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ASSTRhCT 

Tne lit1rat~re on dynamics is rather rich both in qua ,tity and quality. 

,'-:ost of it, no:.ever, is written by scientists and meant fo,- scientists. not 

engineers. lhe aftermath is that the treatment of such tapies as the dynamical 

analysis cf nonholonomic systems is not presented witii due detail, in many 

cases. A few exce~tions are the books (meant for engi~eers) by Meirovitch 

[5], Sreenwood [6) and Kane [7]. The latter introduces an original approach 

to the analysis of nonholonomic dynamical systems. This was further .!!.~----•. 

by Passerello and Huston [8]. In the present paper the approaches in [7] 

and [8] are treated with more for:nalism and oriented to computer modelling. 

Contrary to the usual practice o_f deriving dyna:;¡ical equations from 

the "Principle of Virtual Work", which requires the definition of virtual 

displace~ents, the author derives those equations starting from the "First 

Law of Ther111odynamics", in an attempt to rational ize the whole formulation. 

roreover, tr.e concepts of general ized force, general ized impulse and 

ger.~nl i.:ed ~8mentu:,: are forn:al1y defined, as ~,ell as the concept of 

ncnh~lonomic constraint. With regard to the latter, necesslry and sufficient 

conditio~s Jre formally expressed for a kinamatic constraint to be 

holonomic. 
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1<\ AT: 

~ \·. ~-~: 

x1Ay: - --

q ,q: 

lowe -case underlined character. An n-dimen~ional 

colur .. n vector. 

upper-case underlined character. An mxn matrix 

the transpuse of ~ or, correspondingly, of B 

the scalar or inner product of n-dimensional vectors 

:!< and y. 

a (scalar) bilinear form of m-dimensional vector 

~ and n-di~ensional vector y. associated with mxn 

matrix f:. 

the vector of generalized coordinates or, correspon 

ingly,of generalized velocity. 

the pa~tial derivative of the scalar f with respect 

ton-dimensional vector~- lt is an n-dirnensional 

colu~n vector whase ith component is the partial 

derivative off ~ith respect to x1 , the ith 

co:-:~or,ent of :!<· 

T~e ~artial der1vat1ve of the m-dimensional vector 

"w1th respect ~e :he n-dimensional vector!· lt is 

ar, r-•;;n matrix ,,r,ose (i ,j) element is the p;rtial 

derlvative of y1 with respect to xj. 



LAGR;',i,Glf.i; OYi,A:-11cs OF t-~ECHtfüCAL SYSTEMS 

l. PREL!MINARY CO~CEPTS 

1.1. Fundamental definitions 

Broadly sp2aking a system is a ~ of objects that interact 1·,ith each 

other. Thus, t~: ~et cf ccllestial objects constituting our gallaxy is in 

fact a system, for thC:y interact ~iith each other through gravitaticnal 

forces. The different cells of a living organism constitute an additional 

example of a system. 

A system is mechanic~.l if, in the first place, it is constituted by 

mechanical elements. These are: particles, rigid bcdies, conti~~a. springs 

and dashpots. But a set of of such elements in itself does not constitute 

a mechanical system, unless its elements interact with each other through 

forces or exchange of mass and momentum. The state of a system is a ~rape~ 

ty of the system allowing one to predict the behaviour cf the system in 

time, i.e. the changes it undergces. ihis state is constituted by a set of 

variables which, obviously, are referred to as staJe variables. lf these 

variables are grouped within a vector, ene speaks of the state vector of 

the system. At this stage ene should make the distinction bet,eer. tl-,o bread 

classes of systems, namely those being characterised cy a fir.ite-dimensio­

nal state vector, and those by an infinitely-dimensional state vector. The 

latter always refer to contin~a, i.e. beams, plates, shells, fluids, cte., 

but thes~ wi 11 not be s tudi ed , .. t:ri=. lhus, thc 1,~echani ca 1 sys ter.1s thz. t wi 11 

be ded 1 t wi th are the so-ca 11 ed 1 umµed Fraa.~ter sys te0as, ~.e. tr.osc 

composed cf cor.centrated masses, springs, dashpots and rigid bodics. 

Since the reader is assum2d to be familiar ~1ith ti;e basic conce~ts of 

mechanics, it l'iill bC: taken fo, grar.ti:d th~t tl;c r.otions of particle, 
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rigid body, sprir~, dashpot, mass, force, time, velocity and acce1cration 

need r:o f¡¡rther r.iscussion. Nevertheless, if needed, an extenslve account 

of such concepts can be found in [ 1 J. Before proceeding , ho1,r-ver, a 

s1.orve;¡ of ... inem,,". ,es is needed. 

1.2. Kin,:;~atics of mechanical systems 

The basic concepts of Kinematics of rigid bodies and their couplings 

are extensively d:scussed in [2], and often reference wi11 be made to 

the material con~:ined there. Here it will be recalled that the Josition 

vector of a point and its first two derivatives, ve!iJ-;íty and acceleration, 

are denoted by!, r or ~ and y or f, respectively. These variables 

are three-dimensional vector functions of time. The rotation ané the angular 

velocity (or spin) matrices of a rigid body are tensor functions of time and 

are denoted by g·and g, respectively. Moreover, the angular t~~eleration 

matrix of a rigid body is given by g + g2. The relationship between Q and 

gis 

(1.2.1.) 

1heorems concerning the foregoing variables are discussed in detail in 

[2]. 

1.3. Dynamical v<.riables 

The actions of the environment on a particle are redúced to~ single 

concentrated force that will be denoted by f, whereas those acting on a 

rigid body can be either_ a concentrated force f acting at a given point of 

•? the body, a distributed force f' acting on a given portion of the surface 

of the body, a concentrated moment with respect to a point O, denoted by 

i 

! 



!o ora distributed moment with respect to Point O, actíng on a given 

portian of the surface, that will be der.oteá by fo· Io r.-.ar.y instances 

forces ¡¡nd r..ornents can be assurnec te !:le concentrated. ii:e r.;ass of either 

partich0 is dencted by 

3. 

y bcir:g the velocity of the ¡iarticle. Tnc exprcss·i,>r. give:n in e¡;. (1.3.l) 

represents the momentum of a rigid boóy if mis the ~a:; of the bcdy and 

~ is the ielocity of its center of mass. The angular .;;.:~entum of a particle 

about a given point O is just the moment of the m-:J.1i~:1t,;::1 of that particle 

about that point. Thus, denoting by~ the position v~ctor of the particle with 

respect to O,.the angular momentum of the particle wit~ respect to this 

point is given by 

If njk is a component -of the angular velocity matr"ilt of a rigid body, 

its corresponding angular velocity vector having the components "'-<' then 

the.rel4tionship between both sets of components is 

(1.3.3) 

where w is referred to as the axial vector [3] of g and is also exoresse_d as 

ti • vect (8) (l.3.3a) 

Letting !o denote the inertia tensor of a rigid bC~y about point o. the 

angular momentum of that body about the same point is given by 

(l.3.4) 

• 
1 

1 
1 

___I_. 
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Th2 kinetic energy of a pzrt~:le of mass m ~0,1 ~n9 v•~th velocit)' y is 

given as 
T 1 T 1 2 
•=2myy=2my (1.3.5) 

D.e kinetic energy of a rigid body of mass m and mc~~~t of inertia le 

with respect to its mass center, movi~s so that the velc~ity cf its mass 

center is v and its angular velocity vectcr is '!'• is given by 

1 T 1 T T = 2 m y y+ "2" '!'le~ (1.3.6) 

The impulse of a given concentrated force f during th2 tim~ interval 

(t1, t2), acting on a given particle, is given by 

~ = J:2 
!(t) dt (1.3.7) 

1 

The angular im?ulse of that force about a given point O is, then, 

t2 
~o= f r x f(t)dt 

tl 
(1.3.8) 

The angular impulse of the concf:'ntrated moment {o about a point O, is 

given by 

/2 
~o= jt {o(t)dt 

l 

(1.3.9) 

The power developec by a force f actin9 un a particle moving with 

velocity ~ is given by 

. fT 
e = - Y (1.3.10) 

-~ould that force act «ta s:iven pcint r of a rigid boúy, which n,:ives 

wi: ve 1 cci ty ~, ti.e sa::-.é €,,pr1;ss i c11 wc.; i á be va 1 id for ti,e p01·1Cr· úc.ve:1 op~o 

1 



point O,~• acting on a bodv moving with angular velocity ~. is 

(l.3.11) 

If the forre f is applied at the mass center Cofa rigid body moving 

with velocity ~ and simultaneously the moment about C, ~• is applied 

to the rigid hody, the total power developed by the force cnd the moment 

is 

(1.3.12) 

1.4 Q)'..,1amic3l '.'a,iabl~s for mechanical systems 

::ow the forcgc '~g conce~ts are ·dcfine:: for a r:iechanical systc:n :::m,)Oscd. 

of several ~,_.,-tic':s and rigid bodies. Assume ~he system ccnsis:s 0f p 

particles ar.' h ,·is·:d ~•cóies. Moreovcr, assume that a force f'-acts on the 

,¿ :th particle ~::d a force fjacts at the "ass center of the j:11 rigid body. 

The resul~a;,t force f acting on the system is just 

Should ~:· .. .,;,"nent 1-,. c.bout the same point O act on th:: rigid bod,, the 
~vj ✓ 

resul tant rr,o;nent .~ ¡¡bout point O acting on the system would then be 

(1.4.2) 

The ki,;.~tic ener9y of the entire system is, correspcnd;.,;~y, 

{l.4.i) 

where m,¿ and mj ilre the mass of the .üh ¡iarticle and that of the j:th 

5. 



ririd bccy, respectivciy. Correspondingly v . .:nd v. represent the v21ocity 
, -~ - j 

of the .i.,t;: pa rti el e ar.d tr.a t of the mass e en ter of the j.tlt body. Ana i ogous-

and ;.;­
·J 

represent thi;, rnoment of inertia cf the j.t/i rigic' bccy abo~t 

its mass center and it: angula,. velocity, respectively. 

!f f,¿_ and f¡ repro:;ent the forces acting on the <lit partic1e ar at tr,e 

rr.ass center o-f the j:tli rigid body, respectively, and ic¡ the moment ¿~out 

ti,e mass center of the i:..;.;. body acting on this body moving with angular 

velocity e., then the power dr·(eloped on the entire system is given by 
·J 

P .T · 11. T h. T 
U = ¡; !,¿Y,¿+ I: f ¡Y1-+ I: !-e ·!!f 

,¿.¡ ¡.;. j•I J , 
(1.4.4) 

1.5. Generalized v:.riables 

In dealing with mechanical systems consistir.g of either one single mass 

cr one single rigid bo,:';/, it 1.;ay suffice to describe their states ~iit'; the 

aid of the 3-dimensional position vector, r, the rotation matrix Q and 

ó. 

their time derivatives. Fúrti,.:rr.:Jre, these variables can be suitably .;e,cr\;:;2d 

by introducing either cartesi .. n cc-r·dinates or any other typ, like cylindri,;~1 

or spher~ ca 1. Howev_er, in do i i ng ~,i th systems compris i r.g severa 1 mas ses 

rigid bodies, th~ d-:scri¡:-tic~. of their st.!'.~s through the aforP::icn~ion2d 

....... , 

coordinates becowes so cumbersomc that the arising equations turn out to be 

practically unhandable. Hen~·- a different type of description must be re":;rted 

to. Consider, far instance, Lhe man-ipulator depicted in Fig. 1.5.1, compase-:! 

of the three"linl<s" t.3, BC ar.d CD, carrying the "hand" D, that, for the pr-~sent 

purposes, can be th ought of as being welded, i.e. rigidly attached 1..0 the lihk 

CD. Ifl ink~ AB, BC and CD a . assumed to have lengths ¿7 , ! 2 and ¿3 and the 

Cartesian coordinates x, y of each point A, B. C and D are subindexed with the 



l 

corresponding letter, the coordinates of D can be expressed as 

Fig 1.5.1 Three-link ?lanar manipulator 

This would require the use of seven variables, nam2ly x6; y0, x,,. yC' 

a
1 

, e
2 

and e
3
. Th2se variables, however, are not indeper.dent, fo, ~hey 

observ~ the relations~ips 

Hence, the position (and consequently any derivative of this) cf points 

B, e and D can be c;.<pletely described by the three variables e1, and 

7. 



e,- These, hcwever, are nct necessarily relatect to ar.y ;:iarticulat' set of 

polar ccordinates. Such a set of variables, pertaining to the overall 

system, is ref~rred to as the oeneralized coordinates of the system. 

Cartesian ccoréinates of sorne 9articular points are not prevented from 

being re;arded as genera;ized coordinates of a system, however. In fact, 

ene could have also ta!:1cn as generalized coordinates of the system shown 

in Fig.· 1.5.1 the follcwing: x6, xc and X¡J, the remaining enes being rc1ated 

to these by t~e corrcsponding ~eoi:ietri c re 1 ationshi ps that, neverthe 1 ess, 

wou 1 d be cu,,,bers::r.e to dea 1 ·.1ith. Genera 1 i zed coordina tes are thus ar.y set 

of variables that compl:tcly ~escribe the seometrical confiquration of the 

syster.; under stdy. T'l~~e variables are, then, either distances or ,:n¡;;es 

sup~1ied with signs ab0,:~ a referenc2. These variables can be orderly 

grouped within an arro/ ~h)t is referred to as the vector of general·': cd 

coordir.ates and is her:,.tforth represented with q. For the example o'. 

Fig. 1.5.1 one then has 

;hus, tlle position vector of th,! .Uh particle of a mechanical system 

or of the mass cente:,..: • :,~e ,..t't rigid body of the system is a func:. :n 

of ~he t;enera1 ized coord-ir:ates. Gne then has 

E,:; '✓ eic;:ity cf éithi'!r t~e <0. ;;1:-~ic,E: or of the cent~r of mass of the 

.ah rigid bcdy of a me.:hanical !:/Stf:í:l, tnen can be expressed as 

8. 



(1.5.1) 

From the foregoing relationship one readily obtains the following 

interesting result 

aq a9 
(l.5.2) 

which is a relationship that will be very often resorted to. 

Given the rotation matrix of body i of a mechanical system, this can 

also be regarded as a function of q. In fact, if the Eulerian angles are 

taken as the generalized variables of a rigid body, taking the body from 

configurat.ion O to configuration 3, as depicted in Fig. 1.5.2, where 

multually ortho~onal axes X, Y, Z have been attached to the body, one has 

[1,p.19]1.1. 

Q = 

where Q has not been indexed for simplicity. 

Thus, 
. aQ . 
Q=--=-q - aq 

ce 

(1.5.3) 

where aQ/aq is a triadic, i.e. a third-rank tensor, whose components 

depeod upon three indices, as is shown next 

1•1 c x :cos x, s x =sin x, henceforth 

9. 



X 1 

= Y n 
'-

Fig. 1.5.2 Euler's angles for a ;gid-body rotation about a point O. 



(l .5.4) 

has the fcl10~1ing (.i_,j) cc,mpor.ent 

which, in compact fonn, can be ~1rittcn as 

ag T · ag T 
\! = aq ~ ~ +al~ (1.5.5) 

and the relationship 

readily follo•.~s. Of course, the a;;gular velocity r. of th2 ith rigid body 

is 
aQ. T aQ. T 

íl - _, Q. + ~t Q 
.,¿ - ~ _,¿~ at _;_ 

or, m;ikiniJ use of eq. (1.5.6), 

(1.5. 7) 

(1.5.8) 

Analogously, introcJcir.g eq. (1.5.2) ir.to eq (1.5.1), one obtain; 

(1.5.9) 

By taking the axial vector of both sides of eq (1.5.8), one hasl-2 

an. aQ. T a cO. T 
vect(f!;}= vect( ,~' q)+ vect ( .·t' Q.) = [ -a,., vect(íl.))~ + vect( ,·t' Q) 

""' º't ~ d . --<. ::;! ~-<. ~ ,:, ,( 

1•2 These results follow readily from definition (1.3.3) for the vector of 
a matrix and eq (1.5.4a) 
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ar.d, recalling definition (1.3.3), the relationship 

follows inmediately. 

Now, introducing vector ~-5 ~.(q,t) defined as 
-<. -<. -

aQ. T 
v ·" vect ( __,¿ Q • ) --<- at --<-

eq. (1.5.10) can be rewritten as 

w. = 
--<. 

Moreover, since w. = w.(q,q,t), one has 
--<. --<. - -

w. = 
_.¡_ 

aw. ~. 
•9 q + 

.. ª~,¿ 
q +­
- at 

Hence, the following relationship 

(1.5.10) 

(1.5.l0a) 

( 1.5. l0b) 

(1.5. l0c) 

Next, both relationships (1.5.9) and (1.5.l0a) are substituted into eq. 

(1.4.4), thus obtaining the power supplied to a mechanical system by its 

environment, as 

T IL T IL T 
f.µ . + t f.µ . + i: l · v · 
--<.--<. j=I -1-1 j=I -Cl -J 

(1.5.11) 

12. 
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which is an expression of the fonn 

(1.5.lla) 

The first tenn of the right-hand side of expression (1.5.lla) is the 

inner product of a ·quantity ! times a generalized.velocity, its units 

being those of power. In elementary mechanics, to obtain power, velocity 

must be multiplied by force. Hence, by similitude, ♦ is defined as the 

generalized force acting on·the system, also referred to as the active 

generalized force or the external generalized force, as opposed to the 

inertial generalized force, yet to be defined. The remaining tenn, • ,. 

will be seen to play no relevant role in the present fonnulatieri and hence, 

will not be further discussed for the time being. One then has dÚfoed 

♦ • ~ILJ [ª~.«:)\.+JI [~)T ,t. - ~ a~ -.(. J• a~ •CJ 
(1.5.12) 

which is an n-dimensional vector, its fith component being1•3 

(1.5.121) 

' . 
Now, if impulsive actions take place on the particles and rfgid bodies 

of a mechanical system, a generalized impulse can be defined analogously~ 

Indeed, assume !.¿ is the impulse acting on the .lth particle of such a 

system and a. that on the center of mass of the jtlt .ri9id body. ~ioreover, 1et 
~ .-

b . be the ar.gular impulse with respect to the mass center of the jth rigid -u ' -
body, acting on this body. The generalized impulse acting on the system is 

then defined as: 

1•3 The repeated index m, ranging from 1 to 3, im~lies sum over it. 

13. 



( l. 5 .13) 

by analogy with definition (1.5.12). 

Genotir:g by Y,¿ the acceleration of the i~h partic1e or that of the mass 

ce~t2r of tne -l.-tit ri~id bcdy of a mechanic21 system, and by m,¿ the mass of 

the -i..th particle or, correspondingly, that of the .lth rigid body, the Uh 

inertia force is defined in elementary mechanics as 

* • 
f. =- m .v. --<. .(.-.(. (1.5.14) 

The inertia cuple of the Uh rigic body of the mechanical system under 

study, with respect to its mass center, is correspondingly defined as 

(1.5.15) 

The inertia generalized force of the system under consideration is 

defined as 

.. p+!¡_ 
¡; 

,¿.¡ 

by ana~~;y 1·:ith definiticn {l.5.12). 

The generalized momentum is in turn defined as 

* p•r.. 
~ :_ L. 

,¿, l [

oV. )T 
~ 1 m.1·. -Clq -'..··-<. 

- J 

I¡_ 
¡; 

j= 1 

again, by analogy with defin,t·i,.;1 (1.5.12). 

(1.5.17) 

The de;¡ree of fredu•., :-; ~ m~:hon ¡ ca 1 syste;;i equa l s the necessary and 

51.,f'ficient nurnber of generalized coor~inate~ that describe uniquely the 



geometric configuration of the system. He, ,:e, it can also be éefined as 

the largest possible number of .ú: :zpcHdCJ: • general ized coordina tes cf the 

system. For example, the degree of freedc;,1 of the syste'll st:own in Fig 

1.5 .1 is three. 

From e~s (1.3.10-12) it is clear t:-, . :he pn,1er de•,e:o¡:ied by a ;~.r~e 

acting on a particle, or at_ the md$S cer:_ - of a rigi¿ bady, vanishes either 

if the force is perpendicular to the velo:ity of the point on which it acts, 

or if the velocity of this point vanishes. ;1a1o,ously, the power 

developed by a torque acting on a rigid body vanishes either if the 

torque is perpendicular to the angular velocity or if the latter vanishes. 

This is a well-known result 1·tom elementary mechanics. It is w9-rth mentioning 

it here, however, because it ~:kes clear that the power contibution of suc~ 

forces and torques on the mechanical syste~ va~ishes and hence, does not 

appear in either sum of eq (1.4.4). As a consequence, then, at light of the 

derivation of this Section, the contributions to the overall generalized 

active force, of forces and tor,·¡ues acting upor. a mechanical system, that 

éevelop zero power on partícula~ partic1es or rigid bodies of the system, 

vanish as well. Hence they need not be counted for in computing the sener­

alized active force of the mech~iical system. 

Similar arguments lead to ¡,nalogous results far generalized ir.,::rtia 

forces, impulses and momenta. 

The foregoing results are advantageous in constructing th2 mathematical 

models of mechanical dynamical systems fer, under these, reaction ar contact 

forces on rolling bodies or on frictionless surfaces ar2 el iminatcd .ip~o tac.t.o 

as unknowns, wh;ch thus ,implifies the fomulation of thE: n;oé.0 !. They p:·esent 

equally a dlsa¿vantage, however. In fact, if the said reaction or contact 

forces are needed for design purpose~. i.e. in detennining work loads on 

i5. 



mechanical elements, ene cannot obtain them directly using the Lagrangian 

forn:,lation presented in the following sections. These forces and moments 

can be computed by relaxing the constraints of interestand introducing 

them at the final stage of the model fonnulation. Such a technique appears 

in'(7,pp. 207-210]. 

16. 



1.6. Newton's eguations of motion 

Newton's laws of motion for a given particle of mass m, acted upon by 

a force! are expressed as 

f= mr (1.6.1) 

r being the acceleration of the particle. 

The same laws referred to a given rigid body of mass m and moment of 

inertia !e about its mass center, acted upon by a force f_applied at its 

mass center, C, anda moment ~C with respect to C, are sunrnarized in the 

following equations: 

f = mr {l.6.2a) 

{l.6.2b) 

Newton's laws are now applied to a system composed of p particle~ and 

1t rigid bodies: If force f. acts upon the .lth particle, force f. at the mass 
·-<.. - ·1 . 

center of the j-th rigid body and moment f.cj is the moment with respect to 

the center of mass of the j-th rigid body, acting upon that body, one then 

has 

{ 1.6. 3a) 

(l.6.3b) 

{l.6.3c) 

By addition of the p equations {l.6.3a) and of the 1t equations {l.6.3b) 

and then by addition of the two resulting sums, one has 
p+lt 

¡; f. = 
-i.= 1 ·-<.. 

p+!t .. 
i: m.r. 

,¿:¡ .(.·.(. { l. 6 .4a) 

17. 



. . 
• ., , = • ., 1 T • + X T ) 

¡:¡ ~Cj j:;';Cjº~j ~j •cj-~j (l.6.4b) 

Eqs (l.6.4a and b) are expr2ssions of Newtor.'s laws to be a~~lied 

to systems of particles and rígid bodies. 



2.1. The First Law of Ther~o1vn2mics 

The First La•,i of Then~od;na:rics, as such, is the resul t of c~senatior. 

and hence, cannot be derived, as neither can Newton's laws of rr.otior.. T.iis 

law states that the energy of a p~ysical syste,;i re:;;;:ins cor.star.t throc;gnci..t 

the time. Hithin this context, the physical syste::1 under study wi11 be 

considered to be composed of the mechanical system at hand pl~s its environ 

ment. Thus, the First Law of Thennodynamics can be rephrased as: "The pcwer 

supplied to a mechanical system by its environc.ent equals the ti"'e rate cf 

change of the energy of the system". 

The time rate of change of the energy of the system is also referred 

to as its internal power or else as to the power developed by the svstem, 

as opposed ~ the po1-1er suop 1 i ed by the envi ron::ient to the s vs te;:i, an 

express ion for wh i ch was obta i ned as eq. ( l. 5 .11). Ncw, the er.ergy of tne 

sys tem is a J so ca 11 ed i ts interna 1 energy and ec;ua J s the time integra J of 

its internal power within a certain time interval. The interna] energy of 

a mechanical system can be of thre¿ different types: kinetic, pctent\al 

and nonrecoverable. The kinetic energy of a mechar.ical syster.1 was alreacy 

defined in Sect. 1.4, an expression for which was obtained as eq. (l.4.3). 

The potential energy is next discussed. 

The action of the environment on a mech~nical system takes on severa] 

fonns, but in dealing with finite-degree-of-freeéom pLlrely mechanical 

systems, this can be only of two different types, name1y forces and mo:i:ents. 

These can in turn be supplied by either natural or m3n-made means, such as 

motors, springs, etc. In any case, forces and moments can arise frcm ve~tor 

fields arising in turn from scalar fie1ds. A scalar (vectcr) fie1d is a 

scalar (vector) f~nction whose domain is defined as a portien of the ~c.ysical 



s~ace, i.e., whose argument is the position vector r of a point P of a 

given region of space. Examples of scalar fields are the atmospheric 

pressure and temperature. Examples of vector fields are the force of 
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gravity and the velocity of the particles_ of water contained in a waterfall. 

A scalar field f anda vector field f can be expressed thus, as 

(2.1.la) 

respectively. If these f.ields change in time, then they should be expressed 

as 

f = f(r,tl, f = f (r,tl (2.1.lb) 

respectively. 

Assuming that the vector field f(~) and the scalar -field V(r) are 

related by 

f (r) =- ~V 
- - c1r 

(2.1.2) 

i.e. assuming that f is the gradient of-V, V is said to be a pontential of 

f. Notice that f can have several potentials, all of them differing by a 

function not containing r-explicitly or else, if time does not play any 

role, by a constant. If the force f defined in eq. (2.1.2) acts upon a 

particle of mass m during the time interval (t0, t1), the energy supplied 

by this force during the said time interval to the particle, assumed to 

move with velocity ~• can be computed readily as the time integral of the 

po1,er f .y, i .e. 

(2.1.3) • 

Substitution of eq. (2.1.2) into eq. (2.1.3) and of y by d[/dt, eq. 

(2.1.3) becor.ies 
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Thus, 

{2.1.4) 

i.e. the energy supplied to the particle during the time interval (t0,t1) 

depends only upon its initial and final positions. This type of energy 

is called the potential energy of the particle. It should be pointed out 

. that the potential energy of a particle ata given time always depends 

upon a reference position 

Now, denote with !fand !mthe first and the second SIJllmat16Íls appearing 

in eq. (l.5._12). The generalized force~ has thus been decomposed as 

{2.1.5) 

where 

{2.1.6a) 

and 

1 [º~.l )Tt . 
.l=I aq -c.<. 

{2.1.6b) 

where the identity appearing in (1.5.2) was introduced into eq. {2.l.6a). 

Let all forces f.l appearing in eq. (2.l.6a) arise from a given potential 

vf , i.e. let 

-~ f.¿ -- ¡,r. 
-.{. 

(2.1.7 1 
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S:..bstitution of eq. (l.6.7) into eq. (2.l.6a) leads to 

. _ p+,.._ [ªr,¿ ]T .vf _ avf 
~ -- ¡; - - -- -
_f ,¿.¡ "~ º~,¿ -~ 

(2. l.8a) 

where the second equation follows directly frorn the "chain rule". Sirnilarly, 

if all couples ~e,¿ ap;iearing in eq. (2.l.6b), arise from a given potential 

Vm' it is possible2•1 to rewrite it in the form 

(2.1.8b) 

If now the potential V is defined as the sum of v, an~ Vm, one has 

(2.1. 9) 

It may happen that only sorne of the forces and couples acting on a 

mechanical systern arise from a potential. In this case, the generalized 

force~ can be decomposed as the surn of !p and ~np' !p being that part 

of ! arising frorn a potential, whereas !npthat not arising frorn any potential. 

Forces and couples arising from potentials are also called "lamellar". If 

lame1lar fields are indepctndent of time, they are called "conservative". 

Ti:ose forces and couples not arising from any potential are called 

nonconservative. The·generalized force then can be written as 

(2.1.10) 

Thus far, kinetic and potential forms of mechanical energy have been 

discussec. Nonrecoverable form of energy is that being dissipated as heat, 

due to either friction or viscosity. This nonrecoverable form of energy is 

2•1 The cetails involved are omitted for they are unnecessary to pursue 
the discussion. 



ihe power developed by dry-friction forces is thus 

where v = v2-v1 and sgn (v) is the signum function, which equals+l or -1, 

depending upan whether vis positive or negative. If v = O, clearly there 

is no p9wer developed and hence sgn(O) = O. The power developed by linear 

viscous forces (the only enes to be considered here unless otherwise 

indicated) is then 

The work developed by each of these forces within the interval 

t 1 < t < t 2 is simply the integral of the corresponding expression, i.e. 

wd =- F
0 

f :2 v sgn(v) dt 
J l 

J 
tz 2 

W =- e V dt 
V t 

l 
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Linear viscous forces can be regarded as arising from a scalar function, 

referred to as á "dissipatfon function", O, if this is defined as 

l L 
0 = f CV 

and hence the corresponding viscous force is related to Das 

F =- aD 
;y 

D playir.g th~s a role similar to a potential. Since this type of forces is 

~oncor.serva~ive, O cannot be thought.of being actually a potential. Moreover, 

F is r.ot the gradient of D, since it is not obtained by differentiation of O 

with respect to the position vector, but with respect to tne velocity. 

The ex~ensicn of the ccncept of dissipation function to mechanical 

syste.::s is straightforward. If only linear viscous forces are present within 
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commonly referred to as "mcchanical losses". In this context, only two 

forms of nonrecoverable mechanical energy will be considered: those dueto 

dry friction and those dueto viscosity. The former follow the so-called 

"laws of friction" and thus, are independent of velocity. Dry-friction 

forces acting on bodies at relati~e rest ¿¡ffer from t~ose actiGg on bcdies 

under relative motion, however. Thus,a distinction is made between static and 

kinetic dry-friction forces. Fricticn fones dueto viscosity are a consequence 

of the internal viscosity of fluids, which can be either proportional to 

velocity or more complicated functions of it. Dry friction is represented 

by two surfaces in contact, either under relative motion or tending to have 

it, as shown in Fig. 2.1 (a). Viscous friction is represented bJ a dashpot 

whose end points move with different velocities, v1 and v2, as shown in 

Fig. 2.1 (b). 

2 -vz 
.-----------.----' 
.__ _____ __. - V/ 

(a) Dry friction (b) Viscous friction 

Fig.2,1.1. Friction forces 

Fig.2.2 shows the friction force that body exerts on body 2, shown 

in Fig.2.1, where the positive direction has been assumed to be that poin"ting 

rightwards. 

(a) Dry-friction force (b) Linear vis,ous force 
Fig. 2.1.2 Dry-friction and linear viscous force 



the system, and these are grouped w.ithin the general iz"d force tv• the 

quadratic dissipatio_n function u, defir.ed as 

D 1 • Te· : ,... q q 
(. - --

a11ows the comoutation of tv as 

- ªº !v -- ~ 

an expression similar to eq. (2.1.9) for lamellar fields. 
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2.2~ Classifica~ion of, ~chanical sys:ems according to their cons ~rair: ,_ 

Mechanical systems .. to be useful, must be co!Tlposed of ~_¡Í_l~ par-.icles 

ar.d rigid bodies. The attion of coupling has the effect of diminishins the 

degree of freed01J of ea, h element constituting the system. Cou,1 ing, 11s, 

r:-e:r.s introducing constr aints into the system. These constraints can " 

réadily expressed in ma'.cematical form by introducing expressions rela,ing 

U.e velocity of the particle or of the mass centre of a rigid body, or the 

angular velocity of the rigid body, to those of the remaining elements, 

thus limiting thc range of these variables to a smaller Sét. These con­

straints, relating velocities,are then relations amongst generalized 

velocities, i.e. amongst derivatives of the generalized coordinates. From 

kinematics, it follows that these relations take on the forms of linear 

combinations of the generalized coordinates. Thus, they take on the form 

(2.2.1) 

.,;here ~ is a m x 11 (111<11) matrix, 11 being the number of generalized coor­

dinates. Eq. (2.2.1) thus,represents a set of m equations of the form 

(2.2.2) 

which can be rewritten in the form 

(2.2.2a} 

If vector ~i happens to be the gradient of a given function fi, i.e. 

if ., . 
a = ........::...-<-
-.i. •G 

(2.2.3) 

and if bi happens to be the negative of the time derivative of the Qiven 

f~r.ction f,, one can rewrit~ e~. (2.2.2a} as 



(2.2.4) 

whose left-hand side is readily ident\fied as the tct~l derivative of fi 

with respect to e ime. Thus, ene can wri te it as 

f,¿ = O, ,¿ • J, ... ,m 

which leads rea :ily to 

f. = e. 
-<. -<. 

(2. 2. 5) 

(2.2.6) 

C; being a constant. Thus eq. (2.2.2) turns to be in~cgrable under the 

introduced assumptions. Such a constraint, possess :r;3 3'1 integr.91, is 

referred to as a holonomic constraint2•2. Otherwise, SLJch a constraint 

is referred to· as a nonholonomic constraint. System3 ccr,tainir.g only 

holonomic constraints are thus referred to as holonor..ic systems. Assuming 
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a system contains both holonomic and nonholonomic constraints, the sét of 

holonomic constraints can always be integrated to render a system of, usually 

nonlinear, algebraic equations of the fonn 

f(q,t) = o - - - (2.2. 7) 

whose dimension will be assumed to be h(<m). Eq. (2.2.7) thus defines h 

relations between the generalized coordinates. This ncar.s that from that­

equation, h generalized coordinates can be solved fer in tenns of the 

remaining r.1-h coordinates. Fer nonl inear systems, this wi 11 Mt, in general, 

be possible in closed form. Well-known numerical procedures, like that of 

Newton-Raphson, can be applied to solve for the involved h ge~eralized 

2•2 Greek: ho'.os=integer 



as ene possessing only ncnholoncmic const:-ai:1ts, it~ holonomic ccnstraints 

being asss;;:eJ to have be2n inte9 sted and, frcm this inteJation, h of its 

components already solved for. 

28. 

Whether a system is holonomic or not can be readily verified. In fact, 

;; :.ecessary condition for a function f,¿(q,t) to exist, that verifies eq. 

(2.2.3), is that the gradient of ~,¿, as defined in eq. (2.2.2a), with 

respect to q, a n x 11 matrix, be symmetric. This is not·sufficient, 

however, to render a constraint holonomic. In fact, the term b,¿ of eq. 

(2.2.2a) should be related to f,¿ by 

(2.2.8) 

This means that the second necessary condition to render a constraint 

holonomic is 

ub. aa. 
-<. - --<. 

~--at , .l~J, ... ,m (2.2.9) 

Holoncmic systems are easier to deal with than nonholonomic ones, 

because they allm; ·to reduce the nu;nber of general ized variables. In fact, 

by solving for h of the generalized variables from the h holono:nic con­

straints of a holcnorr.ic system, the number of generalized coordinates 

red:ic,.s to i,-/:. Mcreover, these ;1-/i coordinates are independent, their 

ti~e derivatives ~ei~g li~early in¿ependent. Thus, with no loss cf general­

ity, the" ,;eneralized ccordi,1ates of a holonomic syste;;i can be thought of 

as being in¿ependent. 

A particular case of interest arises when matrix A and vector b of 

ec; '.,:.2.1) are constar.t. In this case, clearly, the ,.;.n: gradier.t ,lith 



2:1. 

respect to 9 , of every row of I!! , vani shes, i. e. i t is syrm,etri e. Moreover. 

for each row ª¡, a scalar function f¡ exists whose gradient with respect 

to 9 is a .. 
~-<. In fact, this is 

with ª¡ constant. Hence, eqs (2.2.8) and (2.2.9) hold and the constraints 

are holonomic. 

Example 2.2.1. Constraints of a differential gear train. A model of a 

differential gear train is shown in Fig 2.2.1. It consists of two disks 

A and B. Disks A have a radius a. whereas disk B has a radius b. Disks 

A rotate freely about independent axes that are collinear with line AA' , 

whereas disk B rotates about axis 0B and this one rotates in turn about 

AA'. Since the model represents a gear train, pure rolling is assumed. 

'A 

~~ 

o 

A.' 
Fig 2.2.l Kinematic mod1,l of a differential gear train 



Sdi;tion: Let :; 1 and e2 be t~e angles of rotation of the upper and the 

lo,;er disk A, res;iectively, e3 and &4 being the angles of rotation of disk 
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B about OS and of 0B about AA'. These are then the generalized coordinates 

of the system. Let P and Q be the contact points of disk B with the upper. 

an.:: the lower disk, respectively. Moreover, let n, and !!2 be unit vectors 

parallel to 0B and to AA', directed along the positive directions of e3 
and e4 (or a1 ), respectively. Finally, let !!3 • !JJX!J2• 

Next, denote by YpA and ~PB the velocity of point P of disks A and B, 

respectively. Define yQA and yQB ·nalogously. Then 

YpA =- 61ª !!3 • Ypa = (-e4a + e3bl!!3 

The pure-rol11 ing condition imposes 

Hence, 

respectívely. These are the constraint equations of the system of Fig 2.2.1, 

which have the fonn of eq (2.2.1) with 

o = 

e1 l 
¡ 

º2 ! 
:;3 ¡ 

€4 J 

r -a j 

A = 1 
' - t O a 

-b 

ó 

·! ,. 



Since matrix a and vector~ of these equations are constant. they are 

integrable, i.e. the system is holonomic. Integration of the foregoing 

equat1ons yields 

a9 • ~ 
k being a 2- dimensional constant vector. If all angles are defined O at 

t • o. clearly ~ = Q, wh1ch then yfelds 

~9 = ~ 
or, in component form 

- ªª1 - b83 + d84• O 

- a82 + b83 + ae4s O 

The foregoing system possesses four ~eneralized coordinates and two 
. . 

kinematic constraints. The system is thus holonomic, its degree of freedom 

being two. The latter fact m0 ans that it admits two independent inputs. 

which is the reason why it is essential as a transmission device in power 

axles of terrestrial vehicles. In fact, it allows the transmission of power 

to the axle AA', while allowing each ~r ~lsks A to rotate at independent 

rates when taking a curve. To illustrate this fact, elliminate e4 from the 

velocity equations already obtained. llext, solve for e3 in terms of g·7 ar.d 

e2 from the arising equation, thus obtaining 

31. 

which shows clearly that the rate of ro!ation of ~isk B about its axis of 

syrrmetry is propor:-tional to the cü66c.tenc.e. of rates e1 and e2 • which explaic 

the name of the device. When the vehicle follows a straight course, c1ear1y 

83 = o. 



CcnstrJint ~~uatio 

a ~:rizcnt}l surface. Consider the disk shown in Fig 2.2.2, whose movemeílt 

is defined by the Cartesian coordinates (x,y,z) of its mass center, and the 

three orientation angles e , 9 and w, associated with the direction of the 

course, the tilt 11ith respect to a vertical plar.e containing the tangent to 

th·e disk at the point of contact P, and the spin about the axis of symmetry 
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of the disk. Now, define lines 7, 2 and 3 as follows: Line 7 is the diameter 

of the disk parallel instantly to the tangent passing through P; line 2 is 

the diameter perpendicular to line 7, and line 3 is the axis of symmetry of 

the disk. Next, define unit vectors D¡ , n2 and n3 parallel to lines 1 , 

2 and 3 , respectively. The velocity of C, J, and the ángular velocity, 

w, of the disk have then the fonns: 

V= xi + y j + z k 

where !•J.~ are unit vectors along axes X, Y and Z, respectively. The 

two triplets of vectors are related by 

~l COSQi + sin¿j 

~2 sine sinQi + sine cos~j + cosek 

~3 = coss sin~i - cose cos~J + sinek 

The rolling constraint can then.be expressed as 

with e defined as the vector joing P wit~ C, direct,,d fro~ the fonner to 

the latter. The foregcing constraint thus yields 

1 

i 
1 



4C8SQ8 + 11. S8CQ¿ + 4CQ~ +X= 0 

-4C8CQ0 + ~ S8S$$ +·11.s<t,w +y= 0 

4S88. + Z = 0 

Integ,.,IJil it~, of each of these sea lar constraints is next verified. 

These can be rewritten as 

with 

e C0SQ,

1 

-cec<t, 
r :e' Q sec.;>, ses<t, 

,¡, c<t, s<1> . o 9 = • ~1 =.11. 
1 

• ~2 = 11. 
o • ~3 = 11. 

o X 

q o l o 
z o o l 

Thus, 

r-ses<t, .:c<t, o o o o 

1 cec4> -sr:·:~ o o o o 
¡:¡~¡ o o o o ag = /é j o -s.¡, 

1 o o o o o o 
o o o o o o 
o o o o o o 

S0(4> Cl)S~ o o o o 

ª~2 Ct)S,~ S6C</> o o o o 
:;9 = 11. o C<j, o o o o 

' o o o o o o 
o o o o o o 
o o o o o o 

33. 
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C5 o o o o o 

o o o o o o 

ª~3 
o o o o o o 

-.- • 11. o o o o o o ª9 
o o o o o o 

o o o o o o 

Out of these three matrices, only the third one is symmetric. Moreover, 

b- = O, for 
.(. 

.l " 1, 2,3. Since, additionally, ~3 does not contain time 

f~p1icitly, the third constraint is integrable, i.e. hol~nomic, whereas 

the first two ones are nonholonomic. The integral of the third constraint 

yields 

z = J:. cose 

which can be readily verified from Fig 2.2.2. 

2 

y 

Fig 2.2.2 Disk rolling on aplane. 

¡ 

¡ 
. i 

1 
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2.3. Lagrange's form of d'1'1.lem:iert's Princ' ,~e for holor.omic svste:i:s. 

As discussed in section 2.1, the only fonns of interna! energy thJt 

a mechanical system can possess are kinetic, potential and nonrecoverable. 

Potential and nonrecoverable fonns of ener:J of a mechanical system car. be 

regarded as being supplied (or extracted) by the environment, their time 

rates of change thus being contained in the tenn u defined in eq. (1.5.11). 

The first law of Thennodynamics thus takes on the fonn 

(2.3.1) 

1.e. the power supplied by the environment to a mechanical system equals 

the time rate of change of its kinetic energy. 

The time rate of change of the kinetic energy of a mechanical system 

can be obtained by differentiation of eq. (L4.J). Thus 

(2.3.2) 

Introducing now eqs. (1.5.9) and (1.5.lOa) into eq. (2.3.2), one 

obtains 

(2.3.3) 

This expression can be partitioned then into 

• [p+Jt .T 3:!.i 11. T ~) T "' t 11.V. --,- + l: (le •W .+ er, .xlc ~ .) • i¡ + 
.i•1 "'" a9 j•1 • J·J ·J • J·J. 39 

(2.3.4) 



,,;2 first ter.":1 in brackets is readily recognized as -~*T¿I by 

r2:aliing eq. (l.5. '5). After introctu.:ing eqs. (1.5.14) and (1.5. '5} into 

the seccnd tem of the right-hand side of.eq. (2.3.4), this is readily 

reccgnized Lo be simply ~. as defined in eq. (1.5.lla}. 

Thus, 

T =-9*Tq + ~ (2.3.5) 

Substitution : expressions (1.5.lla} and (2.3.5) into eq. (?.3.1) 

yields, after rearranging of tenns, 

,~ + 1>*)T¿1 = O (2.3.6) - - -
r:o~,. from :he discussion of Sect. 2.2, all functions q.(,l=l, ... ,n) 

.<. 

cf eq. (2.3.6) are lineJrly independent. Hence, fer eq. (2.3.6) t, hold, 

it is necessary a~d sufficient that the following holds: 

(2.3. 7) 

,,hicil is Lc.qrc.nce's form of d'Alembert's Principle. This expression states 

that thc r.:otio~ 0f a hJlor;omic mechc.nica1 system of degree of freedom 11 

ta~es place in scch a way~hat the sum of the 11-dimensional vectors of 

gener-alized activ1: force ~,·.j '.~r:rtia force vanishes. 

T~e vector cf generallzed inertia force of this system is now manipu-

1at,:~in orC:er te, :.·•.jer it :~-:e a r.:ore convenient form. This vec:.;:r is 

defined in eq. (1.5.E'. \·1her2 e3:h s~mJtion contains expressions ,;' the 

.3.Sj 

36. 



But 

and 

r~ :ir~= r~t ~~ r~ = r:;r~ = }~- ½ ~\ (2.3.10) 

where relation (1.5.2} has been applied and the order of differentia~ion 

has been exchanged, which is possible to do under the conditions of the 

Theorem of Schwarz [e \ Substitution .of eqs. (2.3.9) and (2.3.10} ;, to 

eq. (2.3.8) yields, then 

(
ªv)T. d a 1 T • 1 T - v=- ~ vv-.11... vv aq - dt aq 2.. aq ~ •• 

(2.3.lla) 

or·, in operator form, 

(2.3.llb) 

0n the other hand, 

and 

(2.3.12) 

But 
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(2.3.13\ 

and 

where relationship (1.5.lOc) was applied. Substitution of eqs. (2.3.13)" 

and (2.3.14) into eq. (2.3.12) yields then 

r"'::'1 T . d a 1 T a 1 T 
-,-j Oc-w+;.;X!c·"')= dt -. .,,. w Icw• 'q.,,. w le"' tó9J • • - - aq , - - - • _ , - - -

or, in operational fonn, 

(2.3.lSa) . 

(2.3.15b) 

Introducing expressions (2.3.llb) and (2.3.16b) into expression 

(1.5.16), one obtains 

11. (d a a )1 T - t -.- - - .,. w -I •W. -~• df aq aq , ·1·C1·1 
J ' - -

(2.3.16 

which can in turn be re1. ·itten as 

(2.3.17. 
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The term i~ brackets is readily recosnized as the ki~etic enersy of 

the system, T, as defined in eq. (1.4.3). Thus, eq. (2.3.17) beccmes 

d aT aT 
,* =- dt a + aq 12.3.18) 

SubstitutioH of eq. (2.3.18) into eq. (2.3.7) yielés 

(2.3.19) 
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which is a syste~ of n ordinary differential equations governir.g the motion 

of a holonomic n-degree of freedom mechanical system. If vectcr ~ possesses 

a potential, it takes on a special form, eqs (2.3.19) thus trari_forming 

accordingly. This form is derived in the next Section. 

Examole 2.3.1. 1ynamica1 analysis of a differential gear trai~ Reference 

is made to Fig.,.2·.1, where disks A and B are supposed to have masses mA 

and m8, respectively. Moreover, the masses of the shaftsare considered to 

be negligible. 

Solution: 

The kinetic ~ergy of the system is the sum of the kinetic energy of the 

three disks. Ea~h of these is next computed. 

The kinetic energy of the upper disk A is: 

whereas that of .he lower one is: 

The kinetic ~nergy of disk Bis, in turn: 

T8 • I,1 I w 
~ -D -O ~B 



with 

and 1o is the moment of inertia of the disk with respect to point O. This 

is next shown referred to vectors ~7 , ~2 a_nd ~3 , that were defined in 

Exarr.ple 2.2. l. 

ihus, 

r 
.!_b2 o o 
2 

o a2+:. b2 o 
1 (. 

1 o e a2+.!. b2 l 2 

Hence, 

T =l [1·2 i2 + (a2+.!_"2} 6·2] 
3 2 ¡;¡il 2 o "3 2 " 4 

Tne ~ir.etic energy of tre overall system is, then, 

tiext, solving for ~3 and é4 from the constraint equations obtained in 

~xa~ple 2.2.1, one h3s 

Substit~tion of the latter values i~to T yields 

The ·1:ctor of ~enera l i zed coordina tes has then been reduced to 
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The left-r.and side of eq (2.3.19) is now computed. 

Hence, 

whereas 

Now the right-hand side of eq (2.3.19) is computed. Ass'.1ming torques 

~I and ~2 are applied to the upper and the lower disk A, respectively 

and that torque ~3 acts upon disk B, all three torc;ues di1·2cted along 

axis AA', one ~as 

Furthermore, 1et ~'¡ and '::2 be the angular velocities of the upper ar.d 

the lower disk A, and ':'3 be the angular velocity of disk B. Thus, 

or, ex;iressin; ~3 in terms of &
1 

and é
2 

, 
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Hence, 

Frcrr. eq. (1.5.12), then, 

T¡ ~2 + .r 2 11 

1 nT 1 
l ~~ J 

The dyna::.ical equations of the syste::i are, then 

42. 
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2.4 Derivation of Lacrance's eguation for ]amellar holonomic svste~s. 

If the system under study is holonomic ar.d its degree of freedom is 

n, then its vector of generalizec coordinates q is co"'posed of n ince~encent 

functions of time. Being la~~' 1Jr, its vector of general ized force, e , 

arises from a potential V= V(q, t). Th~s 

Substitution of eqs. (2.4.1) ard (2.3.18) into eq. (2.3.7) leads to 

(2.4.2) 

Now, since V= V(q, t), ene has 

(2.4.3) 

and hence 

d av 
dt ac¡ = Q (2.4.4) 

Adding eq. (2.4.4) to eq. (2.4.2) does not alter it. Hence, reárrar. ,ing 

tenns, 

(2.4.5) 

Defining the Lagrang ,_! of the system as 

L = T - V (2.4.6) 

and inverting the signs of both sides of eq. (2.4.5) yields 
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(2.4. 7) 

which is a set of n differential equations constituting Lagrange's 

equations of motion for holonomic ]amellar mechanical systems. If the 

potencial V of a 1ame11ar mechanical system does not contain time explicitly, 

the system is said to be COII-Óe/lvat.ive. lts dynamical equations are identical 

to eqs (2 .4. 7). 

Ex3mp1e 2.4.1. Dynair.ical eguations of a conservative mechanical sys~em. A 

~~chanical system co~Josed of a shaft rotating on ball bearings abo~t axis 

LL' and carrying a s'.ender uniform bar pivoted at O by me·ans of a 1 inear 

spring of rigidity k :il-m/rad), is shown in Fig 2.4. l. Neglecting the 

inertia of the shaft, obtain the equations of motion of the system, given 

that the 1ength and :he mass of the bar have values a and m, respect1vely. 

Solution: Define an :rthor.ormal triplet of vectors ~¡ , ~2 and ~
3 

~s shown 

in Fig 2.4.1. The angular velocity and the inertia dyadic of the bar about 

poir.t O can be expressed, respectively, as 

~ = ~(-e:~,+ s~~2 ) + ~~3 

1 2 
!o " 3 rea (D2"2 + _!1 ¡ 33 ) 

The kinetic er.ergy of the system is, then 

The on:y f;ircfs ... :tir,g or. :h2 system are the one due to gravity and that 

exerted by the spri n-~. The sys tem is thus conserva ti ve, i ts potent ia l bei ng 

V=-



(is2: :Z) o 
L ma + + e; - ,7 ,, ,-;; " 2 

Define its vector of general ized coor~~:iates 

g = (a . ,.] T 

Hence, 

[ 
s2❖ 

-
o 

1 'L 2 :,L 
-º-=~ 

1 élq 3 . ~q m,1 (2~'.2 <P b 

The first of eq~ .l.4.7) then y\elds 

d ma32 és2,., = O 
dt "' 

i.e. 

e 

e~ -

~s 

3g)s:-k~ 

The second of th~-e equations yields, in turn, 

•• 1 •2 3k 
<P - 2ª (2ae c<P - 3g) sip - - 2 ip = o 

ma 

or, equivalently, 

.. 3nsA 3k 
<P - {acip - ~) - 2 <P = O 

ma 

which is a nonlinear second order ordinary differential equation go,ernir; 

the motion of the sys tem. The va 1 ue of cor.s tant 1 is to be det,1rc,1 n.:cc 

from initial conditions. Once <Pis known, c. is obtained by integrat:>J:1 as 

a(t) fo
t a dt 

sin24>(t) • 

That the second-aegree-cf-freedon sy,t~m ?rod~ced only o~e 



is the~ ~eferred to as an i9,10M.ble coordinate, ora Cljc.,U.:. coordinate. 

1 e 
~ 

n 
-2 

fjg z. 4.1 Bar sus~ended fro~ shaft 
rotating en ball-bearings 

-o. 



If sorne forces and couples act~J~~ on a giv¿n holoGc~ic systr~; ¿1·ise 

from a potent i a 1, whereas s01r.e others do not, the vector of ser.eral i :ed 

force,<>, can be decomposed as sho;,;n ir. ec;. (2.1.10;, i.e. as 

Suostitution of eqs. (2.5.1) anc (2.~.12) into ec¡. (2.3.7) yie1ds 

then 

av _ ~ ai + ai = 0 - aq + ?np dt "q aq (2. 5.2) 

Now, considering eq. (2.4.15) ar.e cefinition (2.4.17), eq~ (2.5.2) 

transforms into 

d al al - ' 
dt áq - aq - ~ np (2.5. 3) 

which is the set of lagrange's equations appliec to a noloncwic ncnlamel1ar 

system whose degree of freedom is n, this being tr.e dimension of its vectór 

of generalized coordinates. 

Example 2.5.1. Oynamical analysis of a noncor.si'rvative systerc.. Given the 

system shown in Fig 2.4.1, assume that a torc;ce, is a,~lied to its shaft, 

but otherwise it remair.s unchan;ed. Derive its nc,·1 eq,ations of ,r,otion. 

Solution: Eqs. (2.5.3) are now to be applied. The lagran,ian of the r.ew 

system is identical to that established for Example 2.4.1. Hence, the 

left-hand side of eqs (2.5.3) is 



1 
1 

J 
Its right-hand side is r'~ computed. The applied torque can be 

expressed in vector formas 

{ =- TC~ ~I + TS~~2 
-The angular velocity of the bar was obtained in Example 2.4.1 as 

Hence 

3:,.¡ 

a9 = [ -c~~I + s~~2 , ~;] 

and so, 

!np,. 

The dyna~ical cquations sought are, then 

y - (s2c~ - ~ )s9 + 3k ~=O 
2a ma2 

Notice that, if a potentiometer is introduced into the system to 

measure ~ , as well .s tac~.ometers to measure é and ~ , these equatir,ns 



can be used to estimate the value of T, which can be needed in turn to 

close the loop of a control system used to regulate, say, the velocity 

of the shaft. 



so. 

!fa r.echanical systera possessing a n-dlmensional vector of generalized 

coordinates, 9, is subject to the m nonholonomlc constraints 

fAq+b=O (2.6.1) 
:/:¡¡ - -

whefe A is a m ~ 1, r,;atrix function of Q and t, then Lagrange's equations 

(2 .•. 7)-are no longer applicable. To cope with this situation several proce­

~ures have been devised. The classical one consists of defining a functional 

.ª:;se r.inirr.i;:ation leads to the desired equations of motion, incorporating 

~~e ~onholonom1c constraints (2.6.1) via the introduction of Lagrange 

r.ultipliers (5,6). This approach, however, is lengthy, for it demands the 

co~putation of constraint forces represented by the Lagrange multipliers. 

Two r,;ore interesting approaches have been made to avoid such computations 

[7,8], out of which derives the next formulation, 

To begin with, partition matrix ~ and vector 9 of eq (2.6.1) into the 

fonn 

m 

A ) m 
-m J 

where p = n - m. 

Eq (2.6.1) can thus be rewritten as 

A q +Aq +b=O -mp.p -m-m 
(2.6.2) 

In many inftaces, 9 contains Euler's angles, but the computation of the 

kinetic energy, T, requires not the derivatives of these, but the components 

of the angular velocity of each rigid body, which are linear combinations of 

those derivat ives. Such components of angu·la r ve l oci ty can be grouped 
• . 

witl'in vector~• defined next as a linear combination of the components 

of ~ , i.e. 
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u= e q + e ó {Z.6.3} 
• ·p·p -pn-1n 

Now, defining vector~ and matrix a~ 

[+] p e 
-~e"] 

p 
w = e = :p_ 

m A m ~mp ·m 

p m 

eqs. (2.6.2) and (2.6.3) can be written in compact fonn as 

(2.6.5) 

from whi.ch, if both C and A are invertible, q can be readily obtained as 
·p ·m 

• c•l q = w - - - (2.6.6) 

with 

p 
{2.6.7) 

m 

p m 

where 

X= {C -C A·1A )-l , Y= -XC A-l 
-P -p·:.m .mp - --µ11-m 

Z:: -WA C1 
- --mp-p 

(2.6.8) 

Thus, 

q = Xu - Yb a = Zu -Wb 
_p -- ..)¡¡ 

(2.6.9) 

Hence, 



¡¡q :,9m 
-=.Q = X = z (2.6.lOa) ;~ dY 

~ -- y ;;511 
-- w (2.6.lOb) ;~ . éb -

Ncw, if f is any /./-dimensional vector function of q and q, one has 

ar.d 

af 
X + ºª .. 

af z 
oq -
-m -'P 

af 
- __,; w 

aq -
-m 

(2.6. lla) 

(2.6.llb) 

The reduced equatior.s of rnotion for nonholonomic systems are now 

d2rived. To this end, use is made of the First Law of Thennodynamics, 

eq. (2.3.1), where U, the power supplied to the system by its environment, 

is ccr;-,;;uted as 

(2.6.12a) 

whereas t, a; 

(2.6.12b) 

The first tenn of U is thus a sum of tenns either of the fonn 

,T, J ")'- \ • ·h - º'( / 0 )T• Th f' t t f T. q '":,¿ 05 ~,¿ or or t .e ,vm 9 ""',¿ 33 ~e,¿· e 1rs erm o 1s, 

corres~ondingly, a sum of terms of either of the foregoing fonns, except 

that f,¿ and ~C~ are subst't~ted by f2 and fC,¿, as given by eqs. (1.5.l~) 

ai:1 (l.5.15), res;;ect~ve;¡, ;n what follows, only the first type of tenri, 
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(2.6.13) 

Intrt ócing eq. (2.6.9) into eq. (2.6.13), one obta 1S 

[
ª:,¿JT ~ - av. av. 

(?~ - ~~) ]Tf,¿ = ·T = [~ ( Xu - Yb) +4 
q ª9 -... a~p •• -- a<J,n 

= u ~X+~ Z f. + b - ~ Y - _;:. -·W f. T (ªv • av • )r T ( av • .v ]' 
• •~p • •9,,r • -.t • • a~p • ag' • •.t 

Next. eqs. (2.6.lla & b) are introduced into the latter equation, 

with f substituted by Y,¿. Thus, 

• T r•Y,¿JT T [ªY,¿JT T [3Y,¿)T q-.-f =u -
3
-f.+b 30 f. 

- 3q ' - ~ •.(. - - •,(. 
(2.6.14a) 

Similarly, one has far the second type of tenns, 

(2.6.14b) 

with analugous expressions for inertia forces and moments. Substitution of 

expressLns (2.6.14a & b) into eq. (2.6. 12a) yields 



(2.6.15) 

The fi rst tenn in brackets is ana 1 ogous to p, as defi ned in eq. 

(!.5.12), except that instead of t lng of dimension n, it is of dimension 

P<n; hence, it seems justified to r.311 it the lleduced vec-tOll 06 genVtalized 

fc.tce and is henceforth representd by 6- The second tenn in brackets has 

no analogous tenn by far. It will ~e represented by~• its dimension being 

m, also less than n. Eq. (2.6.15) thus can be expressed as 

(2.6.16) 

Paralelling the foregoing dis;ussion, the following expression is 

readily obtained for T: 

(2.6.17) 

wh(re ó* and g* are defined similarly to vectors 6 and g, except that 

instead of referriñg to active forces and moments, !~ and {e¿, respectiv~ 

iy, t~ey refer to inertia forces and moments f1 and !e,¿. §* is correspon­

dir.gly referred to as the reduced inertia generalized force, its dimensiri"n 

beir:·· p<n. 

:,u -:;1.itution of eqs. (2.6.16; and {2.6.17) into the First Law of 

íherr.~dyna"'ics, eq. (2.3.1), yields 

(Z.6.i8) 



from which 

T T 
Y (6 + §*) + ~ (g + 9*) = O (2.6.,9) 

readily follows. Now, the second tenn in paranthesis in eq. (2.6.19) is 

expanded 

p+Jt [ªY. JT 1t[ilw. ]T 
g + 9* = [ ___:!:_ f. .¡. i:1 '!?-,<_ R.,._ + 

- 1 dQ • ,<. a ...._ 

(2.6.20) 

From Newton's Second Law, eqs (1.6.3 a- e), each tenn fi + f1 , as 

well as fe,¿+ f~, in eG (2.6.20), vanishes. Hence, eq. (2.6.19) becc~~ 

T • 
!! ( 6 + 6*) = Q (2.6.21) 

However, all compone1,ts of vector~ have been assumed to be linearly 

independent functions of ;..ime. Hence, fer eq. (2.6.21) to hold, fer .. 

arbitrary values of ~. th • sum in paranthesis must vanish, i.e. 

ó + 6* "' O (2.6.22} 

which is thP .'.:.'.:~"_,_:it_:,~-rm of d'Alembert's Principle fer a p-degree-o•­

freedom :· •. :101, 'lomlc n('cLnical system subject to the m nonholonomic 

constra i ,, t.s gi v,,,1 by é'n. :2. 6.1}. 

Next, a relationship between vectors 6 and ♦ or, correspondingly, 
- -

betwecn 6* and +*, is de1 ived. 6 being a sum of terms of the fonns 
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(;•, .J,u/f. an:! ::_-,.1,u_·/tr: , only the first ones wi11 be expar.ded, 1.e. 
--<. • .,(_ ~ ...... 

;v. 1 T 
+ . :.{, z ¡ Í. 

•q - J --<. 
-m 

12,6.23) 

,,.,,,., .. se has bee.1 made of eq. {.!.6.lla) with ~~ instead ;if f. lile tenn 

in brackets, however, can be expressed as 

'/iv. 'i!V. [ºv. : av.JtXJ av,r· X] . :-<. X + ~ • = ~ ! ~ _:_ = ~ .:. 
aq • aa aq ' a □ z .q L z 
-P .m -P _,,, - - · 

'2.6.24) 

Substitution of eq. (2.6.24) into eq. {2.6.23) now yields 

'?.6.25) 

At the light of relationship (2.6.25), it should be clear now that 

.2.6.26) 

The term in brackets is readily identified as ♦· Hence the following 

• - ~ XT : ZT' , -L , ..1 $' (2.6.27a) 
~ 

and, sir:iilarly, 

(2.6.27b) 

.'.cw, fror:i e~. (2.4.12), 11hich is an identitJ that holds regardless of 

:i2 :c~t~r~ of tr.e systefil -i.e. eq. (2.4.l~) r.~1ds for 1;;rchanical systems 

whe~ner holonomic or nonholonomic -, ane obtains 
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(2.6.28) 

Substitution of eq (2.6.28) into eq (2.6.22) leads to 

(2.6.29) 

wr'~h is the counterpart of eq (2.3.19). Now, cc,:~ining eqs (2.6.27a) and 

(2.6.29), one obtains 

(2.6.29a) 

Eqs (2.6.29a) constitute a system of p independent ordinary differen­

tial equations taking into account the m nonholonomic constraint;s (2.6.2). 

In egration of the former with giv~n correspondirg initial values of the 

p independent coordinates, and then solution of the latter for the remain­

ing m dependent coordinates produces the solution to the dynamical problem 

proposed. 

Vectors .i and .i* defined in (2.6.27a & b) are p (<n)- dimensional. 

H, ce it seems natural to refer to them as the ~c::!uced vectors of active 

ar.J inertial generalized forces, respectively. 

Now, if p arises from lamellar fields, i.e. if a potential V=V(g,t) 

exists such that 

<P .,_ av 
- ag 

eq (2.6.27a) yields 

(2.6.30) 
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.. 
·:.• 

Substitution of eq (2.6.30) into ¡q (2.6.29) leads to 

(2.6.31) 

By resorting to similar arguments as for deriving eq (2.4.7), one 

obtains from· eq (2.6.31) 

(2.6.32) 

which is a system of p lagrange's equations governing the ~otion of a 

p-degree of freedom ]amellar nonholonomic mechanical system. 

,o 
..;, .. ,, 

Matrices~ and ~ appearing in eq (2.6.32) can simplify under special 

circumstances, which brings about an illumioating form of the said equation. 

In fact, if vector u, defined in eq (2.6.3) is made identical to vector q 
- -P, 

then ,P becomes lp , the pxp identity matrix, ~pm becoming the pxm 

zero matrix. In this case, then 

X= 1 and Z =-AA ~ - -P - -m-mp 

Now, if the seco~~ factor of the right-hand side of eq (2.6.32) is 

partitioned accordingly, this equation can be rewritten as 

-
d al al 
dt 09m- 03m 

o (2.6.32a) 

Assuming that l be smooth enough as to fulfill the hypotheses of 

Sc.1warz's Theorem (4), the next two identities follow: 



(2.6.33a) 

where 

DEPFI 
(2.6.33b) 

At this point a caveat is in arder: Misled by the results shown in 

eqs (1.5.2) and (1.5.lOc), one might thin~ that eq (2.6.33b) irnplies that 

a(;a§ is identically equal to aL/ag. This is not so, however, far, in 

differentiating (, as given by eq (2.6.33b), both partial derivatives 

aL/ag and aL/at contain g explicitly. In fact, equating éíLf-g liith 

aL/ag yields Lagrange's equation far holonomic ]amellar systerns. 

Eq (2.6.32) is now expanded and identities (2.6.33a) are inuoduced 

in the resulting expansion. One obtains: 

(2.6.34) 

On the other hand, since q..:m is a (possibly implicit) function of q 
-P 

and time, one can write. 

(2.6.35) 
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Thus, L can be regarded as function only of 9p and t, for which reason 

one can define a "total" derivative of L with respect to q as 
-P 

(2.6.36a) 

and, similarly, 

--



Now, eq (2.6.35) yields 

3~m. 
~m = ¡¡¡-- 9p 

-P 

from which, s;nce 9m is independent from 9m, one obtatn~ 

On the other hand, eq (2.6.2) yields 

from which 

(2.6.36b) 

(2.6.37) 

(2.6.39) 

(2.6.39a) 

Substitution of eqs (2.6.26a & b, 38 and 39a) into eq (2.6.34) yields 

now 

(2.6.40) 
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which is an illuminating form of Lagrange's equations, similar to eqs (2.4.7), 

exce~t that eqs (2.ó.40) are val id for lamellar nonholonomic systems, taking 

'.nto acccun: the m non~olor.o~ic cor.straínts (2.6.1). Eqs (2.6.40) thus refer 

or.1y tJ :he ir.éependent coordinates of the nonholonomíc ~ystem. 



If the nonho l onomi e sys te,,; at hand is acted u pon sorne ( genera 1 i z ed J 

forces arising from,a potential, and sorne other ones not possessing any 

potential, then a reasoning similar to that leading to eqs (2.5.3) yields 

éll ] 
a9 - ~np o (2.6.41) 

where Pnp comprises the vector of generalized force not arising from any 

potential. The foregoing results are natural extensions to results previ­

ously reported in [8]. 

Exam.2.l~~.6.1. An3lysis of th2 ro1lir 0 disk. This is a classical ¡:roblem 

that is very often resorted to in order to ill0strate ~ethods of analysis 

of nonl;o1onomic dynamical syste~s. Its a~alysis 0s~ng different techniques 

Th ... s, véctor q :s i)artiti0ncd 2.cccr"dir.gly as 

X 

' l.,' 

q _,r. 
u 



'low, returning te, tr.., constraint equaticns cerivte<.i in ixair.;.,1e 2.~.2. 

ex~ressed in the fonn of eq (2.6.2), or.e has, with p=3 and m=2, 

wfl¡¡re 

( c&s9 sss¿ 
c4> l 

~23 
- ,\1 - l -cec,p ses,:, s4> 

and ~2 = !2 , i.e. the 2~2 identity matrix. Moreover, the only external 

force acting upon the system is gravity. Hence, the system is conservative, 

its equations of motion then taking on the form of eqs (2.6.34) or, 

equivalently, of eqs (2.6.40). 

To derive the aforementioned equations of motion, its kinetic and 

po:.~tial energies are needed. The kinetic energy is 

~ and ~ having been define~ in Example 2.2.2. Other variables are m and 

:,. the mass of the disk and its inertia tensor wi~~ respect to the mass 

cen:,er C, respec~ive¡y, i.e. 

I "' _41 m,t2 
-e 

o 

1 

o 

whi,n is referred to axes 1,2 and 3 shown in Fig 2.2.2. Performing compu­

tat.uns, one has 



2 r,- , ' 

V= mg1tce 

HP.nce, 

~l - ( i. ¡ 
• ~~ - m l. 

~2 !J 

1 2
[ 2sacaii

2 
+ sscei 12 + ce~~ + 2gs9/1t] 

=2 f1Vl O • 

o 

Substitution of the foregoing expressions into eq (2.6.34) yields, 

after dropping the connon factor IIVl, 

[

(1+4s
2
8)8/4+2s8cea

2 l 
-'l (l+s~8)$/4 +:~c68~/~ + s8~/2 + C8~0/2 + 

S8~/2 + C84>8/2 + lj,/2 
J 

[

• sece&
2 

__ + secei
2
t4 + ce~¡¡2 + gs8/JLJ 

~ o -
o 

where, from the nonholonomic constraints, 

rc8s4> 

1 S8C4> -c8q, l [ ~ ] • I o l 
ses4>J y o 

si:, O 

•• •• •• •• •2 · • ·2 .. 
x./JL =-(cas4>e + sac,:,4> + c4>1j,)-(-ses4>e + 2c.,~4>e4>-ses~y -s_,;;,;.) 
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The equations of motion thus r~dvce to 

59 4 g se;,-. O (a} 

o (b} 

{e} 

Elimir.ation of ~ from the last two equation just derived leads to 

(b,} 

~,iua~ior.s (a), •'.b 1) and (e) constitute the e~uations scu;;ht, válich 

' 2 

on a 

l 

/ \ 



Solution: 

Let the vector of generalized ccordinates be 

each qi (i=1, ... ,5) being shown in -¡g 2.6.1, where C, with Cartesian 

coordinates q7 and q2 , is the middl~ point of line AB. Furthermore, let 

~A and ~B be the velocities of points A and B, respectively, ~
3 

and ~
4 

being the angular velocities of the disks associated with q3 and q4 , 

respectively. The constraints of the system are obtained next: 

From the fact that line AB is rigid, one has 
1 

~C = 2 (~A + ~B) 

which yields, w_ith c5 = cos q5 and s5 " sin q
5

, 

On the other hand, the relative velocity of point B with respect te A 

can be obtained in two difforent ways: either regarding these points as 

belonging to each of the disks or regarding them as points of bar AB. This 

yields 

The foregoing three equations on the components of § constitute the 

kinematic constraints of the system. Since the third one involves constant 

coefficients only, it is integrable, its integration producing 

under the assumption that at sorne given configuration all three angles 

vanish. The first two constraint eq,,ations are next analysed for integra-
' ' bil i ty. These can be rewri tten in the form: 

ó5. 



which can ~e writt~n in turnas 

with 

The partial derivatives of these vectors are: 

wr.ere ~s~ ~ the 5~4 zero matrix, vectors ~I and ~2 being 

thereby showing that neither matrix is sy¡rmetric. These constraints are, 

then, nonholonomic, t~e sy~tem thus having a double degree of freedom. At 

this poir.t one should notice that the motion of the syster. could be reduced 

to that ir tie 1-2 plane, Fig 2.6.1 (b). This figure makes apparent tt,.it 

the motion of the system reduces to that of line AB in the plane. A l;ne 

mcving on a plar.e, however, possesses a triple degree of freedom, as is well 

kr.cwn from .. lementary mechanics. The fact that the system µroposed possesses 

only a doutre degree of freedom can be realized by noticing that line AB 

of Fig 2.6.l (b) is prevented fro~ sliding along itself. 

In or~ -r to derive the e~.atior.s of motion, vector gis now redefined 

and partiti::ni:d as follows 



1 

where q3 and q4 have been chosen· to be the inéepender.t coordir¿:es, 

with m = p • 2. The constraint equations can then be rewritter. in for.n 

(2.6.2) with 

= 2 1 
-2 

Next, e is chosen to be 12 , the 2x2 unit matrix, whereas e is 
-P - -pm 

defined as the 2x2 zero matrix. Hence, 

The only force acting upan the system is gravity which, dueto the 

restrictions imposed, does not produce any power. Hence the system is 

conservative and eqs (2.6.32a) can be applied. One has 

w1th a= a./.t. 

Hence, 

• Q, al 
aq 
-m 

" Q 

t]. 



Eqs (2.6.32a) thus yield 

e Q 

i.e., in co~~onent form: 

(3 + ~2) ~ - ª2~ ■ o 3 4 

2·· 2 •• 
-~ q3 + (3+1 )q4 ■ o 

which produces 

2 • 2• 
(3+:i )q

3 
- O q4 ■ W/ 

2· 2 • -O q
3 

+ (3+a )q
4 

■ w
2 

where w
1 

and w2 are constants. Hence, 

and hence 

• 3+2:i2 
q5 = -3- (w¡ + wz)o 

i.e., with q5(0) = O, 

3+2i q
5 

= - 3- (w 1 + w
2
lot = nt 

The r,onholonomic constraints yield 

J-:egration of the later equations produces 

68. 

with q1(o) = O, q2(0) = O. Point C thus moves describing a circle on the 1-2 

plane, centered at point (O, l/2a), with radius l/2a. 
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