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FINITE ELEMENT METHOD 

THE0RY AND APPLICATI0N 

l. INTRODUCTION 

1.1 HISTORICAL BACKGROUND 

The finite elernent rnethod (FEM) has becorne a powerful nurnerical 

technique for solving cornplex problerns in science and engineering, 

rnainly dueto the advances rnade earlier in the nurnerical rnethods 

particularly in rnatrix rnethods as well as dueto the rapid 

introduction of high speed cornputers in the rnarket. However, 

the introduction of concepts and applications of FEM dates back 

to the era of rnathernaticians who tried to calculate the perirneter 

and area of a circle by idealizing itas a regular polygon. It 

is also interesting to note that the bound solutions which are 

often discussed in FEM can be traced back to the solution of the 

area of a circle. If the circle is rnodelled with an inscribed 

polygon, a lower bound solution is obtained whereas an upper 

bound solution is obtained by replacing the circle by a circurns 

cribed polygon. Even though the basic concepts of FEM existed 

for over two thousand years, for all practical purposes, one can 

only say that these concepts were actually used for solving 

physical problerns in 1950s by the aeronautical engineers. 

In 1956, Turner et al (Ref 1) presented the stiffness analysis 

for the cornplex structures, which is the starting point in the 

rediscovery of FEM. Nevertheless, Clough (Ref 2} was the one 

who actually used the terrn FEM in 1960. Since then , a tre

rnendous arnount of research has been done in this field and 
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quite a large number of papers have been published in almost all 

the journals related to all fields of engineering as well as sorne 

in the fields of mathematics and science. In addition, several 

conferences have been held all over the world and hundreds of 

papers have been presented in each. The theory and application 

of FEM have also been presented in numerous text books (Ref 3-22 ) 

In order to help the research workers in tracing the references 

required for their particular work several bibliographics have 

either been published or under preparation, among them notably 

Ref (23) is a good source of information. 

1.2 APPLICATIONS OF FEM 

The FEM is applicable to a variety of boundary value and initia l 

value problems in engineering as well as applied science. Sorne 

of these applications are: 

l. Stress analysis of structures, stability of structures, 
dynamic response of structures, thermal stress analysis, 
torsion of prismatic members 

2. Stress analysis of geomechanics problems, soil-structure 
interaction, slope stability problems, soil dynamics and 
earthquake engineering, seepage in soils and rocks, con
solidation settlement 

3. Solutions in fluid mechanics, harbour oscillations, pollution 
studies, sedimentation 

4. Analysis of nuclear reactor structures 

Stress analysis and flow problems in biomechanics 

6. Characteristic study of composites in fibre technology 

7. Wave propagation in geophysics 

8. Field problems in electrical engineering 
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Apart from the above mentioned areas, the FEM is also applicable 

to any other problemas long as the analyst makes certain that 

the problem is amenable to solution based on the assumptions 

introduced in the formulation of FEM and appropriate material 

properties can be provided in a realistic manner. 

1.3 METHODS OF ANALYSIS 

In general, there are four basic methods of analysis in FEM

displacement method, equilibrium method, mixed method and hybrid 

method. The field variables or unknown quantities in each of 

these methods are as follows. 

Displacement method - displacements and their derivatives 

Equilibrium method - stress components 

Mixed method - sorne displacements and sorne stress components 

Hybrid method - displacements or boundary forces 

In the displacement method, smooth displacement distribution is 

assumed within an element, interelement compatibility of displa

cement is generally assured and minimum potential energy criterion 

is used in the formulation. 

In the equilibrium method, the interior stress distribution is 

assumed to be smooth, the equilibrium of boundary tractions is 

maintained and the minimum complimentary energy is the basis 

for the formulation. 

In the mixed method which is generally used for plate and shell 

problems, both displacements and stresses are assumed smooth 
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in the interior, the displacement components and the equivalent 

stress components are considered to be continuous at the inter

element boundaries and the formulation is based on Reissner's 

principle. 

In the hybrid method, depending on whether the model is dis

placement type or equilibrium type, the distribution of dis

placements or stresses within the element is considered to be 

smooth and along the interelement boundary either assumed 

compatible displacements or assumed equilibrating boundary 

tractions are ensured and either modified complementary energy 

or modified potential energy principle is adopted for the for

mulation. 

Among these four methods, the displacement method is the most 

widely used approach. However, for plate bending problems 

either the equilibrium or mixed method is preferred and for 

sorne field problems hybrid method is more suitable. 

1.4 DESCRIPTION OF FEM 

A structure, continuum ora domain is divided into a nurnber of 

arbitrary shaped parts or regions known as elemen~-0. These 

elements are interconnected at joints known as node-0 . The 

principal unknown is termed as the áield va~iable. This field 

variable can be displacement, temperature, pore-pressure or 

stress. The distribution of the field variable within an 

element is approximated by the use of certain polynomial 

functions. Variational methods or residual methods are employed 
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to develop the finite element equations which relate the fiel~ 

variables at the nodes to the corresponding action vector at tl"le, 

nodes of the element. This relationship is provided by the so 

called property matrix which is based on the material and the 

geometric properties of the element. Finally these finite 

element equations are assembled to forro a 1system of algebraic 

equations for the entire domain. The unknown field variable 

is obtained by solving this system of algebraic equations. 

1.5 BASIC STEPS IN FE ANALYSIS 

The basic steps in the finite element analysis of general 

· problems are as follows. 

l. The con_tinuum is divided into finite elements of any 
arbitrary shape. 

2. A suitable polynomial is chosen to represent the distribution 
of the field variable within an element in terms of its 
nodal values. Thus, the field variables at the nodes become 
the primary unknowns. 

3. Using variational methods or residual methods, the finite 
element equations are formulated. 

4. The individual finite element equations obtained in steI? 
3 are assembled to forro a set of algebraic equations for 
the overall continuum. 

5. The solution of the algebraic equations obtained in step 4 
yields the valuesof the field variables at the nodes. 

6. From the field variables at the nodes, the secondary 
variables such as stress, strain for an element can be 
obtained. 
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2. MATHEMATICAL FORMULATION 

2.1 DIRECT FORMULATION - DISPLACEMENT METHOD 

The simplést formulation of finite element equations is probably 

by directly applying virtual work principle even though the 

variational principles and residual methods may be more elegant. 

As pointed out previously, the displacement method is widely 

used in FE Analysis and hence in this section the mathematical 

formulation will be based on the displacement model. 

The first step in the analysis is to divide the continuum into 

finite elements. For the present discussion, let us assume 

sorne arbitrary shape. The field variable for the displacement 

model is d~-0plaeement-0. Hence let us define the displacements 

at any point within an element in terms of the nodal values as 

(2.1) 

where {u} is the displacement vector at any point 
within an element 

{ó}e is the nodal displacement vector for the 
element 

and [N] is the shape function defined by a suitable 
polynomial 

The strains can be determined from the nodal displacements as 

where [B] 

( 2. 2) 

is the strain-displacement matrix (based on 
geometric property) 

[B] matrix can be written for finite or infinitesimal 
strain 



-

; 

: 

-

From the strains, the stresses can be determined as 

{o} = [n] {e} ( 2. 3) 

where [D] is the matrix representing the constitutive 
relationship for the material 

[D] matrix can be written either for isotropic or 
anisotropic material and either for linear or 
nonlinear material behaviour 

9 

If it is desired to include the initial strains which may be 

dueto temperature effects etc and the initial stresses which 

may be the prestress existing in geomechanical problems, then 

Eq. (2.3) can be written in a general forro as 

( 2. 4) 

Let us also define the nodal forces which are statically 

equivalent to the boundary stresses and distributed loads on 

the element as {F}e. The distributed loads are defined as 

these acting on an unit volume of material within an element 

and denoted by {p}. 

In order to make the nodal forces statically equivalent to the 

actual boundary stresses and distributed loads, let us apply 

a virtual displacement, d{o}e at the nodes. 

(2.5) 

( 2. 6) 

Externa! work done = w = [a{o }e] T {F}e . ( 2. 7} 

' 
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I n ternal work done per unit volwne is 

( 2. 8) 

Equating the external work with the internal work 

Eq. (2.9) is valid for any value of virtual displacement and 

hence can be written as 

(2.10} 

Or>substituting for {o} and {E} from (2.4) and (2.2) 

(2.11) 

Using the stiffness app roach, Eq. (2.11) can be written as 

(2.12) 

where {F}e = total force vector at the nodes of an element 

[K]e = stiffness matrix for an element 
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{o}e = displacement vector at the nodes of an element 

• {F}~ = initial force vector dueto initial strains 
1 

and initial stresses 

{F}e = nodal force vector dueto distributed loads 
p 

After having obtained the stiffness matrix via Eq. (2.12), the 

remaining steps are as given in Section 1.5. 

2.2 CRITERIA FOR CONVERGENCE 

From the foregoing discussion on mathematical formulation, it 

can be seen that three primary relationships (2.1, 2.2 and 2.3) 

are included in the finite element equations. Among the three 

relationships, Eq. 2.2 and 2.3 are governed by the principles 

of continuum mechanics whereas in Eq. 2.1, the selection of 

the shape function (or displacement function) Nis left to the 

choice of the analyst. However, sorne restrictions have to be 

imposed on its choice for the sake of obtaining an exact solution 

to the problem. 

Any numerical technique is approximate to a certain degree and 

to obtain acceptable solution to a problem, the method should 

converge to the exact solution. In finite element method, for 

instance, if the displacement model is chosen it can be shown 

that in general the element stiffness calculated will be higher 
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than the true stiffness. Hence the displacements obtained for 

certain loading will be less than the actual ones and thus a 

lower bound solution is achieved. For the displacement model, 

in order to obtain convergence the following requirements have 

to be satisfied in choosing an appropriate displacement function. 

l. The displacement function should be chosen in such a way 
that it ensures continuity within an element and compatibility 
at the interface between elements. For example, there 
should not be gaps, overlaps or discontinuities between two 
adjacent elements when they deform. 

2. The displacement function chosen should be such that it 
includes the term for rigid body displacement. This should 
be necessary because no straining will be caused dueto 
rigid body movement. 

3. The displacement function should be capable of yielding 
constant strain condition. This is true because if the 
finite element division is made smaller and smaller, then 
constant strain will prevail in an infinitesimal element. 
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EXAMPLE 2.1 

Determine the stiffness matrix for the line element shown in 

Fig 2.1 

Fig 2.1 

a} Using Mechanics of Solids: 

Let the displacement of the bar dueto an axial load, P, be u 

Then, Strain 

Stress 

Force 

u 
..,. e: = L 

= a = E. e:. 

= p = a .A. 

E. u = L 

EA u = L 

Force-Displacement Relationship: , P = K.u. 

where K = EA 
L 

(or} Displacement =u= 

b} Using FEM : 

PL 
EA = f .P. 

Since there are only two nodes, the displacement variation is 

linear. Thus, the displacement at any point i can be defined 

using a linear polynomial as 

( 1} 
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The two constants a 1 and a 2 can be determined by substituting 

the values of u 1 . and u 2 at nodes 1 and 2 and their co-ordinates 

in Eq. (1} 

Thus; Ul = ª1 

u2 = ª1 + a~L 

= u 1 + a L 2 

u2 - Ul 
or ª2 = 

L 

u2 - u 
Ul [1 - i] ll2 [ ~] Therefore, 

1 
u = Ul + X = + L 

or u = [N] { cS} e 

where [N] = [ 1 - ~ ~] 

{ cS} e 

- [ :: ] 
Strain au [B] { cS} e [ ~:] { cS} e = e: = = :::; 

ax 

= [ - 1/L 1/L] 

[ :: J 
Stress = a = E. e:. = [o] [B] {ó }e 

= [ - E/L 
E/L] [ :: j 
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Stiffness Matrix = [ke] = f v [B] T [o] [B] dV 

= I L [- 1/L] E [ - 1/L 

O 1/L • 

l/L ] A dx 

EA I: [ _: -: ] dx = -L2 

EA [ _: -: ] = 
L 

Force-Displacernent Relationship: 

If Ul = o and F2 = P, 

Fl 
EA and p EA = - L u2 = L u2 

or u2 .-
PL 
EA 

-

Fl 
EA PL p = - --= -LEA 
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EXAMPLE 2. 2 

Determine the displacements at the nodes, the strains and the 

stresses for the elements of the member shown in Fig 2.2. Both 

elements have same values of E and A. 

~ 
CD 2 ® 
L ~~ L 

From example 2.1, 

= Et [ 1 -1] 

-1 1 

= 1 -1 t O 
1 
i . ;-·-·-¡-·-·-· 

-1 1 1+1 1 -1 . . -·-·-·T·-·-·-. 
0 -1 1 

Thus, Fl 1 -1 o 

F2 
EA -1 2 -1 = L 

F3 o -1 1 

Boundary Conditions: 

u = o 1 

Ul 

u2 

u 3 
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- - ~ - - -
Fl 1 -1 o o 

o EA -1 2 -1 = u2 L 
I 

p o -1 1 - u3 -... - - -

Solving Eq. I, 

p EA 
[ -u2 + u 3 ] = L 

o = 2u2 - u3 (or) U3 = 2u 2 

p EA 
[ -u2 + 2u 2 ] 

EA = = u2 L L 

PL 
u2 = EA 

2 
PL 

u3 = EA 

Fl 
EA EA PL -P = u2 = - L AE = L 

Element 1: Strain = E = 

p 
= EA 

Stress = o = [o] {E} 

E 
p p 

= -= EA A 
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Element 2: Strain = E = [B] [ :: ] 
[- 1 t] PL = 

L EA 

2 PL 
EA 

p 
= 

EA 

Stress E 
p p 

= (J = 
EA 

= 
A 

EXAMPLE 2. 3 

In the case of the axial member illustrated in Example 2.1, 

prove the conditions of compatibility, constant strain and 

rigid body movement. 

Suppose the polynomial assumed for defining the variation of 

displacement is given by 

u= a x 2 + a x 3 
l 2 

will the convergence criteria be satisfied? 

Condition 1: Interelement Compatibility. 

Element 1: [ 1 
X ~] [ ::] u = 

X L 

At node 2, X = L, u = [ o 1 ] [ :: ] = u2 



Elernent 2: 

At node 2 X= 0, u= [ 1 o J 

Thus, cornpatibility is satisfied. 

Condition 2: Constant Strain Criterion. 

au e=-.-=a ax 2 

Since a 2 is a constant, this condition is satisfied. 

Condition 3: Rigid Body Movernent. 

19 

In the polynornial, u= a
1 

+ a 2 x the rigid body rnovernent can 

be prescribed by putting x = O, 

Thus u= a
1 

Then strain, au 
E: = = o ax 

Since no straining takes place dueto rigid body rnovernent, 

Condition 3 is satisfied. 

If u= a x 2 + a x 3 
l 2 

au 
E: = = ax 

Since the strain depends on the co-ordinates of the point 

under consideration, the conditio~ of constant strain is 

violated. 
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For rigid body movement, there is no strain. Thus, if we 

equate the strain to zero 

2a 1 x + 3a x 2 = o 2 

2a
1 

ª2 = - 3x 

a x 2 
2a

1 
x2 1 a x 2 u = - = 1 3 3 1 

The displacement is not constant. It is a function of 

co-ordinate and hence Condition 3 is violated. 
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3. DISCRETIZATION OF A CONTINUUM 

3.1 FINITE ELEMENT DIVISION 

The more commonly asked questions regarding the division of a 

structure ora continuum into finite elements are 1} how rnany 

elements are necessary to obtain a practically acceptable solution 

to the problem? 2} should the division be a regular pattern or 

irregular? and 3} how does one check about the convergence of 

the solution? The real answer to all these questions is exer

cising intuition, experience and engineering judgernent. 

Nevertheless, certain guidelines can be put forth for the sake 

of novices. 

Regarding the total nurnber of elements required for a problern, 

one must try to use as many elements as required for the desired 

accuracy bearing in mind that too rnany elements will result in 

enormous computer time. The division of the structure itself 

depends on the complexity of loading, nonhomogeneous nature of 

the structure, geometrical discontinuities and irregularities. 

As far as possible, it is better to use a graded mesh in such 

a way that finer divisions are provided near the areas of stress 

concentration and coarser elements are used at places of flat 

stress gradients. Most of the problems which require the use 

of finite element technique for obtaining the solutions are so 

complex that they cannot be solved by anyother analytical 

technique to yield an exact solution. Hence, one should use 

his engineering judgement to assess the accuracy of the results 
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oi solve the problem by using one coarser and one finer mesh 

d ivision in order to check the convergence. 

Apart from the points mentioned above, one must also take care 

in labelling the nades and elements such that the bandwidth 

of the stiffness matrix is kept to a minimurn in arder to reduce 

the computer time for solving the simultaneous equations. 

3.2 REPRESENTATION OF INFINITE MEDIA 

In most of the structural problems, the boundaries of the 

structures analysed by FEM are clearly defined. Whereas in 

geomechanical problems, invariably one encounters infinite media 

to be represented by a finite model. In the case of static 

problems, it is qecessary to use either engineering judgement 

or the experience of other investigators in fixing the extent 

of the model to be analysed. Generally, the influence of dis

turbance or loaded area extends only to a certain distance 

from the source of disturbance. In the case of dynamic pro

blems, one has to resort to the use of special boundary con

ditions. 

3.3 BOUNDARY CONDITIONS 

For any physical problem, appropriate boundary conditions have 

to be specified. Otherwise, the structure will be free to 

experience any amount of rigid body motion. Mathematically 

speaking, if the boundary constraints are not imposed, then the 

stiffness matrix will be singular, that is, it cannot be 

inverted. 
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Basically there are two types of boundary conditions - . geometric 

and natural. If an appropriate formulation is used on the 

basis of variational principles for the finite element equations, 

then the natural boundary conditions are automatically satisfied. 

The geometric boundary conditions can be divided into homogeneous 

and nonhomogeneous conditions. If the displacements (for the 

displacement method) are specified as zero, then the boundary 

condition is known as homogeneous whereas it is nonhornogeneous 

when the displacernents are not zero at the boundary. Further 

the boundary condition can be classified as normal or skew. If 

the boundaries are parallel to global axes, the conditions at 

those boundaries are normal. If the boundaries are not parallel 

to global axes, then the conditions at those boundaries are 

called skew boundary conditions. Special techniques have to 

be employed to treat the skew boundary conditions. 

3.4 EXTERNAL LOADS 

In FEM, since the element stiffness matrix is formulated to 

relate the nodal displacements to the corresponding nodal forces, 

all the external forces should be applied only at the nodes. 

This involves calculating the statically equivalent nodal forces 

for the distributed loads and surface tractions on the basis 

of formulation used for element stiffness matrix. This is in 

fact known as consistent loads which is superior to luinped loa.ds 

which is actually alloting the loads to the various nodes on 

the basis of intuition. 
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3.5 CALCULATION OF STRESSES AND STRAINS 

After evaluating the stiffness matrix for the whole structure, 

with the use of appropriate boundary conditions and external 

loads, the displacements at all nodes can be determined. From 

the nodal displacements of an element, the strains and the 

stresses at any point within an element can be calculated. It 

is always advisable to determine the stresses ata point within 

an element instead of averaging it ata nodal point, from the 

stress values contributed by the surrounding elements. 



4. FORMULATION OF FINITE ELEMENT 

EQUATIONS - SINGLE ELEMENT 

4.1 INTRODUCTION 

25 

The various shapes which have been used to discretize the 

continuum into finite elements are: line elements for one 

dimension, triangular, rectangular and quadrilateral elements 

for two dimension and tetrahedron, triangular and rectangular 

prism elements for three dimension. Again, these elements may 

have either straight or curved sides and may have only corner 

nodes or corner nodes and either interior nodes along the boun 

daries of an element or interior nodes within an element. Among 

all these elements, the simplest shape which can be visualized 

is probably the triangle because complex boundaries can be 

fairly approximated with the sides of the triangle. This is 

one of the reasons why the triangular element was developed 

first by Turner et al. The other reason is probably that the 

structural engineers are quite familiar with the triangular 

shape since it is often encountered in the analysis of framed 

structures. Thus, in this chapter, the simplest formulation 

which was originally devised for the triangular element will 

be presented. Later, the general formulation for simple as 

well as complex elements will be presented on the basis of 

isoparametric concept. 

From the discussion presented in Chapter 2, it can be seen that 

the strain-displacement relationship depends only on the finite 

strain or infinitesimal strain theory and not on the type of 
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finite element. Similarly, the stress-strain relationship 

depends only on the linear elastic theory or nonlinear theory 

(plasticity, creep, visco-elasticity, visco-plasticity) and 

not on the element shape. The only criteria which is different 

for each type of element is the shape function or displacement 

function. 

In the following sections, the complete formulation for the 

triangular element on the basis of infinitesimal strain, linear 

e1astic theory for plane stress condition will be given first 

followed by the strain-displacement based on the infinitesimal 

strain and the stress-strain relationships based on linear 

elastic theory for two dimensional plane stress/plane strain, 

axisymmetric and three dimensional cases. The development of 

shape functions which is the crux of the finite element for

mulation will be presented in the next chapter. 

4.2 TRIANGULAR ELEMENT - CONSTANT STRAIN - PLANE STRESS 

Fig 4.1 shows the triangular element (123) in the 

cartesian co-ordinate sy.stem 

y 
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Let the unknowns for this problem be horizontal displacement, 

u and vertical displacement; v at each node. Since there are 

3 nodes, the number of unknowns is six. On each side, there 

are only two nodes and hence the possible variation of dis

placement is linear and therefore the strain within the element 

is constant. 

Displacement Function 

The displacements u and v at any point, P, within the element 

123 can be uniquely defined by the unknown displacements at 

the nodes 1, 2 and 3. Since the displacement field is linear, 

the displacements at point, P, can be represented by linear 

polynomials. 

( 4 .1) 

The constants in the polynomials, a. 1 to a. 6 can be evaluated 

in terms of the nodal co-ordinates and the nodal displacements 

as follows. 

Ul = ª1 + ª2 Xl + a.3 yl 

U2 = ª1 + ª2 x2 + a.3 y2 ( 4. 2) 

U3 = ª1 + ª2 x3 + a.3 Y3 
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There are 3 unknowns (a 1 , a 2 , a 3) and 3 equations given by 

Eq. (4.2). Hence, solvin g these equations 

1 
(a l + + u3) ª1 = 

2ó. Ul ª 2 u 2 ª3 

1 
(b i + b 2 + b3 u 3) ª2 = u Ul u 2 

1 
(C l + + u 3) ª3 = Ul C2 U2 C3 2 ó. 

( 4. 3) 

where 26 = det 1 Xl Y1 = 2x area of triangle 123 

1 x 2 Y2 
( 4. 3a) 

1 x 3 Y3 

a = x 2 Y3 - X Y2 1 3 

b l = Y2 - y3 

Cl = X3 - X2 

ª 2 = x 3 yl - Xl Y 3 

b 2 = y 3 - yl (4.3b) 

c 2 = Xl - X3 

ª 3 = Xl Y2 - x 2 yl 

b 3 = yl - y 2 

C 3 = X2 - Xl 
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Now, substituting Eq. (4.3} into Eq. (4.1}, and rearranging 

the terrns, 

( 4. 4) 

Since the equation for the vertical displacernent is similar, 

( 4. 5) 

In order to conforrn with the definition of the field variable 

in terrns of the shape functions, we can rewrite Eqs. (4.4) and 

(4.5) as follows. 

Let the field variable be {~}, then 

{~} =[:]= [:' o N ' o N3 2 

N1 O N
2 

o 

( 4. 6) 

V 
3 
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where Nl 
1 

(a 1 + b
1

x + cly) = 
26 

N2 
1 = ( 4. 6a) 26 (a 2 + b X + c2y) 2 

N3 
1 

(a 3 + b
3
x + c3y) = 26 

Strains 

The strains at point, P, within the element 123,can be obtained 

by differentiating the displacements. Thus, for plane stresq 

conditions 

{E} au 
= Ex = 

ax 

Ey av ( 4. 7) 

Yxy 
ay 

au av - + ax él y 

Or, using Eq. ( 4. 6) 

aN
1 

élN 2 aN 
{E} 

3 
= o 7x o 7x o Ul ax 

aN élN élN Vl 
1 2 3 

o ay o ay o ay u2 
( 4 . 8) 

élN élN l aN2 élN 2 élN 3 é)N:. v2 
1 

7y 7x 7y 7x ay ax u 3 

V 3 
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1 
2/i 

o o 

o 
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o 

( 4. Ba) 
V 

2 

V 
3 

( 4. Bb) 

Assuming that the element is of isotropic material, for plane 

stress conditions, the stress-strain relationship can be written 

as 
a a 

X 
\) J.. = -E E 

a a 
J.. \) 

X = -E E ' 

Or, the stresses can be written in terms of the strains, 

. {a} = [n] {e:} 

where [n] = Elasticity matrix 

E = 
1 - .\!2 

1 V O 

v 1 o 

(4.9) 

( 4 .10) 

(4.10a) 
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in which E is rnodulus of elasticity and v is 
Poisson's ratio. 

It is to be noted that for ~he ?ake of sirnplicity, the initial 

strains and the initial stresses have been ornitted frorn the 

constitutive relation given in Eq. (4.10). 

Stiffness Matrix 

The stiffness rnatrix given by Eq. (2.12) 

can be written as 

[K] e = [B] T [o] [B] tll ( 4 .11) 

i f the thickness, t, is constant over the entire area and since 
, 

the matrices [B] and [o] do not depend on the co-ordinates x 

and y, the integral over the area can be represented by ll, which 

is the area of the triangle 123 defined by Eq. (4.3a}. 

The expanded version of [K]e can be written as 

[K]e = 

where K
11

, K12 ••• are 2 x 2 subrnatrices 

Nodal Forces 

( 4 .12} 

Surface Forces: Let {T} be the traction vector along the side 

of the elernent. Then, the equivalent nodal forces are given by 

{ F} e = J [ N] T { T} dS 
s 

(4.13} 



33 

In this particular case of a triangle under plane stress, 

assuming thickness to be constant 

{F} e = t Jl [N] T {T} dx 
o 

( 4 .14) 

where 1 is the length of the side under consideration and {T} 

consists of x and y forces. 

Distributed Body Forces: The distributed body forces rnay be due 

to self weight. Orina general case, the cornponents in x 

and y directions are X and Y . Denoting these in vector forro as 

{p}, the equivalent nodal forces for the triangular elernent are 

( 4 .15) 

Assurning the body forces to be constant throughout the elernent, 

( 4 .16) 

Again, for the sake of sirnplicity, if we assurne the origin of 

the co-ordinates at the centroid of the elernent 

then Jx dx dy = fy dx dy = O 
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Therefore, {F 
1

} = 
p - t 

[;] ~ó 
fa 1 dx dy 

(4.17) 

a t [:] l 
= - --

2 

Since a
1 

2 6. 
= = ª 2 = ª 3 3 

{F 1} p 
t 2 /1 [:] t/1 . [:] (4.18) = - - - = 
2 3 3 

Assuming the thickness to be unity, for the whole element 

X 

{F} e 6. y 
(4.19) = p 3 

X 

y 

X 

y 

Eq. (4.19) implies distributing the body forces equally at 

the three nodes. 
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4.3 STRAIN-DISPLACEMENT RELATIONSHIP 

The nonlinear theory of elasticity or the theory of finite 

deformations is quite different from the theory of elasticity 

dueto the fact that the former accounts for the difference 

between the geometry of deformed and undeformed states whereas 

the latter neglects it. There are different methods of 

describing the deformed state such as Lagrangian Method and 

Eulerian Method. For the purpose of present discussion, 

Lagrangian Method will be adopted. In this method, the co-or

dinates of points under consideration in the undeformed state 

coincide with co-ordinates of the deformed state. Thus, the 

strain-displacement relation in the cartesian co-ordinate 

system can be written as 

av + 1 
[ ( au:> 2 + ( av) 

2 

+ ( aw) 
2
] (4.20) €y = 2 ay ay ay ay 

aw + 1 
[ ( au) 2 

+ ( av) 
2 

+ ( aw) 
2j €.z = az 2 az az az 

y au + av + au au + av av + aw aw = ax ay xy ay ax ax ay ax ay 

yyz= av + aw + au au + av av + aw aw 
az ay ay az ay az ay az 

yzx= 
aw + au + au au + av av + aw aw 
ax az az ax az ax az ax 

sf 
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In the case of small deformations, the infinitesimal strain 

theory can be assumed and hence Eq. (4.20) can be used by 

neglecting the higher order terms. Thus, the simplified 

relationship will be as follows 

av 
Ey = 

ay 

aw 
Ez = az 

(4.21) 

Yxy = ~+ av 
ay ax 

Yyz 
av + aw 

= az ay 

y = aw + au 
zx ax az 

Eq. (4.21) is applicable for the case of three-dirnensional 

bodies. In two dimensional situations we have only Ex, Ey 

and Yxy · 

In the case of axisyrnrnetric solids, the strain-displacernent 

relations are expressed in terrns of cylindrical co-ordinates. 

au r = ar 
au z 

Ez = a z 
(4.22) 
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4.4 STRESS-STRAIN RELATIONSHIP.- LINEAR ELASTICITY 

The general relationship between stresses and strains for an 

anisotropic body based on Hooke's law can be written as 

• {cr} = [o] · {e:} (4.23) 

where {cr} and {e:} have 6 cornponents each and hence [o] has 36 

constants. However, dueto syrnrnetry (D 12 = D2 1 , D 13 = D 31 etc) 

the nurnber of independent constants can be reduced to 21. For 

more practical cases, we can further reduce the nurnber of 

constants to 9 on the basis of three planes of elastic syrnrnetry. 

Thus the strains in terrns of stresses can be written as 

1 Vyx Vzx 
E:x = (J (J - -- ºz E X Ey y Ez X 

=- vxy 
ºx + 

1 ~ E:y ºy - (J 

Ex E Ez z y 

(4.24) 

yxy 
1 = 

Gxy Txy 

Yyz 
1 = T G yz yz 

y 1 
= T zx G zx zx 

Even though there are 12 constants in Eq. (4.24), only 9 of 

these are independent because 

(4.25) 
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Fo r the case of isotropic material, the number of material 

parameters will further be reduced to two - modulus of 

elasticity, E and Poisson's ratio, v. Thus, Eq. (4.24) can 

be written in matrix formas 

Ex 1/E - V/E -v/E a 
X 

Ey - V/E 1/E -v/E o 

e - v/E - V/E 1/E ~z 
= 

y 1/G o o 
xy 

y 
yz 

o o 1/G o 

y o o 1/G 
zx 

where G E 
= 2(1+v ) (4.26) 

Eq. (4.26) can be rewritten in arder to express stresses in 

terms of strains. Thus the matrix [D J far three dimensional 

isotropic case will be 

1-v \) \) 

\) 1-v \) 

lol = 
E 

(l+v) (1-2v) 
\) \) 1-v 

o 

1-2v 
-2-

o 

o 

o 

o 

1-2v 
-2-

o 

o 

o 

1-2v 
-2-

(4.27) 
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4.4.1 SPECIAL CASES 

Plane St~e-0-0.- The plane stress condition is characterized by the 

presence of stress only in the plane since the dimension normal 
• 

to the plane is very small. Therefore, the non-zero components 

of stress are ºx' ªy and Txy· Thus, the stress-strain relations 

for the isotropic material is given by 

ºx 1 \) o Ex 

E 1 o ªy = \) Ey (4.28) 1-v 2 • 

Txy o o l-v y 
-2- xy 

For the case of anisotropic material, Eq. (4.24) can be reduced 

to 

a \) 

e:x 
X ~ = ªy Ex Ey 

a \) 

e:y = _y ..E. ºx Ey Ex 

1 T = T xy Gxy xy 

E G 
Letting X = n and ~ 

Ey Ey 

of strains, the matrix 

= ' m 

[o] 

n 

Il\)YX 

o 

and expressing stresses 

can be written as 

nvyx 

1 

o 

o 

o 

m(l-nv 2 
) yx 

(4.29) 

in terms 

(4.30) 
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Pl an e St~ain.- In the case of plane strain problems, the 

longitudinal direction is long ~omparéd to the other two 

d irections (representing the plane} and hence the strain in 

that direction vanishes leaving only three components of strain, 

Ex, Ey and Yxy· However, it is to be noted that the stress, 

0 2 f O. Thus, for the isotropic material, Eq. (4.26} reduces to 

EX 1/E - v /E -v/E o ºx 

Ey - v /E 1/E -v/E o ªy 
= (4.31) 

Ez - v /E -v/E 1/E · o ª z 

y o o o 1/G "[ 

xy xy 

Since E2 = O 0 = v (a + ay) , z X (4. 32) 

Now, t h e s ~res ses Ox, ª Y' Txy c~n be expressed in terms of 

s trains Exr Sy and Yxy using Eq. (4.32) 

[D] E 1-v \) o = (l+ v ) (1-2v ) 
\) 1-v o ( 4. 3 1 ) 

l o o 1-2\! 
-2-

Fo r the case of anisotropic material, the matrix [o] can be 

obtained from Eq. (4.24) as follows 
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n ( 1-nv;x) nvyx(l+vxy) o 
E 

[o] =--f nv (l+v ) (1-v!y) o yx xy 
(4.34) 

o o ml 

Ax¡~ymmetn¡e.- Axisymmetric problems are those involving solids 

of revolution around an axis of symmetry (usually z axis). In 

this case, the non-zero components of 'stress and strain are 

ªr' ªz' a 0 , Trz and Er, Ez, Ea and Erz• For the isotropic 

material, the matrix [o] can be written as 

1-v \) \) o 

[o] E 
\) 1-v \) o = (l+v) (1-2V) 

(4.35) 
\) \) 1-v o 

o o o ( 1-2v) 
2 

For the case of anisotropic material, following Eq. (4.24) 

and (4.34) 

n(l-nv 2 
) yx nv ( l+v ) 

yx xy n(v xy + nv 2 
) 

yx o 

E (1-v 2 
) nv (l+v ) o 

[o]=-y 
xy yx xy 

n ( 1 - nv 2 
) o yx 

Symmetric ml 

(4.36) 
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4.4.2 TRANSFORMATION OF MATERIAL CONSTANTS FROM LOCAL TO 

GLOBAL SYSTEM 

If the direction of strata is inclined to the global x axis 

as shown in Fig 4.2, then the matrix [o] can be obtained by 

transforming the matrix [o•] which is expressed in the local 

system as follows: 
y 

Fig 4.2 

Since the work done in both systems should be equal, 

(4.37) 

(4.38) 

The strains in the inclined system can be expressed in terms 

of the global system as 

{ E: ' } = [T}T {E:} 

where [T] = Cos 2 a Sin 2 f3 -2Sin 

Sin 2 f3 Cos 2 f3 2Sin 

Sin 8 Cos 8 -Sin f3 Cos 8 Cos 2 

Substituting Eq. (4.39) into Eq. (4.38), 

{ E: } T [ T] [D '] [ T] T { E: } = { E: } T [ D] { E: } 

(or) [o] = [T] [o'] [TJT 

f3 Cos 

f3 Cos 

8-Sin 2 

(4.39) 

f3 

f3 (4.40) 

f3 

(4.41a) 

(4.41b) 
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EXAMPLE 4.1 

Determine the displacements, strains and stresses for the 

c'1,ntilever beam loaded at the free end as shown in the sketch. 

10 

3 

6 

FEM Idealization: 

E =-ICJO 

V=O 
t =- J 

Divide the beam into 2 triangular elements and number the nodes 

as shown. 
y 

CD 
2 

DATA: 

Nodal co-ordinates 

Node 1 

2 

3 

4 

Nodal connections 

Element 1 

Element 2 

X 

o 
o 
6 

6 

1 

1 

Nodes 

2 

4 

y 

3 

o 
3 

o 

4 

3 
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Boundary Conditions 

Ul = Vl = o 

u2 = v2 = o 

F3y = - 10 

Unkowns: 

Displacements: 

Reactions: 

Area of Elements 1 and 2 

2/1 = 

11 18 = 2 

Element Matrices: 

Element 

b = 
l 

b2 = 

b3 = 

y2 

y3 

y 
l 

1 
18 

1 

- y3 

- yl 

- y2 

o 

o 

6 

1 o 3 

1 o o 

1 6 o 

= 9 

1 
(O, 3) 

= o 

= -3 

= 3 

o -3 o 

6 o -6 

o -6 -3 

= 18 

2 4 
(o, o) ( 6, O) 

Cl = x3 - x2 = 6 

c2 = Xl - x3 = -6 

c3 = x2 - Xl = o 

3 o 

o o 

o 3 
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[D] = 100 1 o o 

o 1 o 

o o 1 
2 

, [k] e = 
1 

[B].T [DJ [B] tt\ 

= 1 X9 1 o o 1/3 100 o o o o -1/6 o 1/6 o 

o 1/3 o o 100 o o 1/3 o -1/3 o o 

-1/6 o -1/3 o o 50 1/3 o -1/3 1/6 o 1/3 

o - 1/3 1/6 

1/6 o o 

o o 1/3 

1 2 4 

= 50 o -so 25 o 50 
1 

o 100 o -100 o o 

-50 o 75 . "".'.25 -25 -so 
2 

25 -100 -25 112.5 o 25 

o o -25 o 25 o 
4 

50 o -50 25 o 50 
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Element 2 1 4 3 
(O, 3) ( 6, O) ( 6, 3) 

bl = -3 Cl = o 

b 2 = o c2 = -6 

b = 3 c3 = 6 
3 

[B] 1 -3 o o o 3 o = 18 

o o o -6 o 6 

o -3 -6 o 6 3 

[ke] [B] T [D] [Bl ' = t.6 
2 

1 4 3 

= 25 o o o -2 5 o 7 
1 

o 12.5 25 -25 o -12.5 

o 25 50 o -50 -25 
4 

o o o 100 o -100 

-25 -25 -50 o 75 25 
3 

o -12.5 -25 -100 25 112.5 
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Total Stiffness Matrix: 

= 75 o -so 25 -25 o o 50 

' " ' 112.5 o -100 o -12.5 25 -25 

' '- 75 -25 o o -25 -50 

" ' 112.5 o o o 25 

" 
"- 75 25 -so o 

' '- 112. 5 -25 -100 
"-

Symmetric "- 75 o 

' , 150 

Force Displacement Relationship: 

[K] {u} = {P} 

Since u
1

, u
2

, v
1 

and v
2 

are zero, we can delete tLe rows and 

columns in matrix [K] corresponding to these. Then the 

stiffness matrix will be only 4x4 and the number of unkowns 

is 4. 

75 25 -so o u3 o 

25 112.5 -25 -100 V -10 
3 

= 

-so -25 75 o u'+ o 

o -100 o 150 vi+ o 

" " 
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Solving this system of equations, 

- - -
u3 

v3 

= 
u4 

v4 
~ . -

= 

PL 3 

ó = 3EI = 

0.028 

-0.005 

0.017 

-0.003 

o.os 

-0.30 

-0.06 

-0.20 

-0.005 0.017 -0.003 

0.030 0.006 0.020 

0.006 0.027 0.004 

0.020 0.004 0.020 

lQ X 6 3 
X 12 

-------- = 3.2 -+ 0.25 
3 X lQQ X 1 X 3 3 

Stresses: {cr} = [o] [B] {ó}e 

- - . 
o 

-10 

o 

o 
'- -



Element 

{ (J} = 

Element 

(J 
X 

(J = y 

T xy 

= 

1 

(J 100 o 
X 

ªy o 100 

Txy 

2 

= 

o 

= -1.0 

o 

-3.3 

100 o 

o 100 

o o 

O. 83 

.-3. 3 

-0.67 

o 

o 

o 

50 

o 

o 

50 

-1/6 

o 

o 

e 
6x 
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o o -1/6 o 1/6 o o 

o 1/3 o -1/3 o o o 

1/3 o -1/3 1/6 o 1/3 o 

o 

-0.06 

-0.20 

o o o 1/6 o o 

o o -1/3 o 1/3 o 

-1/6 1/3 o 1/3 1/6 -0.06 

-0.20 

o.os 

-0.30 
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5.1 INTRODUCTION 

5. ELEMENT SHAPE FUNCTIONS -

ISOPARAMETRIC ELEMENTS 

From the discussion of the previous chapters, it can be seen 

that the development of the element shape functions plays a 

main role in the finite element analysis. In the case of one 

dimensional element (example in Chapter 2) and the triangular 

element (Chapter 4), the element shape functions have been 

developed using a polynomial. Thus for any element, the 

unknown variable, ~ ' can be represented in terms of a poly

nomial as 

~ = 

where [P] 

Also {~} e 

where [c] 

Thus, {a} 

and ~ 

[P] {a } 

= [ 1 X y z . 

= [e] { a} 

-
= 1 Xl Y1 zl 

1 x2 Y2 z 2 

= [c]-1 {~ }e 

= [P] [c]-1 {~}e 

= [N] {~}e 

. . J 

( 5 . 1) 

( 5 . 2) 

( 5. 3) 

( 5. 4) 

( 5. 5) 

(5.5a) 
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The method of polynomia.l representation for obtaining shape 

functions has certain disadvantages. For example, the matrix 

[c] may not be inverted and even if it can be inverted, it will 

involve considerable time for computing the inverse especially 

in the case of three dimensional complex elements. Therefore, 

other methods such as the interpolation techniques are employed 

with much ease in developing the shape functions. Broadly, 

there are two kinds of interpolations-Lagrangian and Hermitian 

which are generally used. Or, if one prefers and in certain 

cases such as shells of revolution with nonsymmetric loading 

a Fourier series representation can be employed. 

5.2 LAGRANGIAN INTERPOLATION 

Referring to Pig 5.1, let us say that the variable,$, has certain 

known values at n points and it is desired to define$ at any 

other point in terms of the values of $ at n points. By fitting 

a curve of polynomial of order (n-1), we can write 

/ 

I 
/ 

I 
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<P = Nl </> l + N2 <P 2 + N3 <P 3 + . . . + Nn <Pn ( 5. 6) 

(x-x 2 ) (x-x 
3

) . . . (x-x) 
n 

Nl = (x 1-x2 ) (x 1-x 3) . . . (x1-xn) ( 5. 7) 

(x-x 
1

) (x-x 
3

) . . . (x-x) n 
N2 = (x2-x1) (x2-x3) . . . (x2-xn) 

Similarly N
3 
••• Nn 

Eq. (5.7) can be written in general terms as 

n 
,r (x-x.) 

j=l, j;ii J 
N. = 

1 n 
( 5. 8) 

,r (xi-xj) 
j=l, j;ii 

where ,r denotes a product of the indicated binomials over 
the indicated range j. 

An important point can be noted from the study of Eqs. (5.6) 

to ( 5. 8) 

For X = X i' N. = 1 
1 

and X = X. (j;ii), N. = o 
J 1 

(5.9) 

Eq. (5.9) states that the value oó -0hape óunetion ata node 

i-0 1 when the eo-ondinate-0 oó that node i-0 -0ub-0tituted in the 

intenpolating polynomial and i-0 zeno at all othen node-0. 

This statement can be easily verified with Eq. (5.6). For 

example, if we want the variable <P at point 1, then 

Naturally, and N = O 
n 

( 5. 10) 
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The shape function given by Eq. (5.8) is for the one dimen

sional situation shown in Fig 5.1. However, it can be easily 

extended to either two or three dimensional situations by 

writing down the product of the suitable functions in x with y 

or with y and z. Thus in general terms 

where 

5.3 

1 m n 
cp = I I I N. (x) N. (y) Nk (z) cj) . "k 

i=l j=l k=l l J lJ 
(5.11) 

1 = number of lines of nodes along X axis 

m = number of lines of nodes along y axis 

n = number of lines of nodes along z axis 

and <P ijk is the value of the variable at x = xi, y= yi 

and z = z i 

HERMITIAN INTERPOLATION 

In sorne cases, not only the continuity of the distribution of 

field variable but the continuity of its derivatives should 

also be satisfied (such as bending of beams and plates). This 

reqvirement can be satisfied by the use of Hermitian interp~ 

lation. I 

Fig 5.2 
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Referring to Fig 5.2, the problem prescribes two deflections 

w
1 

and w2 and two rotations 0 1 and 0 2 at the two ends of, say , 

a beam. For this case, the interpolation can be accomplished 

by the use of a cubic polynomial which has four terms. 

(5.12) 

and 

(5.13) 

5.4 NATURAL (LOCAL) COORDINATE SYSTEM 

Contrary to the global co-ordinate system which was used to 

formulate the triangular element in the previous chapter, the 

natural co-ordinate system is a local system defined for a 

particular element. It allows the specification of coordinates 

of a point in terms of normalized or nondimensionalized 

co-ordinates which take on values of one or zero at the noda l 

points. 

The major advantage of the natural co-ordinate system is that 

it not only generalizes the formulation but it also simplifies 

it in such a way that the stiffness matrix for an element can 

be generated by using numerical integration.Moreover, it assures 

invariance which otherwise can be obtained only by using 

complete polynomials. Another advantage is that irrespective 

of the size and orientation of the element with respect to 

the global axes, the shape functions and their derivatives 

which are required for the matrix [B] are the same for any 

element. However, there exists a relation between the two 
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s ystems and the relationship should be included in calculating 

the element stiffness matrix. The natural co-ordinate system 

also allows the easy representation of varying thickness and 

material properties within an element. 

In order to illustrate the use of natural co-ordinates, let 

us consider first the simple ene-dimensional case. Referring 

to Fig 5.3, the point i is ata distance of l 1 from node 1 and 

.e. 2 from node 2. 

Fig 5.3 

Thus 

or, in terms of normalized co-ordinates defined by 

The co-ordinate x of the point i is then 

From Eq. (5.17), it can be seen that 

and 
L 1 = 1 at node 1 and L 1 = O at node 2 

L 2 = O at node 1 and L2 = 1 at node 2 

(5.14) 

(5.15) 

( 5. 16) 

(5.17) 
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Using Eqs. (5.16) and (5.17), the relationship between natural 

co-ordinate and the global co-ordinate is 

(5.18) 

or, by inverting, 

( 5. 19) 

An alternate forro of natural co-ordinates is to assign unit 

values at the nodes as shown in Fig 5.4. 

. 

Iº 1 l., 2. 
L.. ~ 1 o _, 

·+1 

Fig 5. 4 

In this 1 (1-L) + 1 ( l+L) case, X = 
2 Xl 2 x2 (5.20) 

X - (Xl + X2)/2 
Inverting (5. 20), L = 

(x 1 - x2) / 2 
(5.21) 

Thus, d dL d = 2 d 
dx = dx dL --Z- dL (5.22) 

Integration of polynomial terms in the natural co-ordinate 

system is simpler and is given for instance 

I l L~ L; dl = 
p ! q! 

(p+q+l) ! l (5.23) 
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5.4.1 TRIANGULAR CO-ORDINATES OR AREA CO-ORDINATES 

In the case of triangular elements, the shape functions can 

be generated conveniently by using th~ natural co-ordinate 

system than the cartesian system. The natural co-ordinate 

system is generally known as area co-ordinates or triangular 

co-ordinates. The triangular co-ordinate system defines the 

co-ordinates of a point within an element as follows. Referring 

to F i g 5 . 5 ( a) 

y y 
3 (o,c,,l) 

Fig 5.5 

the triangle is divided into three parts by joining the point 

under consideration to the three vertices. Let the areas of 

these three subdivisions be A
1

, A
2 

and A 3 • If we introduce 

X 

the local co-ordinate system as L
1

, L
2
and L

3
, then the rela

tionship between L
1

, L
2 

and L
3 

and A
1

, A
2

, A
9 

can be written as 

where A is the area of the triangle 123. 

Since 

it follows that L
1 

+ L
2 

+ L
3 

= 1 

( 5. 24) 

(5 .25a) 

(5.25b) 
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From Eq. (5.25b), it can be seen that only two of the three 

area co-ordinates are independent. 

Following Eq. (5.6) and (5.7), 

(5.26) 

Using Eq. (5.25b) and (5.26), the relationship between the 

cartesian co-ordinate system and the area co-ordinate system 

can be written as 

1 1 1 1 

X = (5.27) 

y 

Or, by inversion, 

Ll ª1 bl Cl 1 

L2 
1 

b2 (5.28) = 2A ª2 c2 X 

L3 ª3 b3 C3 y 

where 

ªr = X2Y3 - x3y2 

b = y - y3 (5.29) 1 2 

Cl = X3 - X2 
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The identity of Eq. (5.28) to Eq. (4.6a) and Eq. (5.29) to 

(4.36) is worth noting. 

If the variable~ in Eq. (5.10) is considered to be the co

ordinate x or y, then from Eq. (5. 26)it follows that 

Nl = Ll ; N2 = L2 ; N3 = L3 (5.30) 

Also from Eq. (5.26), 

at node 1, Ll = 1 and L2 = L3 = o 

at node 2, L2 = 1 and Ll = L3 = o ( 5. 31) 

at node 3, L3 = 1 and Ll = L2 = o 

Therefore, the mapping of the co-ordinate system can be carried 

out as shown in Fig 5.S(b) for L
1

• 

Having obtained the relationship between the cartesian and 

area co-ordinates, the derivative of any function w.r.t. 

Cartesian system can be written in terms of local system as 

a 3 3L. 3 b. a 
E l. a E l. 

dX 
= a°x aL. = ---

i=l l. i=l 2A é)Li 

(5.32) 

a 3 aL. 
a 3 c. a 

E l. E l. 

ay = = 
i=l ay aL. i=l 2A 3L. 

l. l. 

The integration of polynomial terms can be carried out using 

the formula 

p! q! r! 
(p+q+r+2) ! 2A (5.33) 
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5.5 INTERPOLATION FUNCTIONS 

The element shape functions can be generated easily from the 

basic interpolation functions for linear, quadratic, cubic or 

higher order variation of the unknown variable. The basic 

concept of unit value for the shape function at the node under 

consideration and zero value at all other nodes facilitates 

this simple generation. The shape functions ata node are 

constructed by the superposition of component shape functions. 

In this way the simple interpolation functions for one 

dimensional case can be easily extended to two and three 

dimensional cases. Moreover, the use of local or natural 

co-ordinates is more convenient for the generation of shape 

functions. The generation of shape functions using the in

terpolation formulae will be first demonstrated for the case 

of one dimensional elements. 

Referring to Fig 5.6a, since the displacement varies linearly 

between the two nodes, the interpolation functions are as 

given in the sketch. If we considera line element with three 

nodes, the displacement varies quadratically and hence it 

will have unit value at the central node as shown in Fig 5 .6b 

and also unit values at the corner nodes. However, it can be 

seen that if the corner node has unit value, the mid side node 

has a value of 0.5. This can be eliminated as follows. First, 

construct the shape function for the mid side node, which is 

N = 1-L2 
3 
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Then, subtract from N l, half the value of N 3. 

Nl 
1 

(1-L) 
1 (1-L 2 ) = - 2 2 

1 1 
L - .! + 1 L2 = 2 - 2 2 2 

1 
L (L-1) = 2 

Similarly, N2 
1 

L (L+l) = 
2 

This principle can also be extended to higher order elemenüs. 

For example, referring to Fig 5.6c, the cubic variation of 

displacement is given by 

N 
9 ( 3L 3 L2 3L + 1) = 16 - -

3 

and Ni. 
9 (-3L 3 L2 + 3L + 1) = 16 -

Therefore N 
1 

( 1-L) 
2 1 = 3 N3 - - N l 2 3 4 

1 [_- 9L 3 + 9L 2 + L 1] = I6 -

similarly for N
2

• 

The same concept can be extended to two or three dimensiona¡ 

cases. For example, the element shown in Fig 5.6d will have 

the following shape functions. 

N 1 = [ ~ < 1- s) J [ ½ e 1-n) J 

= ¡ (1-s) (1-n) 



In general 

where 

In the case . of th.ree 

N2 = rn 
1 = 
8 

In general, N. 
1 

= 8 l. 

where s- = + l. 

and 

Cl+n n.) 
l. 

n = +- 1 
i 

dimensional element shown 

(l+s)] rn (1-n)] [; (l+z:)] 

(l+s) (1-n) (l+Z:) 

(l+s si) (l+n n.) 
l. 

( 1+ s Z:i) 

1, ni = :¡: 1 and z:i = + 
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in Fig 5.6e, 

1 

The shape functions for higher order elements can be generated 

in a similar manner to that described for the one dimensional 

element except using the product of appropriate components 

selected from the one dimensional case. The shape functions 

for sorne of the commonly used elements are given in Table 5.1 

In the case of triangular elements, the shape functions can be 

developed using the area co-ordinates. The shape functions at 

a node is generated by the product of the appropriate component 

shape functions obtained for each direction using Lagrangian 

interpolation. 

For the constant strain triangle with 3 cerner nodes, it can 

be easily written from Eq. (5.30) as 

(5.34) 
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so that (5.35) 

I n the case of higher order elements, the shape functions can 

be generated in such a way that 1) thepolynomial is of the 

particular degree, 2) it includes constant strain and rigid 

body movement terms and 3) has equal number of terms as that 

of its order. 

For example, in the case of linear strain triangle with 3 

cerner nodes and 3 midside nodes as shown in Fig 5.7, the 

interpolation 
3 (0,0,l) 

6 

4 
1 l 

( 2' 2 ,O) 2(0,1,0) 1 

Fig 5.7 
function should be quadratic and should have two terms. 

It can be written for a polynómial of n degree, the cerner 

nodes will have shape functions of the form 

(5.36) 

and the interior nodes along a side will have shape functions 

of the form 
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For node 4, .22 
N4 = IT Ll L2 = 4Ll L2 

• 

In the case of triangle with cubic variation of displacement, 

(n=3} • 

For corner node, Nl 
1 

Ll (3L
1 
-1} (3L

1
-2} = 2T 

For interior nodes, N4 
32. 

Ll L2 (3L 1 -1} = 2! 

9 
L2 (3L - 1} = 2 Ll 1 

For internal node at the centroid, N
10 

= 27L
1 

L
2 

L
3

• 



TABLE 5.1 TYPICAL SHAPE FUNCTIONS 

ELEMENT LINEAR QUADRATIC 

Triangle N. = L. N. = L. (2L. - 1) for 
l. l. l. l. l. 

corner nodes 

a) N. = 4L. Lk 
l. J 

Quadrilateral N. = 1
4 (l+s s.)x 

l. l. 
N. = 4

1 (l+s s.)(l+n n.)x 
l. l. l. 

(l+n ni> ( s s. + n n. - 1) 
l. l. 

for corner nedes 

1 s.=± 1, T). = ± 1 N. = -2 (1-s 2
) (l+n n.) 

l. l. l. l. 

fer s.= O 
l. 

N. = 2
1 

(l+s C) (1-n 2
) 

l. l. 

fer n. = O 
l. 

1 1 Rectangular N. = -8 c1+s s.)Cl+n n.) N. = -
8 

(l+s C) (l+n n.)x 
l. l. l. l. l. ' l. 

Prism. (l+r; r;.) c1+r; z;.)<s s-+n n.+r; z;.-2) 
l. l. l. l. l. 

fer cerner nodes 

s- = ± 1, 
l. 

n. = ± 1, 
l. 

N. = 4
1 ( 1- s 2

) ( 1 +n T1 . ) ( 1 + 1'.; 1'.; . ) 
l. l. l. 

z;. = ± 1 
l. 

for si=0, ni=±l, z;i=±l 

CUBIC 

1 N. = -2 L. (3L. - 1) (3L.-2) 
l. l. l. l. 

for corner nodes 

9 b) N. = -2 L. Lk (3L. - 1) 
l. J J 

for node at 1/3 

c) Ni= 27Lj Lk Lt 

for internal node 

1 N. = -32 (1+s s.)(l+n n.)x 
l. l. l. 

[-10 + 9Cs 2 +n 2
)] 

fer cerner nedes 

Ni= ~2 (1+s si) (l-n 2 )x 

( 1+9n n . ) 
l. 

. 1 
fer s.= ±1, n.= ± -3 l. l. 

1 N. =-64 Cl+s s.>c1+n n.)'f. 
l. l. l. 

c1+z; z;.> [J<s 2 +n 2 +z; 2 )-19] 
l. 

for corner nodes 

N. = 9
64 c1-s 2

) c1+9s e);,<. 
l. l. • 

< 1 +n n . ) 
l. 

(l+r; z;.) 
l. 

1 
for si=± 3' ni=± 1, 

z;. = ± 1 
l. 

. 

º' °' 



67 

5 . 6 ISOPARAMETRIC ELEMENTS 

The n eed for modelling curved boundaries cornbined with the idea 

of natural or local co-ordinates and the applicability of 

nurnerical integration has led to the development of i-0opanametn~e 

ele:ment.6. The local co-ordinate system for curved isoparametric 

elements is curvilinear. Since they are pararnetrically 

equi valent to their · rectilinear counterparts, they are called 

isoparametric elements. Similar to the rectilinear elements, 

curved isoparametric elements also satisfy the compatibility 

at the interface between elements, continuity within the element 

a nd the constant strain as well as rigid body movement criteria. 

As discussed in the previous sections, any field variable, 

whetherit be co-ordinates, displacements, material properties, 

temperature etc. ~ta point within an element can be uniquely 

defined in terms of the nodal values by the shape functions. 

Therefore , if the sarne shape function (of equal order) is used 

t o def i ne the variable, then such a representation is known as 

i -0opanametnie. If the geometric representation is of higher 

order than the field variable, it is known as .6upenpanametnie. 

On the other hand, if the geometric representation is of lower . 
order t han that of the field variable, it is termed .6ubpanametnie. 

Since t h e isoparametric elements are the only ones which are 

wi de l y used, the present discussion will be limited to them. 

As in the case of their parent elements (rectilinear elements), 

in isoparametric elements also the value of the shape function will 

be unity ata particular node under consideration and zero at 
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other nodes. It is important to take care not to distort the 

curved edge unreasonably. Otherwise two shape functions may 

take unit value at the same node. 

The basic rectilinear elements in one, two and three dimensions 

can be mapped into distorted curvilinear forros andan one-to

one correspondence between the cartesian and the 9urvilin~ar 

co-ordinates can be established. Then, the finite element 

equations can be developed in the local curvilinear system 

and then transformed into global system. 

Let the field variable~ be defined in terms of the shap~ 

function as 

For 

For 

( 5. 3 8) 

where the shape function is defined in the local 
curvilinear system. 

representing co-ordinates, 

X = [N (C n , U J {x}e 

y = [ N (~,n,s> J {y}e (5.39) 

z = [N ( ~,n,s> J {z}e 

representing displacements, 

u = [N (~,n,s> J {u}e 

\) = [N (~, n ,s) J {v}e ( 5. 40) 

w = [N <Cn,s) J {w}e 
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The - shape functions in Eqs. (5.39) and (5.40) will be identical 

to those . developed in Sections 5.4 and 5.5 for one, two and 

three dimensional elements (linear, quadratic and cubic). 

5.6.1 CONVERGENCE CRITERIA 

Similar to the parent elements, the isoparametric elements also 

have to satisfy the following criteria. 

l. If two adjacent elements are generated from "parent" elements 

in which the shape functions satisfy continuity requirements, 

then the distorted elements will also satisfy the same 

continuity condition. 

2 . If the shape functions are such that the continuity of the 

field variable is preserved in the parent element, then 

the same condition is satisfied in the distorted element. 

The second criteria needs no explanation. Considering the 

first criteria, it can be said that since the field variable , 

for example, displacements along any edge is uniquely 

defined by the values at the nodes along that edge only, 

the interelement compatibility is preserved. It can be 

readily seen that the shape functions at the common edge 

o f two adjacent elements are identical, thus defining the 

e lement shapes befare deformation and preserving the 

continuity of the displacement after deformation such that 

the common boundaries of two adjacent elements match exactly 

at all times. 

3. The constant strain criteria and the rigid body motion are 

also satisfied in the isoparametric elements, if the sum 

of the shape functions is equal to unity. 

This can be preved as follows. Let the field variable 

be defined uniquely as 

cp = [N] {cp}e = EN. q,. (5.41a) 
1 1 
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(5.41b) 

Ata particular nodc , i, Eq. (5.41b) can be written as 

Thus , LN. ~ - = a
1

IN . + a
2

LN.x. + a LN. y. + LN.z. 
l 't' l l l l 3 l l l l 

From Eq. ( 5. 3 9) X= i'.N.X. 
l l 

y = LN.y . 
l l 

z = LN . z . 
l .L 

(5.42) 

(5.43) 

(5.44) 

Comparing Eq. (5.44) with Eq. (5.41), it c a n be seen that 

this identity will hP s atisfied only if 

LN. = 1 
l 

(5.45) 

Since the polynomial assumed to define t he va riable consists 

of a constant term and the lower order terms specified 

continuously it is simple to verify that rigid body motions 

and constant strain criteria are satisfied as in the 

case of the parent elements. 
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In this chapter, the finite element equations such as the 

stiffness matrix and the mass or load matrix will be developed 

for a single element on the basis of shape functions described 

in Chapter 5. 

For the present discussion, if we consider only analysis of 

problems involving displacements, strains and stresses, then 

the relationship between strain and displacement is linear 

and the relationship between stress and strain is elastic 

based on Hooke's law. 

For generating the stiffness matrix of an element which is 

given by 

( 6 .1} 

we hQve to form the matrices [o] and [B]. 

The matrix [o] can be formed either for 2D, 3D or axisymmetric 

cases based on isotropic or anisotropic material behaviour, as 

gi ven in Chapter 4. The matrix [B 1 on the basis of infini te

simal strain theory is given by Eq. (4.21). If the local 

co-ordinate system is adopted as in the case of isoparametric 

elements, then the shape functions as in Eq. (5.38) will be 

represented in the curvilinear system, ~,n,~. Thus it is 

necessary 1) to transform the matrix [B] from local to global 
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system,and 2) to express the integration over the volume of 

an element in terms of local co-ordinates with the limits of 

integration being -1 to +1 for the cases discussed in Chapter S. 

6.2 TRANSFORMATION IN LOCAL CO-ORDINATES 

The strain-displacement matrix is given by 

[B.] = 
l. o o 

o o 

o o 
( 6. 2) 

o 

o 

o 

If we represent the shape function in local co-ordinates such 

that 

( 6. 3) 

then the derivatives i)N i)N añ' and ~ can be written by 

the rules of partial differentiation as 

aN. 
l. 

ar 

aN. 
l. Similarly ~ 

= 

i)N. 

and 1 ~. 

(6.4) 

Therefore, in matrix forro 
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aN. ax ay az aN. aN 
l. l. -1 
~ a( ~ a( ax ax 

aN. ax ~ az .a.N. aN 
1 l. [JJ 

i - ( 6. 5) an = an an añ 7y = ay 

aN. ax -~ az a.N. aN. 
l. l. l. 

a¡ ~ a z:; ~ 7z 7z 

where [J] is the Jacobian Matrix. 

Eq. (6.5) can be written in order to relate the global deri

vatives of N w.r.t. local as 

aN. 
l. 

ay 

aN. 
l. 

7z 

In fact, [JJ = 

Since 

aN aN 
1 2 

--n 71 

aN 
1 

aN 
2 

a¡ ~ 

and [N] = [ N U;,n,z:;) ] 

Therefore, [BJ = [J]-l [H] 

( 6. 6) 

X 
1 

( 6. 7) 

( 6. 8) 

( 6. 9) 



74 

From Eq. (6.8), it can be seen that the Jacobia.nhas to be 

inverted to obtain the matrix [B]. The Jacobian, in turn, is 

defined in terms of the co-ordinates of the nodes. Therefore, 

it is sensitive to certain types of distorted shapes of curved 

elements. It is important to check on the value of Jacobian; 

if it is zero or negative, it could be dueto the unreasonable 

distortion. 

The integration of the stiffness matrix over the volume involves 

J dx dy dz (6.10a} 

which is equivalent in local system to 

f det [J] d~ dn dr,; (6.10b} 

Since the local co-ordinate system is expressed with limits 

-1 and +1, 

and det [J] 

f
+l f+l J+l T 

= [B] [o] [B] det [J] d~ dn dr,; (6.11} 
-1 -1 -1 

= Cl(x,y,z} 
Cl(~,n,r,;} (6.12} 

The limits of integration as given in Eq. (6.11} are simple. 

However, the explicit forro of Jacobian matrix and hence the 

evaluation of stiffness matr:i,x is not. Therefore, numerical 

integration which is approximate has to be resorted to rather 

than the exact integration. 
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6 . 3 NUMERICAL INTEGRATION 

There are a number of methods for the numerical integration of 

a function. In this section, the discussion will be limited 

to Gauss quadrature. 

If the integral of the following function is t? be evaluated, 

J
+l 

I = y dx 
-1 

(6.13) 

we can evaluate the function at several sampling points, multi

ply each value of "y." by the appropriate weighting coefficient 
1 

"w." and add the products. For example, considering only one 
1 

point, the aproximate integral will be 

where yl 

interval. 

I = 2y (6.14) 
l 

is the value of the function at .the midpoint of the 

From Eq. (6.14) it can be noted that the approximate integral 

of a function can be obtained by evaluating the function at sev

eral sampling points, multiplying such values with appropriate 

wei~1ting coefficients and then adding them up. Thus for a gen

eral case, Eq. (6.14) can be written as 

I = J+l f(x) dx ~ 
-1 

n r w. f (x.) 
i=l - i i 

(6.15) 

In Gauss quadrature, the sampling points are located such that 

the desired accuracy is obtained for a particular set of sampling 

points. The sampling points are located symmetrically with 

respect to the centre of the inverval. 
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Eq. (6 .15) can be written for two and three dimensions, using 

local co-ordinates as follows 

I __ J+l f+l f(E;,,n) df,: dn 
-1 -1 

(6.16) 

J
+l 

J
+l 

I
+l 

I = f(Cn,r;) df,: dn ar; 
-1 -1 -1 

.f.. m n 
= r ¿ ¿ W. W. Wk f(E;,., ni, r; . ) (6.17) 

i=l j=l k=l 1 J · 1 1 

where .f.. , m, n are number of sampling points in each 
direction E;, , n, z; . 

For triangular elements, the area co-ordinates are used in the 

nurnerical integration 

(6.18) 
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TABLE 6.1 

Gauss quadrature formula J+-11 f(x) dx = 
n 
I: W. f(a.) 
i=l J. J 

± ª· w. 
J J. 

n = 2 0.57735027 1.0 

n = 3 0.77459667 0.55555556 
o. 0.88888889 

n = 4 0.86113631 0.34785485 
0.33998104 0.65214515 

TABLE 6.2 

Numeric~l Integration for Triangles 

Type of element 

linear 

quadratic 

cubic 

Points 

a 

a 
b 
e 

a 
b 
e 
d 
e 
f 
g 

Triangular 
co-ordinates 

1/3, 1/3, 1/3 

1/2, 1/2, O 
Ü I 1/2, 1/2 

1/2, O , 1/2 

1/3, 1/3, 1/3 
1/2, 1/2, 

1~2} o I 1/2, 
1/2, o I 1/2 
1, o, o } o, 1, · o 
o, o, 1 

Weighting 
coefficients, 

2Wk 

1 

1/3 
1/3 
1/3 

27/60 

8/60 

3/60 
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(6.19) 

The co-ordinates of the sarnpling points and their weighting 

coefficients forGauss Quadrature are given in Table 6.1 whereas 

the same,for triangular elements,are given in Table 6.2. 

6.3.1 NUMBER OF GAUSS POINTS FOR DESIRED ACCURACY 

The numerical integration using Gauss Quadrature involves 

evaluating the function at n Gauss points. Thus the effort 

for two dimensional problems is roughly proportional to n 2 

whereas it is n 3 for three dimensional situations. Therefore 

it is important to determine an adequate minimum number for 

desired accuracy. Since the integration of element equation 

affects the convergence, it can be said that convergence will 

occur in elastic displacement analysis if the integration is 

sufficient to evaluate the volume of the element exactly. The 

evaluation of the volume involves the calculation of determinant 

of Jacobian. Therefore, the necessary number of Gauss points 

can be determined by examining the Jacobian. 

For aplane linear element, the determinant of [J] is linear 

and hence only one point is adequate,whereas 2 x 2 points are 

necessary for quadratic element and 3 x 3 points for cubic 

element and similarly for three dimensional elements. 

In choosing the' number of points, it is necessary to use 

experience since lower order integration will be adequate if 
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a fine mesh is used and higher order is necessary if a coarse 

mesh is used. However, the number should never be less than 

the minimum necessary for convergence. 

As mentioned earlier, the finite element displacement formulation 

results in increased stiffness matrix of an element. Therefore, 

if the number of points is reduced, then the numerical 

integration reduces the element stiffness. This may be preferred 

in many instances. 

6.4 EQUIVALENT NODAL FORCES 

When external forces are concentrated at points, they can be 

applied directly at nades. On the other hand, if there are 

distributed loads either overa surface of an element or the 

volume of an element, then the forces which are statically 

equivalent to the distributed loading have to be applied at 

the corresponding nades of an element. These equivalent nodal 

forces can be calculated either directly (which is usually 

by intuition and is approximate), or by the variational approach 

which is exact since it conforms with the formulation of the 

stiffness matrix for the element. The former is generally 

OEPFI . 

known as lumped loads whereas the latter is called the consistent 

loads. 

For calculating the consistent loads, Eqs. (4.13) and (4.15) 

are used respectively for surface pressures and distributed 

body forces. 

(4.13) 
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and { F } e = - J [ N] T { p} dV 
V 

(4.15) 

In the case of isoparametric elements, these loads are calculated 

at the same time as the element stiffness matrix is computed, 

using numerical integration. Fig (6.1) shows the allocation 

of equivalent forces at the nodes of rectilinear elements due 

to surface load for 2D and 3D as well as the body force. 

Even though the final result may be nearly the same in the 

limit whether lumped loads or consistent loads are used, in the 

representation of curvilinear elements, a proper allocation 

should be made dueto a more complex distribution of loading. 

1/2 1/2 1/4 1/4 1/4 

1/4 
1/4 

1/4 1/4 

1/6 2/3 1/6 -1/12 1/3 -1/12 -

-1 /12 1 /3 11 11 1/3 

--
- 1 / 12 1/3 -1/12 

1/8 3/d 3/8 1/8 -1/8 3/16 3/16 -1/8 

3/16 1 ,1 3/16 

-1/8 3/16 • 3/16 

-, /8 3/16 3/16 -1/8 

Fi g 6 .1 
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6.5 AXISYMMETRIC PROBLEMS WITH NONAXISYMMETRIC LOADS 

In practice, situations quite frequently arise where structures 

which are geometrically axisymmetric are subjected to 

nonaxisymmetric l oading. For example, laterally loaded pile 

in soil medium, circular chimneys acted upon by wind loads 

and tanks and cylindrical structures subjected to earthquake. 

In the analysis of these structures, the use of Fourier series 

expansion is made and the three dimensional problem is still 

reduced to a two dimensional one. However, regarding the 

displacements not only the radial and axial components but th~ 

circumferential component should also be considered. 

z:. 

Fig 6.2 
For the sake of simplicity, consider the components of load 

which are symmetric about e= O axis and which are antisymmetric 

separately. The forces per unit length of circumference can 

be specified as 

N 
R = í: 

n=l 

N 
z = í: 

n=l 

N 
T = í: 

n=l 

-n R cos ne 

z n cos ne ( 6 . 20) 

-n T sin ne 
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where 

n = is the order of harmonic 

N = is the number of harmonics 

Eq. (6.20) is given for symmetric loads. For antisymmetric 

loads, sines and cosines are interchanged, as can be noted 

from the expression for T whose direction changes for 8 > 1 

as shown in Fig 6.3. 

R 

z 

T ) 

Symmetric Antisymmetric 

Fig 6.3 



Corresponding to the 

can be written using 

dimensions (r, z) . 

u = [N1 n 

vn = [ N l 

w = [ Nl n 
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load components, the displacement components 

the shape functions developed in two 

(6.21) 

The strain-displacement relationship now consists of six terms 

dueto the circumferential displacement. 

E z 

{E:} = 

y 
rz 

= 

au/ar 

~ + 1 aw 
r r ae 

1 av + aw 
rae az 

(6.22) 

For each harmonic, the strain components -and hence the stiffness 

matrix have to be evaluated since uncoupling occurs between 

the nodes. Thus, writing the matrix [B] for a single harmonic, 
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aN. 
l. cos ne o o rr-

óN. 
o ___.b cos ne o 

az 

nN. 
N. J. ne 

[Bi] n = 
l. - cos - cos ne o r 

r 

i=l . . . no. of aN. aN . nodes J. ne J. cos ne o 
~ 

cos ~ 

nN. 

b
aNi _ :i] ___ J. 

sin ne o sin ne 
r ar 

nN. aN. 
o - __ J. sin ne J. sin ne 

r ~ 

(6.23) 

Now, the stiffness matrix is given by 

[k]~ = J f f [B]~ [o] [B]n r de dr dz ( 6. 24 ) 

In a similar manner, the stiffness matrix for antisymmetric 

loading can be evaluated. 

The load vector in each harmonic for the symmetric case will be 

J
2,r 

{F}e = R cos 2 ne 
n O n 

z cos 2 ne de (6.25a) n 

T sin2 ne n 



For n = O, = 21 

z n 

o 

For n=l, 2 . • . = 1T R 
n 

z n 

T 
n 

For the antisymmetric loading, 

= ,r 

o 

o 

T 

R 

z 

T 

for n = O 

n 

n 

n for n = 1,2 ... 

n 
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(6.25b) 

(6. 25c) 

(6.25d) 

(6.25e) 

It can be noted that for n = O, the problem reduces to only two 

variables, and for the symmetric loading it reduces to axisymmetric 

case. Further, it can also be noted that the circumferential 

co-ordinate is eliminated from the integration because the only 

non zero terms are cos 2 ne and sin 2 ne and hence 

10

21 •¡21f 
cos 2 ne de= 

0 
sin 2 ne d8 = 1 for m = n fe O 
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From the foregoing discussion, it can be seen that the 

axisymmetric problem with nonaxisymmetric loading is divided 

into two separate analyses involving symmetric and antisymmetric 

modes for each harmonic {Fig 6.4). 

z 
z 

y 

X X 

R 

Symmetric A"nti s ym metric 

Fig 6.4 

The final result for the problem will be the sum of the 

respective solutions obtained separately. Certain remarks 

regarding the boundary condition are worth making. When n=l, 

three fixed boundary conditions are required, for n > 1, only 

axial displacement is to be zero for n = 1 and for n = O, axial 

and tangential components are to be zero. 
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In Chapter 6, the element equations were developed on the 

assumption that the strain-displacement relationship is linear 

and the stress-strain relationship is elastic. This assumption 

is, in fact, not true for most of the materials used in 

engineering. Either the material behaviour is inelastic 

introducing plastic and/or creep strains or the structural 

component and the loading as well as the environmental effects 

are such that large displacement and/or large strain oacurs. 

The former case, where the 'stress-strain relationship is 

inelastic,is generally known as mateñial nonlineañity whereas 

the latter case in which the strain-displacement relationship 

is nonlinear is known as geometñie nonlineañity. 

In order to solve the nonlinear problems using FEM, two broad 

classes of solution techniques are available. In one class, 

when the material behaviour in an element departs from the 

linear assumption, the stiffness matrix of the particular 

element is appropriately modified and the problem is solved 

again using the new stiffness matrix. This method is known 

as vañiable -0tióóne-0-0 method. In the other class, when the 

material behaviour of an element becomes nonlinear, instead of 

changing the original stiffness matrix an iterative approach 

using the same initial stiffness matrix is used. However, the 

• 
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nonlinear effects are accounted for by means of the residual 

forces arising from equilibrium conditions. This method is 

known as i.n.lt.lal .6t.lóóne.6.6 method. 

In both these methods either the analysis can be carried out 

by applying the total loador by using increments of total load. 

In general, the stresses and strains are dependent on the 

history of loading such as loading and unloading as well as 

cyclic loading. Therefore, it is preferable to use an 

incremental approach. 

7.2 VARIABLE STIFFNESS METHOD 

In the v~riable stiff~ess method, for an increment of load, 

the displacements, strains and stresses are calculated on the 

basis o~ linear elasticity 

[K] {u} = {P} ( 7 .1) 

where [K] consists of element stiffness matrices given by 

(7.2) 

If it is found that in an element, the assumption of linear 

elasticity is not valid; then the stiffness matrix for that 

element is modified,such that 

(7.3) 
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where [B]nl is the nonlinear relationship of strain-dis 

placernent 

and [D]nl is the inelastic material rnatrix 

Now, with this rnodified rnatrix, the stiffness rnatrix for the 

whole structure is assernbled and the solution for displacernents, 

stresses and strains are obtained 

[K *] {u* } = { P } (7.4) 

It can be noted frorn the description of this rnethod that its 

rnain disadvantage is that everytirne an elernent behaviour is 

nonlinear, the stiffness rnatrix has to be reforrnulated and 

the entire systern of equations is to be solved again. This 

is equivalent to solving different linear elastic problerns. 

Cornputationally, this rnethod will be, in rnost of the cases, 

uneconornical. In addition, this rnethod fails for certain 

cases where, for exarnple, the elernent behaviour is perfectly 

plastic. 

7.3 INITIAL STIFFNESS METHOD 

In the case of initial stiffness rnethod, for an incrernent of 

load, even when the elernent behaviour is nonlinear, the sarne 

initial stiffness rnatrix as in Eq. (7.1) is used instead of 

the one given in Eq. (7.4). The nonlinear effects can be 

taken into account by rneans of nodal forces calculated on the 

basis of difference between Eq. (7.1) and (7.4). If the forces 

dueto nonlinear effects are defined as 

• { P i} = J [ B] ~l { a i} dV 
V 

(7 . 5) 
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where {oi} is the initial stresses dueto inelastic nature. 

At this stage one can calculate the internal stresses dueto 

the applied external load and the initial forces using the 

original stiffness matrix. In order to check for equilibrium 

conditions calculate the nodal forces dueto internal stress 

distribution and compare with the external nodal forces. If 

the external nodal forces are [P] and the internal forces are 

{P*}, then the residual forces, 

{P} = {P} - {P*} R (7.6) 

Therefore, in order to reduce the system of residual forces 

to zero, an iterative procedure is adopted, in which the 

initial forces {Pi} are calculated for every iteration and 

applied to the problem along with the original stiffness matrix 

and the external loads. When the residual forces are negligible, 

convergences deemed to have obtained and the next load increment 

is applied. 

As can be seen, the initial stiffness method does not require 

the modification of the initial stiffness matrix and the 

different loading conditions dueto initial loads can be easily 

solved using an efficient solution system based on direct 

elimination. This will result in a more economical analysis. 

In the following sections, only the material nonlinearity will 

be assumed for the sake of simplicity and different techniques 

based on the initial stiffness matrix will be described. 



The lj_near elq$tiq ~on~t,i.tutive 1,aw can be written as 

where · {a}= initial stress 
o 

and {E
0

} = initial strain 
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( 7. 7) 

In order to conform with the appropriate nonlinear stress

strain relationship, if an adjustment in the linear law 

specified by Eq. (7.7) has to be made,it can be done by one 

of the following thre.e ways : .. , . 

a) the matrix [o] can be adjusted. In thi-s case it will 

be equivalent to the variable stiffness method described 

in Section 7.2. 

(or b) the initial strai~ can be adju$ted, . keeping the 

elasticity matrix [nl constant. This technique is 

known as ,lnl . .t.la:l :-0.tJta,ln app1Loac.h. 

(or c) the initial stress can be adjusted, keeping the 

elasticity matrix constant. This process is termed 

the ,ln,l.t,lal .6.ttte.6 . .6 app1Loac.h . 
. ,.,, ¡ 

7.3.1 INITIAL STRAIN APPROACH 

This method is suitable if ¡ the initial strains such as due 

to creep can be determined , directly from the stresses. The 

procedure is as follows: 

a) for a typical increment of load o~ time, calculate the 

total incremental stresses and strains from the dis 

-placements using the original elasticity matrix. 
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b) compute the initial strain (creep, plasticity,etc) 

e) the initial strain calculated in step (b) may not be 

correct because the stresses were calculated on the 

basis of linear law. Therefore, convert them into 

equivalent nodal forces. 

{da}= [o] ({de:} - {de:º}) 

{dPi} = J [B]T [o] {de: 0 } dV 
V 

( 7. 8a) 

( 7. 8b) 

d) for the next itera~ion, apply these initial loads and 

solve the problem again using the initial elasticity 

matrix. 

e) check for convergence. If there is not appreciable 

difference between consecutive values of initial 

strains, convergence is obtained. Apply another 

increment of loador time. Otherwise repeat steps 

(b) to (d). 

This approach is not applicable fer the materials which are 

perfectly plastic or of low strain-hardening parameter. This 

can be seen from Fig 7.1. 

(T 

I / 
-- ---+- -- i- · 

/' . d-. 1 (j -i--- · ,_ j _ 
' 1 

---- -¡f--- ----
, 1 

H' = O 

1 • 

dE· ! 
,◄ " .. ¡ 

E 
E 

Fi g 7. 1 
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7.3.2 INITIAL STRESS APPROACH 

In this process, similar steps as in the initial strain approach 

are carried out but the corrections are made to initial stresses. 

Thus, 

{dcr} = {dcr
0

} + [o] {de:} 

( or) { dcr } - { dcr 
O 

} = [o] • { de: } 

The major steps are as follows: 

( 7 . 9 a) 

(7.9b) 

a) for a typical increment of load, calculate the strains 

and stresses from the displacements using the original 

elasticity matrix. 

b) for nonlinear behaviour, the stresses will be given by 

(7.10a) 

However, using the original elasticity matrix 

• { dcr 
1 

} ' = [ D] fde: 
1 

} (7.10b) 

Thus the difference between the two is 

{dcr.} = {dcr }
1 

- {dcr} = ([D] - [o*]> {de:} (7.11) 
1 1 1 

This initial stress can be viewed upon as the excess 

stress which the material cannot withstand. Therefore, 

this excess stress has to be distributed to other 

adjacent elements. • For this purpose, convert them into 

equivalent nodal forces 

(7.12) 
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c) during the next iteration, apply these initial forces 

and use the original elasticity matrix. 

d) repeat steps (b) and (c) unless convergence has been 

obtained. Convergence can be based upon the negligible 

initial forces. For this purpose either the absolute 

value of the largest initial force or the norm of the 

initial forces can be considered. 

As can be seen from Fig 7.2, this method is applicable to all 

cases strain-hardening and perfectly plastic materials, 

strain-softening materials and cyclic loading situations. 

(j 

-
E E 

Fig 7.2 

From Fig 7.2, it can be noted that the initial stress process 

converges very slowly in the case of strain-softening. Therefore, 

sorne accelerator techniques can be employed. In one such technique, 

the displacements calculated from the initial forces are used 

to calculate what is known as "alpha" constant. 

(7.13) 



where 

i teration 

a =1 if dó = O k k 

[K
;i -1 = 'J {dP.} 

1 

is the displacement dueto {dP.} and {dP} 
1 

and dwk is the displacement dueto initial loads. 
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(7.13a) 

(7.14) 

in k
th 

In this process, the incremental displacement for the next 

iteration is obtained by multiplying the previous incremental 

displacement by the alpha constant. In most of the cases, the 

accelerator techniques will yield better convergence. However, 

there may be situations where divergence may occur. 
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EXAMPLE 7.1 

Analyse the three bar structure shown in the sketch using 

"variable stiffness method" and "initial stress method". 

(D (i) 

L =-1 
B B 

;:: 30 

CT 

5 

ELEMENTS l &3 ELE.fVléNT 2 

Variable stiffness method: 

or P
1 

compatibility 

equilibrium 



Apply load increment of fip l = 15 

kl k2 k3 
AE lxl 

1 = = = = -- = 
L 1 

o 15 5 = = 
3 

dP = dP = dP = 1xs = 5 
l 2 3 

Apply second increment of load, l1P
2 

= 15 

As before, o= 5 and dP = 5 

Element 2 will yield. Change its stiffness matrix. 

o [ 1 

o = 

dP l = 
• 

dP
2 

= 

Thus, pl = 

p2 = 

1 X 0.1 
1 

+ 0.1 

15 _ 
2.1 -

dP 
3 

= 

= 0.1 

+ 1 J = 15 

7.14 

lx7.14 = 7.14 

0.lx7.14 = 0.714 

p3 = 5 + 7.14 = 12.14 

5 + 0.714 = 5.714 

97 
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Initial stress method: 

{ da . } = ( [ D] - [ D ] ) • { dE} 
i ep 

For element 2 , 

pl 

Inc. 1 t>.P = 15 5 

Inc. 2 t>.P = 15 5 

Iter. 1 1.5 

2 0.45 

3 0.135 

4 0.040 

5 0.012 

12.137 

D = 1.0 D = 0.1 ep 

D D = 0.9 ep 

p p 
2 3 

5 5 E = 1 for 
(5.0) 
0.5 5 5 X 0.1 = 

( l. 5) distribute 

0.15 1.5 distribute 
(0.45) 
0.045 0.45 distribute 

(O. 14) 
0.014 0.135 distribute 

(0.04) 
0.004 0.040 distribute 

(0.012) 
0.012 0.012 

5.725 12.137 

all 

0.5 

4.5 

1.35 

0.405 

0.121 

0.036 
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In this chapter, the discussion will be confined to problerns 

with nonlinear material behaviour. Arnong the various nonlinear 

constitutive relationships, only those connected with plasticity, 

creep and tension cut-off will be described in detail. The ways 

by which these three material nonlinearities can be handled in 

FEM will be explained with reference to initial stiffness method. 

Finally, the various nonlinear constitutive laws availablewill 

be discussed. 

8.2 PLASTICITY 

The plastic behaviour is independent of time but is dependent 

on the stress level. In order to analyse an elasto-plastic 

problem, it is necessary to define 

1) yield criterion which specifies the onset of plastic flow 

2) elastic stress-strain relationship and 

3) plastic stress-strain relationship for which an appropriate 

flow rule has to be used to determine the plastic strain 

8.2.1 YIELD CRITERION 

The yield criterionis a condition specifying a particular combination 

of stress cornponents, which initiates the plastic flow. Thus it is a 

function of not only the stresses but also the hardening 

parameter which defines the modified yield surface during the 
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plastic flow. Therefore, the general forro of an yield criterion 

can be expressed as 

F ({cr}, K) = 0 

(or) 

where 

J l = First stress invariant = a 
X 

J2 = Second stress invariant 

= a a + a a + a a T 2 
X y y z z X xy 

J3 = Third stress invariant 

= a a ªz - a T 2 - a T ¡ -
X y X yz y zx 

and K = hardening par ame ter which is 

+ a + a y z 

T 2 T 2 
yz zx 

a T 2 + 2T z xy 

a function 

xy 

of 

T yz 

( 8 .1) 

( 8. 2) 

(8.3) 

T zx 

strain. 

When yielding is independent of the hydrostatic stress, Eq. (8.2) 

~an be written as 

where 

F (J' J 1
) = K 

2 
1 

3 

J' is 2nd invariant of deviatoric stresses 
2 

and J; is 3rd invariant of deviatoric stresses 

2J3 
1 

= -- -27 

( 8. 4} 
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8.2.2 PLASTIC POTENTIAL 

In the incremental or flow theory of plasticity, it is 

postulated that the plastic strain increment {dEP} can be 

obtained from the differential of the plastic potential which 

is defined by 

g ( {cr} , K) = Ü 

{d EP } = d>. {l:J.} 
a cr 

where dA is known as the proportionality constant 

(8.5) 

(8.6) 

The principle on which Eq. (8.6) is based iscalled the normality 

principle which states that if the yield surface is assumed 

to be smooth and convex, then the plastic strain vector at any 

point on the yield surface is outward normal to the tangent at 

that point. 

If the plastic potential defined by Eq. (8.5) and the yield 

criterion given by Eq. (8.1) are the same, the flow rule is 

termed the associated flow rule whereas it is known as the 

nonassociated flow rule, if they are different. 

On the basis of associated flow rule, the plastic strain 

increment can be obtained as 

If we let {b} 

dA {b} 

( 8. 7) 

( 8. 8a) 

( 8. 8b) 
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8.2.3 SPECIAL FORMS OF YIELD CRITERIA 

a) Tresca's criterion: 

Tresca's criterion is based on the maximum shear stress and 

can be written as 

{8.9) 

where K is the yield stress in shear 

b) von Mises criterion: 

von Mises criterion is based on the maximum distortion energy 

and can be written as 

F= ~ = (J = (J 
y 

where 

o = effective stress = R 

=IT [ 2 
(o - o } 

X y 0 ) 2 ( o}2 
+ {oy - z + ºz - x 

+ 6 ( T 2 + T 2 + T 2 } ] 1/ 2 
xy yz zx 

ando = is the uniaxial yield stress y 

For the particular case of uniaxial stress field, 

-o = 2o 2 

X = ~ ~ = o y 

{8.10) 

{ 8. 11) 

(8.12) 
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both Tresca's and van Mises,yield criteria,have been extensively 

used far metals. However, far materials such as soils and 

rocks, it is necessary to expres~ an yield crite+ion which in

eludes parar¡teters defining the cohesion and friction properties. 

Thus, Mohr-Coulomb and Drucker-Prager criteria are considered 

to be mqre suitable far these materials. 

e) Mohr-Coulomb criterion: 

This failure criterion is gen~rally expressed as 

T ~ e + (J tan cp (8.13) 
n 

where 

T is the shear stress 

(J is the normal $tress n 

e is the cohesion 

and cp .is the angle of internal friction 

d) Drucker-Prager criterion: 

Drucker-Prager criterion is the modified form of van Mises 

criterion on the basis of Mohr-Coulomb failure criterion. It 
. 

can be written as 

F = a.Jl + V== K (8.14) 

whe~e a and K are material constants depending on 

cohesion and friction 

a = 2 Sin <f> (8.15) 

\[3 (3 - Sin cp) 
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and K = 6c Cos <j> 

~ (3 - Sin~} 

e} Hill's criterion for anisotropic rnaterials: 

For orthotropic rnaterials, Hill extended the von Mises criterion 

as follows 

in which a's are anisotropic pararneters 

f} Extension of Hill's criterion to geornechanics: 

For soils and rocks, Pariseu extended Hill's criterion as given 

below 

[ ª1. 2 
2 2 2 

F = (a - y> + ª2 3 ( 0 y -a z} + a 3 1 ( o -a ) 
X Z XX 

+ Cl44 
T 2 + ªs s 

T 2 + ªs 6 
T 2 

] 1/2 
xy yz zx 

+ (al 1 a + ª22 a + ª 3 3 ªz} = K (8.17) 
X y 

8.2.4 ELASTIC-PLASTIC STRESS-STRAIN RELATIONSHIP 

In the incremental theory of plasticity, the total strain for 

a typical incrernent of load, is written as the cornbination of 

elastic and plastic strains 

{de:} (8.18} 
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(8.19a) 

(8.19b) 

Thus, the total strain fer an increment is 

(8.20) 

The constant dA can be obtained by differentiating the yield 

criterion, F 

(8.21) 

Introducing a parameter A such that 

clF 1 
A= 3i< dK dA (8.22) 

we can write Eq. (8.21) as 

{b}T {do} - AdA = O (8.23a) 

Thus,the total stress-strain relationship can be written as 

(8.23b) 

Premultiplying both sides of Eq. (8.20) by {b}T [oe], 

Using Eq.(8.23a) in Eq. (8.24) 

(8.25) 
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or (8.26) 

Substituting this value of dA in Eq. (8.20), 

(8.28) 

The elasto-plastic matrix [DepJ is symmetric for assoctated 

flow rules and is positive definite when A is positive. 

I t can be seen from the definition of "A" in Eq. (8.22) that 

its significance depends on the nature of the hardening rule. 

For ideally plastic materials, it is zero. For isotropic hardening 

materials, its value can be determined as follows; 

the amount of plastic work done during plastic deformation is 

(8.30) 

substituting Eq. (8.30) into Eq. (8.22), 

(8.31) 
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Now the value of A · can be obtained using the relationship 

between the yield criterion F and the hardening parameter K. 

Using the effective stress and the effective plastic strain, 

the plastic work done can be written as 

(8.32) 

F roro Eq. ( 8 . 3 O) and ( 8. 3 2) , 

(8.33) 

For the unixial case, the effective plastic strain can be 

written as 

Also, 

Thus, 

do 
H' (8.34) 

where H' is the slope of the effective stress-effective 

plastic strain curve. 

dF do 
dK = dK 

(8.35) 

from Eq. (8.22} 

A= 
8F dK 1 
dK dA 

do dK 
{o}T {b} 

= dK o dEP 

do dK 
{o} T {b} H' 

= dK - do q 

A {o} T {b} H' 
= (8.36} -(J 
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In the case of von Mises yield criterion it can be shown that 

T -{cr} {b} = cr (8.37) 

Therefore the parameter "A" reduces to 

A= H' (8.38) 

and d;.\ = d~ (8.39) 

As can be seen from Eq. (8.28) it is necessary to use the 

elasto-plastic matrix [Dep] if an element becomes plastic 

during a particular increment of load. This will involve 

calculating the new stiffness matrix for the element as well 

as renewed assembly and solution. However, if the initial 

stress method, as described in the previous chapter, is used 

it is only necessary to calculate the initial stress dueto 

plasticity. This initial stress can be obtained from Eq. (8.28) 

(8.40) 

In calculating [oPJ, it is necessary only to form {b} for every 

iteration since [oe] is the original elasticity matrix. It is 

also worth noting that Eq. (8.29) is valid both for ideal 

plasticity (A= O) and for work-hardening materials. 
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8.3 TENSION CUT-OFF 

Materials such as rock, concrete and soil have only a limited 

tensile strength or nene at all. Therefore in dealing with 

such materials, when tensile stresses are developed in any 

part of the .structure or continuum made up of these materials, 

such excess tensile stresses . should be redistributed to other 

parts. In fact, such stress transfer occurs in a physical 

sense. In the finite element analysis, this process can be 

carried out as follows: 

1. for a typical increment of load, calculate the displacements 

and then the stresses. Determine the principal stresses 

cr
1 

and cr
2 

(two-dimensional cases). 

2. check to see whether these principal stresses exceed the 

limited tensile strength of the material, ªttº The value 

of ªtt is as prescribed initially for the element before 

cracking and once the element has cracked the value of ªtt 

will be zero. 

3. determine the excess . tensile stress and the stresses to be 

distributed, 

(8.41) 

cr ' = (J - al t 2 2 

· {crt} = crt = Cos 2 e Sin 2 e cr ' X l 

t 
Sin 2 8 Cos 2 8 cr' (J 2 (8.42) y 

Tt 1 Sin 28 1 Sin 28 xy 2 - 2 
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from the stresses to be distributed, calculate the equivalent 

nodal forces 

(8.43) 

5. apply these nodal forces for the next iteration and repeat 

steps 1 to 4 until convergence is obtained. The original 

elasticity matrix is used for every increment and iteration. 

6. if convergence is not obtained within a maximum number of 

iterations prescribed, then the structure is considered 

to be at the verge of failure. 

8.4 CREEP 

The creep strain is caused dueto the time-dependent nonlinear 

effects whereas the plastic strain is a time-independent 

phenomena. In order to assess the creep strain, the initial 

strain approach can be employed, as corrections in the initial 

strain of Eq. (7.7) can be used just like the corrections in 

the initial stress were used for elasto-plastic analysis. 

Again dueto the time dependent nature, the increments can 

be in the time domain rather than the load increments. 

Within a typical time increment, the total incremental strain 

in an element can be divided into elastic and creep strains as 

where 

{dE} = {dEe} + {dEc} 

{dEe} = [neJ- 1 {da} 

(8.44) 

(8.45) 

-
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the incremental creep strain is generally a function of the 

effective stress cr, the total effective creep strain ~,and 

the time, t. Thus, it can be expressed in a functional form 

as 

(8.46) 

The effective stress is same as defined for plasticity problems. 

The total effective creep strain depends on the creep law 

assurned for a particular material. 

Having determined the incremental creep strains, the incremental 

stresses can be obtained as 

8.4.1 CREEP LAWS 

a) Exponential law.- ~=A (1 - eBt) 

b) Hyperbolic law.- et 
D+t 

(8.47) 

(8.48) 

(8.49) 

where A, B, e and D are constants depending on the stress 

level and exposure conditions. 

e) ~ A 
am 

= e 

where A 

m 

c 

and a, 

tn 

X = -n 

cr 
l 

= 

is 

x, 

for soils 

- cr 3 

2c 

cohesion 

n are constants 

(8.50) 

(8.50a) 

(8.50b) 
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8.4.2 SELECTION OF TIME INCREMENT 

Since the stresses are assumed to remain constant in any time 

interval (in the initial strain process), the selection of a 

suitable time increment is critical in the analysis. If large 

increments are used, the solution is likely to diverge. On the 

other hand; if small time increments are used, it will involve 

more computer time. Thus, i t is ne_cessary to adopt an optimal 

time increment. One criterion for choosing such time increment 

would be to keep the creep strains smaller than the elastic 

strains within an iricrement. If incremental creep strain 

exceed the elastic strain, divergence is likely to occur. 

8.5 NONLINEAR ELASTICITY 

In soil mechanics problems, various investigators have been 

adopting piecewise linearization to represent the nonlinear 

behaviour of soils. For this purpose, the tangent stiffness 

method (variable stiffness) is quite suitable. The tangent 

modulus is chosen on the basis of the stress level in an 

element. The various constitutive relationships which have 

been used can be summarized as follows: 

a) tangent modulus 

[ 
Rf ( 1 - Sin cp) ( a 1 - a 3 ) J (-ª 3 ) n 

Et= 1 - --:----,,,----,---,,,----=-,,--.-,- K P 
2c Cos cp + 2a

3 
Sin cp a Pa (8.51) 
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tangent Poisson's ratio 

G-F log (o 3/P a> 

(1 - A) 
2 

(8.52) 

where is failure ratio which is less than unity 

e and ~ are Mohr-Coulomb strength parameters 

K and n are experimentally determined parameters 

P is atmospheric pressure 
a 

A= 

K P a ( o 3 /P a) n [1 

G and F are parameters determined experimentally 

Et = E (1 + BJ i) for sand (8.54) 
o 

Et = E (1 - a ~) for clay (8.55) 
o 

where a and B are non linear coefficients 

J and J 
1 2 

are first and second stress invariants 

and E is the initial modulus 
o 

e) cubic spline functions 

[q]T = E . , 
1 

(8.56) 
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[<P] = Second derivative of S (o) 

[N]T 1 
[6 (a. - O) 6 (a - a. 1> (a. - o) 3 

= 6A. 1 1- 1 
1 

"~ 
3 "~ J - (a. - o) ( a - a. 1> - (a - a. 1> 

1 1 1- 1 1-

"· = ª· - o. 1 
1 1 1-

Et 
1 = s 1 (o) 

(8.57) 

and s' (o) = [N']T {q} (8.58) 
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