UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

DIVISIÓN DE INGENIERÍA INDUSTRIAL

TESIS:

"Planeación de la producción de bebidas carbonatadas en función de la demanda vs capacidad instalada"

Elaboró: Francisco Javier Jiménez Aguilar

Asesor: Víctor Manuel Vázquez Huarota

"Planeación de la producción de bebidas carbonatadas en función de la demanda vs capacidad instalada".

INTRODUCC	IÓN1
CAPÍTULO 1	
SITUACIÓN /	ACTUAL DEL REFRESCO EN MÉXICO.
1.1.	Breve historia de las bebidas carbonatadas en México4
1.2.	Situación actual de la demanda de refrescos en México5
1.3.	Riesgos8
CAPÍTULO 2	
DIAGNOSTIC	O DE LA SITUACIÓN ACTUAL.
2.1.	Descripción del proceso de producción de bebidas
carbo	natadas10
2.2.	Capacidad instalada en equipos de línea. (Velocidades)14
2.3.	Clasificación de Servicios auxiliares y procesos20
2.4.	Capacidad instalada de servicios auxiliares y procesos29
CAPÍTULO 3	
RESULTADO	S Y ANÁLISIS DE LA SITUACIÓN ACTUAL.
3.1.	Balance de servicios auxiliares y procesos en función de la
	producción actual39
3.2.	Volumen de producción máximo50
3.3.	Análisis económico de la producción actual58
3.4.	Resultados63

CAPÍTULO 4.

RECON	JEND	ACIONES	V PR	OPI	IFSTAS
NEC.ON	VI	ALIUNES	IFN		JE 3 I A 3

	4.1.	Nuevas o	cond	iciones de	operación	par	a incremer	ntar el	volu	men de
	produ	ıcción. (Si	n inv	ersión en	infraestruct	tura	.)		· · • · · · · ·	65
	4.2.	Balance	de	servicios	auxiliares	У	procesos	con	las	nuevas
	condi	ciones de	ope	ración						67
	4.3.	Análisis	econ	ómico de	la situación	pro	opuesta			69
CONC	LUSIO	NES DEL T	RABA	AJO DE IN\	/ESTIGACIO	N.				
	Concl	usiones								75
ANEX	OS									76
RIRI IC	GRAFÍ	Α								77

INTRODUCCIÓN.

PROBLEMÁTICA ACTUAL.

La capacidad de producción de una planta embotelladora de refrescos, es medida en M.M. de C.U. / Año, sin embargo, para determinar esa capacidad de producción, no solo es necesario conocer las velocidades de producción de los equipos de línea, necesitamos conocer y determinar los consumos de los servicios auxiliares y procesos (energía, refrigeración, aire comprimido, etc.) que intervienen en la producción de refrescos, actualmente no se tiene un balance real para todos estos servicios y procesos en la planta, por lo que se necesita formular esos consumos y así poder determinar la capacidad de producción real y óptima.

OBJETIVOS.

En base a lo anterior, este trabajo de investigación abarca formular los consumos de los servicios auxiliares y procesos, para determinar la capacidad de producción instalada, y poder determinar un volumen máximo de producción.

Así como también realizar un balance de todos estos servicios, en función del volumen de producción para poder determinar el nivel máximo de producción, y poder establecer nuevas condiciones de operación para cada línea de producción para incrementar el volumen actual de producción en función de la demanda de refrescos, sin la necesidad de requerir una inversión en infraestructura,

Objetivos específicos.

- Determinar la capacidad instalada de servicios auxiliares y procesos.
- Determinar la capacidad instalada de los equipos de línea para determinar el volumen de producción.

- Conocer el nivel real de producción, así como el nivel óptimo de producción,
 en función a la capacidad instalada de servicios auxiliares y procesos.
- Presentar los diferentes escenarios en función a una demanda estimada de refrescos, y determinar el más optimo.

Metodología de investigación.

Como primera etapa, necesitamos conocer las velocidades de producción para los equipos de línea en la planta, para realizar este punto, es necesario realizar un levantamiento de los equipos con las velocidades catalogo que tengan cada uno de ellos, para determinar la capacidad instalada de los servicios auxiliares y procesos, primero es necesario que servicios auxiliares, y que procesos intervienen en la producción de refrescos, la cual se explica más adelante, una vez que conocemos esos servicios y procesos, procedemos a levantar las capacidades de los equipos para servicios y procesos.

Una vez conocidos los datos anteriores, procedemos a formular cada servicio y procesos, y así podremos determinar la capacidad de producción máxima de la planta en función de los servicios auxiliares y procesos.

Mediante la formulación propuesta y conociendo un determinado volumen de producción, se podrá determinar si es posible o no, la producción de ese volumen de refresco, sin inversión en infraestructura.

CAPÍTULO 1

Situación actual del refresco en México

1.1. Breve historia de las bebidas carbonatadas en México.

El refresco en México entró en 1898, pero es hasta 1915 cuando se empieza a comercializar en botellas individuales, En 1926 el refresco de cola empezó a embotellarse en las ciudades de Tampico, Monterrey, Saltillo, Chihuahua, Guadalajara y Mérida. En 1928 se embotella en Puebla y San Luis Potosí y en 1932 se embotella en el Distrito Federal por casa Mundet hasta 1936, año en que termina el contrato y surge Industria Embotelladora de México S.A. La embotelladora de San Luis Potosí desaparece y esa ciudad se queda sin planta hasta 1942 cuando el refresco costaba 15 centavos.

Para 1998, con el desplome del precio del petróleo, un litro del crudo mexicano de exportación -la principal fuente de ingresos para el gobierno-valía casi 10 veces menos que uno de refresco de cola. Para inicios de la presente década la compra de alta fructosa proveniente del maíz transgénico de los Estados Unidos era sustituida por el azúcar de caña, lo que contribuyó a agudizar la crisis del sector azucarero en el país.

Actualmente los refrescos de cola han capturado el 80% del mercado en México, el más grande del mundo después del mercado de los Estados Unidos. Los mexicanos consumen más refrescos que cualquier país del mundo.

1.2. Situación actual de la demanda de refrescos en México.

Actualmente México es un mercado potencial de consumo de refrescos, ya que está como segundo consumidor y productor a nivel mundial, consumiendo anualmente cerca de 16,558 millones de litros de refresco, esto es aproximadamente 2,917 millones de Cajas Unidad (24 botellas de 237 mL).*

Tan sólo en el 2006 se observó un crecimiento del 3.1% en comparación con el 2005, este crecimiento ha sido tendencial a lo largo de los últimos 5 años.**

VOLUMEN DE VENTAS DE REFRESCOS Y AGUAS CARBONATADAS.**

(Cifras en millones de litros).

Año	2000	2001	2002	2003	2004	2005	2006	2007
Volumen de	15,091	15,052	15,159	15,386	15,601	16,060	16,558	17,055
ventas	13,031	13,032	13,133	13,300	13,001	10,000	10,550	17,033
Incremento%	4.2	-0.3	0.7	1.5	1.4	2.9	3.1	3

^{*24} botellas de refresco de 237 mL, es el equivalente a una caja unidad.

^{**}Fuente: Asociación Nacional de Productores de Refrescos y Aguas Carbonatadas, A.C.

Como se ve en la información anterior, nuestra capacidad instalada en la planta embotelladora deberá crecer a un 3%-4% de forma anual para poder satisfacer el porcentaje de la demanda total de bebidas carbonatadas, cabe destacar, que a pesar de ser indicadores de consumos nacionales, cada planta debe de producir en función a esas tasas de crecimiento de consumo de refresco.

Actualmente las preferencias para el consumo de bebidas carbonatadas por el tipo y tamaño de envase están descritas en la siguiente tabla.

	2003	2004	2005	2006
RETORNABLES	36.30%	35.40%	31.40%	29.50%
Hasta 192 ml	0.20%	0.20%	0.10%	0.10%
De 295 a 355 ml	9.30%	8.20%	6.30%	5.60%
De 400 a 500 ml	7.60%	6.70%	5.80%	5.40%
1 Litro	0.40%	0.30%	0.60%	0.60%
1.25 Litros	0.10%	0.10%	0.05%	0.60%
1.5 Litros	0.30%	0.20%	0.10%	0.20%
2 Litros	14.30%	8.60%	7.70%	6.60%
2.5 Litros	4.10%	11.00%	10.70%	10.40%
NO-RETORNABLES	63.70%	64.60%	68.60%	70.50%
Hasta 250 ml	1.40%	1.20%	1.10%	1.10%
355 ml	0.60%	0.60%	0.60%	0.50%
De 400 a 500 ml	3.50%	3.90%	4.00%	4.00%
600 ml	18.60%	17.10%	18.50%	18.40%
710 a 769 ml	0.00%	1.20%	1.20%	0.90%
1 Litro	5.30%	5.10%	4.80%	4.70%
1.5 Litros	1.90%	2.40%	1.70%	2.00%
2 Litros	15.00%	10.80%	9.70%	9.80%
2.5 Litros	9.10%	12.40%	17.20%	18.00%
3 Litros	0.90%	2.30%	2.80%	4.20%
Lata	4.80%	5.20%	5.20%	5.00%

Como se puede observar en la tabla anterior, la tendencia del mercado hacia las presentaciones <u>no retornable</u> se ha ido incrementando en comparación con las Retornables, y como se puede observar, los tamaños que más se consumen en <u>no retornables</u>, son: <u>600 mL</u>, <u>2.5 L</u>, <u>2 L</u>, <u>Lata (355 mL)</u>, <u>y un litro</u>.

En el caso de los Retornables, las preferencias del mercado son: 2.5 L, 2 L, 355mL y 500mL.

En base a estos indicadores anteriores podemos decir que la demanda de bebidas carbonatadas en México, ha ido creciendo año tras año, lo cual nos crea la necesidad de hacer más eficientes los procesos en la elaboración de bebida, con la finalidad de satisfacer al mercado manteniendo precios y calidad competitiva.

En base a lo anterior, el trabajo de investigación se enfocará para los refrescos no retornables, y para los tamaños de 600 mL, 2.5 L, 2 L, Lata (355 mL), y un litro.

1.6. Riesgos.

Los riesgos que se están considerando, son que las capacidades instaladas de servicios auxiliares y procesos son medidas en horas, y que se considera que la planta puede trabajar 24 horas al día pero realmente no trabaja esas 24 horas continuas debido a tiempos programados de paros como son, la limpieza de los equipos, el tiempo de mantenimiento preventivo y correctivo, y los días no laborables, en base a estos criterios, se considera que de las 720 horas al mes (24 horas al día y 30 días al mes) para la producción, solo podremos utilizar un máximo de 600 horas al mes, asignando así, 120 horas al mes para todas esa variables.

CAPÍTULO 2.

Diagnostico de la situación actual

2.1. Descripción del proceso de producción de bebidas carbonatadas.

> SOPLADO.

Es la parte inicial de nuestro proceso de producción, aquí la botella es fabricada y transportada hacia nuestra línea de producción por medio de transportadores neumáticos.

> RINSER.

Este proceso es donde la botella se lava y se esteriliza por medio de limpiadores de ozono, una vez esterilizada, sigue por los trasportadores que llevan la botella al siguiente punto.

> CARBONATADOR.

Esta máquina es donde se realiza la mezcla entre el concentrado de la bebida, la receta que se este utilizando y el CO₂.

> LLENADORA.

Es la máquina más importante en nuestro proceso, es aquí donde la botella es llenada por medio de unas válvulas que funcionan por medio de la gravedad, una vez que se llena cada botella, es colocada en transportadores para que continúe en la línea de producción.

> CAPSULADOR.

Es aquí donde se tapa la botella, esta máquina es un carrusel que toma la botella que ya viene llena y la va tapando, luego la deposita en transportadores neumáticos.

> INSPECTOR DE NIVEL.

Este dispositivo electrónico está colocado alrededor de nuestros transportadores neumáticos, y cada que pasa una botella, se checa por medio de sensores el nivel de bebida en la botella, de no ser el adecuado, esta botella es rechazada, y se manda a otro transportador neumático.

> WARMER.

Esta etapa en el proceso de producción, consiste en secar la botella por medio de vapor, la máquina es un túnel cerrado donde van pasando las botellas por medio de transportadores, al salir la botella lo hace completamente seca.

> CODIFICADOR.

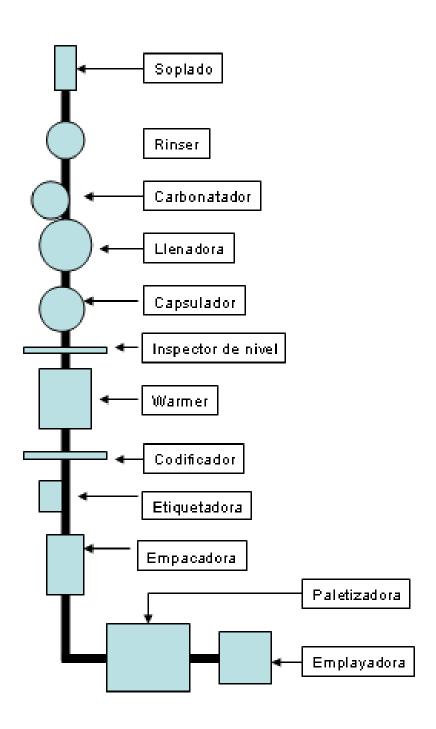
Este dispositivo electrónico sirve para marcar la botella, esta codificación es para su manejo en inventario, esta máquina, es una caja electrónica y va marcando botella por botella.

> ETIQUETADORA.

Es aquí donde se pone la etiqueta a la botella, se hace por medios de bobinas, la botella pasa por esta maquina, comienza a girar y se va enrollando la etiqueta, cuando acaba un ciclo se corta por medio de calor y se pega la etiqueta a la botella. Este tipo de etiquetado es conocido como "Etiquetado de bobina".

> EMPACADORA.

La función de esta máquina es acomodar las botellas para formar los paquetes que se está elaborando (4, 6, 8, 9, 12, 16, 24 pack), una vez que se tienen las botellas en la posición deseada, se arma una caja en esta máquina, para que sea colocada a nuestro paquete que estamos armando.

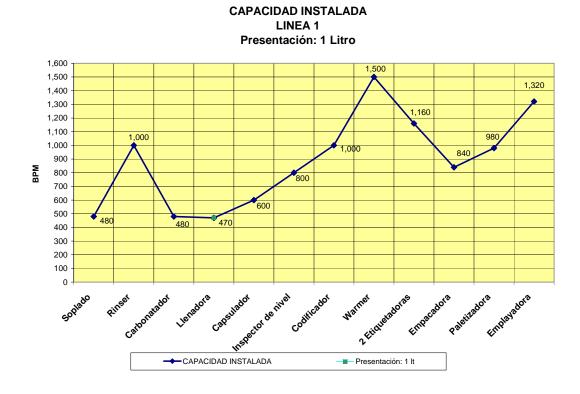

> PALETIZADORA.

Este punto del proceso de producción, es donde los packs antes armados, son acomodados por medio de un robot en las tarimas.

> EMPLAYADORA.

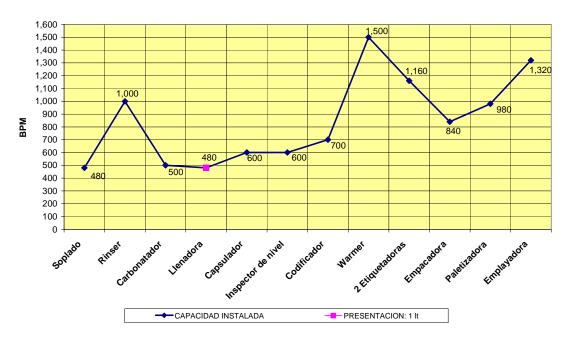
Esta es la última etapa de nuestro proceso de producción de bebida, una vez que están armadas las tarimas, se procese a forrar la tarima con un film de plástico para evitar que se caigan o desacomoden cuando se están preparando para el embalaje.

DIAGRAMA DE FLUJO PARA LA ELABORACIÓN DE REFRESCO

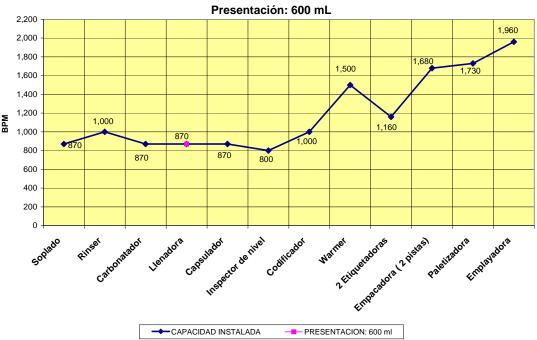


2.2. Capacidad instalada en equipos de línea. (Velocidades).

A continuación se procedió a medir la capacidad instalada de los equipos de línea, cada equipo maneja unidades de medida en botellas por minuto, la forma en que se presentan estas capacidades es grafica, una vez determinada esas velocidades, se determinará la capacidad máxima de producción para los equipos de línea.

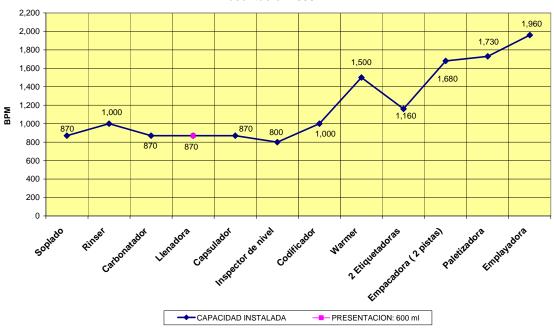

A pesar de que cada línea es capaz de producir diferentes tamaños de refrescos, consideramos el más importante, es decir aquel que tiene asignado el mayor número de horas al mes.

Se presentarán de forma gráfica las 7 líneas de producción analizadas, al final de las graficas, se obtendrá un cuadro resumen para el cálculo de la capacidad máxima de cada línea, así como una memoria de cálculo de una línea.

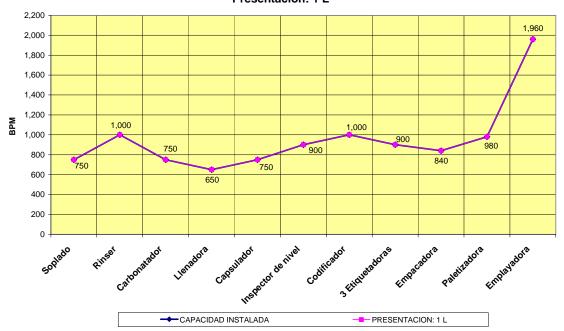


CAPACIDAD INSTALADA LINEA 2

Presentación: 1 litro

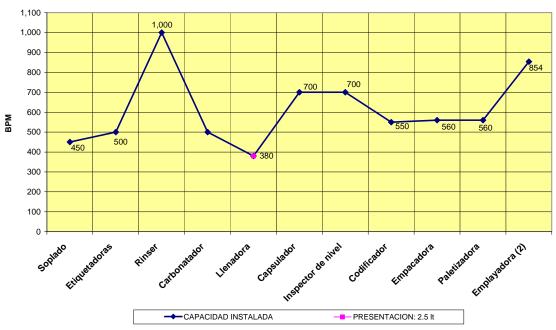


CAPACIDAD INSTALADA LINEA 3

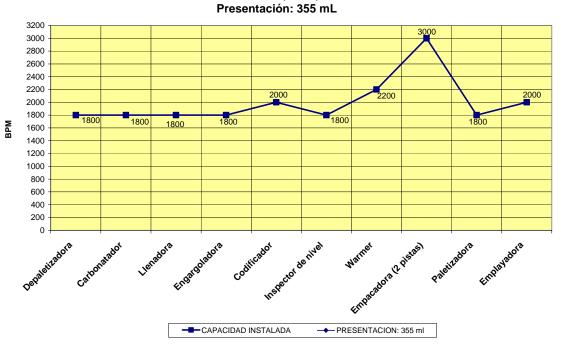


CAPACIDAD INSTALADA LINEA 4

Presentación: 600 mL



CAPACIDAD INSTALADA LINEA 5 Presentación: 1 L



CAPACIDAD INSTALADA LINEA 6

Presentación: 2.5 L

CAPACIDAD INSTALADA LINEA 7 (LATA)

El punto crítico de nuestro proceso es la llenadora, y por ser el más lento, se determina la capacidad de producción de las líneas con la velocidad de ese equipo, para la planta se tienen los siguientes resultados:

	CAPACIDAD ESTIMADA DE LAS LINEAS DE PRODUCCIÓN									
	Velo	cidad no	minal de la	as líneas a	nalizadas					
	Presentación (mL)	BPM	ВРН	C.U. / hr	C.U. / MES	C.U. / AÑO	MM C.U./AÑO			
LINEA 1	1000	470	28,200	4,967	2,532,934	30,395,210	30.4			
LINLA	2000	300	18,000	6,340	3,233,533	38,802,395	38.8			
LINEA 2	1000	480	28,800	5,072	2,586,826	31,041,916	31.0			
LINEAZ	2000	280	16,800	5,918	3,017,964	36,215,569	36.2			
LINEA 3	600	870	52,200	5,516	2,813,174	33,758,084	33.8			
LINEAG	710	870	52,200	6,527	3,328,922	39,947,066	39.9			
LINEA 4	600	870	52,200	5,516	2,813,174	33,758,084	33.8			
LINEA	500	870	52,200	4,597	2,344,311	28,131,737	28.1			
LINEA 5	1000	650	39,000	6,869	3,502,994	42,035,928	42.0			
LINEAG	2500	400	24,000	10,567	5,389,222	64,670,659	64.7			
LINEA 6	2500	380	22,800	10,039	5,119,760	61,437,126	61.4			
LINE/CO	2000	420	25,200	8,876	4,526,946	54,323,353	54.3			
LINEA 7	355	1800	108,000	6,752	3,443,713	41,324,551	41.3			
	237	1800	108,000	4,508	2,299,042	27,588,503	27.6			
EFICIENCIA	85%				CAPACID	AD TOTAL	273.8			
HORAS/MES	600				·	·				

Memoria de cálculo para la linea 1:

1.- BPH =
$$470 \text{ BPM} \times 60 \text{ minutos} = 28,800$$

28,200 BPH ×
$$\left(\frac{1000 \text{ mL}}{1000}\right)$$
 = 4,967

3.- C. U. / Mes =
$$4,967$$
 C.U. / Hr \times 600 horas/Mes \times 85% eficiencia = $2,532,934$

4.- C. U. / Año =
$$2,532,934$$
 C.U./Mes $\times 12$ meses = $30,395,210$

5.- MM de C. U. / Año =
$$\frac{30,395,210 \text{ C.U./Año}}{1,000,000} = 30.4$$

Como ya se vio anteriormente, cada línea puede trabajar como máximo 600 horas / mes.

La eficiencia se considera a un 85 %, esto es debido a que se tienen mayores tiempos de producción.

En base a los cálculos antes realizados, se llega a la conclusión de que la capacidad de producción de nuestras líneas de producción es de:

273.8 MM de Cajas Unidad al año, bajo las condiciones antes mencionadas.

Ahora bien, necesitamos conocer la capacidad instalada de servicios auxiliares y procesos para un determinado volumen, el volumen de producción que se utilizará, es el que reportó la planta para el 2008, que fue de 160 MM de C.U./Año, a partir de este volumen de producción, se calcularán los consumos de servicios auxiliares y procesos, y se realizará el balance de estos servicios, para determinar el nivel óptimo y máximo de producción de las líneas de producción, dicho esto, necesitaremos realizar una respectiva formulación referida a un flujo de bebida en las líneas de producción.

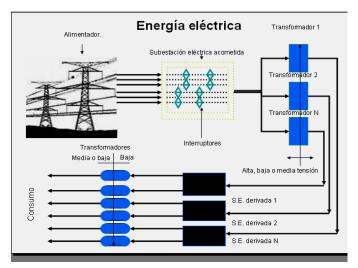
A continuación, clasificaremos y entenderemos nuestros servicios auxiliares y nuestros procesos que van ligados a las líneas de producción.

2.3. Clasificación de Servicios auxiliares y procesos.

A continuación se presenta la clasificación de los servicios auxiliares que se requieren para poder operar las líneas de producción, así como los procesos que intervienen (Puntos en los que nuestra materia prima o producto, sufre de alguna transformación).

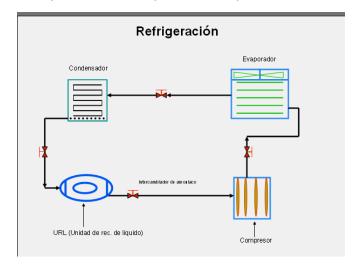
Servicios auxiliares:

- ✓ Energía eléctrica.
- ✓ Refrigeración. (Compresión y condensación)
- √ Vapor.
- ✓ Aire comprimido.
- ✓ Dióxido de carbono (CO₂).
- ✓ Soplado.

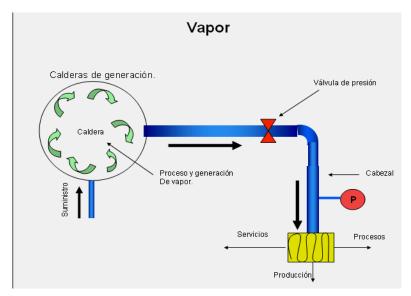

Procesos en las líneas de producción.

- ✓ Jarabe simple y clarificado (transformación de azúcar).
- ✓ Fructosa (HFCS).
- ✓ Jarabe terminado (mezcla de concentrados y jarabes).
- ✓ Agua tratada (es el agua que usamos para llenar las bebidas).
- ✓ Agua suavizada (es el agua que se usa para los equipos de línea).

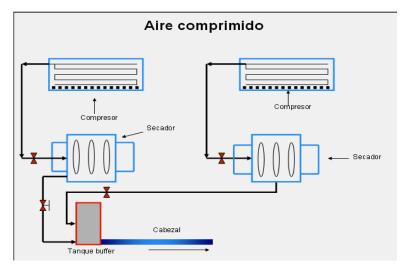
SERVICIOS AUXILIARES.


Energía eléctrica.

El servicio auxiliar con el que empezamos, es energía eléctrica, es medida en KVA/ hr, y la lectura de la capacidad máxima, la determinamos a partir de los transformadores, a continuación se muestra el diagrama de energía eléctrica.


· Refrigeración.

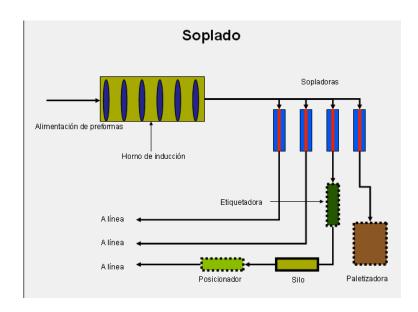
El sistema de enfriamiento consta de 4 equipos, y las unidades de medidas son las TR (compresión) y TR (Condensación), la capacidad de compresión se determina a partir del compresor – evaporador, y la condensación esta instalada en el condensador, cada planta puede tener uno o más sistemas de refrigeración, esto depende de la capacidad de producción.


Vapor.

El servicio de vapor, lo generamos por medio de calderas, es medido en Kg/hr de vapor, y está determinado nominalmente por cada caldera que exista en la planta.

• Aire comprimido.

El aire comprimido, se genera a través de un compresor- secador, y es enviado a un tanque buffer, este último es para regular la presión, el aire comprimido en las plantas se mide en CFM ó CFH, se determina la capacidad instalada a partir del compresor, se considera que no hay pérdidas en el proceso de generación de aire comprimido.

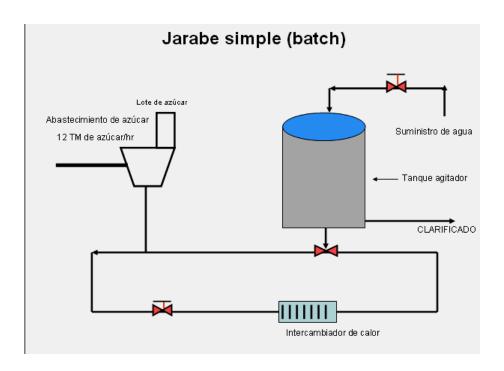

• Dióxido de carbono (CO₂).

El CO_2 , sirve para gasificar la bebida, en cada planta, existen tanques de almacenamiento de CO_2 , lo que nos interesa saber es la capacidad de almacenamiento, y poder determinar las horas de stock que tendríamos con nuestros tanques, el CO_2 , se mide en Kg.

• Soplado e inyección.

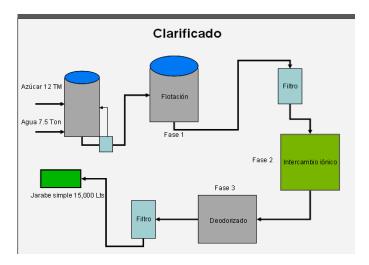
En este punto, sólo nos interesa saber cuántas botellas necesitamos para el envasado de nuestras bebidas, y no como se hace cada botella de PET (Polietilenteraftalato).

En este caso, la botella una vez que sufre del proceso de inyección y soplado, pasa directamente a las líneas de producción, es lo que se conoce como soplado en línea, es decir que cada botella que estemos llenando, es una botella más que necesita ser soplada y enviada a nuestra línea de producción.

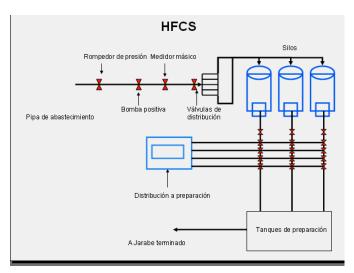


PROCESOS EN LAS LÍNEAS DE PRODUCCIÓN.

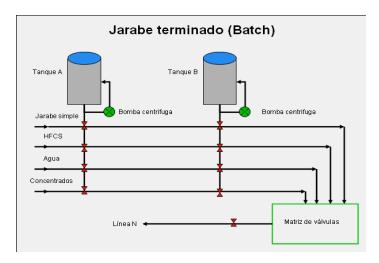
• Jarabe simple.


El siguiente proceso es la producción de Jarabe Simple por el sistema Batch, este sistema es realizado por medio de la disolución de azúcar, se requiere un suministro de azúcar a una tolva receptora, esta es enviada al tanque de agitación, es adicionado con agua, y después de un tiempo, tenemos un lote de J.S.

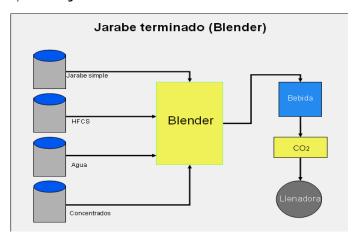
1 lote de J.S. es igual a 15,000 litros, y contiene 12 TM de azúcar y 7,500 litros de agua.


• Jarabe simple (Clarificado).

Este otro tipo de producción de Jarabe simple es el conocido como clarificado, es más sofisticado, ya que es un proceso continuo, el sistema produce un flujo de J.S. por hora, pero con las mismas características del lote (12 TM Azúcar, y 7,500 litros de agua), la ventaja de este proceso es que podemos manejar flujos más grandes de producción de J.S. por hora que mediante el sistema Batch.

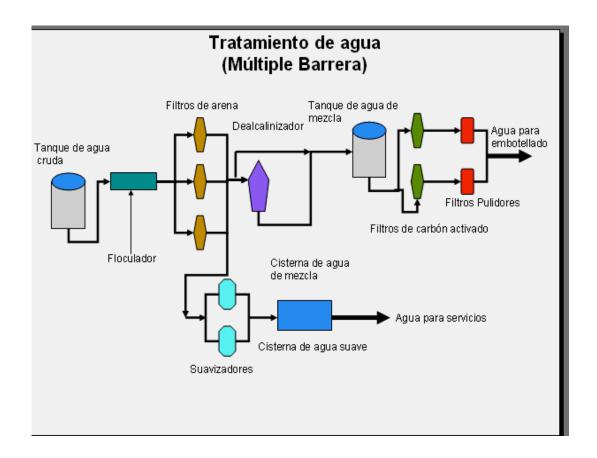

• Fructosa (HFCS).

La fructosa, es un sustituto del azúcar, la HFCS, es enviada por medio de bombas hacia nuestros tanques de preparación de bebida, es medida en lts/hr, la capacidad de transferencia de HFCS, la determinamos a partir de las bombas.


• Jarabe terminado.

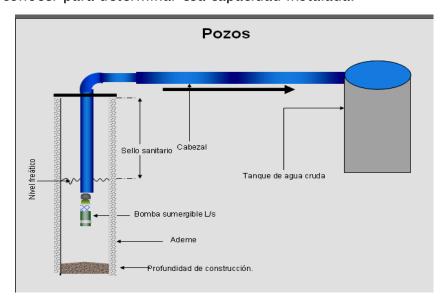
El J.T. es realizado por medio de la mezcla de los ingredientes que requiera el tipo de receta a producir, se adicionan los ingredientes que lleve la bebida, después se mezcla, y es enviado a las líneas de producción, los parámetros ya establecidos para un lote de J.T. son, 15,000 litros de jarabe simple, concentrados y agua, de lo anterior la cantidad de un lote de J.T. es de 16,500 litros.

• Jarabe terminado (Blender).


El siguiente proceso para la elaboración de jarabe terminado, es por medio de un Blender, este proceso consiste en suministrar a un tanque los ingredientes de la receta, y es mezclado y transferido en forma continua hacia nuestras líneas de producción, la capacidad instalada, es por diseño de equipo, es medida en litros / hr de J.T.

• Agua tratada y suavizada. (Múltiple barrera)

A continuación nuestra agua cruda requiere de ciertos tratamientos para poder ser utilizada, se usa el Tratamiento por Múltiple Barrera, obteniendo así agua para la elaboración de bebidas, y a su vez agua para procesos y/o servicios, esta última es conocida como agua suavizada.


Podemos conocer nuestra capacidad de producción de agua tratada y suavizada, medida en m3/hr, el agua tratada la mediremos por el flujo que puedan dar los filtros pulidores, y el agua suavizada por medio del flujo de los suavizadores.

• Pozos.

Cada pozo que esté instalado en nuestra planta contiene una Bomba sumergible, que es la que nos da la capacidad de extracción del pozo, la capacidad de la producción de agua cruda está determinada por estas bombas, sin embargo está limitada por la concesión que se tenga para la extracción de agua por parte de La comisión Nacional del Agua (CNA).

El gasto de las bombas está dado en litros / s, y este gasto es el que nos interesa conocer para determinar esa capacidad instalada.

2.4. Capacidad instalada de servicios auxiliares y procesos.

A continuación se procede a medir la capacidad instalada de servicios auxiliares y procesos que existen en la planta embotelladora, se tienen los siguientes resultados:

	ENERGIA ELECTRICA								
Subestación	Uso	Capacidad instalada (KVA)	Capacidad utilizada (KVA)	Porcentaje de Utilización					
Subestación 1	Servicios y Edificios (Envasado)	5,000	3,295	66%					
Subestación 2	Operaciones y pallets	750	105	14%					
Subestación 3	Jarabes y Clarificado	4,000	3,100	78%					
Subestación 4	Tratamientos de Agua y Planta Ecológica	1,000	881	88%					
Subestaciones terceros									
Subestación 5	Terceros	6,500	4,612	71%					
Subestación 6	Terceros	4,500	2,226	49%					
Subestación 7									
TOTAL Emb	otelladora	10,750	7,381	61%					
Total TER	CEROS	11,000	6,838	60%					
CARGA CONTR	ATADA (KVA)	20,625							

Para el levantamiento en la parte de energía eléctrica, nos interesa conocer la capacidad instalada en cada subestación y/o trasformador eléctrico, estos datos se obtienen directamente del equipo. Para la parte de energía eléctrica por terceros, vemos que tienen una instalación eléctrica, sin embargo por políticas de empresas, no podemos hacer uso de esa instalación eléctrica, sin embargo la energía eléctrica utilizada total, si impacta en nuestra concesión de energía eléctrica por parte de Luz y Fuerza del Centro o CFE.

	R	CION (Compre	sión)		
# Compresores	Tipo	Marca	Modelo	Capacidad/ Compresor (Ton.)	Utilización
Unidad de refrigeración	MYCOM	МҮСОМ	160 VLD	248	100%
Unidad de refrigeración	MYCOM	MYCOM	160	214	100%
Unidad de refrigeración	MYCOM	MYCOM	160	183	100%
Unidad de refrigeración	MYCOM	MYCOM	160 VLD	162	100%
Unidad de refrigeración	MYCOM	MYCOM	160	150	100%
Unidad de refrigeración	MYCOM	MYCOM	N200 SVD	496	100%
Unidad de refrigeración	MYCOM	MYCOM	N200 SVD	257	100%
Unidad de refrigeración	MYCOM	MYCOM	N200 SVD	220	100%
Unidad de refrigeración	MYCOM	MYCOM	N8WB	110	100%
	TOTA	2,040			

Se están midiendo las capacidades de los compresores en Toneladas Lineales, su utilización siempre es de un 100% ya que al encender un compresor nos genera las Toneladas de Refrigeración por diseño, y no pueden ser ajustadas, esta capacidad se mide directamente de los equipos instalados en la planta piloto.

	REFRIGERACION (Condensación)								
# Evaporadores- Condensadores	Tipo	Marca	Capacidad/ Condensación (Ton.)	Porcentaje de Utilización					
Unidad de refrigeración	MYCOM	MYCOM	273	100%					
Unidad de refrigeración	MYCOM	MYCOM	235	100%					
Unidad de refrigeración	MYCOM	MYCOM	200	100%					
Unidad de refrigeración	MYCOM	MYCOM	179	100%					
Unidad de refrigeración	MYCOM	MYCOM	165	100%					
Unidad de refrigeración	MYCOM	MYCOM	545	100%					
Unidad de refrigeración	MYCOM	MYCOM	283	100%					
Unidad de refrigeración	MYCOM	MYCOM	242	100%					
Unidad de refrigeración	MYCOM	MYCOM	121	100%					
TOTAL			2,243						

La segunda etapa consiste en los equipos compuestos por evaporador-condensador, estos equipos están en relación 1 a 1 con los compresores, es decir, que por cada compresor instalado debemos de tener al menos un evaporador-condensador, la capacidad de condensación también se mide en Toneladas Lineales y esta dado por el equipo.

VAPOR								
# Calderas	Marca	Capacidad/ Caldera (Kg/hr)	Capacidad instalada (Kg/hr)	Utilización				
Caldera 1	Cleaver Brooks	9390	9390	70%				
Caldera 2	Cleaver Brooks	9390	9390	70%				
	TOTAL	18,780	18,780					

El servicio auxiliar de vapor, necesitamos conocer los Kg / hr que podemos generar a partir de nuestras calderas. Se toma directamente a partir de las calderas que existan en la planta.

AIRE COMPRIMIDO									
Equipo	Marca	Modelo	CFM (compresor)	CFM	CFH				
2 Compresor de aire lubricado	Ingersoll- Rand	SSR-EP150	670	1340	80,400				
2 Compresor de aire seco	Ingersoll- Rand	Sierra-H100A	407	814	48,840				
Compresor de aire seco	ELLIOTT	110DA3	1100	1100	66,000				
Compresor de aire seco	Ingersoll- Rand	Centac C25014M3	1322	1322	79,320				
CAPACID	AD INSTAL	ADA .		3,499	247,104				

La capacidad instalada se mide en CFM, y se determinan a partir del compresor en CFM y las convertimos a CFH.

	CO ₂										
Tanques	Capacidad (Ton)	Utilización	Cap. Real	Cap. Inst.Kg/ hr	Consumo promedio mensual (Ton)	Abastecimiento (días)	3				
2	80	80%	128	2,300	470	HR/DIA DE TRABAJO	20				

Para la parte de CO₂, se toma en cuenta como primera etapa, la capacidad de almacenamiento que se tiene en la planta, después se considera el abastecimiento máximo en días en el cual se puedan llenar los tanques de nuevo, y una última, es la cantidad de horas máximas que trabaja la planta, con estos criterios se determina la capacidad instalada para CO₂ en horas que se tiene en la planta.

SOPLADO								
Línea	Equipos	Marca	Modelo	Capacidad BPH	Capacidad MM BPMES			
L1	Sopladora 1	SIDEL	16 UNI	28,800	17.3			
L2	Sopladora 2	SIDEL	24/S-1	28,800	17.3			
L3	Sopladora 3	SIDEL	18/S-2	23,400	14.0			
L3	Sopladora 4	SIDEL	24/S-1	28,800	17.3			
L4	Sopladora 5	SIDEL	24/S-1	28,800	17.3			
L4	Sopladora 6	SIDEL	18/S-2	23,400	14.0			
L5	Sopladora 7	SIDEL	16/S-1	19,200	11.5			
L5	Sopladora 8	SIDEL	14/UNI	25,200	15.1			
L6	Sopladora 9	SIDEL	20/S-2	28,000	16.8			
		234,400	140.6					

Necesitamos conocer la capacidad de fabricación de botellas, debido al cambio de escenarios en producción (mayor demanda de botellas), y determinar si es o no necesaria la ampliación de este proceso. La unidad de medida esta en BPM, y se tiene que llevar a MM BPM.

INYECCION								
Equipos Marca		# de cavidades	Capacidad BPH	Capacidad MM BPM				
Inyectora 1	HUSKY	96	30,000	54				
Inyectora 2	Inyectora 2 HUSKY 96		30,000	54				
Inyectora 3 HUSKY 144		144	26,600	48				
		TOTAL	86,600	156				

El levantamiento en la parte de inyección, es importante para poder determinar un stock, para estos casos existen factores de stock que relacionan la cantidad de preformas en stock vs la capacidad de inyección, en este caso en particular es de 3:1, en pocas palabras, por cada preforma que se está inyectando, debe de haber al menos 3 preformas en stock.

EDULCORANTES								
CLARIFICADO BATCH								
CAP. INS. TANQUE (LTS)	15,000		HR	DIA				
DIAS DE TRABAJO XMES	25	TM AZUCAR	8	168				
HR DE TRABAJO DIA	20	LTS DE J.S.	10,500	210,000				
LOTES X DIA	14							
CLARIFICADO CONTINUO								
FLUJO DE CLARIFICADO (LTS/HR)	15,000	TM AZUCAR	12	264				
DIAS DE TRABAJO XMES	25	LTS DE J.S.	15,000	330,000				
HR DE TRABAJO DIA	22							
	Tanque (Lts)	Cap. Inst. (Ton/día)	Cap. Inst. (Ton/hr)					
Capacidad de clarificado de az (Batch)	15,000	168	8					
Capacidad de clarificado de az (Continuo)	15,000	264	12					
CAPACIDAD INSTALADA		30,000	432	20				

Para determinar la capacidad instalada en términos de TM de azúcar, se requiere conocer el número de lotes que podemos fabricar al día, y a partir de esos lotes, conoceremos la capacidad de manejo de azúcar/hr,

	HFCS							
	CAP. SILO		BOMBAS DE DESCARGA					
EQUIPO	LTS	Cantidad	CAP. Lts/min	CAP. Kg/min	CAP. Ton/hr			
SILO 1	180,000	1	375	293	18			
SILO 2	180,000	1	375	293	18			
SILO 3	105,000	1	375	293	18			
SILO 4	105,000							
SILO 5	180,000							
SILO 6	180,000							
TOTAL	930,000	TOTAL	1,125	878	53			
FACTO	FACTOR DE CONVERSION DE BASE HUMEDA A BASE SECA 0.78							

Es necesario medir la capacidad de descarga de HFCS a las líneas de producción, en base a lo anterior, se pudo determinar las Toneladas de HFCS que podemos enviar a líneas.

Se tiene un nivel de stock de 14 horas, considerando que toda nuestra producción es fabricada con HFCS.

JARABE TERMINDADO						
JARABE TERMINADO BATCH						
CAPACIDAD DE 1	TANQUES EN	PALNTA				
LTS	16,500	33,000				
FUJOS DE TANQUES DE 16,500						
	HR	DIA				
TM AZUCAR	5	72				
LTS DE J.T.	9,188	99,000				
FLUJOS DE TANQUES DE 33,000						
TM AZUCAR	6	96				
LTS DE J.T.	10,765	132,000				
JARABE TERN	MINADO CON	TINUO				
CAPACIDAD DE 1	TANQUES EN	PLANTA				
LTS/HR		30,000				
TANQUES D	E 35,000 LTS	/HR				
TM AZUCAR	22	436				
LTS DE J.T.	34,000	600,000				
Capacidad de fabricación de jarabe terminado						
	Lts/día Lts/hr					

861,000

53,953

Para el cálculo de la capacidad instalada en Jarabe Terminado, un lote de jarabe terminado es equivalente a tener un lote de jarabe simple, más concentrados y agua, dando un total de 16,500 litros de jarabe terminado, la capacidad se mide instantáneamente, es decir, que nos interesa conocer las capacidades de los tanques medidas en litros, se determina el flujo máximo que pueden dar en litros / hr simultáneamente, y para la parte de fabricación en continuo, el flujo máximo de fabricación de J.T. esta dado por diseño de la máquina.

		AGUA CRUDA	
	Cap. Prod.	Cap. Prod	Cap. Prod
	Lts/seg.	m3/hr.	Lts/hr.
Pozo 1	20	72	72,000
Pozo 2	37	133	133,200
Pozo 3	25	90	90,000
Pozo 4	50	180	180,000
Total	132	475	475,200

CONCESION POR CNA						
M³/AÑO concedidos para extracción						
POZO 1 POZO 2 POZO 3 POZO 4						
	3,100,000.00					
	TOTAL 414 M3/hr					
TOTAL 413,996 Lts/hr						

La capacidad instalada en la extracción de agua cruda, se determina a partir de las bombas sumergibles, cabe mencionar que existe una concesión por parte de CNA, y no podemos extraer más de lo que tenemos como concesión.

TRATAMIENTO DE AGUA						
Tipo de agua	Capacidad instalada m³/hr.	Capacidad utilizada m³/hr.				
Producción de agua cruda	475	173				
Producción de agua permeada 1	24	24				
Producción de agua permeada 2	40	40				
Producción de agua suavizada 1	54	54				
Producción de agua suavizada 2	36					
Producción de agua mezcla	110	305				
Producción de agua tratada 1	156	153				
Producción de agua tratada 2	250	152				
Producción de agua tratada 3	65					
Agua residual	1800m3/día					

	m3 /hr	Lts/hr
TOTAL AGUA CRUDA	475	475,000
TOTAL AGUA TRATADA	471	471,000
TOTAL AGUA SUAVIZADA	90	90,000

Nuestros sistemas de tratamiento de agua nos muestran la capacidad de producción del tipo de agua requerido para el proceso, esta capacidad está dada en m3 / hr, solamente se hace la conversión de unidades para llevar este flujo a lts/hr.

Los resultados de nuestra capacidad instalada de servicios auxiliares y procesos, se presentan a continuación.

CAPACIDAD INSTALADA

SERVICIOS	AUXILIARES	
ENERGIA ELECTRICA	KVA / HR	10,750
INYECCION Y SOPLADO	KVA / HR	11,000
REFRIGERACION	TR (COMPRESIÓN)	2,040
REFRIGERACION	TR (CONDENSACIÓN)	2,243
VAPOR	KG VAPOR / HR	18,780
AIRE COMPRIMIDO	FT3/HR	247,104
CO2	KG CO2 / HR	2,300
SOPLADO	MM BOT / MES	140.6
PROC	ESOS	
J.S. / CLARIFICADO	TM AZUCAR / HR	20
HFCS	TON B.S. HFCS/HR	53
JARABE TERMINADO	LTS/HR	53,953
AGUA TOTAL	LTS/HR	475,200
AGUA TRATADA	LTS AGUA / HR	474 000
(BEBIDA)	INSTANTANEA	471,000
AGUA SUAVIZADA	LTS AGUA/HR	90,000
EXCEDENTE DE AGUA	LTS AGUA/HR	NA*
POZOS Y/O RED	LTS AGUA / SEG	132
MUNICIPAL	LTS AGUA / HR	475,200

^{*} NA: No aplica a ese servicio, ya que no hay forma de determinar una capacidad instalada.

CAPÍTULO 3

Resultados y

análisis de la

situación actual

3.1. Balance de servicios auxiliares y procesos en función de la producción actual.

Como primera etapa de este trabajo de investigación, necesitamos formular los servicios auxiliares y procesos, todos estos deberán de estar en función al flujo de bebida que se tiene por línea, esta parte de la investigación, fue la que realicé y formulé para la planta embotelladora, dicha investigación tubo bastantes complicaciones, ya que muchos datos se tuvieron que calcular directamente con el o los proveedores de los equipos, por lo que en unos casos los consumos son estimados, y se consideraron por la experiencia de algunas personas en la planta.

Cada formula, la realicé y la validé con personal de planta, así como también con el consumo real de los servicios auxiliares y procesos, estas fórmulas tienen una confiabilidad del 95 % en comparación del consumo real que se tiene en la planta.

Para esta investigación, se necesitó del apoyo de diferentes áreas, como son, el área de planeación de infraestructura, el área de procesos, y el área de operaciones, esta investigación me llevó 175 horas aproximadamente, (35 horas a la semana y 5 semanas), dicho lo anterior, puedo concluir que esta formulación de servicios auxiliares y procesos, es la que se aplica a cualquier planta embotelladora, lo cual pretende estandarizar nuestros consumos de servicios y procesos, así como tener bases de datos que nos permitan comparar diferentes líneas de producción para estimar futuros consumos.

Formulación para los servicios auxiliares.

1.- Millones de cajas unidad / año.

$$MM de C.U./Año = \left(\frac{BPM \times 60 \, Min \times \, Hrs/Mes \times Eficiencia \times \left(\frac{Presentación}{5.678 L} \right)}{1,000,000} \right) \times 12 Meses$$

* Presentación: se refiere al tamaño de botella que está produciendo la línea.

2.- Millones de litros / mes.

MM de Lts / Mes =
$$\frac{MMdeC.U./A\tilde{n}o \times 5.678L}{12Meses}$$

* 1 C.U. es equivalente a 5.678 litros de bebida

3.- Refrigeración.

$$TR (Compresión) = \left(\frac{MM \text{ de Lts/Mes}}{Hrs/Mes} \times 1,000,000\right) \times \left(\frac{CP \times Densidad \times DeltaT(^{\circ}C)}{FactorKcal}\right) *$$

- * CP es la capacidad calorífica de la bebida (0.95).
- * Densidad: es la densidad de la bebida final. (1.036).
- * Delta T: es la diferencia de la temperatura ambiente (20°C) y la temperatura de llenado (6°C).
- * Factor Kcal: para el caso de refrescos es de 3,024.

* La condensación es un 15% más que la compresión.

4.- Relación de jarabe terminado y agua.

* Los factores son: 4.1 para la elaboración de refrescos de sabor, y 5.4 para los refrescos de cola.

5.- Botellas al mes.

MM de Botellas/Mes =
$$\frac{BPH \times Eficiencia \times Hrs/Mes}{1,000,000}$$

6.- Vapor.

$$Kg de Vapor/Hr = \left(\frac{Flujo de bebida \times 5 Ton}{25,000 L}\right) \times 1,000^{2}$$

* Para un flujo de 25,000 litros, se tiene un consumo de 5 Ton de vapor.

7.- CO₂.

$$Kg de CO2/Hr = \left(\frac{Flujo de bebida \times 8.1 grs}{1,000 grs}\right)$$

* Por cada litro de bebida, necesitamos 8.1 grs de ${\rm CO_2}$

8.- Aire comprimido.

Aire Comprimido(CFH) =
$$\left(\frac{\text{Flujo de bebida} \times 250 \text{ m}^3}{18,000 \text{ L}}\right) \times 35.3 \text{ Ft}^3$$

* Para 18,000 litros de bebida se requieren de 250 m³ de aire comprimido y cada m3 son 35.3 ft³ de aire comprimido.

9.- Energía eléctrica.

$$KVA/Hr = \left(\frac{Flujo de bebida \times 500 KVA}{18,000 L}\right) *$$

* Para un flujo de 18,000 litros, necesitamos de 500 KVA

Formulación para procesos.

Recetas:

La producción de cola se realiza con un 50% de azúcar y un 50% de HFCS, mientras que para producir refrescos de sabores, se utiliza 100% HFCS.

1.- Consumo de azúcar.

TM Azúcar/Hr(cola) =
$$\frac{\text{litros de J.T.} \times 5.6 \text{ TM Azúcar}}{16,500 \text{ litros de J.T.}}$$

*Para un lote de JT de 16,500 litros, se requieren de 5.6 TM de azúcar

2.- Consumo de fructosa.

T. Base Seca de HFCS (cola) =
$$\frac{\text{litros de J.T.} \times 5.6 \text{ T. Base Seca de HFCS}}{16,500 \text{ litros de J.T.}}$$

*Para un lote de JT de 16,500 litros, se requieren de 5.6 T. Base Seca de HFCS.

T. Base Seca de HFCS (sabores) =
$$\frac{\text{litros de J.T.} \times 12 \text{ T. Base Seca de HFCS}}{16,500 \text{ litros de J.T.}}$$

3.- Excedente de agua.

*La planta registra un excedente de agua de un 33 %, en relación al agua que va adentro de la botella.

4.- Consumo de agua.

5.- Agua suavizada.

*El consumo de agua suavizada, es de un 10% del agua que se ocupa en la bebida.

^{*}Para un lote de JT de 16,500 litros, se requieren de 5.6 T. Base Seca de HFCS.

Bajo los parámetros que operan las líneas de producción en la planta piloto, se determinará un volumen de producción mensual y anual.

Una vez calculado ese volumen, se realizará el balance de servicios auxiliares y procesos para alcanzar ese volumen de producción, y determinar la utilización de servicios y procesos.

Las condiciones de operación son las siguientes:

Para determinar el flujo de agua se tiene para la línea 1:

- 1. Flujo de agua (Lts/hr)= $1000 \,\mathrm{mL} \times 450 \,\mathrm{BPM} \times 60 \,\mathrm{min} \times 70\%$
- 2. Flujo de agua (Lts/hr)=18,900

CONDICIONES DE OPERACIÓN								
# De línea	SKU	Presentación ml	ВРМ	Eficiencia	Producción Hrs/mes	Flujo Lts/hr		
Línea 1	COLA	1000	450	70%	504	18,900		
Línea 2	COLA	1000	450	69%	480	18,630		
Línea 3	COLA	600	800	69%	504	19,872		
Línea 4	SABORES	600	750	69%	473	18,630		
Línea 5	SABORES	1000	650	71%	498	27,690		
Línea 6	SABORES	2500	330	61%	405	30,195		
Línea 7	COLA	355	1700	72%	474	26,071		

Se calculará el volumen de producción a partir de las condiciones actuales de operación.

Para la línea 1.

MM de C.U. / Año =
$$\frac{450 \text{ BPM} \times 60 \text{ MIN} \times 504 \text{ HRS/MES} \times 70\% \times \left(\frac{1000 \text{mL}}{5678 \text{ mL}}\right)}{1,000,000} \times 12 \text{Meses}$$

MM de C.U. / \tilde{A} no = 20.1

$$MM de Lts / Mes = \frac{20.1 MM de C.U. / Año \times 5.678L}{12 Meses}$$

MM de Lts / Mes = 9.5

Flujo Lts / Hr =
$$\frac{9.5 \text{ MM de Lts / Mes} \times 1,000,000}{504 \text{ Hrs / Mes}}$$

Flujo Lts / Hr = 18,900

Metros³ de agua / mes =
$$\frac{Agua \text{ total } (20,482 \text{ L}) + Agua \text{ suavizada } (1,540 \text{ L}) \times 504 \text{ horas/mes}}{1,000}$$
Metros³ de agua / mes = 11,099

➤ Metros³ de agua / año = 11,099 metros³ de agua / mes × 12 meses Metros³ de agua / año = 133,189

El siguiente cuadro muestra el volumen de producción que se tiene en la planta, vemos como es un volumen muy cercano al volumen que se registró para este año (160 MM de C.U. / Año).

	VOLUMEN DE PRODUCCIÓN							
# De línea	MM de CU/Año	MM L/Mes	M3 de agua/mes	m3 de agua/año				
Línea 1	20.1	9.5	11,099	133,189				
Línea 2	18.9	8.9	10,420	125,035				
Línea 3	21.2	10.0	11,670	140,039				
Línea 4	18.6	8.8	9,528	114,332				
Línea 5	29.1	13.8	14,910	178,915				
Línea 6	25.8	12.2	13,222	158,666				
Línea 7	26.1	12.4	14,399	172,789				
TOTAL	159.9	75.7	85,247	1,022,965				

En base al volumen de producción de este año que es de 160 MM de C.U. y mediante la formulación de servicios auxiliares y procesos, se presenta el siguiente balance.

BALANCE PARA SERVICIOS AUXILIARES.

En base a la formulación que estoy proponiendo para los servicios auxiliares y procesos, realizaré el siguiente balance para determinar el consumo de los servicios auxiliares y posteriormente de los procesos.

Cálculos para la línea 1:

Compresión.

TR (Compresión).=
$$\left[\left(\frac{9.5 \text{ MM de L mes}}{504 \text{ Hrs/mes.}} \times \frac{1,000,000}{-} \right) \times \frac{0.95 \times 1.036 \times 14^{\circ} C}{3,024} \right] \div 70\%$$

Condensación.

Flujo de bebida (Litros / hora).

Flujo de bebida. =
$$\frac{9.5 \text{ MM de L mes} \times 1,000,000}{504 \text{ Horas / mes}}$$

• Litros de Jarabe Terminado.

L de JT =
$$\frac{18,900 \text{ Litros / hora}}{5.4}$$
L de JT = 3,500

• L de agua (Bebida)

L de agua =
$$18,900 L$$
 bebida - $3,500 L$ de JT

L de agua =
$$15,400$$
 Litros

• MM de botellas/mes

MM de Botellas/mes = $(450 \text{ BPM} \times 60 \text{ min} \times 504 \text{ horas/mes} \times 70\%) \div 1,000,000$

• Kg de vapor/hr

$$Kg \text{ de Vapor/hora} = \frac{\left(\left(\frac{9.5 \text{ MM de L} \times 1,000,000}{504 \text{ Horas/mes}}\right) \times 0.5\right)}{25.000} \times 1,000$$

$$Kg de Vapor/hora = 378$$

• Aire comprimido Ft³/hr.

CFH =
$$\left(\frac{18,900 \text{ L de bebida} \times 250}{18,000}\right) \times 35.3$$

$$CFH = 9,266$$

• Kg de CO2/hr.

Kg CO2 =
$$\left(\frac{(18,900 \text{ L de bebida} \times 8.1)}{1,000}\right)$$

$$Kg CO2 / Hora = 153$$

KVA/hr

$$KVA/hr = \left(\frac{(18,900 \text{ L de bebida} \times 500)}{18,000}\right)$$

$$KVA/hr = 525$$

Se realizan los cálculos para cada una de las líneas de producción y se presentan los siguientes resultados.

	SERVICIOS AUXILIARES.								
# De línea	TR/HR (R Compre- sión	efrigeración) Condensa- ción	L de agua (Bebida)	L de JT	MM de botellas /mes	Kg de vapor/ hr	Aire com. Ft3/hr	Kg de CO2/ hr	KVA/ hr
Línea 1	123	141	15,400	3,500	9.5	378	9,266	153	525
Línea 2	123	141	15,180	3,450	8.9	373	9,134	151	518
Línea 3	131	151	16,192	3,680	16.7	397	9,743	161	552
Línea 4	123	141	14,086	4,544	14.7	373	9,134	151	518
Línea 5	178	204	20,936	6,754	13.8	554	13,576	224	769
Línea 6	226	259	22,830	7,365	4.9	604	14,804	245	839
Línea 7	165	190	21,243	4,828	34.8	521	12,782	211	724
TOTAL	1,069	1,229	125,868	34,120	103.3	3,200	78,439	1,296	4,444

Balance para los procesos.

Cálculos para la línea 1:

• TM de Azúcar.

TM azúcar/hr =
$$\left(\frac{\left(3,500 \text{ L de JT} \times 5.6\right)}{16,500}\right)$$

TMazúcar/hr=1.2

• Toneladas en Base Seca de HFCS (Fructosa).

T. B. S. HFCS / hr =
$$\left(\frac{(3,500 \text{ L de JT} \times 5.6)}{16,500}\right)$$

$$T.B.S.HFCS/hr = 1.2$$

• Agua total.

Excedente =
$$15,400 \text{ L}$$
 de agua $\times 33\% = 5,082$

Agua total = 15,400 L de agua + 5,082 litros

Agua total =
$$20,482$$
 litros de agua

• Agua suavizada

Agua suavizada =
$$15,400$$
 L de agua $\times 10\%$

Agua suavizada = 1,540 L de agua suavizada

Se realizan los cálculos para cada una de las líneas de producción y se presentan los siguientes resultados.

	PROCESOS							
# Do língo		eparación de be 50%Azúcar (ref		Agua	Agua suavizada			
# De línea	Lts de JT	TM de azúcar	T B.S. HFCS	Excedente	Total	10%		
Línea 1	3,500	1.2	1.2	5,082	20,482	1,540		
Línea 2	3,450	1.2	1.2	5,009	20,189	1,518		
Línea 3	3,680	1.2	1.2	5,343	21,535	1,619		
	Preparación de bebida 100%HFCS (Sabores)			Agua total		Agua suavizada		
	Lts de JT	TM de azúcar	T B.S. HFCS	Excedente	Total	10%		
Línea 4	4,544	0.0	3.3	4,648	18,735	1,409		
Línea 5	6,754	0.0	4.9	6,909	27,845	2,094		
Línea 6	7,365	0.0	5.4	7,534	30,364	2,283		
	Preparación de bebida 50%HFCS/50%Azúcar (refresco de cola)			Agua	total	Agua suavizada		
	Lts de JT	TM de azúcar	T B.S. HFCS	Excedente	Total	10%		
Línea 7	4,828	1.6	1.6	7,010	28,253	2,124		
TOTAL	34,120	5.2	18.8	41,536	167,404	12,587		

Análisis de consumo de servicios auxiliares y procesos vs capacidad instalada.

		DEMANDA TOTAL	CAPACIDAD INSTALADA	DIFERENCIAL	MARGEN
SERVICIOS	AUXILIARES				
ENERGIA ELECTRICA	KVA / HR	6,964	10,750	3,786	35%
INYECCION Y SOPLADO	KVA / HR	6,838	11,000	4,162	38%
REFRIGERACION	TR (COMPRESIÓN)	1,069	2,040	971	48%
REFRIGERACION	TR (CONDENSACIÓN)	1,229	2,243	1,014	45%
VAPOR	KG VAPOR / HR	3,200	18,780	15,580	83%
AIRE COMPRIMIDO	FT3/HR	78,439	247,104	168,665	68%
CO2	KG CO2 / HR	1,296	2,300	1,004	43%
SOPLADO	MM BOT / MES	103.3	140.6	37.3	43%
PRO	CESOS				
J.S. / CLARIFICADO	TM AZUCAR / HR	5.2	20	15	74%
HFCS	TON B.S. HFCS/HR	18.8	53	34	64%
JARABE TERMINADO	LTS/HR	34,120	53,953	19,833	37%
AGUA TOTAL	LTS/HR	179,991	475,200	295,009	62%
AGUA TRATADA (BEBIDA)	LTS AGUA / HR INSTANTANEA	125,868	471,000	345,132	73%
AGUA SUAVIZADA	LTS AGUA/HR	12,587	90,000	77,413	86%
EXCEDENTE DE AGUA	LTS AGUA/HR	41,536	NA	NA	NA
POZOS Y/O RED	LTS AGUA / SEG	50	132	82	62%
MUNICIPAL	LTS AGUA / HR	179,991	475,200	295,009	62%

El balance presentado en el cuadro anterior, es el que se realiza bajo las condiciones actuales de operación, como se puede observar, no se tiene ningún problema en cuanto a capacidad instalada para la producción de 160 MM de C.U. / Año.

Además se puede ver en los resultados, que tenemos una utilización bastante considerable de nuestros servicios auxiliares y procesos, cabe mencionar que la capacidad instalada de servicios auxiliares y procesos, necesitamos tomar en cuenta que en ciertos momentos de la producción, ciertos equipos se apagan para entrar en retrolavados, o simplemente se tienen instalados para prever que si fallase alguno de ellos, la línea de producción no pare.

3.2. Volumen de producción máximo.

Como ya se vio anteriormente, la capacidad de producción de la planta embotelladora es de 273.8 MM de Cajas Unidad al año, para los equipos de línea, ahora se necesita conocer cual es nuestra capacidad instalada de los equipos de línea en función de los servicios auxiliares y procesos, con una máxima utilización de estos últimos, para eso se realiza otro balance para encontrar ese punto, para realizar el siguiente balance, se considera que las líneas trabajarán a la velocidad nominal, y se incrementarán 60 horas/mes para cada línea excepto la línea 6, esa línea se incrementará 85 horas, esto es con el criterio de eliminar los tiempos muertos, ya que como una propuesta, cada línea realizará un solo tamaño de botella, y al realizar un solo tamaño de botella y de un solo sabor, eliminaremos tiempos de limpieza, así como tiempos de preparación de la línea, tiempos de espera, etc. También se propone que la línea 1 deje de realizar 1 litro para que realice 2 litros, y la línea 5 realice 2.5 litros, ya que estos tamaños de botella son los que más se consumen como se vio al inicio de este trabajo de investigación.

Bajo las siguientes condiciones de operación se planea la producción para conocer los flujos por hora para cada servicio auxiliar y proceso.

1. Flujo de la línea 1.

Flujo (Lts/hr) =
$$\frac{14.3 \text{ MM de Litros/mes} \times 1,000,000}{569 \text{ hr/mes}}$$
$$70\% \text{ eficiencia}$$

Flujo (Lts/hr) =
$$36,000$$

Se presentan los flujos para cada una de las líneas.

	CONDICIONES DE OPERACIÓN											
# De línea	SKU	Presentación ml	ВРМ	Eficiencia	Producción Hrs/mes	Flujo Lts/hr						
Línea 1	COLA	2000	300	70%	569	36,000						
Línea 2	COLA	1000	480	69%	545	28,800						
Línea 3	COLA	600	870	69%	569	31,320						
Línea 4	SABORES	600	870	69%	538	31,320						
Línea 5	SABORES	2500	400	71%	563	60,000						
Línea 6	SABORES	2500	380	61%	490	57,000						
Línea 7	COLA	355	1600	72%	539	34,080						

A partir de estos flujos calculamos los consumos de servicios auxiliares y procesos, llegamos a los siguientes resultados.

BALANCE PARA SERVICIOS AUXILIARES.

Para la línea 1:

Memoria de cálculo para la línea 1:

• Compresión.

TR (Compresión).=
$$\left[\left(\frac{14.3 \,\text{MM de L mes}}{569 \,\text{Hrs/mes.}} \, X \, \frac{1,000,000}{-} \right) X \, \frac{0.95 * 1.036 * 14^{\circ} C}{3,024} \right] \div 70\%$$

• Condensación.

• Flujo de bebida (Litros / hora).

Flujo de bebida. =
$$\frac{14.3 \text{ MM de L mes} \times 1,000,000}{569 \text{ Horas / mes}}$$
$$70\% \text{ eficiencia}$$

Flujo=36,000litros/hora

Litros de Jarabe Terminado.

L de JT =
$$\frac{36,000 \text{ Litros / hora}}{5.4}$$
L de JT = 6,667

• L de agua (Bebida)

L de agua =
$$36,000 L$$
 bebida - $6,667 L$ de JT

L de agua =
$$29,333$$
 Litros

MM de botellas/mes

MM de Botellas/mes = $(300 \text{ BPM} \times 60 \text{ min} \times 569 \text{ horas/mes} \times 70\%) \div 1,000,000$

MM de Botellas/mes
$$= 7.2$$

Kg de vapor/hr

Kg de Vapor/hora =
$$\frac{\left(\left(\frac{(14.3 \text{ MM de L} \times 1,000,000)}{569 \text{ Horas/mes}} \right) \times 0.5 \right)}{25,000} \times 1,000$$

$$Kg de Vapor/hora = 504$$

• Aire comprimido (CFH).

CFH =
$$\left(\frac{36,000 \text{ L de bebida} \times 250}{18,000}\right) \times 35.3$$

$$CFH = 17.650$$

• Kg. de CO2/hr.

Kg CO2 =
$$\left(\frac{(36,000 \text{ L de bebida} \times 8.1)}{1,000}\right)$$

$$Kg CO2 / Hora = 292$$

• Energía eléctrica (KVA/hr).

$$KVA/hr = \left(\frac{(36,000 \text{ L de bebida} \times 500)}{18,000}\right)$$

$$KVA/hr = 1000$$

Después de calcular los servicios auxiliares para cada línea se llegaron a los siguientes resultados.

	SERVICIOS AUXILIARES.											
# De	TR/HR (Refrigeración)		(Refrigeración) L de L.		MM de botella	Kg de vapor/	Aire com.	Kg de CO2/	KVA/hr			
línea	Compre- sión	Condensa- ción	agua (Bebida)	L de 31	s/mes	hr	Ft3/hr	hr	IX V A/III			
Línea 1	164	189	29,333	6,667	7.2	504	17,650	292	1000			
Línea 2	131	151	23,467	5,333	10.8	397	14,120	233	800			
Línea 3	143	164	25,520	5,800	20.5	432	15,356	254	870			
Línea 4	143	164	17,980	5,800	19.4	432	15,356	254	870			
Línea 5	273	314	34,444	11,111	9.6	852	29,417	486	1667			
Línea 6	260	299	32,722	10,556	6.8	695	27,946	462	1583			
Línea 7	155	179	27,769	6,311	37.3	491	16,709	276	947			
TOTAL	1,269	1,459	191,236	51,578	111.5	3,804	136,552	2,256	7,737			

BALANCE PARA PROCESOS.

Para la línea 1 se tiene:

TM de Azúcar.

TM azúcar/hr =
$$\left(\frac{\left(6,667 \text{ L de JT} \times 5.6\right)}{16,500}\right)$$

• Toneladas en Base Seca de HFCS (Fructosa).

T. B. S. HFCS / hr =
$$\left(\frac{(6,667 \text{ L de JT} \times 5.6)}{16,500}\right)$$

$$T.B.S.HFCS/hr = 2.3$$

Agua total.

Excedente =
$$29,333 \text{ L}$$
 de agua $\times 33\% = 9,680$

Agua total =
$$29,333$$
 L de agua + $9,680$ litros

• Agua suavizada

Agua suavizada =
$$29,333 L de agua \times 10\%$$

Se realizan los cálculos para cada una de las líneas de producción y se presentan los siguientes resultados.

	PROCESOS										
# De línea		eparación de be 50%Azúcar (refi		Agua	total	Agua suavizada					
# De linea	Lts de JT	TM de azúcar	T B.S. HFCS	Excedente	total	10%					
Línea 1	6,667	2.3	2.3	9,680	39,013	2,933					
Línea 2	5,333	1.8	1.8	7,744	31,211	2,347					
Línea 3	5,800	2.0	2.0	8,422	33,942	2,552					
	Preparación de bebida 100%HFCS (Sabores)			Agua	Agua total						
	Lts de JT	TM de azúcar	T B.S. HFCS	Excedente	total	10%					
Línea 4	5,800	0.0	4.2	5,933	23,913	1,798					
Línea 5	11,111	0.0	8.1	11,367	45,811	3,444					
Línea 6	10,556	0.0	7.7	10,798	43,521	3,272					
		eparación de be 50%Azúcar (refi		Agua total		Agua suavizada					
	Lts de JT	TM de azúcar	T B.S. HFCS	Excedente	total	10%					
Línea 7	6,311	2.1	2.1	9,164	36,933	2,777					
TOTAL	51,578	8.2	28.2	63,108	254,343	19,124					

A continuación se presenta una hoja resumen de todos los servicios auxiliares y procesos ya calculados y se comparan con la capacidad instalada para obtener un margen de utilización.

		DEMANDA TOTAL	CAPACIDAD INSTALADA	DIFERENCIAL	MARGEN
SERVICIOS	AUXILIARES				
ENERGIA ELECTRICA	KVA / HR	7,737	10,750	3,013	28%
INYECCION Y SOPLADO	KVA / HR	6,838	11,000	4,162	38%
REFRIGERACION	TR (COMPRESIÓN)	1,269	2,040	771	38%
KEI KIGEKAGION	TR (CONDENSACIÓN)	1,459	2,243	784	35%
VAPOR	KG VAPOR / HR	3,804	18,780	14,976	80%
AIRE COMPRIMIDO	FT3/HR	136,552	247,104	110,552	45%
CO2	KG CO2 / HR	2,256	2,300	44	2%
SOPLADO	MM BOT / MES	111.5	180	68	38%
PRO	CESOS				
J.S. / CLARIFICADO	TM AZUCAR / HR	8.2	20	12	59%
HFCS	TON B.S. HFCS/HR	28.2	53	25	47%
JARABE TERMINADO	LTS/HR	51,578	53,953	2,375	4%
AGUA TOTAL	LTS/HR	273,467	475,000	201,533	42%
AGUA TRATADA (BEBIDA)	LTS AGUA / HR INSTANTANEA	191,236	471,000	279,764	59%
AGUA SUAVIZADA	LTS AGUA/HR	19,124	90,000	70,876	79%
EXCEDENTE DE AGUA	LTS AGUA/HR	63,108	NA	NA	NA
POZOS Y/O RED	LTS AGUA / SEG	76	132	56	42%
MUNICIPAL	LTS AGUA / HR	273,467	475,000	201,533	42%

Como se ve en el balance anterior, estamos teniendo una máxima utilización de Jarabe terminado y de CO₂, aunque en los otros servicios y procesos se tenga todavía más capacidad de utilización, no podemos incrementar el flujo en nuestras líneas, ya que la capacidad instalada en jarabe terminado y CO₂, es crítica y ocurrirían problemas, a partir de estos flujos se determinará la capacidad instalada en los equipos de línea, y así se obtendrá la capacidad máxima de producción para la planta.

Se calculará el volumen de producción a partir de las condiciones máximas de operación.

Para la línea 1.

$$> MM de C.U. / Año = \left(\frac{300 BPM \times 60 MIN \times 569 HRS/MES \times 70\% \times \left(\frac{2000mL}{5678 mL}\right)}{1,000,000}\right) \times 12 Meses$$

MM de C.U. / \tilde{A} no = 30.3

MM de Lts / Mes =
$$\frac{30.3MMdeC.U./A\tilde{n}o \times 5.678L}{12Meses}$$

MM de Lts / Mes = 14.3

Flujo Lts / Hr =
$$\frac{14.3 \text{ MM de Lts / Mes} \times 1,000,000}{569 \text{ Hrs / Mes}}$$
Flujo Lts / Hr = 36,000

Metros³ de agua / mes =
$$\frac{Agua \text{ total } (39,013 \text{ L}) + Agua \text{ suavizada } (2,9333 \text{ L}) \times 569 \text{ horas/mes}}{1,000}$$
Metros³ de agua / mes = 23,868

ightharpoonup Metros³ de agua / año = 23,868 metros³ de agua / mes imes 12 meses Metros³ de agua / año = 286,412 El siguiente cuadro muestra el volumen de producción que se tiene en la planta maximizando la utilización de servicios auxiliares y procesos

	VOLUMEN DE PRODUCCIÓN										
# De línea	MM de CU/Año	MM L/Mes	M3 de agua/mes	m3 de agua/año							
Línea 1	30.3	14.3	23,868	286,412							
Línea 2	22.9	10.8	18,289	219,465							
Línea 3	26.0	12.3	20,765	249,178							
Línea 4	24.6	11.6	13,833	165,993							
Línea 5	50.7	24.0	27,731	332,771							
Línea 6	36.0	17.0	22,928	275,142							
Línea 7	28.0	13.2	21,403	256,841							
TOTAL	218.4	103.3	148,817	1,785,801							

El volumen de producción máximo para la planta embotelladora es de 218.4 MM de C.U. / Año.

Esto es en función a las condiciones de operación que se vieron anteriormente, y a sus respectivos flujos de cada línea.

Como conclusión, se determinó que la máxima capacidad instalada en la planta embotelladora es de 218.4 MM de C.U. / Año, en función a la capacidad instalada de servicios auxiliares y procesos que tiene la planta. Ahora se determinará un análisis económico de la planta con los siguientes indicadores.

3.3. Análisis económico de la producción actual.

A partir de las condiciones de operación actuales, se determinarán estos indicadores económicos.

Tipo de Indicador	Indicador	Cálculo			
	Total de activos/Caja	ANOP/Caja = $\frac{\sum Activos (M.N\$)}{Cajas}$ ${\% \text{ estacional idad}}$			
	Total de activos/persona	$ANOP/PER = \frac{ANOP}{C.U.} \times \frac{C.U.}{Personal}$			
Estratégicos	Retorno sobre los activos	$ROA_{PROD.} = \frac{UAFIR}{ANOP}$			
Lstrategicos	Costo total de producción	$CTP = \frac{Costo \ Variable \ (CVP) + Costo \ Fijo \ (CFP) \ en \$}{Cajas \ Producidas}$			
	Capacidad instalada	CAP. INST. $_{C/EST.} = \frac{\sum Cap. lineas mensual}{Estacionalidad (mes pico)}$			
	Productividad de la planta	$PRODUCTIVIDAD_{PLANTA} = \frac{\sum C.U. producidas}{\# personal}$			
	Eficiencia de planta	$EFICIENCIA = \left(\frac{Hrs. Marcha Neta}{Hrs. Prod. Disp.}\right) \times 100$			
Operativos	Utilización de líneas	$U.L. = \left(\frac{\text{Horas Disponible s}}{\text{Tiempo Total}}\right) \times 100$			
	Utilización de Activos	$U.A. = \left(\frac{\text{Hrs. Marcha.Net a.}}{\text{Tiempo Total}}\right) \times 100$			

^{*} Indicadores y datos proporcionados por la embotelladora.

• Total de activos/Caja.

$$ANOP/Caja = \frac{\sum Activos (M.N\$)}{Cajas}$$

$$\frac{Cajas}{\% \ estacionalidad}$$

 Σ Activos (M.N.\$) Son la suma de todos los activos que forman parte de la franquicia, (Libros Financieros, NO FISCALES).

Cajas: Son la suma de las cajas, ya sea físicas o unidad, que fueron producidas (en caso de ser calculado en una planta),

ANOP/C.U. =
$$\frac{\$613,543,296}{159,926,000 \text{ C.U.}} = \$3.84/\text{C.U.}$$

• Total de activos/persona.

ANOP/PER=
$$\frac{ANOP}{C.U.} \times \frac{C.U.}{Personal}$$

ANOP/C.U.: Resulta del indicador descrito anteriormente en C.U.

C.U./personal: Son las cajas unidad producidas o vendidas divididas por todo el personal promedio que labora en la Planta productiva durante el periodo correspondiente. El personal que debe ser considerado dentro de este indicador es el siguiente:

- Empleados embotelladora
- Eventuales
- Contratistas

Depto.	Sindicalizado	No Sindicalizado	Total
Gerencia Gral.	0	3	3
Producción	192	22	214
Eventuales	0	0	0
Ing. y Servicios	0	87	87
Aseg. Calidad	0	35	35
Rec. Humanos	0	8	8
Operaciones	109	26	135
Administrativo	0	8	8
Soplado	0	0	0
Tratamiento de			
Agua	5	11	16
Clarificado	11	4	15
Jarabes	12	11	23
Total	329	215	544

ANOP/PER. =
$$\frac{\$3.84}{.}$$
 X $\frac{159,926,000 \text{ C.U.}}{544 \text{ empl.}}$ = $\$1,128,889/\text{empleado}$

Retorno sobre los activos

$$ROA_{PROD.} = \frac{UAFIR}{ANOP}$$

UAFIR : Utilidad antes de impuestos de la franquicia.

ANOP : Activos netos de producción. Todos los activos de manufactura que conforman a la franquicia.

ROA _{PROD.} =
$$\frac{$22,543,296 \times 12 \text{ meses}}{$613,543,296} = 0.44$$

• Costo total de producción

$$CTP = \frac{Costo\ Variable\ (CVP) + Costo\ Fijo\ (CFP)\ en\ M.N.\$}{Cajas\ Unidad\ Producidas}$$

CVP: Representa todo aquello que sea variable al volumen producido.

CVP = Mat. Primas + Mermas + Energía, etc.

CFP: Representa todo aquello que sea fijo o semifijo al volumen producido.

CFP = Mano Obra Total + Mantenimiento Total + Depreciación

El costo total de producción en septiembre es entonces:

CTP = Gasto de ventas fijos + Gasto de ventas variables + Gastos de operación

$$CTP = 3,097,481 + 17,459,120 + 20,556,602$$

$$CTP = 41,113,203$$
\$

La producción de un mes promedio es de 13.32 MM de C.U.

Por lo que el costo total por caja unidad esta dado por:

CTP/C.U. =
$$\frac{41,113,203.\$}{13,327,166 \text{ C.U.}}$$

$$CTP/C.U. = 3.08$$
\$

Capacidad instalada

CAP. INST.
$$_{C/EST.} = \frac{\sum Cap. lineas mensual}{Estacional idad (mes pico)}$$

Cap. Líneas mensual: La capacidad de cada línea se mide a 600 horas disponibles para producir a la eficiencia promedio de los últimos 3 meses, en los empaques que normalmente se le programan y convertido a Cajas Unidad.

Estacionalidad: La estacionalidad es la proporción que representa el mes pico de ventas en las ventas anuales en Cajas Unidad. Se considera una estacionalidad del 8.33% debido a que se trabajan con criterios de mes promedio, esto es 1mes/12 meses= 8.33 %

CAP. INST. _{C/EST.} =
$$\frac{13,327,166 \, C.U.}{0.083}$$

• Productividad de la planta.

$$PRODUCTIVDAD_{PLANTA} = \frac{\sum C.U.producidas}{\#personalEmbotella\mathbf{dra}}$$

$$PRODUCTIVIDAD_{PLANTA} = \frac{159,926,000C.U.}{544 Empleados}$$

• Eficiencia de planta.

$$EFICIENCIA = \left(\frac{\text{Hrs. Marcha Neta}}{\text{Hrs. Prod. Disp.}}\right) \times 100$$

$$EFICIENCIA \text{ Planta} = \left(\frac{3,338 \text{ Horas de todas las líneas}}{4,200 \text{ Hrs. Prod. Disp.}}\right) \times 100$$

EFICIENCIA Planta = 79.4%

Utilización de líneas.

U.L. =
$$\left(\frac{\text{Horas Disponible s}}{\text{Tiempo Total}}\right) \times 100$$

U.L. = $\left(\frac{4,200}{5,200}\right) \times 100$
U.L. = 80.7%

• Utilización de Activos.

U.A. =
$$\left(\frac{\text{Hrs. Marcha.Net a.}}{\text{Tiempo Total}}\right) \times 100$$

U.A. = $\left(\frac{3,338}{5,200}\right) \times 100$

$$U.A. = 64.2\%$$

3.4. Resultados.

Bajo las condiciones de operación que se levantaron en la planta piloto, obtuvimos los siguientes resultados:

RESULTADOS DEL ANÁLISIS E	CONÓMICO
Volumen de producción actual	159.9 MM de C.U./Año
Máximo volumen de producción en líneas	273.8 MM de C.U./Año
Total de activos/Caja.	\$3.84 / C.U.
Total de activos/persona.	\$1,128,884/Empleado
Determine the action	0.44.0%
Retorno sobre los activos.	0.44 Años
Conto total do producción	¢41 112 202
Costo total de producción.	\$41,113,203
Costo total de producción / C.U.	\$3.08
Oosto total de producción / e.e.	ψ3.00
Capacidad instalada optima.	218,398,863 C.U. /Año
Productividad de la planta.	293,981 C.U. / Empleado
·	
Eficiencia de planta.	79.4%
Utilización de líneas.	80.7%
Utilización de activos.	64.2%

En base a los resultados de estos indicadores, justificaremos este proyecto, incrementando los indicadores económicos con las nuevas condiciones de operación propuestas, sin necesidad de inversión en infraestructura.

CAPÍTULO 4

Recomendaciones

y propuestas

4.1. Nuevas condiciones de operación para incrementar el volumen de producción. (Sin inversión en infraestructura).

Una de las principales recomendaciones, es que cada línea sea dedicada, es decir, que realice un solo tamaño de botella y de un solo sabor, esto es en base a que una línea dedicada requiere de menos paros programados, y así tendremos eficiencias más altas, estas pueden alcanzar hasta un 90%, como justificación a esto, es que podremos incrementar las horas / mes de trabajo para cada línea,

Ahora lo que se necesita conocer, es la cantidad de MM de C.U. / Año que necesita producir la planta, en base a la demanda de refrescos que ya conocemos con anterioridad, sabiendo que se incrementa en un 3% anual, nuestro primer objetivo es alcanzar ese nivel de producción, sin embargo, la planta registra un crecimiento para el 2009 de 175 MM de C.U.

Nos interesa conocer la utilización de los servicios auxiliares y procesos para el volumen de producción de 175 MM de C.U./año, y analizar el comportamiento de estos, determinaremos las horas/mes que debe de trabajar cada línea, y se calcularan los indicadores económicos bajo estas nuevas condiciones de operación.

Se incrementaron 20 horas/mes para las líneas 2, 5 y 7, para la línea 6 y 1, se incrementaron 25 horas/mes, y para las líneas 3 y 4 se incrementaron 30 horas/mes. Además de los cambios de tamaño de refresco como se muestra a continuación.

	CONDICIONES DE OPERACIÓN (PROPUESTAS)											
# De línea	SKU	Presentación ml	ВРМ	Eficiencia	Producción Hrs/mes	Flujo Lts/hr						
Línea 1	COLA	2000	300	70%	529	36,000						
Línea 2	COLA	1000	450	69%	500	27,000						
Línea 3	COLA	600	800	69%	534	28,800						
Línea 4	SABORES	600	750	69%	503	27,000						
Línea 5	SABORES	1000	650	71%	518	39,000						
Línea 6	SABORES	2500	350	61%	430	52,500						
Línea 7	COLA	355	1700	72%	494	36,210						

A partir de estas condiciones de operación, se calcula el volumen de producción, el cual se presenta a continuación.

	VOLUMEN DE PRODUCCIÓN										
# De línea	MM de CU/Año	I MMI/Mes I		m3 de agua/año							
Línea 1	28.2	13.3	22,190	266,277							
Línea 2	19.7	9.3	15,730	188,760							
Línea 3	22.4	10.6	17,920	215,035							
Línea 4	19.8	9.4	11,149	133,788							
Línea 5	30.3	14.3	16,584	199,012							
Línea 6	29.1	13.8	18,532	222,389							
Línea 7	27.2	12.9	20,843	250,110							
TOTAL	176.7	83.6	122,948	1,475,372							

La capacidad de producción de la planta es de 176.7 MM de C.U./Año, y es aproximadamente el volumen que se está pronosticando producir para el siguiente año,

Por lo que con estas condiciones de operación, se alcanza ese objetivo.

4.2. Balance de servicios auxiliares y procesos con las nuevas condiciones de operación.

A partir de las condiciones de operación propuestas se realiza el balance de servicios auxiliares y procesos, para justificar que no se requiere de inversión en infraestructura, dicho balance se presenta a continuación.

Balance para servicios auxiliares.

	SERVICIOS AUXILIARES.											
# De línea	TR/HR (Refrigeración) Compre- Condensa-		L de agua (Bebida)	L de JT	MM de botellas /mes	Kg de vapor/ hr	Aire com. Ft3/hr	Kg de CO2/hr	KVA/hr			
	sión	ción	,									
Línea 1	164	189	29,333	6,667	6.7	504	17,650	292	1000			
Línea 2	123	141	22,000	5,000	9.3	373	13,238	219	750			
Línea 3	131	151	23,467	5,333	17.7	397	14,120	233	800			
Línea 4	123	141	15,500	5,000	15.6	373	13,238	219	750			
Línea 5	178	204	22,389	7,222	14.3	554	19,121	316	1083			
Línea 6	239	275	30,139	9,722	5.5	641	25,740	425	1458			
Línea 7	165	190	29,504	6,706	36.3	521	17,753	293	1006			
TOTAL	1,123	1,292	172,332	45,650	105.4	3,362	120,858	1,997	6,848			

Balance para Procesos.

	PROCESOS										
# De línea		eparación de be 50%Azúcar (refi		Agua	total	Agua suavizada					
# De IIIIea	Lts de JT	TM de azúcar	T B.S. HFCS	Excedente	total	10%					
Línea 1	6,667	2.3	2.3	9,680	39,013	2,933					
Línea 2	5,000	1.7	1.7	7,260	29,260	2,200					
Línea 3	5,333	1.8	1.8	7,744	31,211	2,347					
	Preparación de bebida 100%HFCS (Sabores)			Agua total		Agua suavizada					
	Lts de JT	TM de azúcar	T B.S. HFCS	Excedente	total	10%					
Línea 4	5,000	0.0	3.6	5,115	20,615	1,550					
Línea 5	7,222	0.0	5.3	7,388	29,777	2,239					
Línea 6	9,722	0.0	7.1	9,946	40,085	3,014					
		eparación de be 50%Azúcar (refi		Agua total		Agua suavizada					
	Lts de JT	TM de azúcar	T B.S. HFCS	Excedente	total	10%					
Línea 7	6,706	2.3	2.3	9,736	39,241	2,950					
TOTAL	45,650	8.0	24.0	56,870	229,202	17,233					

El siguiente cuadro resumen, es el que nos muestra el análisis de capacidad instalada vs consumo de servicios auxiliares y procesos.

		DEMANDA TOTAL	CAPACIDAD INSTALADA	DIFERENCIAL	MARGEN
SERVICIOS AUXILIARES					
ENERGIA ELECTRICA	KVA / HR	6,848	10,750	3,903	36%
INYECCION Y SOPLADO	KVA / HR	6,838	11,000	4,162	38%
REFRIGERACION	TR (COMPRESIÓN)	1,123	2,040	917	45%
	TR (CONDENSACIÓN)	1,292	2,243	951	42%
VAPOR	KG VAPOR / HR	3,362	18,780	15,418	82%
AIRE COMPRIMIDO	FT3/HR	120,858	247,104	126,246	51%
CO2	KG CO2 / HR	1,997	2,300	303	13%
SOPLADO	MM BOT / MES	105.4	180	75	41%
PROCESOS					
J.S. / CLARIFICADO	TM AZUCAR / HR	8.0	20	12	60%
HFCS	TON B.S. HFCS/HR	24.0	53	29	55%
JARABE TERMINADO	LTS/HR	45,650	53,953	8,303	15%
AGUA TOTAL	LTS/HR	246,435	475,000	228,565	48%
AGUA TRATADA (BEBIDA)	LTS AGUA / HR INSTANTANEA	172,332	471,000	298,668	63%
AGUA SUAVIZADA	LTS AGUA/HR	17,233	90,000	72,767	81%
EXCEDENTE DE AGUA	LTS AGUA/HR	56,870	NA	NA	NA
POZOS Y/O RED MUNICIPAL	LTS AGUA / SEG	68	132	64	48%
	LTS AGUA / HR	246,435	475,000	228,565	48%

Como se puede ver en este cuadro, los consumos de servicios auxiliares y procesos no afectan a nuestra capacidad instalada, es decir, no se requiere de inversión en infraestructura para alcanzar el volumen de producción pronosticado de 175 MM de C.U./Año para el siguiente año.

4.3. Análisis económico de la situación propuesta.

Con los indicadores que presentamos anteriormente, y bajo las condiciones de operación propuestas, realizamos los siguientes cálculos, cabe mencionar que los costos que se tienen, serán los mismos para el siguiente año, ya que para obtener un costo real, se tendría que acudir a la planta para el siguiente año y obtener los costos reportados por parte del área de información.

Total de activos/Caja.

$$ANOP/Caja = \frac{\sum Activos (M.N\$)}{Cajas}$$

$$\frac{Cajas}{\% \text{ estacional idad}}$$

ANOP/C.U. =
$$\frac{\$613,543,296}{176,727,751 \text{ C.U.}} = \$3.47/\text{C.U.}$$

• Total de activos/persona.

ANOP/PER. =
$$\frac{\text{ANOP}}{\text{C.U.}} \times \frac{\text{C.U.}}{\text{Personal}}$$

ANOP/PER. = $\frac{\$3.47}{.} \times \frac{176,727,751 \text{C.U.}}{544 \text{ empl.}} = \$1,127,289/\text{empleado}$

Retorno sobre los activos

$$ROA_{PROD.} = \frac{UAFIR}{ANOP}$$

ROA _{PROD.} =
$$\frac{$22,543,296 \times 12 \text{ meses}}{$613,543,296} = 0.44$$

Costo total de producción

$$CTP = \frac{Costo\ Variable\ (CVP) + Costo\ Fijo\ (CFP)\ en\ M.N.\$}{Cajas\ Unidad\ Producidas}$$

CVP = Mat. Primas + Mermas + Energía, etc.

CFP = Mano Obra Total + Mantenimiento Total + Depreciación

El costo total de producción es entonces:

CTP = Gasto de ventas fijos + Gasto de ventas variables + Gastos de operación

$$CTP = 3,097,481 + 17,459,120 + 20,556,602$$

$$CTP = 41,113,203$$
\$

La producción de un mes promedio es de 14 MM de C.U.

Por lo que el costo total por caja unidad esta dado por:

CTP/C.U. =
$$\frac{41,113,203.\$}{14,727,312 \text{ C.U.}}$$

$$CTP/C.U. = 2.79$$
\$

Capacidad instalada

CAP. INST.
$$_{C/EST.} = \frac{\sum Cap. lineas mensual}{Estacional idad (mes pico)}$$

Cap. Líneas mensual: La capacidad de cada línea se mide a 600 horas disponibles para producir a la eficiencia promedio de los últimos 3 meses, en los empaques que normalmente se le programan y convertido a Cajas Unidad.

Estacionalidad: La estacionalidad es la proporción que representa el mes pico de ventas en las ventas anuales en Cajas Unidad. Se considera una estacionalidad del 8.33% debido a que se trabajan con criterios de mes promedio, esto es 1mes/12 meses= 8.33 %

CAP. INST. _{C/EST.} =
$$\frac{14,727,312 \, C.U.}{0.083}$$

CAP.INST.
$$_{C/EST.} = 177,437,493$$
 C.U.

• Productividad de la planta.

$$PRODUCTIVDAD_{PLANTA} = \frac{\sum C.U.producidas}{\#personalEmbotella\mathbf{dra}}$$

$$PRODUCTIVDADPLANTA = \frac{176,727,751C.U.}{544 Empleados}$$

Eficiencia de planta.

$$EFICIENCIA = \left(\frac{\text{Hrs. Marcha Neta}}{\text{Hrs. Prod. Disp.}}\right) \times 100$$

$$EFICIENCIA \text{ Planta} = \left(\frac{3,508 \text{ Horas de todas las líneas}}{4,200 \text{ Hrs. Prod. Disp.}}\right) \times 100$$

EFICIENCIA Planta = 83.5%

Utilización de líneas.

U.L. =
$$\left(\frac{\text{Horas Disponible s}}{\text{Tiempo Total}}\right) \times 100$$

U.L. = $\left(\frac{4,200}{5,200}\right) \times 100$
U.L. = 80.7%

• Utilización de Activos.

U.A. =
$$\left(\frac{\text{Hrs. Marcha.Net a.}}{\text{Tiempo Total}}\right) \times 100$$

U.A. = $\left(\frac{3,508}{5,200}\right) \times 100$

$$U.A. = 67.4\%$$

A continuación se presenta el resumen de los indicadores económicos con las nuevas condiciones de operación.

RESULTADOS DEL ANÁLISIS ECONÓMICO				
INDICADORES	SITUACIÓN ACTUAL	PROPUESTA		
Volumen de producción actual	159.9 MM de C.U./Año	176.7 MM de C.U./Año		
Máximo volumen de producción en líneas	273.8 MM de C.U./Año	273.8 MM de C.U./Año		
Total de activos/Caja.	\$3.84 / C.U.	\$3.47 / C.U.		
Total de actives/serves	¢4.400.004/Emploado	\$4.407.000/Emploods		
Total de activos/persona.	\$1,128,884/Empleado	\$1,127,289/Empleado		
Retorno sobre los activos.	0.44 Años	0.44 Años		
TOTOTTO SOBIE 103 delives.	0.44 Alio3	0.44 Allo3		
Costo total de producción.	\$41,113,203	\$41,113,203		
·	. , ,	, ,		
Costo total de producción / C.U.	\$3.08	\$2.79		
Capacidad instalada optima.	218,398,863 C.U. /Año	218,398,863 C.U. /Año		
	202 204 211 /5	0040070445		
Productividad de la planta.	293,981 C.U. / Empleado	324,867 C.U. / Empleado		
Eficiencia de planta.	79.4%	83.5%		
Enciencia de planta.	7 9.4 /0	03.3 /6		
Utilización de líneas.	80.7%	80.7%		
	2011.70	5511.75		
Utilización de activos.	64.2%	67.4%		

Estos indicadores, son un aproximado del costo-beneficio si cambiamos nuestra programación en la producción de refrescos, como se puede ver el volumen de producción aumenta en comparación de las condiciones actuales, así podemos decir que se cumplió el primer objetivo de este capitulo de investigación.

Para el segundo indicador que se está analizando, la capacidad instalada en las líneas, no cambia, esto es debido a que no se tiene inversión en infraestructura como ya se había citado anteriormente.

El total de activos/caja, vemos que disminuye, esto es debido a que nuestra producción aumenta, y nuestras activos en la embotelladora se mantienen igual, por lo que esa disminución del indicador quiere decir que, económicamente es mejor producir mas C.U./Año.

Uno de los indicadores más importantes, es el costo total de producción / C.U. este indicador pasa de \$3.08/C.U. a \$2.79/C.U. con lo cual podemos justificar esta planeación de la producción propuesta.

Al considerar que no contratamos empleados, el indicador de productividad de la planta muestra claramente un incremento del 10.5% (pasan de 293,981 C.U./Empleado a 324,867 C.U./Empleado). Justificando la planeación propuesta.

La eficiencia de la planta, se incrementa de un 79.4% a 83.5% La utilización de activos, se incrementa de un 64.2% a 67.4%

CAPÍTULO 4

Recomendaciones

y propuestas

4.1. Nuevas condiciones de operación para incrementar el volumen de producción. (Sin inversión en infraestructura).

Una de las principales recomendaciones, es que cada línea sea dedicada, es decir, que realice un solo tamaño de botella y de un solo sabor, esto es en base a que una línea dedicada requiere de menos paros programados, y así tendremos eficiencias más altas, estas pueden alcanzar hasta un 90%, como justificación a esto, es que podremos incrementar las horas / mes de trabajo para cada línea,

Ahora lo que se necesita conocer, es la cantidad de MM de C.U. / Año que necesita producir la planta, en base a la demanda de refrescos que ya conocemos con anterioridad, sabiendo que se incrementa en un 3% anual, nuestro primer objetivo es alcanzar ese nivel de producción, sin embargo, la planta registra un crecimiento para el 2009 de 175 MM de C.U.

Nos interesa conocer la utilización de los servicios auxiliares y procesos para el volumen de producción de 175 MM de C.U./año, y analizar el comportamiento de estos, determinaremos las horas/mes que debe de trabajar cada línea, y se calcularan los indicadores económicos bajo estas nuevas condiciones de operación.

Se incrementaron 20 horas/mes para las líneas 2, 5 y 7, para la línea 6 y 1, se incrementaron 25 horas/mes, y para las líneas 3 y 4 se incrementaron 30 horas/mes. Además de los cambios de tamaño de refresco como se muestra a continuación.

CONDICIONES DE OPERACIÓN (PROPUESTAS)						
# De línea	SKU	Presentación ml	ВРМ	Eficiencia	Producción Hrs/mes	Flujo Lts/hr
Línea 1	COLA	2000	300	70%	529	36,000
Línea 2	COLA	1000	450	69%	500	27,000
Línea 3	COLA	600	800	69%	534	28,800
Línea 4	SABORES	600	750	69%	503	27,000
Línea 5	SABORES	1000	650	71%	518	39,000
Línea 6	SABORES	2500	350	61%	430	52,500
Línea 7	COLA	355	1700	72%	494	36,210

A partir de estas condiciones de operación, se calcula el volumen de producción, el cual se presenta a continuación.

VOLUMEN DE PRODUCCIÓN						
# De línea	MM de CU/Año	MM L/Mes	m3 de agua/mes	m3 de agua/año		
Línea 1	28.2	13.3	22,190	266,277		
Línea 2	19.7	9.3	15,730	188,760		
Línea 3	22.4	10.6	17,920	215,035		
Línea 4	19.8	9.4	11,149	133,788		
Línea 5	30.3	14.3	16,584	199,012		
Línea 6	29.1	13.8	18,532	222,389		
Línea 7	27.2	12.9	20,843	250,110		
TOTAL	176.7	83.6	122,948	1,475,372		

La capacidad de producción de la planta es de 176.7 MM de C.U./Año, y es aproximadamente el volumen que se está pronosticando producir para el siguiente año,

Por lo que con estas condiciones de operación, se alcanza ese objetivo.

4.2. Balance de servicios auxiliares y procesos con las nuevas condiciones de operación.

A partir de las condiciones de operación propuestas se realiza el balance de servicios auxiliares y procesos, para justificar que no se requiere de inversión en infraestructura, dicho balance se presenta a continuación.

Balance para servicios auxiliares.

	SERVICIOS AUXILIARES.								
# De línea	(Refrig Compre-	R/HR geración) Condensa-	L de agua (Bebida)	L de JT	MM de botellas /mes	Kg de vapor/ hr	Aire com. Ft3/hr	Kg de CO2/hr	KVA/hr
	sión	ción	,						
Línea 1	164	189	29,333	6,667	6.7	504	17,650	292	1000
Línea 2	123	141	22,000	5,000	9.3	373	13,238	219	750
Línea 3	131	151	23,467	5,333	17.7	397	14,120	233	800
Línea 4	123	141	15,500	5,000	15.6	373	13,238	219	750
Línea 5	178	204	22,389	7,222	14.3	554	19,121	316	1083
Línea 6	239	275	30,139	9,722	5.5	641	25,740	425	1458
Línea 7	165	190	29,504	6,706	36.3	521	17,753	293	1006
TOTAL	1,123	1,292	172,332	45,650	105.4	3,362	120,858	1,997	6,848

Balance para Procesos.

PROCESOS						
# De línea	Preparación de bebida 50%HFCS/50%Azúcar (refresco de cola)			Agua total		Agua suavizada
# De IIIIea	Lts de JT	TM de azúcar	T B.S. HFCS	Excedente	total	10%
Línea 1	6,667	2.3	2.3	9,680	39,013	2,933
Línea 2	5,000	1.7	1.7	7,260	29,260	2,200
Línea 3	5,333	1.8	1.8	7,744	31,211	2,347
	Preparación de bebida 100%HFCS (Sabores)			Agua total		Agua suavizada
	Lts de JT	TM de azúcar	T B.S. HFCS	Excedente	total	10%
Línea 4	5,000	0.0	3.6	5,115	20,615	1,550
Línea 5	7,222	0.0	5.3	7,388	29,777	2,239
Línea 6	9,722	0.0	7.1	9,946	40,085	3,014
	Preparación de bebida 50%HFCS/50%Azúcar (refresco de cola)			Agua	total	Agua suavizada
	Lts de JT	TM de azúcar	T B.S. HFCS	Excedente	total	10%
Línea 7	6,706	2.3	2.3	9,736	39,241	2,950
TOTAL	45,650	8.0	24.0	56,870	229,202	17,233

El siguiente cuadro resumen, es el que nos muestra el análisis de capacidad instalada vs consumo de servicios auxiliares y procesos.

		DEMANDA TOTAL	CAPACIDAD INSTALADA	DIFERENCIAL	MARGEN
SERVICIOS	AUXILIARES				
ENERGIA ELECTRICA	KVA / HR	6,848	10,750	3,903	36%
INYECCION Y SOPLADO	KVA / HR	6,838	11,000	4,162	38%
REFRIGERACION	TR (COMPRESIÓN)	1,123	2,040	917	45%
REFRIGERACION	TR (CONDENSACIÓN)	1,292	2,243	951	42%
VAPOR	KG VAPOR / HR	3,362	18,780	15,418	82%
AIRE COMPRIMIDO	FT3/HR	120,858	247,104	126,246	51%
CO2	KG CO2 / HR	1,997	2,300	303	13%
SOPLADO	MM BOT / MES	105.4	180	75	41%
PRO	CESOS				
J.S. / CLARIFICADO	TM AZUCAR / HR	8.0	20	12	60%
HFCS	TON B.S. HFCS/HR	24.0	53	29	55%
JARABE TERMINADO	LTS/HR	45,650	53,953	8,303	15%
AGUA TOTAL	LTS/HR	246,435	475,000	228,565	48%
AGUA TRATADA (BEBIDA)	LTS AGUA / HR INSTANTANEA	172,332	471,000	298,668	63%
AGUA SUAVIZADA	LTS AGUA/HR	17,233	90,000	72,767	81%
EXCEDENTE DE AGUA	LTS AGUA/HR	56,870	NA	NA	NA
POZOS Y/O RED	LTS AGUA / SEG	68	132	64	48%
MUNICIPAL	LTS AGUA / HR	246,435	475,000	228,565	48%

Como se puede ver en este cuadro, los consumos de servicios auxiliares y procesos no afectan a nuestra capacidad instalada, es decir, no se requiere de inversión en infraestructura para alcanzar el volumen de producción pronosticado de 175 MM de C.U./Año para el siguiente año.

4.3. Análisis económico de la situación propuesta.

Con los indicadores que presentamos anteriormente, y bajo las condiciones de operación propuestas, realizamos los siguientes cálculos, cabe mencionar que los costos que se tienen, serán los mismos para el siguiente año, ya que para obtener un costo real, se tendría que acudir a la planta para el siguiente año y obtener los costos reportados por parte del área de información.

Total de activos/Caja.

$$ANOP/Caja = \frac{\sum Activos (M.N\$)}{Cajas}$$

$$\frac{Cajas}{\% \text{ estacional idad}}$$

ANOP/C.U. =
$$\frac{\$613,543,296}{176,727,751 \text{ C.U.}} = \$3.47/\text{C.U.}$$

• Total de activos/persona.

ANOP/PER. =
$$\frac{\text{ANOP}}{\text{C.U.}} \times \frac{\text{C.U.}}{\text{Personal}}$$

ANOP/PER. = $\frac{\$3.47}{.} \times \frac{176,727,751 \text{C.U.}}{544 \text{ empl.}} = \$1,127,289/\text{empleado}$

Retorno sobre los activos

$$ROA_{PROD.} = \frac{UAFIR}{ANOP}$$

ROA _{PROD.} =
$$\frac{$22,543,296 \times 12 \text{ meses}}{$613,543,296} = 0.44$$

Costo total de producción

$$CTP = \frac{Costo\ Variable\ (CVP) + Costo\ Fijo\ (CFP)\ en\ M.N.\$}{Cajas\ Unidad\ Producidas}$$

CVP = Mat. Primas + Mermas + Energía, etc.

CFP = Mano Obra Total + Mantenimiento Total + Depreciación

El costo total de producción es entonces:

CTP = Gasto de ventas fijos + Gasto de ventas variables + Gastos de operación

$$CTP = 3,097,481 + 17,459,120 + 20,556,602$$

$$CTP = 41,113,203$$
\$

La producción de un mes promedio es de 14 MM de C.U.

Por lo que el costo total por caja unidad esta dado por:

CTP/C.U. =
$$\frac{41,113,203.\$}{14,727,312 \text{ C.U.}}$$

$$CTP/C.U. = 2.79$$
\$

Capacidad instalada

CAP. INST.
$$_{C/EST.} = \frac{\sum Cap. lineas mensual}{Estacional idad (mes pico)}$$

Cap. Líneas mensual: La capacidad de cada línea se mide a 600 horas disponibles para producir a la eficiencia promedio de los últimos 3 meses, en los empaques que normalmente se le programan y convertido a Cajas Unidad.

Estacionalidad: La estacionalidad es la proporción que representa el mes pico de ventas en las ventas anuales en Cajas Unidad. Se considera una estacionalidad del 8.33% debido a que se trabajan con criterios de mes promedio, esto es 1mes/12 meses= 8.33 %

CAP. INST.
$$_{\text{C/EST.}} = \frac{14,727,312 \, C.U.}{0.083}$$

CAP.INST.
$$_{C/EST.} = 177,437,493$$
 C.U.

• Productividad de la planta.

$$PRODUCTIVDAD_{PLANTA} = \frac{\sum C.U.producidas}{\#personalEmbotella\mathbf{dra}}$$

$$PRODUCTIVDADPLANTA = \frac{176,727,751C.U.}{544 Empleados}$$

Eficiencia de planta.

$$EFICIENCIA = \left(\frac{\text{Hrs. Marcha Neta}}{\text{Hrs. Prod. Disp.}}\right) \times 100$$

$$EFICIENCIA \text{ Planta} = \left(\frac{3,508 \text{ Horas de todas las líneas}}{4,200 \text{ Hrs. Prod. Disp.}}\right) \times 100$$

EFICIENCIA Planta = 83.5%

Utilización de líneas.

U.L. =
$$\left(\frac{\text{Horas Disponible s}}{\text{Tiempo Total}}\right) \times 100$$

U.L. = $\left(\frac{4,200}{5,200}\right) \times 100$
U.L. = 80.7%

• Utilización de Activos.

U.A. =
$$\left(\frac{\text{Hrs. Marcha.Net a.}}{\text{Tiempo Total}}\right) \times 100$$

U.A. = $\left(\frac{3,508}{5,200}\right) \times 100$

$$U.A. = 67.4\%$$

A continuación se presenta el resumen de los indicadores económicos con las nuevas condiciones de operación.

RESULTADOS DEL ANÁLISIS ECONÓMICO					
INDICADORES	SITUACIÓN ACTUAL	PROPUESTA			
Volumen de producción actual	159.9 MM de C.U./Año	176.7 MM de C.U./Año			
Máximo volumen de producción en líneas	273.8 MM de C.U./Año	273.8 MM de C.U./Año			
	* · · · · · · · · ·	* / * · ·			
Total de activos/Caja.	\$3.84 / C.U.	\$3.47 / C.U.			
Total de college de conserva	Φ4.400.004/F I I	Φ4.407.000/Fl.s.s.ls			
Total de activos/persona.	\$1,128,884/Empleado	\$1,127,289/Empleado			
Retorno sobre los activos.	0.44 Años	0.44 Años			
retorio sobre los activos.	0.44 A1103	0.44 7/1105			
Costo total de producción.	\$41,113,203	\$41,113,203			
·	. , ,				
Costo total de producción / C.U.	\$3.08	\$2.79			
Capacidad instalada optima.	218,398,863 C.U. /Año	218,398,863 C.U. /Año			
Productividad de la planta.	293,981 C.U. / Empleado	324,867 C.U. / Empleado			
Eficiencia de plante	79.4%	83.5%			
Eficiencia de planta.	19.4%	03.3%			
Utilización de líneas.	80.7%	80.7%			
Guilladion do infodo.	30.170	00.170			
Utilización de activos.	64.2%	67.4%			

Estos indicadores, son un aproximado del costo-beneficio si cambiamos nuestra programación en la producción de refrescos, como se puede ver el volumen de producción aumenta en comparación de las condiciones actuales, así podemos decir que se cumplió el primer objetivo de este capitulo de investigación.

Para el segundo indicador que se está analizando, la capacidad instalada en las líneas, no cambia, esto es debido a que no se tiene inversión en infraestructura como ya se había citado anteriormente.

Conclusiones

Conclusiones.

Con la realización de este trabajo de investigación, se determinó la capacidad instalada real y óptima de las líneas de producción, la cual es de 273.8 MM de C.U./Año y 218.4 MM de C.U./Año respectivamente, así también, se determinó la capacidad instalada de los servicios auxiliares y procesos en la planta embotelladora, y se pudieron presentar los diferentes escenarios de producción, obteniendo así el óptimo.

Durante la realización de este trabajo de investigación, pude formular los consumos de servicios auxiliares y procesos para obtener estimados que nos ayuden a determinar si se cuenta o no con la infraestructura de producción para cumplir con un determinado volumen de producción.

En base a los indicadores que presenté anteriormente, puedo concluir que este trabajo de investigación, nos presenta la rentabilidad de cambiar de presentación de refrescos (tamaños), así mismo conocer el comportamiento de las líneas de producción, de los servicios auxiliares y procesos que van ligados a la capacidad de producción de una planta embotelladora.

Justifico este proyecto de investigación, mediante una reducción de costos con la propuesta de producción de refrescos como se ve a continuación.

La planta producirá el siguiente año 176.7 MM de C.U. un costo por C.U. de \$3.08, entonces el costo de producción de ese volumen, sería de \$544,236,000, con la nueva propuesta para ese mismo volumen de producción, tenemos un costo por C.U. de \$2.79, por lo que el costo total sería de \$492,993,000, teniendo un ahorro de \$51,243,000.

Como se ve en lo anterior, esto se logra si cada línea de producción es dedicada, y opera todo el año bajo las condiciones planteadas.

Anexos

S UTILIZADAS EN EL TRABAJO DE INVESTIGACIÓN
Botellas por minuto
Botellas por hora
Cajas Unidad
Cajas Officación
Millones de Cajas unidad
Toneladas de refrigeración para compresión
-
Toneladas de refrigeración para condensación.
Fructosa
11466664
Jarabe terminado
Jarabe simple
Toneladas métricas de azúcar
Torieladas metricas de azucar
Toneladas en base seca de fructosa
Tipo de bebida (refresco de cola o sabores)
Pies cúbicos por minuto
Dies gébiges per bara
Pies cúbicos por hora
Kilo Volt Ampere

Bibliografía.

Manufacture and analysis of carbonated beverages, Morris B. Jacobs. Chemical Publishing CO., Inc. New York.

Lean Manufacturing, Luis Socconini. Editorial Norma, México. 2008.

Manual "Especificaciones Técnicas de llenadoras KRONES".

Manual "Mantenimiento de equipos de línea, empacadoras, paletizadoras, emplayadoras ZAMBELLI"

Manual de las técnicas del aire comprimido. Pokorny, FMA. Madrid.

Power system engineering: planning, design, and operation of power systems and equipment.

Juergen Shlabbach and Karl-Heinz Rofalski, Weinhein, 2008.

Tratamiento de aguas industriales: aguas de proceso y residuales. Rigola Lapeña Miguel. Barcelona

Procesamiento de plásticos: Inyección, moldeo, Hule, PVC. Morton-jones, David. 1993.

Manual de Excel para Windows, Ron Person. México. 1995