CAPPA-412 CAPPA-456	14-Abr-06	14/04/2006	CAPPA	KM	CAPPA-A	perforation perforation	3205	3700	3203	3252	3165	3215	lataniala acadinatas
CAPPA-419	12-Jul-07	12/07/2007	CAPPA	KI	CAPPA-B	perforation	3683	3883	3203	3252	3254	3215	Intervalo productor Intervalo productor
CAPPA-476	13-Nov-07	13/11/2007	CAPPA	BP	CAPPA-B	perforation	3610	3645	3284	3318	3254	3288	Intervalo productor
CAPPA-494D	20-Nov-07	20/11/2007	CAPPA	KM	CAPPA-B	perforation	3635	3710	3341	3367	3311	3337	Intervalo productor
CAPPA-418	02-Feb-08	02/02/2008	CAPPA	LYIAI	CAPPA-B	perforation	3033	3710	3341	3301	3311	3331	POZO_NUEVO
CAPPA-418	03-Feb-09	03/02/2009	CAPPA		CAPPA-B	perforation							POZO_NUEVO
CAFFA-400	03-1 60-03	03/02/2003	CAFFA		CAFFA-D	penoration							F020_N0EV0
EXP-DL1	29-Abr-08	29/04/2008	AYATSIL	JSK	S/S ONE	perforation	4410	4385	4409	4384	4384	4359	Intervalo de prueba
DELTA-4	10-Sep-06	10/09/2006	DELTA	KM	DELTA-A	perforation	3255	3310	3254	3309	3201	3256	Intervalo productor
DELTA-24	01-Ene-07	01/01/2007	DELTA	BP	DELTA-A	perforation	3395	3445	3196	3240	3158	3202	Intervalo productor
DELTA-26	01-Mar-07	01/03/2007	DELTA	BP	DELTA-A	perforation	3380	3420	3206	3246	3168	3208	Intervalo productor
DELTA-22	01-May-07	01/05/2007	DELTA	BP	DELTA-A	perforation	3725	3750	3349	3371	3311	3333	Intervalo Productor
DELTA-11	11-Ago-08	11/08/2008	DELTA		DELTA-A	perforation						100007110	POZO_NUEVO
DELTA-44	07-Dic-15	07/12/2015	DELTA		DELTA-A	perforation							POZO NUEVO
DELTA-8	23-May-07	23/05/2007	DELTA	KM	DELTA-D	perforation	3465	3490	3457	3482	3415	3440	Intervalo productor
DELTA-58	08-Jul-07	08/07/2007	DELTA	BP	DELTA-D	perforation	3445	3475	3310	3339	3285	3314	Intervalo productor
DELTA-30	19-Oct-07	19/10/2007	DELTA	KM	DELTA-D	perforation	3757	4057	3405	3399	3365	3359	Intervalo productor (hor)
DELTA-6D	11-Mar-08	11/03/2008	DELTA	BP	DELTA-D	perforation	3300	3320	3220	3239	3178	3196	Intervalo productor

Figura 2.6. Información obtenida de OFM, sin actualizar

Pozo	Fecha Date	Campo	Formación	Plataforma	Tipo de intervencion	Cima de intervalo disparado (mdbmr)	Base de intervalo disparado (mdbmr)	Cima de intervalo disparado (mvbmr)	Base de intervalo disparado (mvbmr)	Cima de intervalo disparado (mvbnm)	Base de intervalo disparado (mvbnm)	Observaciones
ALFA-1295	27-ene-06	ALFA	KI	ALFA-C	plug	3167	3210					Tapon
ALFA-1275	12-May-06	ALFA	BP	ALFA-C	perforation	3222	3284					Intervalo productor (agujero descubierto, bna 6-1/2"
ALFA-81	28-Jun-04	ALFA	BP	ALFA-F	Disparos	2960	2990					Redisparó intervalo productor
ALFA-1278	07-Ene-06	ALFA		ALFA-F	Trackmaster	3437.52	3440.02					1a ventana
ALFA-1278	22-Feb-06	ALFA		ALFA-F	Tapón	3300						Retenedor de cemento para TR 9-5/8"
ALFA-1278	24-Feb-06	ALFA		ALFA-F	Trackmaster	2309	2311.5					2a ventana
ALFA-1278	02-Abr-06	ALFA	BP	ALFA-F	Tapón	3200	3245					Intervalo productor (aquiero descubierto, bna 6-1/2"
ALFA-1278	27-Ago-06	ALFA	BP	ALFA-F	Tapón	1763	1763					Retenedor de cemento
ALFA-1278	27-Oct-06	ALFA	BP	ALFA-F	R. Ma.	3220	3260					Intervalo productor
ALFA-67AINY	17-Mar-07	ALFA	BP	ALFA-G	perforation	2810	2817					tapon MPBT
ALFA-67AINY	31-Mar-07	ALFA	BP	ALFA-G	perforation	2618	2668					Intervalo Inyector.
ALFA-47INY	27-Dic-06	ALFA	BP	ALFA-G	perforation	2389	2531	2404	2527	2370	2493	Intervalo inyector. Agujero descubierto
DELTA-43	03-Ene-08	DELTA		ALFA-M	Disparos	3845	3855	2.00	2021	20.0	2.00	Intervalo de prueba en acuífero (agua=100%)
DELTA-43	31-Ene-08				Tapon	3824						Retenedor de cemento
DELTA-43	18-Feb-08				Disparos	3804	3810					2o intervalo de prueba (agua) en zona de transició:
DELTA-43	15-Mar-08				Tapon	3741						Retenedor de cemento
DELTA-43	28-Mar-08	DELTA		ALFA-M	Disparos	3565	3595					Intervalo productor
ALFA-85D	10-Jul-07	ALFA	KI	ALFA-S	perforation	3105	3165	2950	3007	2920	2977	Intervalo productor
ALFA-49	28-Oct-06	ALFA	BP	ALFA-S	perforation	2960	2983	2809	2831	2779		Intervalo productor
ALFA-49	30-Oct-06	ALFA	BP	ALFA-S	perforation	2925	2940	2776	2790	2746	2760	Intervalo productor
APPA-99INY	26-Feb-07	CAPPA	BP	CAPPA-A	perforation	3510	3581	2915	2967	2885	2937	Intervalo inyector
CAPPA-412	17-Abr-08	CAPPA		CAPPA-A	Disparos	3650	3700	20.0			200.	Intervalo productor
CAPPA-419	05-Jul-07	CAPPA	КІ	CAPPA-B	perforation	3682	3882	3284	3310	3254	3280	Liner ranurado 7"
EXP-DL1	11-May-08				Tapón		350					retenedor de cemento
EXP-DL1	14-May-08				Disparos	4200	4235					2° intervalo disparado.
DELTA-118	28-Abr-08			ALFA-B	Disparos	3565	3635					1er intervalo disparado
DELTA-118	16-May-08			ALFA-B	Disparos	3435	3465					20 intervalo disparado
DELTA-118	19-May-08			ALFA-B	Estimulación	3435	3465					Realizó estimulación a intervalo disparado
ELTA-1001INY	15-Jul-07	DELTA	BP	DELTA-C	perforation	2951	3076	2780	3076	2743	3039	Intervalo Inyector. Agujero descubierto
DELTA-23D	06-May-07	DELTA	JSK	DELTA-C	perforation	3630	3700			2		Tapón de cemento
DELTA-22D	12-Oct-07	DELTA	KM	DELTA-C	plug	4070	4250	3398	3494	3361	3457	Tapon
DELTA-8	18-Abr-07				Tapón	3912	3925					tapon de cemento
DELTA-8	12-May-07				Tapón	3668.8	3700					tapon de cemento
DELTA-8	28-Abr-08				Tapón	3430	3465					tapon de cemento
DELTA-8	07-Abr-08		Btpks			3220	3255					R.Ma.

Figura 2.7. Información obtenida para actualizar la base de OFM

A continuación se presentan los casos de los pozos:

- A-1299, el cual tuvo problemas después de una reparación menor
- A-8, en el que se realizó una intervención de cambio de intervalo

Pozo A-1299

Posterior a una intervención éste pozo presentó problemas de canalización; la intervención consistió en una reparación menor (rediseño de BN con molienda de empacador). De acuerdo al reporte diario de operaciones y como consta en la cédula CSHO*, se colocó un tapón de sal (TDS) en el fondo del pozo (figura 2.4); el problema inició al recuperar el empacador ubicado a 2934 mDbmr, ya que se presentó acuñamiento y posteriormente se observó represionamiento en la TP de 800 a 2500 psi; éste represionamiento también se presentó a 2931, 2932, y 2935 mDbmr. Con tubo aguja se lavó el TDS con agua de mar de 2935 a 3085 m, al bajar niple aguja a 3090 m se observó pérdida de circulación. Se ancló el empacador a 2678.5 m y posteriormente se metió el aparejo de producción.

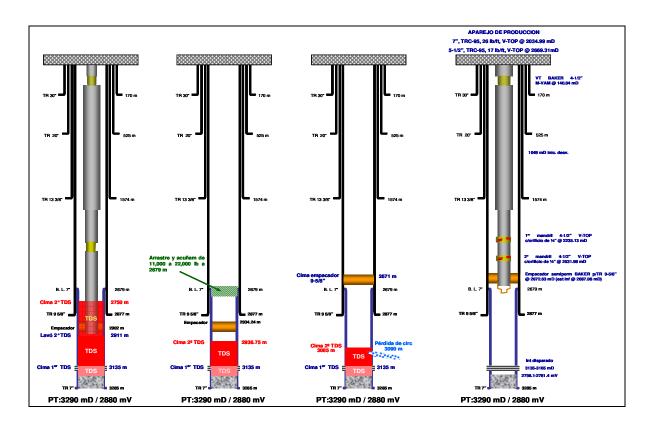


Figura 2.4. Diagrama que muestra el represionamiento y pérdida de circulación durante la reparación menor del pozo A-1299

Una vez entregado el pozo a producción se intentó correr un registro PLT sin éxito, debido a que el molinete incrementó las revoluciones fuera de rango, como se muestra en la figura 2.5, al sacar el PLT se observó que faltaba un aspa del molinete, repitiéndose este evento en 2 ocasiones.

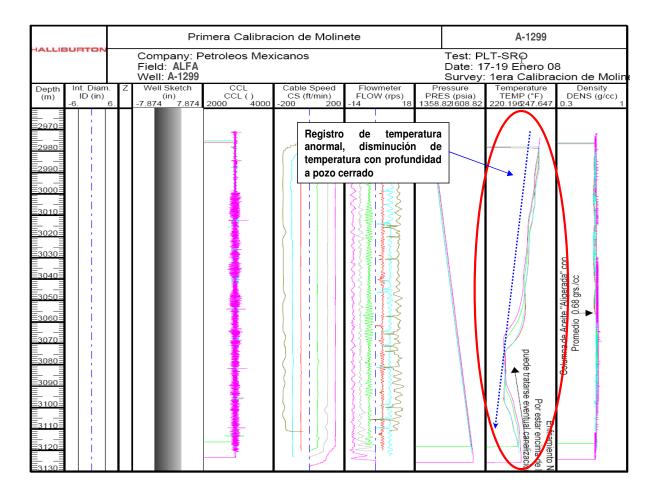


Figura 2.5. PLT del pozo A-1299

Posterior a la reparación menor se presentó canalización y considerando que el intervalo disparado actual del pozo se ubica a 51 mV del contacto agua-aceite original, sí se considera que el avance del contacto agua-aceite es de 15 m/año, la distancia actual es de 36 mV; el área de operación, propuso correr registros de temperatura, con el pozo cerrado y con pozo abierto, y por comparación, poder detectar las diferencias en ambos registros; además, correr un registro TMDL, que permita ubicar la profundidad actual del contacto agua-aceite.

Pozo D-8

El pozo vertical D-8 de la plataforma DELTA-D, está en la etapa inicial de producción, sólo se reporta un aforo, de 4.45 MBPD, además, se reporta producción de agua; sin embargo, en la historia mensual de producción no hay reportes de producción de agua y de acuerdo al modelo de simulación actual, el pozo se cerrará en el año 2020, el gasto de aceite se mantendrá estable en unos 6.0 MBPD, y al final de ese periodo, habrá acumulado alrededor de 21.4 MMB. Esta producción acumulada, prácticamente triplica el volumen estimado de forma analítica, lo cual es un pronóstico muy optimista, por tal motivo el área de yacimientos recomienda no hacer al cambio de intervalo; sin embargo, el área de caracterización, de acuerdo al análisis integral realizado recomendó lo siguiente:

- Mediano plazo: obturar intervalo abierto de KM y disparar en tope de KM intervalo propuesto.
- Largo plazo: obturar intervalo abierto en tope de KM y recuperar intervalo inferior de KM de acuerdo a programa que será emitido oportunamente.

Desde el punto de vista de geología de yacimientos, el trabajo propuesto fue visualizado como un reemplazo del intervalo actual, con la finalidad de reducir el aporte de agua del pozo y extender el periodo productivo del mismo. El intervalo fue seleccionado en base a los siguientes criterios:

- Alta salinidad del aceite posiblemente asociada a la producción del agua de formación.
- Ubicación al menos 90 mV por encima de la base del intervalo productor actual.
- Ubicar zona de mayor fracturamiento, con alta porosidad efectiva.
- Poco o nulo movimiento ascendente del contacto agua-aceite en respuesta al proceso de mantenimiento de presión (inyección de N2).

El intervalo prospectivo visualizado se ubica en la parte superior de KM, como se muestra en la figura 2.6.

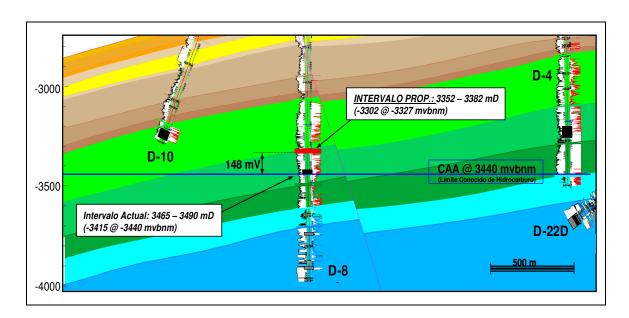


Figura 2.6. Profundidad del intervalo propuesto del pozo D-8

Sin embargo, el área de yacimientos propuso realizar el diagnóstico de la procedencia del agua que produce actualmente el pozo D-8, por lo que se recomendó realizar el siguiente procedimiento:

- Producir a gastos altos y monitorear el comportamiento de producción de agua, al alcanzar el límite permitido alinear el pozo a barco de proceso, sin cerrar el pozo, proceder a la siguiente toma de información:
- Tomar PLT (incluyendo en el arreglo de herramientas, un sensor de temperatura). Correr registro, por estaciones, haciendo énfasis en el fondo y el espacio entre el fondo y la base del intervalo disparado, con el pozo cerrado y abierto para poder identificar movimientos de fluidos del tapón, así como verificar movimiento por detrás de la TR.

Los resultados que se obtenga de esta toma de información, permitirá descartar o verificar si la procedencia del agua, (fuga por el tapón de fondo o por comunicación detrás de la TR), antes de decidir cambiar de intervalo.

TEMA 3

modelado de pozos

Modelos CMT de pozo

Se revisó el proceso para la construcción de los modelos de pozo mediante el módulo alterno de Eclipse CMT (Completion Modelling Tool). CMT es una herramienta que construye modelos de geometría regular, en la que incluye refinamientos locales a la profundidad del intervalo productor y a la profundidad del contacto agua-aceite, en las tres direcciones (X, Y y Z), de porosidad sencilla y de aceite negro, CMT asigna los modelos que tiene predeterminados tanto para las funciones de saturación como para el modelo termodinámico de fluidos, por lo que una vez que se obtiene el modelo del pozo, es necesario cambiar estos modelos por los que sean representativos del pozo. Para determinar la geometría del modelo, se toma como "pivote" un pozo vertical que junto con la cima del pozo en estudio, determinan la profundidad de la cima del límite del modelo, mediante el uso de triángulos equivalentes. Para poblar las propiedades petrofísicas el modelo se tomó como base la distribución que se tiene en el modelo detallado de los campos; así como las funciones de saturación y el modelo PVT que el pozo vertical utiliza; a continuación se presentan los modelos de los pozos construidos con esta herramienta.

Pozo D-41

El objetivo del modelo del pozo D-41, es simular el comportamiento de producción del pozo y determinar la profundidad óptima de la base de los disparos para evitar producción prematura de agua. El modelo considera un área rectangular de 1800 m por 1200 m, en la que incluyen los pozos D-41, D-27D, D-25 y D-27; del pozo vertical D-27 se obtienen las propiedades petrofísicas, las funciones de saturación y el modelo PVT. El primer modelo que se construyó fue considerando los disparos del pozo D-41 a 10 m del contacto agua-aceite, ésta distancia será sensibilizada considerando 80 y 120 m, la figura 3.1, muestra el primer modelo para éste pozo, en ella se puede observar la geometría regular de la malla y los refinamientos locales en las tres direcciones en los pozos y a la profundidad del contacto agua-aceite.

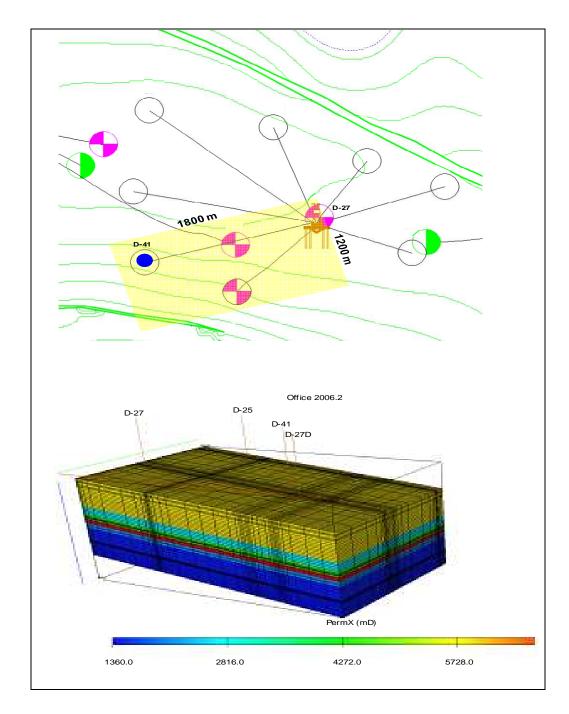


Figura 3.1. Geometría regular de la malla y refinamientos en tres direcciones del modelo de pozo D-41, con pozos vecinos y disparos a 10 m del contacto agua-aceite.

A partir de éste modelo se crearon los modelos que ubican al intervalo disparado a 10, 80 y 120 m y al pozo D-INY1, como pozo inyector para modelar el mantenimiento de presión. Debido a la inestabilidad que se presentó para obtener la solución de los modelos, fueron eliminados los

refinamientos de las celdas cercanas a las zonas de disparos y del contacto agua-aceite; además se detectó que los modelo en CMT establecen el refinamiento de las celdas que deben representar al contacto agua-aceite, de manera paralela al echado de la formación y no siguiendo el sentido horizontal del contacto real.

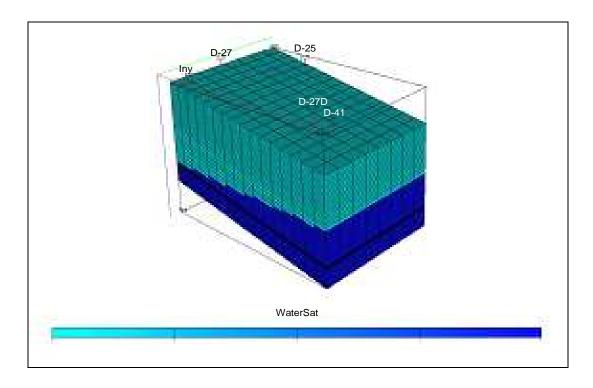


Fig. 3.2. Refinamiento del contacto agua-aceite, siguiendo el echado de la formación

En la tabla 3.1, se presenta un resumen de los diferentes modelos que se construyeron para el pozo y en la figura 3.3, se muestra el modelo geométrico que se manejó para los distintos modelos del pozo.

MODELO	CARACTERISTICAS
	Dimensiones de la malla: i=16, j=8 y z=38
	Distancia al CAA: 10 m
	Pozos: D-27D, D-25, D-27 e Iny
	FIPNUM, (para mantenimiento de presión 2505 psia celda monitoreo 9,1,25)
D41-1	MULTX 5 y MULTY 12 (toda la malla)
D41-1	Qg_iny = 10000 Mscf/d
	Tablas hidraulicas: TH-D41-190607.Ecl, TH-D-27.Ecl y TH-D27D-270607.Ecl
	Tamaño mínimo de celda 150 x 150 x 100 (ft)
	Tamaño máximo de celda 600 x 600x 100 (ft)
	Sin refinamiento en CAA ni en disparos
	Dimensiones de la malla: i=16, j=8 y z=38
	Distancia al CAA: 80 m
	Pozos vecinos: D-27D, D-25, D-27 e INY
	FIPNUM, (para mantenimiento de presión 2505 psia, celda monitoreo 9,1,25)
D41-2	MULTX 5 y MULTY 12 (toda la malla)
D 4 1-2	Qg_iny = 10000 Mscf/d
	Tablas hidráulicas: DELTA41-190607.Ecl, DELTA-27.Ecl y DELTA27D-270607.Ecl
	Tamaño minimo de celda 150 x 150 x 100 (ft)
	Tamaño máximo de celda 600 x 600 x 100 (ft)
	Sin refinamiento en C.A.A ni en reparaciones
	Dimensiones de la malla: i=16, j=8 y z=38
	Distancia al CAA: 123 m
	Pozos vecinos: D-27D, D-25, D-27 e INY
	FIPNUM, (para mantenimiento de presión 2505 psia, celda monitoreo: 9,1,25)
D41-3	MULTX 5 y MULTY 12 (toda la malla)
D 4 1-3	Qg_iny = 10000 Mscf/d
	Tablas hidráulicas: DELTA41-190607.Ecl, DELTA-27.Ecl y DELTA27D-270607.Ecl
	Tamaño minimo de celda 150 x 150 x 100 (ft)
	Tamaño máximo de celda 600 x 600 x 100 (ft)
	Sin refinamiento en C.A.A ni en reparaciones
	Profundidad del contacto agua-aceite 11227 ft (3422 m)

Tabla 3.1. Distintos modelos construidos para el pozo D-41

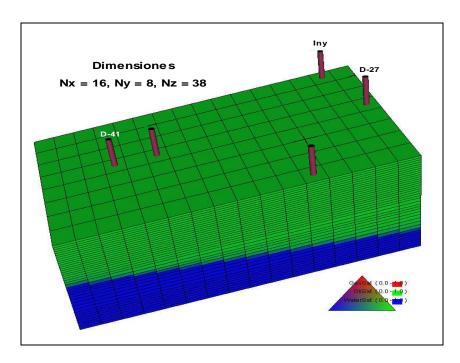


Figura 3.3. Geometría de los modelos del pozo D-41

Pozo D-11

El objetivo del modelo del pozo D-11, es simular el comportamiento de producción del pozo y determinar la profundidad óptima de la base de los disparos para evitar producción prematura de agua, considerando un sistema de doble porosidad. El modelo considera un área rectangular de 1254 m por 790 m, en la que incluyen los pozos D-4, D-12; el pozo vertical del que se obtienen las propiedades petrofísicas, las funciones de saturación y el modelo PVT es el pozo D-4. Se construyó el modelo del pozo D-11, incluyendo las premisas de visualización en donde se definió que el intervalo productor se ubicaría 10 m arriba del contacto agua-aceite (3451 mVbnm, en BTPKS) con una trayectoria de 30°, en lugar de la 70° planteados originalmente, para alejar su terminación de la falla norte del campo. La figura 3.4, muestra el primer modelo para éste pozo, en ella se puede observar la geometría regular de la malla, la profundidad del contacto agua-aceite, el cambio de trayectoria de 70° a 30°, el área del modelo y su geometría en 3D.

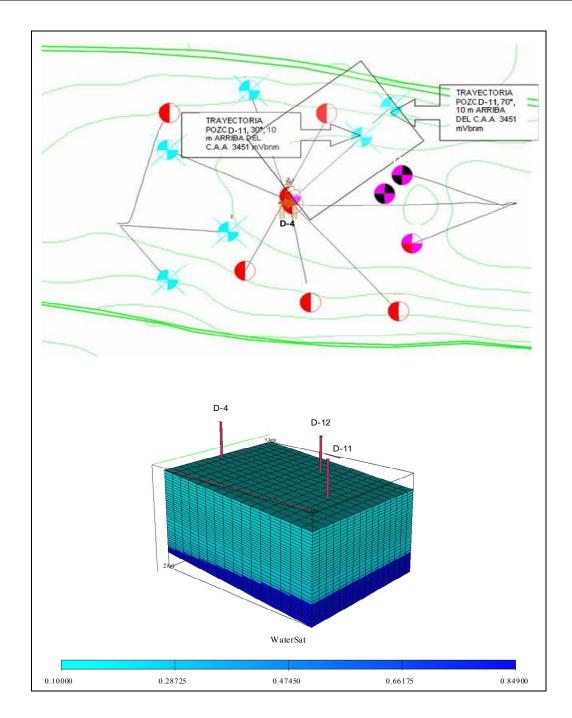


Figura 3.4. Cambio de trayectoria del pozo D-11

Una vez integrado el modelo homogéneo se migró a doble porosidad y se iniciaron las primeras corridas para la calibración del contacto agua-aceite, ya que al primer modelo se le asignó un contacto agua-aceite de 3422 mVbnm, diferente al que se maneja en el modelo numérico detallado .DATA (sección EQUIL); sin embargo, y de acuerdo a la nueva información se

determinó que para el campo a ésta fecha se tenía el contacto agua-aceite a 3451 mVbnm; mientras que modelo genera otro de 3411 mVbnm, esto en base a la distribución de saturaciones de agua dadas por el equilibrio vertical. Debido a que el pozo D-11 era un pozo que se tenía programado, su trayectoria fue definida en varias ocasiones. El modelo final de pozo incluye, demás del D-11, los pozos: D-4 (pozo de control) y el D-12. El comportamiento de este modelo y los anteriores, presentaban un efecto inverso al movimiento de los fluidos en el límite del contacto agua-aceite, incrementando la saturación de aceite en celdas que inicialmente pertenecían al acuífero. La figura 3.5, muestra como debajo de la línea del contacto agua-aceite, se aprecia la saturación de aceite que calcula el modelo CMT, sin considerar los efectos de las condiciones de frontera atribuibles al volumen del acuífero.

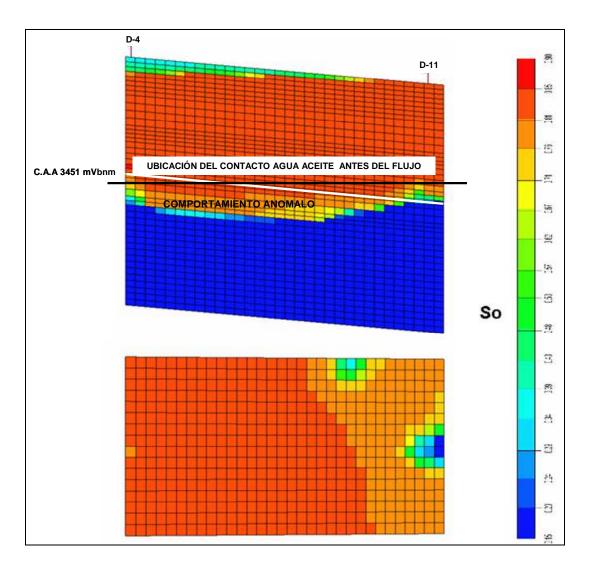


Figura 3.5. Saturación de aceite del modelo CMT, sin considerar condiciones de frontera atribuibles al volumen del acuífero

La figura 3.6, muestra el comportamiento del modelo CMT, en donde se observa el avance del acuífero de manera normal, tras asignar la condición de frontera mediante el incremento del volumen poroso del acuífero.

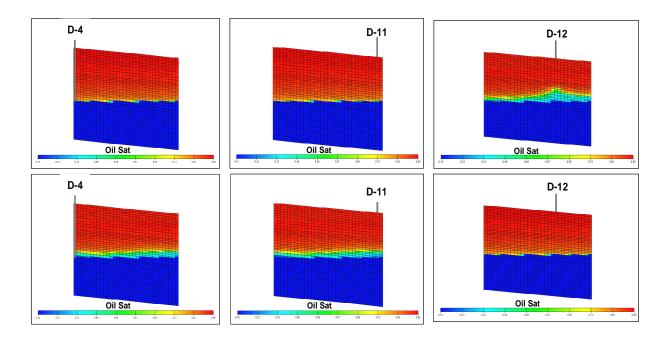


Figura 3.6. Comportamiento del modelo CMT, se observa el avance del acuífero tras asignar condición de frontera mediante el incremento del volumen poroso del acuífero

Finalmente se hizo la migración del modelo homogéneo del pozo D-11 a un modelo de doble porosidad y se llevó a cabo la validación de la tendencia futura de presión con respecto al comportamiento histórico como se muestra en la figura 3.7, esto se hizo asignando y sensibilizando el volumen poroso del acuífero, como condición de frontera.

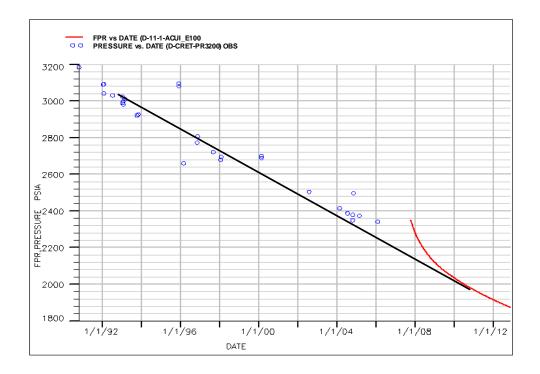


Figura 3.7. Comportamiento de presión observada y calculada

Pozo D-2

El objetivo del modelo del pozo D-2, es simular el comportamiento de producción del pozo considerando un sistema de doble porosidad. El modelo considera un área rectangular de 1750 m por 990 m, en la que incluyen los pozos D-4, D-25D, como se observa en la figura 3.8; el pozo vertical del que se obtienen las propiedades petrofísicas, las funciones de saturación y el modelo PVT es el pozo D-4.

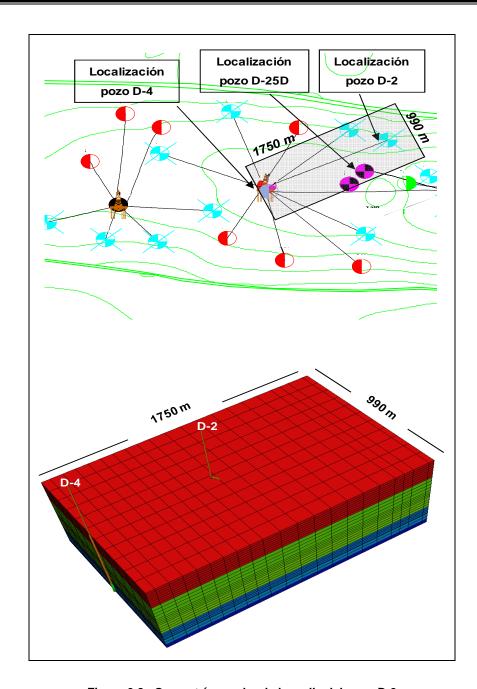


Figura 3.8. Geometría regular de la malla del pozo D-2

La construcción del modelo CMT del pozo D-2, es similar al de los pozos antes descritos, la diferencia entre éste pozo y los anteriores es que en la trayectoria de este pozo considera un tramo horizontal de 200 m, se consideró que el pozo aportaría de producción de 9000 BPD y como condición de frontera un volumen poroso en el acuífero. Las figuras 3.9 y 3.10 muestran el modelo y el comportamiento de la distribución de fluidos como consecuencia del flujo de la explotación del área.

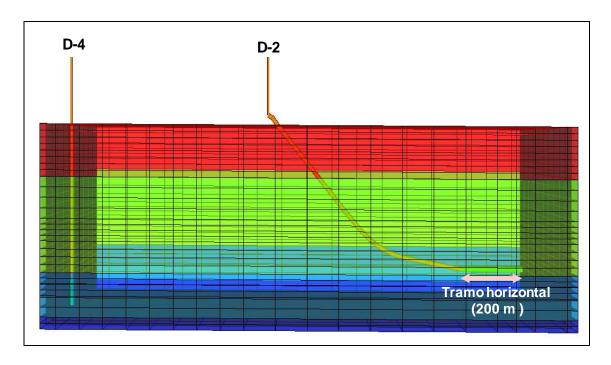


Figura 3.9. Vista geométrica del modelo CMT del pozo D-2

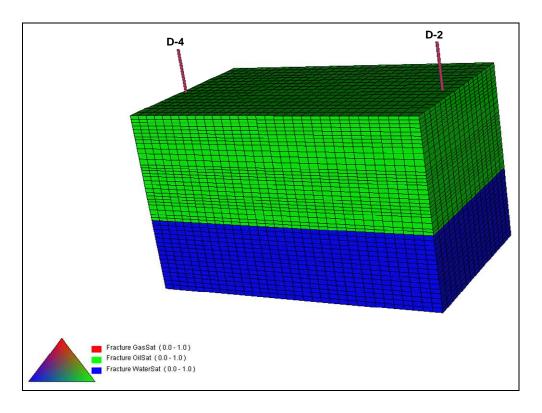


Figura 3.10. Distribución de fluidos en la vecindad de los pozos a condiciones iniciales

Una vez que el pozo se terminó y entregó a producción, el gasto de aceite reportado fue de poco mas de los 9000 BPD, considerados en la construcción del modelo; con lo cual, se demuestra que el modelo del pozo es representativo en esa área del yacimiento.

Posteriormente a la construcción de los modelos, se procedió a realizar la actualización de los modelos de simulación:

Actualización del modelo de simulación numérica

Los modelos de simulación son herramientas que permiten reproducir el comportamiento histórico y predecir el comportamiento futuro de los campos. Estos modelos se construyen con base en la información obtenida durante la perforación de los pozos, historia de presión-producción, estudios petrofísicos y de fluidos, con que se cuente; sin embargo, conforme se genera nueva información, ésta permite calibrar los modelos, a fin de que el modelo reproduzca con un menor error el comportamiento histórico observado y por ende las predicciones sean mas confiables. En este trabajo, se incorporó la información de los pozos C-438 (KM), C-454D (BP), D-2 horizontal (KM), D-58 (BP), y A-69D (BP), al modelo de simulación vigente; para lo cual se localizaron las celdas e intervalos que de acuerdo a la trayectoria real de los pozos, se ubican dentro del modelo, como se muestra en la tabla 3.2 y en las figura 3.11, 3.12, 3.13, 3.14 y 3.15.

POZO	INTERVALO ABIERTO mVbnm	CIMA MODELO mVbnm	FORMACION	FECHA	CELDA
C-438	3131.9-3164.6	3063	BTP-KS	14-Jun-07	(15,8,5)
C-454D	2825-2931	2874	BTP-KS	25-Sep-07	(19,7,4)
D-2	Liner 3786-4018 mD	2862	KM	31-Jul-07	(15,19,9)
D-58	3276.7-3306.7	3185	BTP-KS	31-Ago-07	(6,23,5-6)
A-69D	2965.7-2995	2404	BTPKS	31-Jul-07	(35,43,11)

Tabla 3.2. Definición del intervalo abierto con respecto al modelo de simulación vigente

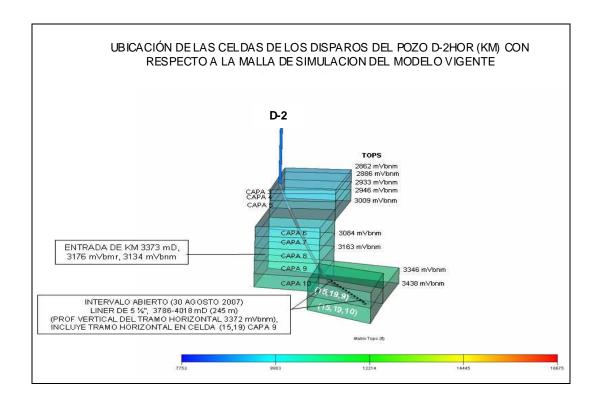


Figura 3.11. Intervalo abierto del pozo D-2 con respecto a las celdas del modelo de simulación vigente

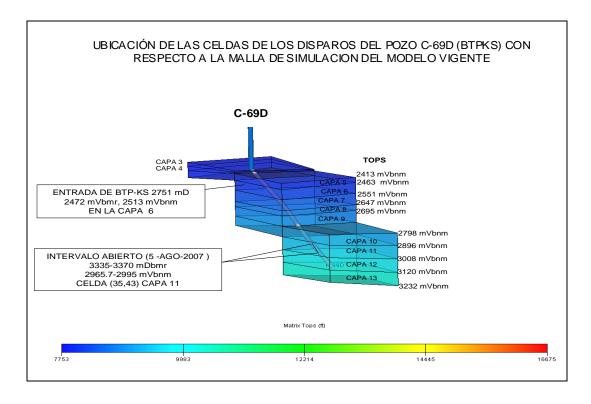


Figura 3.12. Intervalo abierto del pozo C-69D con respecto a las celdas del modelo de simulación vigente

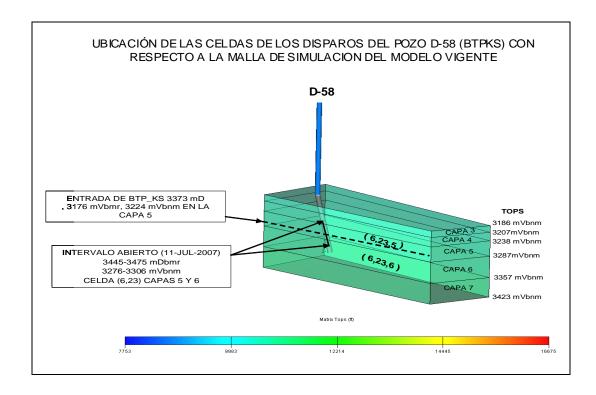


Figura 3.13. Intervalo abierto del pozo D-58 con respecto a las celdas del modelo de simulación vigente

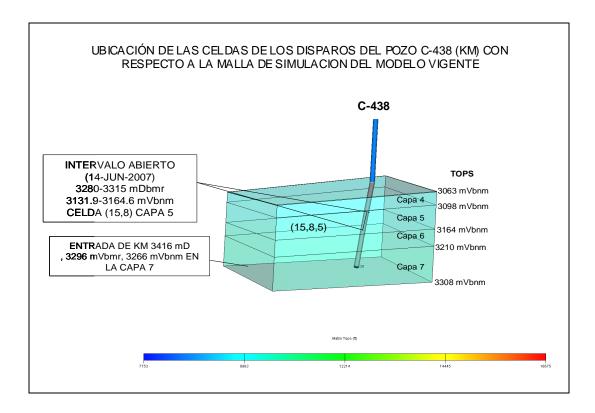


Figura 3.14. Intervalo abierto del pozo C-438 con respecto a las celdas del modelo de simulación vigente

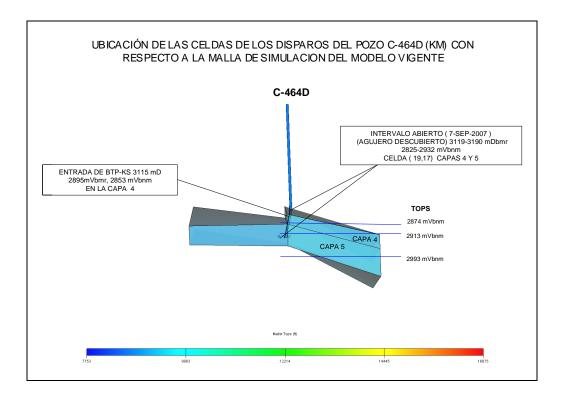


Figura 3.15. Intervalo abierto del pozo C-464D con respecto a las celdas del modelo de simulación vigente

Para la actualizar el modelo de simulación, se tomó como base el último modelo actualizado, en el que se consideró como historia hasta noviembre de 2007, esta actualización se refleja en el archivo schedule de historia. Se acondicionó el archivo de pronóstico RESTART y el archivo schedule de producción del pozo C-406, el cual contiene las condiciones de operación e inyección de nitrógeno de los pozos A-45, A-47, A-67A, A-489, C-99, C-454D, D-7DA y D-1001 para mantenimiento de presión, los límites económicos, terminaciones y reparaciones mayores del 2008, planeadas en el Programa de Operaciones. Las figuras 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, 3.22, 3.23, 3.24, 3.25 y 3.26 muestran el comportamiento del pronóstico de producción y presión del campo y de los pozos C-438, C-454D, D-2, D-58 y A-69D.

Figura 3.16. Historia de presión y producción del campo

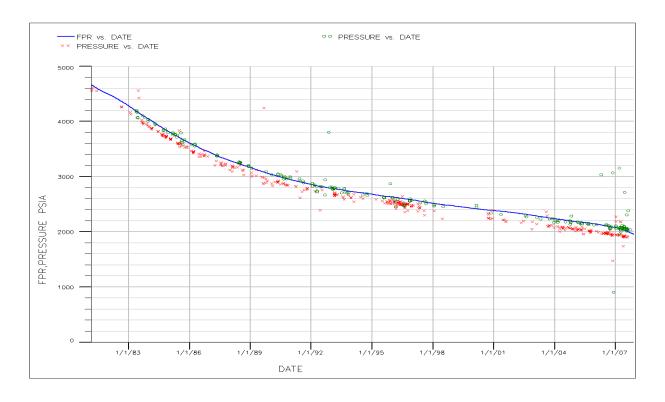


Figura 3.17. Ajuste histórico de presión estática del campo

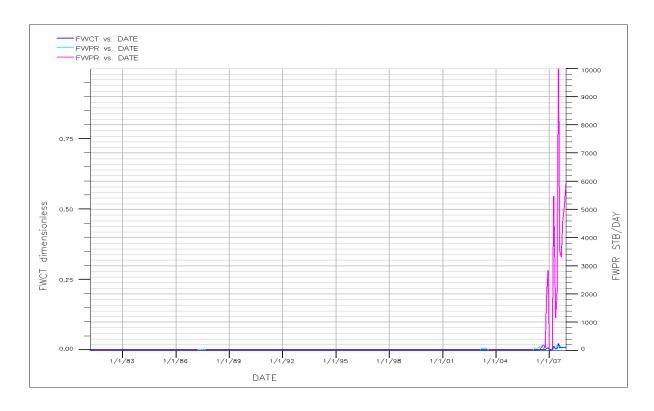


Figura 3.18. Ajuste histórico de la producción de agua del campo

Figura 3.19. Ajuste histórico del gasto de aceite del campo

Figura 3.20. Ajuste histórico de la relación gas aceite del campo

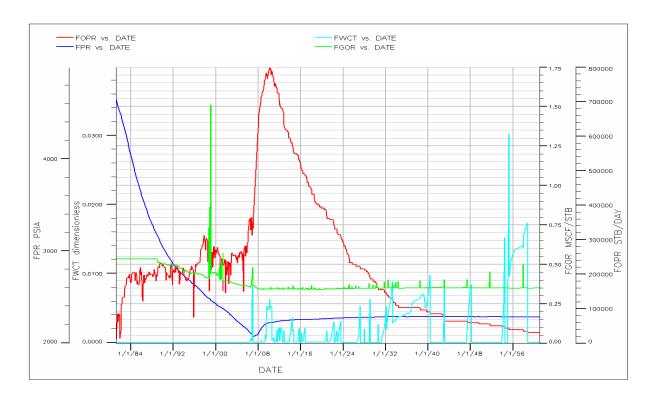


Figura 3.21. Predicción de presión y producción del campo

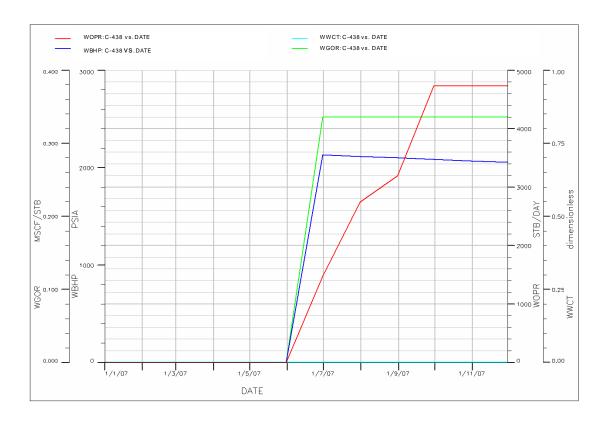


Figura 3.22. Predicción de la producción y presión utilizando el modelo vigente del pozo C-438

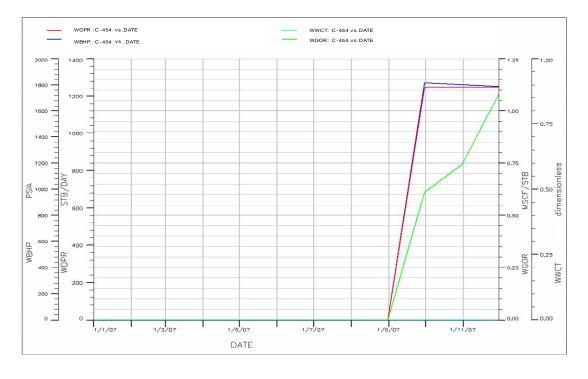


Figura 3.23. Predicción de la producción y presión utilizando el modelo vigente del pozo C-454D

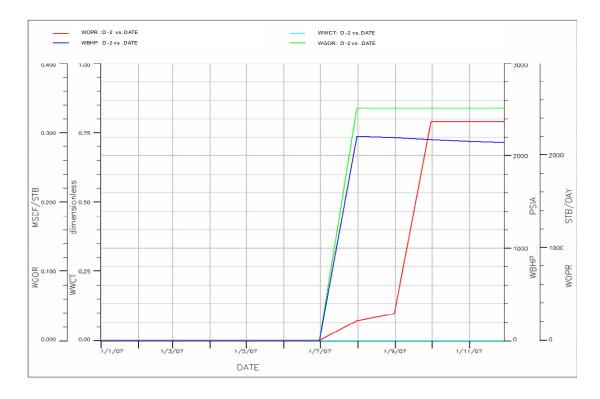


Figura 3.24. Predicción de la producción y presión utilizando el modelo vigente del pozo D-2

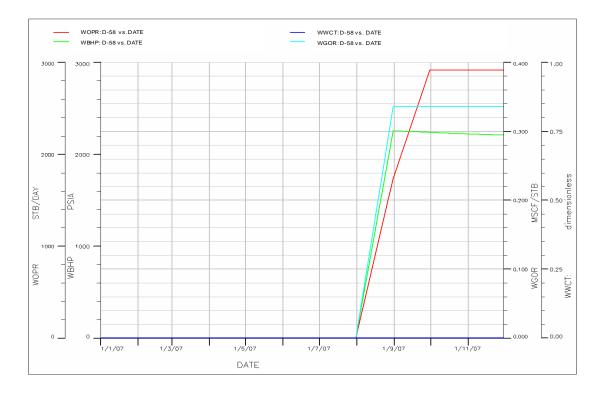


Figura 3.25. Predicción de la producción y presión utilizando el modelo vigente del pozo D-58

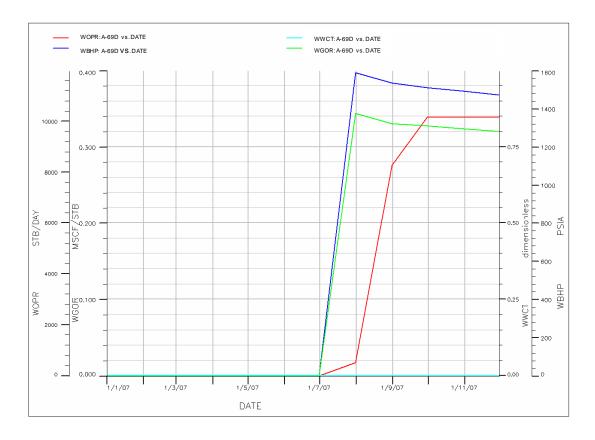


Figura 3.26. Predicción de la producción y presión utilizando el modelo vigente del pozo A-69D

Actualización del campo BETA

Actualización del modelo de simulación del campo Beta considerando:

- Hasta octubre de 2007
- Reparación del pozo B-62
- Pozos productores actualmente B-1D y B-3
- Condiciones de PTP de los pozos a diciembre de 2007

POZO	Qo mínimo (sm³/d)	Fw máximo (fracción)	PTP (barsa)
B-1D	32	0.2	39.23
B-3	80	0.15	42.17

Tabla 3.3. Condiciones de operación

En base al movimiento de equipos del programa de operaciones, se estructuró la corrida de predicción con la deshidratación, para el campo BETA; inyectando químicos para romper la emulsión de los siguientes pozos: B-1D, B-3, B-21 y B-24. Se hizo una calibración condiciones de contrapresión en la cabeza para reproducir los gastos de producción.

	Т	HP	AJUSTAR		
POZO	ORIGINAL (bars)			GASTOS (BI/Día)	
B-1D	39.23	43.4	43	270	
B-3	42.17	32.4	278	1748	

Tabla 3.4. Calibración de las condiciones de operación

Finalmente se adecua el archivo schedule para que los pozos entren el 22 de septiembre de 2008, considerando las nuevas condiciones de operación.

POZO	% Agua	PTP (bar)
B-1D	30	26
B-3	04-May	16
B-3	50-60	20
B-3	50-60	20

Tabla 3.5. Condiciones de operación finales

La figura 3.27, muestra comparativamente los comportamientos de producción históricos y futuro del campo en BTPKS, bajo estas condiciones de operación.

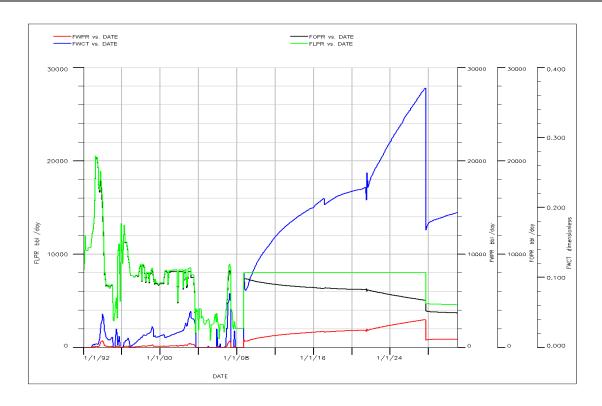


Figura 3.27. Comportamiento de producción en historia y predicción del Campo BETA BTPKS

Actualización del campo FI

El modelo sólo es de predicción y para esta actualización fueron cargados los movimientos de los equipos incluidos en el programa de operaciones. Se observó que el modelo no reproduce el gasto de aceite (12000 BPD) del pozo FI-DL1, detectando que el a una barrera a la altura de la falla que divide el bloque 1. Se eliminó dicha barrera con un multiplicador tanto en la permeabilidad y la transmisibilidad, observando un aumento en el gasto de aceite, aunque no lo suficiente para reproducir el gasto medido en campo reportado en la base de datos del campo. A fin de reproducir el gasto observados, se redujo la contra presión en la cabeza de 18 bar a 16 bar, con lo cual se incrementó la producción; sin embargo, el modelo no podía reproducir gasto medido.

También se realizó el estudio de caracterización y la actualización del modelo geológico con respecto al pozo A-87:

Pozo A-87

Se analizó la información correspondiente a los estudios de "Caracterización de los sistemas de fracturas en rocas del mesozoico y actualización del modelo geológico petrofísico". Para considerar la orientación e intensidad del fracturamiento de la formación productora, principalmente en el área de los pozos que presentan estas características, para describir el comportamiento de producción intermitente que presenta este pozo, bajo la consideración de que la formación hace su primer aporte de flujo hacia el pozo a través del sistema de fracturas y una segunda respuesta una vez que la matriz hizo el aporte hacia la fractura. Cabe mencionar que el pozo A-87 se encuentra localizado dentro de un sistema de fallas, como se muestra en la figura 3.28, con fracturas parcialmente abiertas y selladas y vúgulos de disolución, además que se ubica dentro de un bloque posiblemente independiente con un comportamiento distinto al de sus áreas vecinas.

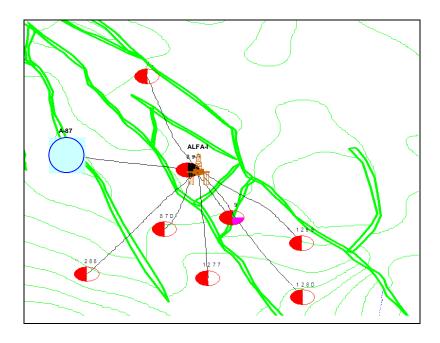


Figura 3.28. Mapa de localización del pozo A-87

TEMA 4

detección de formaciones productoras que atraviesan las trayectorias de pozo

Se inició la integración de una descripción estratigráfica y estructural, mediante la creación de secciones, que incluyen a los pozos actuales y futuros cuyos objetivos van a las formaciones de Cretácico y Jurásico, pero que atraviesan la formación de Calcarenitas de Eoceno Medio, información que será usada para programar la toma de información.

Se integraron en la malla del modelo de simulación de Eoceno Medio las trayectorias de pozos programados para el año 2007, identificando las celdas que estos atraviesan así como los rangos de sus propiedades, habiendo identificado 8 pozos distribuidos en el área de interés del campo, más los pozos A-106, D-1001 y D-7D que ya existían en el modelo de simulación con algún periodo de producción, en donde la localización de los pozos D-111 (de 2007) y D-7D coinciden en las mismas celdas de simulación. En el campo ALFA se tiene sólo el pozo A-10A, como productor desde febrero de 1986. La figura 4.1 muestra la localización de estos pozos, mientras que la tabla 4.1 la posición de los pozos de este complejo de campos, clasificando su intersección, cercanía y alejamiento, de tal manera que una nueva configuración de los límites geológicos, podrían incluir a algunos de ellos.

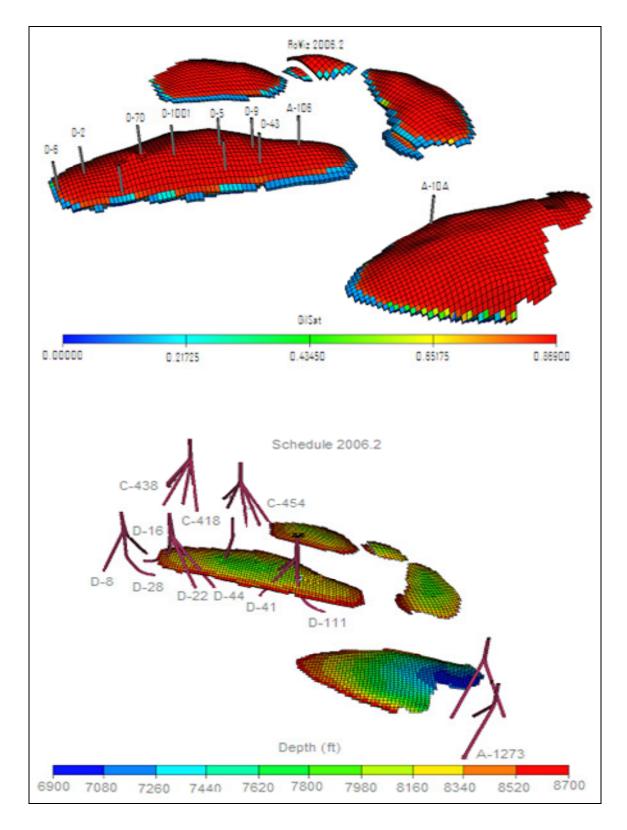


Figura 4.1. Plataformas y trayectorias de los pozos que entran en 2007 y que pasan por Eoceno Medio

POZOS QUE INICIAN PERFORACION EN 2007 QUE INTERSECTAN EN LA CIMA DEL EOCENO MEDIO								
Plataforma	Pozos EM	Pozos cercanos EM	Pozos alejados EM					
Delta-A	D-6 D-44 D-22 D-2	D-14						
Delta-B	D-9 D-5 D-43 D-41							
Сарра-А			C-454D C-434 C-432 C-412 C-404 C-402					
Delta-C	D-111		D-103					
Delta-D			D-58 D-28 D-16					
Сарра-В			C-476 C-457 C-419 C-418 C-379 C-438					
Alfa-C			A-65D A-1273					
Alfa-S		A-82D	A-69D					

Tabla 4.1. Pozos existentes que producen de esa formación

La tabla 4.2 muestra los rangos de propiedades en las celdas que atraviesan los pozos de acuerdo a sus trayectorias, información que es útil para la visualización de localizaciones de interés de producción en base a la calidad de los atributos.

_			Perm		Н	PorV							
Pozo	i	j	k	NTG	Poro	х	Υ	Z	m	m3	So	Sw	Sg
	43	44	1	0.702	0.26	18.3	18.3		2.77	5816.7	0.84	0.16	0
D-6	43	44	2	0.01	0.2	2.34	2.34		14.09	316.8	0.82	0.18	0
	43 43	44 43	3	0.656 0.648	0.24 0.25	9.28 9.58	9.28 9.58		23.73 23.2	43234 41289	0.13 0.14	0.87 0.86	0
	40	43	3	0.046	0.23	9.56	9.56		20.2	41209	0.14	0.00	U
	57	48	1	0.7	0.19	4.93	4.93		11.67	17355	0.85	0.15	0
D-44	57	48	2	0.12	0.22	3.11	3.11		22.93	6769	0.82	0.18	0
	57	48	3	0.8	0.24	6.95	6.95		23.97	50847	0.12	0.88	0
	58	48	3	0.8	0.23	6.97	6.97		23.21	49236	0.13	0.87	0
D-22 FUERA DE LA MALLA DE SIMULACION													
	50	42	1	0.727	0.26	18.18	18.18		1.54	3314	0.87	0.13	0
	50 50	42 42	2	0.12 0.7	0.2 0.24	2.44 8.82	2.44 8.82		4.32 23.46	401 45663	0.87 0.87	0.13 0.13	0
D-2	50	42	4	0.7	0.24	37.81	37.81		23.46	76578	0.86	0.13	0
	50	42	5	0.44	0.29	39.81	39.81		23.45	33883	0.82	0.18	0
	51	42	5	0.44	0.29	39.81	39.81		23.55	34007	0.83	0.17	0
D 14	P. C. P. C. L. A. M. L. A. D. C. M. L. A. C. M. L. A. C. C. M. L.												
D-14	D-14 FUERA DE LA MALLA DE SIMULACION												
	89	42	1	0.763	0.2	6.28	6.28		29.67	51271	0.87	0.13	0
	89	42	2	0.474	0.23	3.43	3.43		14	16888	0.87	0.13	0
D-9	89	42	3	0.929	0.24	7.76	7.76		28.39	70742	0.87	0.13	0
	89	42	4	0.879	0.25	10.88	10.88		28.39	69939	0.87	0.13	0
	89 89	42 42	5 6	0.682	0.23	5.44 0.71	5.44 0.71		28.39 2.57	49464 10047	0.86 0.84	0.14 0.16	0
	00	72	Ů	0.00	0.11	0.71	0.71		2.07	10047	0.04	0.10	Ů
	82	41	1	0.76	0.17	3.38	3.38		16.94	24775	0.87	0.13	0
	82	41	2	0.451	0.24	4.05	4.05		9.15	11417	0.87	0.13	0
D-5	82 81	41 41	3	0.894 0.889	0.24 0.24	7.26 7.4	7.26 7.4		29.94 29.87	73550 73372	0.87 0.87	0.13 0.13	0
	81	41	4	0.885	0.24	11.42	11.42		29.87	76978	0.87	0.13	0
	81	41	5	0.788	0.24	7.7	7.7		29.87	65006	0.87	0.13	0
				1									
	89	46	1	0.744	0.21	6.91	6.91		31.32	55975	0.87	0.13	0
	89 89	46 46	2	0.407 0.919	0.23 0.24	3.49 7.74	3.49 7.74		14.69 29.74	15809 65829	0.87 0.87	0.13 0.13	0
D-43	89	47	3	0.917	0.24	7.68	7.68		29.92	76782	0.86	0.13	0
	89	47	4	0.806	0.24	13.9	13.9		29.92	72569	0.81	0.13	0
	90	47	4	0.815	0.26	13.98	13.98		29.65	72908	0.81	0.13	0
	90	47	5	0.62	0.23	5.44	5.44		29.65	49086	0.1	0.19	0
	81	47	1	0.73	0.16	13.12	13.12		16.73	22614	0.87	0.13	0
	81	47	2	0.4	0.25	4.87	4.87		13.68	15925	0.87	0.13	0
D-41	81	47	3	0.81	0.24	7.94	7.94		29.48	72334	0.87	0.13	0
53	81	47	4	0.657	0.25	17.63	17.63		29.48	58935	0.86	0.14	0
	81	47 47	5 6	0.826	0.24	8.54	8.54		29.48	67614	0.83	0.17	0
	81	47	0	0.316	0.11	0.71	0.71		0.42	169	0.13	0.87	U
	64	41	1	0.751	0.14	2.28	2.28		1.34	1642	0.87	0.13	0
	64	41	2	0.127	0.2	2.5	2.5		17.26	5106	0.87	0.13	0
D-111	64	41	3	0.567	0.21	2.88	2.88		23.75	3211	0.87	0.13	0
	64 64	41 41	4 5	0.965 0.479	0.22 0.22	4.3 3.97	4.3 3.97		23.75 23.75	57657 28229	0.87 0.87	0.13 0.13	0
	04	41	υ	0.479	0.22	3.97	3.97		23.73	20229	0.07	0.13	U
A-82D					FUER	A DE L	A MALL	A DE	SIMULAC	ION			

Tabla 4.2. Propiedades de las celdas que atraviesan los pozos

La tabla 4.3 muestra la distancia aproximada de algunos pozos con respecto a sus vecinos, con objeto de determinar el comportamiento posible de producción por correlación o para prevenir eventuales coalisiones.

POZO	POZO	DISTANCIA m
D-6	D-2	2347
	D-44	2998
D-44	D-111	1070
D-2	D-111	646
D-9	D-5	1483
	D-43	1577
D-5	D-41	1117
D-41	D-43	2312

Tabla 4.3. Distancia entre pozos

Se incorporaron los pozos D-11, D-6D, D-103 y D-208 al modelo numérico de Eoceno Medio, sin embargo el pozo D-6D no atraviesa en esta formación como se muestra en la figura 4.2; la tabla 4.4 muestra los valores de propiedades en las celdas correspondientes de estos nuevos pozos.

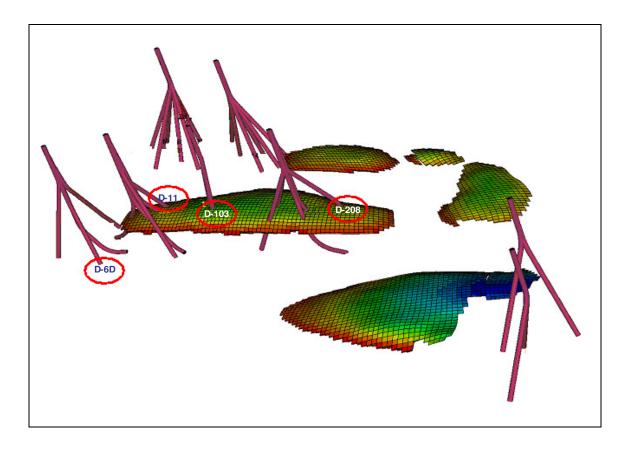


Figura 4.2. Pozos incorporados al modelo

_		_			_	Pe	rm				_	_	Р
Pozo	i	j	k	NTG	Poro	Х	Υ	Н	PorV	So	Sw	Sg	BARSA
PLATAFORMA DELTA-A													
	51	40	1	0.739	0.27	20.34	20.34	0.03	74.9	0.87	0.13	0	250.63
	51	40	2	0.3723	0.2	2.37	2.37	12.45	1048.6	0.87	0.13	0	251.14
D-11	51	40	3	0.683	0.24	8.94	8.94	22.28	42069	0.86	0.14	0	252.54
D-11	51	39	3	0.663	0.24	8.98	8.98	21.57	39266	0.85	0.15	0	253.99
	51	39	4	1	0.29	37.53	37.53	21.57	70097	0.21	0.79	0	255.73
	52	39	5	0.44	0.29	39.81	39.81	21.5	30956	0.02	0.98	0	257.24
	-				ı	PLATAFO	RMA DE	LTA-B	-				•
	96	40	1	0.789	0.22	8.54	8.54	30.33	56820	0.87	0.13	0	249.3
	96	39	1	0.79	0.21	7.79	7.79	27.42	49351	0.87	0.13	0	250.81
	96	39	2	0.56	0.22	3.02	3.02	17.94	23118	0.86	0.14	0	252.64
D-208	97	39	2	0.56	0.21	2.93	2.93	19.05	24340	0.86	0.14	0	253.15
	97	39	3	0.983	0.24	8.95	8.95	22.46	57141	0.85	0.15	0	254.83
	97	39	4	0.905	0.24	8.18	8.18	22.46	51961	0.23	0.77	0	256.64
	97	39	5	0.647	0.22	3.85	3.85	22.46	33478	0.04	0.96	0	258.79
						PLATAFO	RMA DE	LTA-C					
	66	43	1	0.743	0.14	2.03	2.03	4.85	5477.8	0.87	0.13	0	239.62
	66	43	2	0.27202	0.23	3.45	3.45	19.11	13167	0.87	0.13	0	240.58
D-103	66	43	3	0.695	0.22	3.67	3.67	23	38544	0.87	0.13	0	242.28
	66	43	4	0.839	0.23	5.66	5.66	23	49452	0.87	0.13	0	244.13
	66	43	5	0.74943	0.22	4.89	4.89	23	43279	0.87	0.13	0	245.98
						PLATAFO	RMA DE	LTA-D					
D-6D	D-6D FUERA DE LA MALLA DE SIMULACION												

Tabla 4.4. Propiedades de las celdas

Otros pozos en los que sus objetivos programados son, por ejemplo, las formaciones de Jurásico (JST, JSK, Jurásico Oxfordiano), pero que atraviesan Cretácico y en ocasiones otras formaciones de interés, en tales casos es preciso analizar el posible comportamiento de producción en esas formaciones, y en consecuencia programar la toma de información y la realización de las pruebas correspondientes, tal es el caso del pozo B-44 del campo Beta, como se muestra en la figura 4.3.

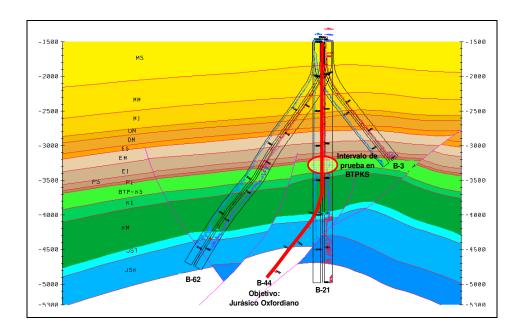


Figura 4.3. El pozo B-44 se probó en Eoceno Medio, pero su objetivo es Jurásico Oxfordiano

También se llevó a cabo el análisis, mediante la simulación numérica bajo distintos escenarios de explotación, identificando la potencialidad del área y del intervalo dentro de la zona con impregnación remanente que queda después de un periodo largo de producción, como se muestra en la figura 4.4 al año 2030.

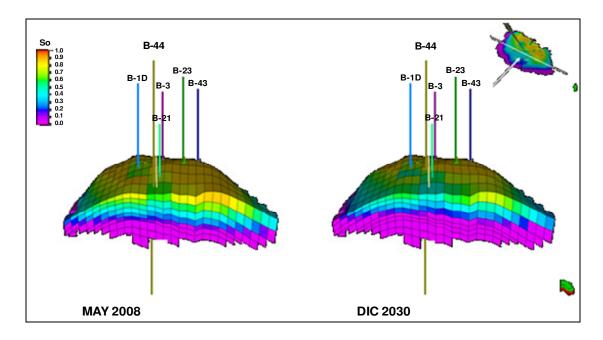


Figura 4.4. Distribución de la saturación de aceite en BTPKS del pozo B-44

conclusiones

- 1.- Con la documentación de los pozos productores con alto contenido de sal en el aceite, se trató de determinar la procedencia de ésta; sin embargo, con la información disponible de los pozos, no se pudo determinar un factor común que indique la causa de la alta salinidad en el aceite; solamente se pudo concluir que la formación BTPKS con mayor cantidad de pozos que presentan esta salinidad.
- 2.- El seguimiento de operaciones diarias sirve como apoyo para la construcción y actualización de los modelos de simulación numérica; ya que de las operaciones diarias, se conoce la formación productora, tipo de pozo, intervalos productores, reparaciones mayores y menores que se han realizado y que se planean realizar en los pozos del campo; estas actividades deben ser incluidas en los archivos históricos y de predicción a fin de ver el comportamiento del campo, para evaluar diferentes escenarios de explotación.
- 3.- El modelado de pozos, sirve para evaluar el comportamiento del pozo en el área vecina de éste, y conocer el comportamiento del pozo, con los modelos de pozo que se construyeron durante el proyecto, se determinó que la distancia óptima para disparar los pozos era de 90 m arriba del contacto agua-aceite.
- 4.- El contar con modelos de simulación numérica de las diferentes formaciones, que existen en un área, permite determinar si las formaciones que posiblemente atraviesen las trayectorias programadas de los pozos, reúnen las características de saturación, espesor, petrofísicas (porosidad y permeabilidad) y estructurales, necesarias para un posible desarrollo; como el caso de los pozos que se presentan en las tablas 4.2 y 4.4.

referencias

- 1.- Modelo detallado de simulación numérica del AIKMZ.
- 2.- Reportes diarios de operación.
- 3.- Reportes históricos de perforación.
- 4.- Estructura digital de la información del AIKMZ.
- 5.- Manuales de referencia técnica de de los programas de Eclipse.
- 6.- Información contenida en la página de Intranet de Pemex.