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Tne litarature on dynamics is rather rich both in quatity and quality.
Most of it, nowever, is written by scientists and meant for scientists, not
engineers. The aftermath is that the treatment of such topics as the dynamical
aﬁa]ysis ef nonholonomic systems is not presented with due detail, in many
cases. A few exceptions are the books (meant for engireers) by Meirovitch
[5]. Greenwood [6] and Kane [7]. The latter introduces an original approach
to the analysis of nonholonomic dynamical systems. This was further elaborated
by Passerello and Huston [8). In the present paper the approaches in [7]
and [8] are treated with more formalism and oriented to cbmputer modelling.

Contrary to the usual practice of deriving dynamical equations from

the "Principle of Virtual Work", which requires the definition of virtual
displacerents, the author derives those equations starting from the "First
Law of Thermodynamics", in an attempl to rationalize the whole formulation.
Morecver, the concepts of gereralized force, generalized impulse and
ger2ralized nomentunm are formally defined, as well as the concept of
ncrhiclonemic constraint. With regard to the latter, necessiry and sufficient
conditions are formally expressed for a kinamatic consiraint to be

holonomic.

Ciucac Lniva~sitaria, February 1932
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VOMELCLATURE

x: lowe -case underlined character. An n-dimencional

colunn vector.
A upper-case underlined character. An mxn matrix

x 5, A the transpuse of x or, correspondingly, of A

X'y, X-y: the scalar or inner product of n-dimensional vectors

x and y.
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(scalar) bilinear form of m-dimensicnal vector i
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the vector of generalized coordinates or, correspon

ingly,of generalized velocity.
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; ; : the partial derivative of the scalar f with respect

ay
0

to n-dimensional vector x. It is an n-dimensional
colunn vector whose ith component is the partial
derivative of ¥ with respect to Xio the ith

~

comporent of x. i

o
-

ot

: The cartial derivative of the m-dimensional vector

o?r
AR

v with respect “c the n-dimensional vector x. It is
; an mxn matrix whose (i,3j) element is the pirtial

derivative of y. with respect to X



LAGRANGIAN DYRAMICS OF MECHANICAL SYSTENS
1. PRELIMINARY CONCEPTS

1.1. Fundamental definiticns

Broadly speaking a system is a set of objects that interact with each
cther. Thus, tho cct of cellestial objects constituting our gallexy is in
fact a system, for they interact with each other through gravitaticnal
forces. The different cells of a living organism constitute an additional
example of a system.

A system is mechanical if, in the first place, it is constituted by

mechanical elements. These are: particles, rigid bodies, continue, springs

and dashpots. But a set of of such elements in itself does not constitute
- a mechanical system, unles§ its elements interact with each other through
forces or exchange of mass and momentum. The state of a system is a proper
ty of the system allowing one to predict the behaviour of the systexm in
time, i.e. the changes it undergces. This state is constituted by a set of
variabies are grouped within a vector, one speaks of the state vector of
the system. At this stage one should make the distinction between two broad
classes of systems, namely those being characterised by a finite-dimensio-
nal state vector, and those by an infinitely-dimensional state vector. Tﬁe
latter always refer to continua, i.e. beams, plates, shells, flui@s, etc.,
but these will not be studied were. Thus, the mechanicel systems that will

be dealt with are the so-called lumped parameter systems, i.e. those

composed of concentrated masses, springs, dashpots and rigic bodies.
Since the reader is assumad to be familiar with the basic concepts of

-aa

mechanics, it will be taken for granted that the noticns of particle,
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rigid body, spri:.,;, dashpot, mass, force, time, velocity and acceleration
need no further giscussion. Nevertheless, if needed, an extensive account
of such concepts can be found in [ 17]. Before proceeding , however, a

survey of xinems:::cs is needed.

1.2. Kinsmatics of mechanical systems

Trhe basic concepts of Kinematics of rigid bodies and their couplings
are extensively ciscussed in [[27], and often reference will be made to
the material conl:ined fhere. Here it will be recalled that ths 3osition
vectyr of a point and its first two derivatives, velusity and acceleration,
are denoted by r, 1 ér yand ¥ or T, respectively. These variables
are three-dimensional vector functions of time. The rotation an¢ the angular
velocity (or spin) matrices of a rigid body are tensor functions of time and
are denoted by ;‘and 2, respectively. Mereover, the angular z:.zzleration

matrix of a rigid body is given by & + 92

. The relationship between Q and

gis :
T

o= (1.2.1.)

Theorems concerning the foregoing variables are discussed in detail in

Cel. ]

1.3. Dynamical variables

The actions of the environment on a particle are rediced to 4 single

concentrated force that will be denoted by f, whereas those acling on a
rigid body'can be either a concentrated force f acting at a given point of
the body, a distributea force f' acting on a given éortion'of the surface

of the body, a concentrated moment wifh respect to a point 0, denoted by



50 or a distributed moment with respect to point 0, acting on 2 given
portion of the surface, that will be dencted by 56. In many instances P
forces and moments can be assumed to e concentrated. Tha mass of either
a particle or a rigid body js deroted by m. Herte, the momeniun of @

particie is dencted by

p=my (1.2

v being the velocity of the particle. Tne. expression given in eg. {1.3.1} ¢
represents the momentum of a rigid body if m is the me:is of the bcdy and
v is the velocity of jts center of mass. The angular mi=entum of a particle
about a given point 0 is just the moment of the momeniam of that particle
about that point. Thus, denoting by r the position vector of the particle with
respect to 0, the angular momentum of the partizle with respect to this :
point is given by
hg=rxp . (1.3.2) ‘

If njh is a component -.of the angular velocity matrix of a‘rigid body,

its corresponding angular velocity vector having the components ., then

the relationship between both sets of components is
w, = “i.jh nkj (1.3.3)

_where ¢ is referred to as the axial vector 31 of'g and is also exoressed as
w = vect (Q) (1.3.3a)

Letiing Iy denote the inertia tensor of a rigid bsdy about point 0, the

angular momentun of that body about the same point is given by

hy = Ig-® {1.3.4)




Tne kinetic energy of 2 pertizle of mass m moving with velocity v is

given as

T=Fnyy=tny (1.3.5)

Tie kinetic energy of a rigid body of mass m and mement of inertia lc

with respect to its mass center, moving so that the velecity of its mass
center is v and its angular velecity vector is w, is given by

T= %—m yTy + % QTZC w (1.3.6)

The impulse of a given concentrated force f during tha time interval

(tl, tz), acting on a given particle, is given by

t
a= J 2 £(t) dt (1.3.7)
27y ¢ '

The angular impulse of that force about a given point Q is, then,
tz ,
by = J rx £(t)dt (1:3.8)
L
1
The angular impulse of the concentrated moment £g ebout a point 0, is
given by
(2 -
= J 40(t)dt (1.3.9)
t
1

5

The power developed by a force f acting on 2 particle moving with
velocity v is given by
L= fly (1.3.10)

~npulé that force act at e civen point P of a rigid boay, which moves

wit velecity v, the san: expressicn would be valid for the powcr acvcloped

by that force. The power developed by a moment about &
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point O, {0, acting on a body moving with angular velocity w, is 1
T ' .
V=4e _ (1.3.11) ¢,
If the force f is applied at the mass center C of a rigid body moving
with velocity v and simultaneously the moment about C, gc, is applied g

to the rigid kody, the total pewer developed by the force and the moment

is

Usfly+ L w (1.3.12)

1.4 Dynamica) variables for mechanical systems

low the forcgeing concepts are “defines for a mechanical system composcd
of several pairticlcs and rigid bodies. Assume the system consiss of p

particles ant 2 rigid bodies. Moreover, assume that a force f acts on the

4 th particle and.a force f.acts at the mass center of the Fih rigid body.

i
1 The resultant force f acting on the system is just
A T -
. p 3
f=zf, + If (1.4.1)
i is1 j=171
“ Should i-. woment ng about the same point O act on th: rigid body, the
resyltant mcment {s about point O acting on the system would then be
o= £ Loj (1.4.2)
=1
The kinetic energy of the entire system is, correspendi.gly,
3 W RS SN SRR U 1 A
] T=L =@.v.v.* S xmy.v.+ I 1 . 1.4.53
E] il AR AYAYE j=l§ 1 1% J-gl?:j-cj'fj ( )

where m.  and W are the mass of the ith particle and that of the jth
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rigid bedy, respectively. Correspondingly v, and yl represent the velocity
of the (t: particle ang that of the mass center of the jth body. Anaiogous-
17, lcj and ¥ represent the moment of inertia of the jth rigid body about
its mass center and it: angular velocity, respectively.

. If fi and fj represent the forces acting on the (th particie ar- at the
mass center of the jth rigid body, respactively, and {cj the moment &tout

the mass center of the ji.. body acting on this body moving with angular

velocity i then the power dcveloped on the entire system is given by

‘W (1.4.4)

1.5. Generalized v:»iables

In dealing with mechanical systems consistitg of either one single mass

or one single rigid boZy, it way suffice to describe their states with the
aid of the 3-dimensional position vector, r, the rotation matrix Q and

heir time derivatives. Furticrmore, these variables can be suitahly cescribad
by introducing either Ca;kesian ce~rdinates or any other type like cylindrical
or spherical. However, in deaiing with systems comprising several masses on.l
rigid bodies, the doscripticn of their stalzs through the afarementicnad
coordinates becomes so cumbersome that the arising equations turn out to be
" practically unhandable. Henc. a different type of description must be reznried
to. Consider, for instance, ihe manipulator depicted in Fig. 1.5.1, composed
of the three"links® A3, BC and CD, carrying the “hand“ D, that, for the pru.sent
purposes, can be thought of as being welded, i.e. rigidly attached to the link

CD. Iflinks AB, BC and CD & . assumed to have lengths l, . 22 and 13 and the

Cartesian coordinates x, y of each point A, B, C and D are subindexed with the



correspending letter, the coordinates of D can be expressed as

4 38! 3+
X = Xg ¥ Xn Kic“s'*l +i, v3)

Yp T g * Yot Loy +BZ+SJ

ne ;o
! Ui X, H
; v v > .Jv/

Fig 1.5.1 Three-link lanar manipulator

This would requira the use of seven variatles, namely xs; Yg Xoo Yoo
8; + 0y and 83 Thase variables, however, are not indeperdent, fo: they

observe the relationships

xg* Zlcosoi s Yg =£Isinel
J xo= L,cose; + zzcnc(e, + ez),y[l = L;sinog+ ZZSin(el + 92)
= ﬂ,cose, + Z?cos(e, + 92)+ £3cos(e, +o,t e3)

- . . . \
Yy L,s1ne + 1251n(e, + 32)+ £3s1n(e, + 8,4 05)

Hence, the position (and consequently any derivative of this) cf points

B, C and D can be ¢i-spletely described by the three variables e;, " and




es. These, hcwever, zre not necessarily related to ary particular sot of

polar coordinates, Such 2 set of variables, pertaining to the overall

system, is referred to as the generalized coordinates of the system.

Cartesian ccordinates of some particular points are rot prevented from

being regarded as generaiized coordinates of a system, however. In fact,

one could have aiso taken as gereralized coordinates of the system shown

in Fig. 1.5.1 the follcwing: Xg, Xa and X, the remaining ones being ralated
to these by the corresponding geometric relationships that, nevertheless,
would be cumberscme to deal with. Generalized coordinates are thus any set

of variables that compl:tely describe the ceometrical coﬁfiquration sf the

system under study. Thece variables are, then, either distances or angles

supplied with signs aboirt a reference. These variables can be orderly
grouped within an arra; that is referred to as the vector of generali: :d
coordinates and is henieforth represented with q. For the example o¢

Fig. 1.5.1 one then has

Thus, the position vector of tha Lgﬁ particle of a mechanical system
or of the mass center~:” the <th rigid body of the system is a funci.zn

of the generalized coordinates. Cne then has

sbvigusly referred to as the vector of

sresented as . Vector g veing a

-ty

unCwior

tren mzkes 2ath r. a3 function of time, in turn, though throush q.
4 -~

-

he velccity of either the Lit: zarticle or of the center of mass of the

4th rigid bedy of a mechanical systed, tnen can be expressed as




. We . 9,
VAR A T (1.5.1)

From the foregoihg relationship one readily obtains the following
interesting result v
ar. aor.

. s 4 (1.5.2)
ag 3
which is a relationship that will be very often resorted to.
Given the rotation matrix of body £ of'a mechanical system, this can
also be regarded as a function of q. In fact, if the Eulerian angles are
taken as the generalized variables of a rigid body, taking the body from
configuration 0 to configuration 3, as depicted in Fig. 1.5.2,.wﬁére

multually orthogonal axes X, Y, Z have been attached to the body, one has
Elsb-lgll.l.

COCHCY~S¢Sy  -COCHSP-SéCY SOCY
Q= COSYOCYHCHSY  -COSPSYHCICY SOS¢

~Secy s$6sy ca

- where Q has not been indexed for simplicity.

Thus, e 0
. 3
) 9=E—q -4»-3—S (1.5.3)

where 3Q/3q s a triadic, i.e. a third-rank tensor, whose components

depend upon three indices, as is shown next

1.1 C X =€0s X, s X =sin x , henceforth




Fig. 1.5.2 Euler's angles for a igid-body rotation about a point 0.



(¢ i L . s
A LU T s {1.5.3)
S g, S {
3
i.e. the ({,f,k) comporent of 3(/ag i3 RQ,jIT:F

o < I

Thne angular velocity matrix, &, of the rigic fody undir ctidy, then

has the fcllowing (4,) component

0. 3Q. 3Q. T
o _ . L _ e PP .
7 Qe ag, %lie tar Gt ag, Yast G (1)

which, in compact form, can be written as

L
O

3Q
IS PR S | <
AR TREAS T (1.5.8)
and the relationship
w9
~ T £ e
— == Q {1.5.6;
g %% -

readily follows. Of course, the angular velocity & of the 4th rigid body

is
0. 3Q.
_ S AT AT
8 5 Wtst & (1.5.7)

or, muking use of eq. (1.5.6),

e T
P T (1.5.8)
1 Analogously, introducing eq. (1.5.2) irto eq (1.5.1), one obtains
v, , ar. av, .
v, =—fq+ =t FE iy, : (1.5.9)
B | R TR T :
By taking the axial vector of both sides of eq (1.5.8), one has!-2

3Q. “0.
aj* QI) = %g—vect(gi)]g + vect{ sii.qz)

. M.
vect(Q,)= vect( sai 4)+ vect {

1.2 These results follow readily from definition {1.3.3) for the vector of
a matrix and eq (1.5.4a)




and, recalling definition (1.3.3), the relationship

EET 2.
Go=—%q + vect | :—Jﬂr)
< q - ot 4

Q»

follows inmediately.
Now, introducing vector y =
4

30,
_ AT
v veet (53 Q)

v.{q,t) defined as
L =~

eq. (1.5.10) can be rewritten as

Moreover, since w, = mi(q,&,t), one has

Next, both relationships (1.5.9) and (1.5.10a} are substituted into eq.

(1.5.10)

(1.5.10a)

{1.5.10b)

(1.5.10¢c)

(1.4.4), thus obtaining the power supplied to a mechanical system by its

environment, as

3y VI 1 L
TR B i N g,f'.TL+ glgT,_-L) q
1 58 ATy T 4R ey
T T T
L A L
P R TR TR

(1.5.11)

12.

T AL R+ L e e oS e S



3.

i
which is an expression of the form 1
T .
U= ¢qty (1.5.113)
The first term of the right-hand side of expression (1.5.11a) is the
tnner product of a'quantity ¢ times a generalized. velocity, its units E

being those of power. In elementary mechanics, to obtain power, velocity

must be multiplied by force. Hence, by similitude, ¢ is defined as the
generalized force acting on the system, also referred to as the active
generalized force or the external generalized force, as opposed to the

inertial generalized force, yet to be defined. The remaining term, v ,
wi]llbe seen to play no relevant role in the present formulatiem and hence,

will not be .further discussed for the time being. One then has defined

Copen [3 T LT .
=, — IR - L. 1.5.12
! & 2q fL 151 3q ~cf : (1.5.12)

which is an n-dimensional vector, its kth component beingl'3

= n J
7 3éh fp t j§l 3ﬁh zc“ (1.5.12a)

Now, if impulsive actians take place on the particles and rigid bodies

of a mechanical system, a generalized impulse can be defined analogously.
Alndeed, assume a; is the impulse acting on the ith p;rticle of such a

system and éj that on the center of mass of theijfﬁ,rigid body. Moreover, let

ch be the angular impulse with respect to the mass center of the jth rigid

body, acting on this body. The generalized impulse acting on the system is

then defined as:

3 . . . . .
The repeated index m, ranging from 1 to 3, implies sum over it.
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by analogy with definition (1.5.12).

Lenoting by Qi the acceleration of the < particle or that of the mass
center of the {tr rigid bccy of a mechanical system, and by m, the mass of
the (th particle or, correspondingly, that of the {th rigid body, the ith
inertia force is defined in elementary mecharics as

£y, (1.5.14)
~4 L~4

The inertia cuple of the .ith rigic body of the mechanical system under

study, with respect to its mass center, is correspondingly defined as

*
gci (1.5.15)

- Ied. —o.xw,
S0 TR

The inertia generalized force of the system under consideration is

defined as

T

(I 6. +w.x]..0:) {1.5.16)

* prn (3, ]T
L — .
“Ci~f ~4FCN

¢ =- + LV - -
- i=1 an&L J

3w -
1
9

by analsgy with definition (1.5.i2).

The generalized momentum is in turn defired as

- N (4.
+r, 1oV iT N dw. T
s =PI ‘ m.v. - I -%i~] 1w, (1.5.17)
ia1 (3G Ll j=1 |38 J “Ci~j

again, by analogy with definiticn (1.5.12).
The degree of freds. <F 2 mechanical system egquals the necessary and

su®¥icient number of generalized coordinates that desciribe uniquely the
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geometric configuration of the system. Henze, it can also be cefined as
the largest possible number of 4in zpesde:* generalized coordinates cf the
system. For example, the degree of freedcm of the system shown in Fig
1.5.1 is three.

From egs ©1.3.10-12) it is clear th. . the poser developed by a force
acting on a particle, or at the mass cent:~ of a rigic body, vanishes either
if the force is perpendicular to the velozity of the point on which it acts,
or if the velocity of this point vanishes. “nalocously, the power
developed by a torque acting on a rigid boCy vanishes either if the
torque is perpendicular to the angular velocity or if the latter vanishes.
This is a well-known result viom elementary mechanics. It is worth mentioning
it here, however, because it makes clear that the power contibution of such
forces and torques on theAﬁechanical system varishes and hence, does rot
appear in either sum of eq (1.4.4). As a consequence, then, at light of the
derivation of this Section, the contributions to the overall generalized .
active force, of forces and torquas acting upor a mechanical system, that
develop zero power on particular particies or rigid bedies of the system,
vanish as well. Hence they need not be counted for in computing the gener-
alized active force of the mechznical system.

Similar arguments lead to aralogcus results for generalized inartia
forces, impulses and momenta.

The foregoing results are advantageous in constructing thz mathematical
models of mechanical dynamical systems for, gnder these, reaction or contact
forces on rolling bodies or on frictionless surfaces are eliminated {pso 4acto
as unknowns, which thus simplifies the formulation of the moda2i. They present
egually a disadvantage, however. In fact, if the said reaction or cortact

forces are needed for design purposes, i.e. in determining work loads on
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mechanical elements, one cannot obtain them directly using the Lagrangian
formulation presented in the following sections. These forces and moments
can be computed by relaxing the constraints of interestand introducing

them at the final stage of the model formu]gtion. Such a techniqpe appears

in [7,pp. 207-210].

R




1.6. Newton's equations of motion

Newton's laws of motion for a given particie of mass m, acted upon by

a force f are expressed as

f= mr . (1.6.1)
r being the acceleration of the particle.

The same Taws referred to a given rigid body of mass m and moment of
inertia IC about its mass center, acted upon by a force f.applied at its
mass center, C, and a moment {c with respect to C, are summarized in the

following equations:

f = (1.6.2a)

gc =1 .éﬂuxl

I (1.6.2b)

ce

Newton's laws are now applied to a system composed of P particle; and
4 rigid bodies: If force f; acts upon the (th particle, force fj at the mass
center of the JZh rigid body and moment £Cj is the moment with respect to

the center of mass of the jth rigid body, acting upon that body, one then

has
fo =Ml ,4i=1,...,p (1.6.3a)
. o= m.F, [ = .6.3b
£, =0t i1 (1.6.3b)
ng = le@j +@ijCj W, =100 (1.6.3c)

By addition of the p equations (1.6.3a) and of the x equations (1.6.3b)

and then by addition of the two resulting sums, one has

prr pr
fé =z m.re (1.6.4a)
L=1 L=1
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Aexl, addition of the ~ eguztions (1.£.22) leadr

hd i ’ )

e R PRI IE VIS S {1.6.4b)
jep Cf LR R

Egs (1.6.4a and b ) are expressions of Newtbn's laws to be anslied

to systems of particles and rigid bodies.

TR——

o BT 3 5
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2. IURAMICAL EGQUATIONS P NECRALITAL SYSTevS

2.1. The First Law of Thermodynamics

The First Law of Thermodynamics, as such, is the result of chservaticn
and hence, cannot be derived, as neither can Newton's laws of motion. This
law states that the energy of a physical system remzins constant througnicui
the time. Within this context, the physical system under study wiil be
considered to be composed of the mechanic}? system at hand plus its environ
ment. Thus, the First Law of Thermodynamics can be rephrased as: "The power
- supplied to a mechanical system by its environment equals the time rate of
change of the energy of the system".

The time rate of change of the energy of the system is also referred

to as its internal power or else as to the power developed by the system,

as opbosed ta the power supplied by the environment to the svstem, an

expression for which was obtained as eq. (1.5.11). Ncw, the energy of the

system is also called its internal energy and eguals the time integral of

-

its internal power within a certain time interval. The internal energy o
a mechanical system can be of three different types: kinetic, pctent?a]
and nonrecoverable. The kinetic energy of a mechanical system was alreacy
defined in Sect. 1.4, an expression for which was obtaired as eq. (1.4.3).
The potential energy is next discussed.

The action of the environment on a mechznical system takes on several
forms, but in dealing with finite-degree-of-freedom purely mechanical
systems, this can be only of two different types, namely forces and moments.
These can in turn be supplied by either natural or man-made means, such as
motors, springs, etc. In any case, forces and moments can arise from vector
fields arising in turn from scalar fields. A scalar (vecter) field is e

scalar {vector) function whose domain is defined as a portion of the gsrnysical
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space, i.e., whose argument is the position vector r of a point P of a
given region of space. Examples of scalar fields are the atmospheric
pressure and temperature. Examples of vector fields are the force of
gravity and the velocity of the particles of water contained in a waterfall,

A scalar ield f and a vector field f can be expressed thus, as
f=1f(r), f=1(r) (2.1.1a)
respectively. If these fields change in time, then they should be expressed

as

£=fr,t), £=f(r,t) (2.1.1b)

respectively.

Assuming that the vector field f(r) and the scalar field V(r) are
relatad by

fr) == (2.1.2)
i.e. assuming that f is the gradient of-V, V is said to be a pontential of

f. Motice that f can have several potentials, all of them differing by a

function not containing r~explicitly or else, if time does not play any

i
3

role, by a constant. If the force f defined in eq. (2.1.2) acts upon a

particle of mass m dhring the time interval (to, tl), the energy supplied

by this force during the said time interval to the particle, assumed to

R 1

move with velocity v, can be cqmputed readily as the time integral of the

power f.v, i.e.

Y
£ J £y dt (2.1.3) -

Substitution of eg. (2.1.2) into eq. (2.1.3) and of v by dr/dt, eq.

(2.1.2) becomes
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(2.1.4)

j.e. the energy supplied to the particle during the time interval (to,tl)
depends only upon its initial and final positions. This type of energy

js called the potential energy of the particle. It should be pointed out

that the potential energy of a particle at a given time always depends
upon a reference position'
. . .
Now, denote with ¢fand ¢mthe first and the second summati8fs appearing

in eq. (1.5.}2). The generalized force ¢ has thus been decomposed as

RETEEN . (2.1.5)
where
PHAT T
b = --,[WJ fe (2.1.6a]
A= ( -
and
P ]T (2.1.6b)
6 = -l e.: .1,
Mo amlaq S

where the identity appearing in (1.5.2) was introduced into eq. (2.1.6a).

Let all forces i appearing in eq. (2.1.6a) arise from a given potential

V., i.e. let

f v
£ Of (2.1.7}
~4 al -

~




s

—

Substitution of eq. (1.6.7) into eq. (2.1.6a) leads to

(2.1.8a)

where the second equation follows directly from the "chain rule". Similarly,
if all couples €CL appearing in eq. (2.1.6b), arise from a given potential

v _, it is pcssiblez‘1 to rewrite it in the form

m
an
oy =" 39 (2.1.8b)
If now the potential V is defined as the sum of Vf and Vm’ one has
= 5;1 (2.1.9)

It may happen that only some of the forces and couples acting on a
mechanical system arise from a potential. In this case, the generalized

force ¢ can be decomposed as the sum of ¢ and ¢np’ ¢_ being that part

P -p

of ¢ arising from a potential, whereas ¢npthat not arising from any potential.

Forces and couples arising from potentials are also called “lamellar". If
Tamellar fields are indepgﬁdent of time, they are called "conservative".
Trose forces and couples not arising from any potential are called

nonconservative. The-generalized force then can be written as
3V

£l

3G ?np

¢ =- (2.1.10)

Thus far, kinetic and potential forms of mechanical energy have been
discussec. Nonrecoverable form of enmergy is that being dissipated as heat,

due to either friction or viscosity. This nonrecoverable form of energy is

) . . : -
2.1 The detaijls involved are omitted for they are unnecessary to pursue

the discussion.

——
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The power cdeveloped by dry-fricticn forces is thus
Uy == Foy sgn{v}

where v = YooV and sgn (v) is the signum function, which equals+l or -1,
depending upon whether v is positive or negative. If v = 0, clearly there
is no power developed and hence sgn(0) = 0. The power developed by linear
viscous forces (the only ones to be considered here unless otherwise

indicated)} is then

Uv =- cv?

The work developed by each of these forces within the interval

t1 <t«< t2 is simply the integral of the corresponding expression, i.e.

; [t

¥4 == Fy i Y v sgn(v) dt
t

W =-c J 2 v2 dt

v
Y

Linear viscous forces can be regarded as arising from a scalar function,

referred to as a "dissipation function", D, if this is defined as

21 z
D--z- cy
and hence the corresponding viscous force is related to D as
__ 3D
F=%

D playing thus a role similar to a potential. Since this type of forces is
ronconservative, D cannct be thought of being actually a potential. Moreover,
F i5 rot the gradient of D, since it is not obtained by differentiation of D
with respect to the position vector, but with respect to the velocity.

The extensicn of the corcept of dissipation function to mechanical

systems is straightforward. If only linear viscous forces are present within




s

|
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commonly referred to as "mechanical losses". In this context, only two

forms of nonrecoverable mechanical energy will be considered: those due to
dry friction and those due to viscosity. The former follow the so-called
"laws of friction" and thus, are independent of velocity. Dry-friction

forces acting on bodies at relative rest differ from those acting on bedies
under relative motion, however. Thus,a distincticn is made between static and
kinetic dry-friction forces. Fricticn forces due to viscosity are a consequence
of the internal viscosity of fluids, which can be either proportional to
velocity or more complicated functions of it. Dry friction is represented

by two surfaces in contact, either under relative motion or tending to have
it, as shown in Fig. 2.1 (a). Viscous friction is represented by a dashpot
whose end points move with different velocities, vy and Vou 35 shown in

Fig. 2.1 (b).

‘ z I-——-»vz i 2
' o I'E )
! —_— Y 1 —
(a) Dry friction . (b) Viscous friction

Fig.2.1.1. Friction forces

Fig.2.2 shows the friction force that body 1 exerts on body 2, shown

in Fig.2.1, where the positive direction has been assumed to be that pointing

rightwards. £ F

F - ¢
¢ T

(a) Dry-friction force
Fig. 2.1.2 Dry-friction and linear viscous force

(b} Linear visious force
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the system, and these are grouped within the generalized force by the
quadratic dissipation function J, defired as ,
=34ty

allows the computation of 8, s

3D

¢y =-3—6

an expression similar to eq. {2.1.9) for lamellar fields.
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2.2. Classificaticn of 1 :chanical systems according to their consirair's

Mechanical systems, to Se useful, must be composed of EEEEISQ parcicles
ard rigid bodies. The action of coupling has the effect of diminishing the
degree of freedom of each element constituting the system. Céup!ing, t s,
mexns introducing constr.ints into the system. These constraints can b.
readily expressed in mataematical form by introducing expressions relaiing
the velocity of the particle or of the mass centre of a rigid body, or the
angular velocity of the rigid body, to those of the remaining elements,
thus limiting the range of these variables to a smaller s:t. These con-
straints, relating velocities,are then relations amongst generaltized
velocities, i.e. amongst derivatives of the generalized coordinates. From
kinematics, it follows that these relations take on the forms of linear
combinations of the generalized coordinates. Thus, they take on the form

Aq = b (2.2.1)
where A is a m x » (mcn) matrix, n being the number of generalized coor-

dinates. Eg. (2.2.1) thus represents a set of m equations of the form

aélql+aizqz+...+a£nqﬁ=bi , A=1,...,m (2.2.2)

which can be rewritten in the form

T.

a8 =b,, &=1,...,m (2.2.2a)
If vector 3 happens to be the gradient of a given function fis i.e.
if
af \
gi_ Y] (2.2.3)

and if bi happens to be the negative of the time derivative of the .aiven

function f., one can rewrite eq. (2.2.2a) as

i
i
}
i



@

f. f A

AL <
3

Ji;+§—t—'=g,/;=z,...,m A 12.2.4)

-3

whose left-hand side is readily identified as the toct2) derivative of f;

with respect to time. Thus, one can write it as
f.=0, <£=1,...,m (2.2.5)
A

which leads rea!ily to

f.o=c, (2.2.6)

< being a constant. Thus eq. (2.2.2) turns to be inlegrable under the

introduced assumptions. Such a constraint, possessing an integrgl, is

2.2

referred to as a holonomic constraint Otherwise, such 2 constraint

is referred to as a nonholonomic constraint. Systems ccntaining only

holonomic constraints are thus referred to as holonomic systems. Assuming
a system contains both holonomic and nonholonomic constraints, the sét of

holonomic constraints can always be integrated to render a system of, usually

nonlinear, algebraic equations of the form

flq,t) =0 (2.2.7)
whose dimension will be assumed to be h{<m). Eq. (2.2.7) thus defines h
relations between the generalized coordinates. This neans that from that -
equation, h generalized coordinates can be solved for in terms of the
remaining ri-h coordinates. For nonlinear systems, this will rot, in general,
be possible in closed form. Well-known numerical procedures, like that of

Newton-Raphson, can be applied to solve for the involved h generalized

2.2 Greek: holos=integer
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coordinates. however. Thus, rin: vy, one can wiink o7 g rorhalocogic systes
as cne possessing only ncaholonomic conét?aints, its holonomic constraints
being assuved to have been integ -~ted and, from this inte_ration, n of its
components already solved for.

Whether a system is holonomic or not can be readily verified. In fact,
2 recessary condition for a function fi(q,t) to exist, that verifies eq.
(2.2.3), is that the gradient of 3; »as defined in eq. (2.2.2a), with
respect to q, a n x n matrix, be symmetric. This is not sufficient,
however, to render a constraint holonomic. In fact, the Ferm bi of eq.

(2.2.2a) should be related to fi by

b, =- , 4=1,...,m (2.2.8)

This means that the second necessary condition to render a constraint

holonomic is

] (2.2.9)

Holoncmic systems are easier to deal with than nonholonomic ones,
becéusé they allow -to reduce the number of generalized variables. In fact,
by solving for h of the generalized variables from the h holonomic con-
straints of a holenomic system, the number of generalized coordinates
reduces to n-fi. Mereover, these a-h coordinates are independent, their
time derivatives being linearly independent. Thus, with no loss of general-
ity, the s generalized ccordinates of a holonomic system can be thought of
2s being independent.

A particular case of interest arises when matrix 5 and vector 9 of

€g ‘:.2.1} are constant. In this case, clearly, the aum gradient with




respect to g , of every row of A , vanishes, i.e. it is symetric. Morecver,
for each row 2; 52 scalar function fi exists whose gradient with respect
.

tog isa, . Infact, this is

with 2, constant. Hence, eqs (2.2.8) and (2.2.9) hold and the constraints

are holonomic.

Example 2.2.1. Constraints of a differential gear train. A model of a

differential gear train {s shown in Fig 2.2.1. It consists of two disks

A and B. Disks A have a radius a , whereas disk B has a radius b. Disks
A rotate freely about independent axes that are collinear with/1ine AA'
whereas disk ? rotates about axis 0B and this one rotates in turn about

AA'. Since the model represents a gear train, pure rolling is assumed.
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Sy

Selution: Llet 5, and e2 be the angles of rotatioca of the upper and the
Toser disk A, respectively, 93 and &y being the angles of rotation of disk i
B a2bout 03 and of 0B about AA‘. These are then the generalized coordinates
of the system. Let P and Q be the contact pbints of disk B with the upper _
ang the lower disk, respectively. Moreover, let ]} and 7] be unit vectors
parallel to 08 and to AA', directed along the positive directions of‘es
and 94'(or e, ), respectively. Finally, let 03 = DyXD,.

Next, denote by Vpy 3nd Vpg the velocity of point P of disks A and B,

respectively. Define YQA and Yo8 ‘nalogously. Then
Ypp = 88 03+ Ypg = (-6
Yoa 3 Yop = (6,2 - O3b)ny i

The pure-rollling condition imposes

Ypa = Ypg 2nd ¥ou* ¥og

Hence,

respectively. These are the constraint equations of the system of Fig 2.2.1,

which have the form of eq (2.2.1) with

e

!

De <iie Clre
w [5Y
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£ 1Y
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~
o
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o
n
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_ integrable, i.e. the system is holonomic. Integration of the foregoing

Since matrix A and vector b of these equations are constant, they are

equations yields

A=k
k being a 2- dimensional constant vector. If ail angles are defined O at
t = 0, clearly k = 0, which then ylelds

Ag=0
or, in component form

- ad; - bes + af = 0

- ap, + beS + af,= 0

The foregoing system possesses four seneralized coordinateﬁ and two
kinematic constraihts. The éystem is thus holonomic, its degree of freedom
bein§ two. The latter fact means that it admit§ two independent inputs,
which is the reason why it is essential as a transmission device in power
axles of terrestrial vehicles. In fact, it allows the transmission of power
to the axle AA', while allowing each ¢l Jisks A to rotate at independent
rates when taking a curve. To illustrate this fact, elliminate 64 from the
velocity equations already obtained. Hext, solve for é3 in terms of 5, ard
62 from the arising equation, thus obtaining

85 = 95 (8, - §))
which shows clearly that the rate of rotation of disk B about its axis of
symmetry is proportional to the difference of rates é, and 62 , which explairz
the name of the device. When the vehicle follows a straight course, clearly

6; = 0.
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£x:mple 2.2, . Constraint ecuatior  or '~k rolling without slippi g on

2z scrizontal surface. Consider the disk shown in Fig 2.2.2, whose movenment

is defined by the Cartesian coordinates (x.y,z) of its mass center, and the
three orientation angles & , ¢ and vy, assbciated with the direction of the
course, the tilt with respect to a vertical plare containing the tangent to
the disk at the point of contact P, and the spin about the axis of symmetry
of the disk. Now, define lines 1, 2 and 3 as follows: Line 1 is the diameter
of the'disk parallel instantly to the tangent passing through P; line 2 is
the diameter perpendicular to line 7, and line 3 is the axis of symmetry of
the disk. Next, define unit vectors Dy » D, and ng parallel to lines 1 ,

2 and 3, respectively. The velocity of C, v, and the 5ﬁgu1ar velocity,

w , of the disk have then the forms:

where i, j, k are unit vectors along axes X, Y and Z, respectively. The

two triplets of vectors are related by

.~

= cosoi + sinpj

-1
np, = - sing sindi + sin@ cos¢j + cosek
Ny coss sindi - cosd cosyd + singk

The rolling constraint can then.be expressed as

with ¢ defined as the vector joing P witn C, directed from the former to

the latter. The foregoing constraint thus yields




rCBSE0 + & SOCAG + achy + x = O
-ncOced + x sBspd + asdp + = 0

“ns8b.+ z = 0

Integrahility of each of these scalar constraints is next yverified.

These can be rewritten as

a.9=0, f=1,2,3

with
{e ) (CE)'S¢‘ -coce) [ s8
¢ sécod $9s¢ 0
vl co 5o 0
9= |3 == y 3, =1 s, =1
LN M A A 22 0 %3 0
i 0 1 0
: | o) o) )
Thus,
[-sew e 0 0 0 0)
’ cocd -s5<d 0 0 0 0
. 0 ¢ 0 0 0o o
39 ©
- Lo 6 0 0 0 o0
[ 0 0 0 0 0 o
} 0 0 0 o0 o0 0]
fsocy sy 0 0 0 0)
da, , sy  secy O 0 0 0
E R ¢ 0 0 0 0
L0 0 9 0 0 o
Lo 0 8 0 0 o
{0 0 ¢ 90 o0 o
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(s 0 0 0 0 O]

6 0 0 0 0 0

a © 0 0 0 0 0
% © 0 0 0 0 0
00 0 0 0 0

6 0 0 0 0 O

Out of these three matrices, only the third one is symmetric. Moreéver,
QL =0, for £{+1,2,3. Since, additionally, gs does not contain time
explicitly, the third constraint is integrable, i.e. hoTéﬁomic, whereas
the first two ones are nonholonomic. The integral of the third constraint
yields -

z = % cos@

which can be readily verified from Fig 2.2.2.

Fig 2.2.2 Disk rolling on a plane.



2.3. Lagrange's form of d'Alemdert's Princi-le for holonomic systems.

As discussed in section 2.1, the cnly forms of internal energy that
a mechanical system can possess are kinetic, potential and ronrecoverable.
Potential and nonrecoverable forms of ener;; of a mechanical system can be
regarded as being supplied (or extracted) by the environment, their time
rates of change thus being contained in the term U defined in eq. (1.5.11).

The first law of Thermodynamics thus takqs on the form
U= (2.3.1)

{.e. the power supplied by the enyirqonment to a mechanical system equals
the time rate of change of its kinetic energy.
The time rate of change of the kinetic energy of a mechanical system

can be obtained by differentiation of eq. (1.4.3). Thus

. pm 2
T= Imyv+I [w

& 1V ;: it Aw; *leje 1)) {2.3.2)

'Cj

Introducing now eqs. (1.5.9) and (1.5.10a) into eq. (2.3.2), one

obtains i
. P 3Y, Ta*'~ . :

= W, |——q + + Lqtwv. 2:3.3
Tk [aq : H‘] Jf (Rejyre Moo Gz 25 v (2.3.3)

This expression can be partitioned then into

R

o (PtAR T 3V
T m.v 1
L:, 4 3q -z (CJJ olcs 2q

P74 T
I my .t Toow, tuxlnw.) vs 2.3.4
L’.fl 'Y iB jf 1(-(;,*.», @jx_c,awj) :j] . ( )
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The first term in brackets is readily recognized as -?*Td by
recalling eq. (i.5.°5). After introducing egs. (1.5.14) and (1.5.75) into
the second term of the right-hand side of'eq. (2.3.4), this is readily
reccgnized to be simply y, as defined in eq. (1.5.1la).

Thus,

T =-¢*T

g+ , (2.3.5)

Substitution ¢ expressions (1.5.11a) and (2.3.5) into eq. (2.3.1)

yields, after rearranging of terms,
R PR

(6 +¢*)q=0 (2.3.6)

Now, from the discussion of Sect. 2.2, all functions di(i=1,...,n)
cf eq. (2.3.6) are 1iﬁear1y independent. Hence, for eq. (2.3.6) t» hold,
it is necessary ard sufficient that the following holds:

6+ 4% =0 (2.3.7)

to

whicn is Legrenge's form of ¢'Alembert's Principle. This expression states

that the moticn ¢f a rolonomic mechanical system of degree of freedom n
takes place in sech a way‘{hat the sum of the n-dimensional vectors of

generalized active force end inzrtia force vanishes.

fre vector of generalized inertia force of this system is now manipu-
atedin orcer to . onder it iriC a more convenient form. This vec:.r is
defined in eq. {1.5.13", where each summation contains expressions ¢f the
having been dropped

~aring]
mani

nutaned
nIpuiated.

[

w
<o
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But
aVT 3
and
T r\T U
a ¥ a2 IR LI U |
[—a— sa] [?f A £ I A (2.3.10

where relation (1.5.2) has been applied and the order of differentiation

has been exchanged, which is possible to do under the conditions of the

Theorem of Schwarz:[c { Substitution of eqs

eq. (2.3.8) yields, then

MT. ¢ 3 1.1 21T
[;]YWT AR RETE A

or, in operator form,

av)T [d 1 T
=l v g 3 .

— vV = i vy

[39 ~ dt 29 58 z -

3(:._) T \ T
[r} [!c-(e*&.»xlc-&‘“s-—] he

. (2.3.9) and (2.3.10) itto

(2.3.11a)

(2.3.11b)

(2.3.12)

37.
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(e 5 1T
el b= = liw = S s L (2.3.13)
‘\-’S) 3¢ laS’ ey 2 7Y Y
and
3y T 3y T 3n T
fd "8 _ (¢ o[ L3 1T \
C ;} R T (2.3.14]

where relafionship (1.5.10c) was applied. Substitution of egs. (2.3.13)
and (2.3.14) into eq. (2.3.12) yields then

5y T .
< e -d 231 7, 31T .
[E}l (Ig-#axIc-0)= g ezl g2 ¢ Tew (2.3.152)
or, in operational form,
T d 3 2 1T
ELe] -

Introducing expressions (2.3.11b) and (2.3.16b) into expression

(1.5.16), one obtains  *~

A
d 2 a_ |1 T

which can in turn be re. itten as

n
ea (e _2)P1_ T o %1 T 1T (2.3.17,
¢ [dt % 39] [':1 3NN T MR ey



The term in brackets is readily recognized as the kiretic energy of

the system, 7, a~ defined in eq. {1.4.3). Thus, eq. {2.3.17) becomes

o= 4 27T f2.3.18)
it 3 73

Substituticn of eq. (2.3.18) into eq. {2.3.7) yields

d T _al. (2.3.19)

CIA T TR
which is a system of n ordinary differential equations governirg the motion
of a holonomic n-degree of freedom mechanical system. If vectcr ¢ possesses
a potential, it takes on a special form, eqs (2.3.19) thus tranforming
accordingly. This form is derived #n the next Section. '

Example 2.3.1. ‘ynamical analysis of a differential gear trair Reference

s made to Fig.z.7.1, where disks A and B are supposed to have masses My
and Mg» respectively. Moreover, the masses of thé shafts are considered to
be nég]igib]e.
Solution:

The kinetic wergy of the system is the sum of the kinetic energy of the i
three disks. Each of these is next computed.

The kinetic energy of the upper disk A is:

L1122 1 2.2
Tay =7 M & J) = gma® §

whereas that of che lower one is:

a2

.1 .
TaL ™7 M2 6,

The kinetic snergy of disk B is, in turn:

-lT
T8 = 7% Toug



with

R WAL

and I0 is the moment of inertia of the disk with respect to point 0. This
is next shown referred to vectors N0y, qnd ng ., that were defined in

Example 2.2.1.

Thus,
1.2 0
prm |0 a0
o P
Hence,
o1 1.2 22 2, 1,2, 22
'l’3 -2_”3[50 ,3+(a+2b)64]

Kext, solving for 53 and §, from the constraint equations obtained in

Example 2.2.1, one his

<tre

(3 3y 8 =

? TR T

()
~ny
o

-
1]

22y .
+7,7)1-m[

=
=1

The vactor of generalized coordinates has then been reduced to

40.
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The left-hand side of eq (2.3.19) is now computed.

2 s 2_- 2.1 12y, .
my a° 8+ mol 1q (8, 8,)+(a" + 3 b%)(8, + 8,)]

K
ELE|
¥ 7 oo, .. 2., .
T ma i B, 8, 1 e 1EAG, ¢ 8] .
Hence,
2 . 1 2 2 .- * 2 2 s
m a e,+ > my [(3a° + b )e7 + (a®+ b )ez ]
d 3T .1
dt 39 3%
h 2. .1 2, 2. 2 2
m, a ez+ 3 my [(a® + b )9, + (3a° + b )Bz]
whereas
oT _
ERE

Now the right-hand side of eq (2.3.19) is computed. Assuming torques

4

and that torque £

and 12 are applied to the upper and the lower disk A, respectively

3 acts upon disk B, all three torques dir:cted along

axis AA', one has

L= ymp =1, =150

1

Furthermore, let @y and Wy be the angular velocities of the upper and

the lower disk A, and uig be the angular velocity of disk B. Thus,

(:j,=(‘)li}z,::'z=8n n,+ 3, n

2 Mgr w3 =830+ 9,0,

or, expressing wg in terms of é, and 52 .
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fdence,
=T ] zri‘f'—[O n,] 3&’3:_{[_&” +0,,%2n, +n, ]
Trhe Ty 2 qg Tl T g T e
frem eq. (1.5.12), then,
{ a7 T)
I St T -Zn, +n
:(,—?i)‘z.-{[’szn *{Q}Ton ey | BTS2
1 Ele] L i ! 1 <2 T 2.2 [ o T T 3.2
N v 0y Lol ! =t
- t~2) (o~ -
T, + 17
1 3 3
[ DU S 4
{7 33
The dvnamical eguations of the system are, then
I | 2 24u S 20
a’s, vsz[(3a +b)3,+(a fb)ezj-2(211+13)
22 .1 2. 2\ 2 . 125 1 2 o(on
s 2, -r?—mBL(a +b )e,+ (3a +b)92] 2(2L2+13)
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2.4 Derivation of Lagrance's eguation for lamellar holonomic svstems.
ce 5 €q

If. the system under study is holonomic ard its degree of freedom is
n, then its vector of generalized coordinates ¢ is composed of n indesendent
functions of time. Being la~>"Yar, its vector of generalized force, = ,

arises from a potential V = Y¥{(g, t}. Thus
$ == = (2.4.1;

Substitution of eqs. (2.4.1) ard (2.2.18) into eg. (2.3.7) leads to

= ¢ (2.4.2)

g—‘.’ =0 (2.4.3;
57 ¢
>and hence
d av
T~ ? (2.4.4)

Adding eq. (2.4.4) to eq. (2.4.2) does not alter it. Hence, redrrar;ing

terms,

- %{3‘ (T-v) + %{r-V) =0 (2.4.5)

[X=3

Defining the Lagrang.f of the system as

L=T7-V ) (2.4.6)

and inverting the signs of both sides of eq. (2.4.5) yields




it
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d sL 3L
o g 9 (2.4.7)

which is a set of r differential equations constituting Lagrange's

equations of motion for holonomic lamellar mechanical systems. If the
potencial V of a lamellar mechanical system does not contain time explicitly,
the system is said to be conservative. Its dynamical equations are identical
to eqs (2.4.7).

Example 2.4.1. Dynarical equations of a conservative mechanical system. A

mechanical system coroosed of a shaft rotating on ball bearings about axis
LL' and Earrying a siander uniform bar pivoted at 0 by means of a linear
spring of rigidity k {N-m/rad), is shown in Fig 2.4.1. Neglecting the
inertia of the shaft, obtain the equations of motion of the system, given
that the length and the mass of the bar have values a and m, respectively.
Solution: Define an crihcrormal triplet of vectors N, and ng 3s shown
in Fig 2.4.1. The angular velocity and the inertia dyadic of the bar about

point 0O can be expressed, respectively, as

"
WDy

(-¢=n, + s4n, )} + 3
2. 7 L

2’ 3

)

I = }_ f-’dz(ﬂ

0°3 MR

"2 3%
The kinetic energy of the system is, then

T 12, .
elge Tgmals

2 .
25‘¢ * ¢2)

-

ol

The only forces citing on the system are the one due to gravity and that

exerted by the sprinz. The system is thus conservative, its potential being

«
(AN

|
|
|
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Define its vector of generalized coordinatss as

T
q=1{00, 4]
Hence,
5s2¢[ ' o
5L _ ma® l _Li
aS 3 6 °9 . gﬁ (2a52c: - 3g)sc-ka

The first of eqc 1.4.7) then yields

§s% = o = conat

The second of tho-e equations yields, in turr,

"-%; (2a8%c4 - 3q) S¢-§n§f¢>=0

or, equivalently,

8- focp - 352 .3y 2
ma

which is a nonlinear second order ordirary differential eguation governirg
the motion of the system. The value of constant 2 is to be detarminec

- from initial conditions. Once ¢ is known, 5 is obtained by integréticn as

t
8(t) = —adt
[0 sinzo(t)

That the second-degree-cf-freedon system produced only ore




~

ist order C0D s dus to the fact chet L does not contzin 8 explicitly.

(S &)

is then referred to as an {grorable coordinate, or 2 cyclde coordinate.

2.4.1 Bar suspended from shaft retating cn bali-bearings

&
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2.5 Extension ¢

~t
—
s
[ Ye)
o

If some forces and couples acting on a given holoncmic system erise
from a potential, whereas some others do not, the vector of generalized

force, s, can be decomposed as shown ir eq. {2.1.1C}, i.e. as

as
-

+4 (2.5.1)

¢ = “np

sl

Supstitution of egs. (2.5.1) and [2.4.12) into eq. {2.3.7) yields
q \ G. { Yy

then

aV
- Sa’+ °np T dt

o
Qr
-
4
-

l

- +

l

(2.5.2)

w
Q>
[¥a}

1

Now, considering eq. (2.4.15) arc definition (2.4.17), eg. {2.5.2)

transforms into
FarTag ¢ (2.5.3)

which is the set of Lagrange's eguations appliec to a noloncmic nonlamellar
system whose cegree of freedom is n, this being the cimension of its vecior

of generalized coordinates.

Example 2.5.1. Dynamical analysis of a nonconservative system. Given the

system shown in Fig 2.4.1, assume that a torque 1 is applied to its shaft,
but otherwise it remains unchanged. Cerive its now equations of motion.
Solution: Egs. (2.5.3) are now to be applied. The Lagrangiar of the rew
system is identical to that established for Example 2.4.1. Hence, the

left-hand side of eqs (2.5.3) is



e ] '

- A ﬁaz ? ! - i
¢t g W 3 ‘ . } %‘E(Zaézca-ag)so-u‘
; )

Its right-hand side is r~w computed. The applied torque can be

expressed in vector form as

X

L =- Tc8 DI + Ts¢gz

.- The angular velocity of the bar was obtained in Example 2.4.1 as

= Beos ysen) ¢ 3

3

Hence
Sw
35 = [ -ceny + seny . ngd
and so,
ol + o] r
¢np ™ -Toeny + Ts°"2) -
T
ns 0

The dynamica) equations sought are, then

5525 + 238 secs = 3t/mal

=2 s 3
P- (o -£rse -0
ma
Notice that, if a2 potentiometer is introduced into the system tc

rmeasure & , as well as tachometers to measure 5 and ¢ , these equations

£



can be used to estimate the value of t, which can be needed in turn to

close the Toop of a control system used to regulate, say, the velocity

of the shaft.
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7.5, Ecuations of motion ‘g norholongmic system

If a mechanical system possessing a n-dimensional vector of generalized
coordinates, q, is subject to the m nonholonomic constraints

~YAq+b=0 ) (2.6.1)

wheég A is a m x »n matrix function of g and t, then Lagrange's equations
(2.&.7)'are no longer applicable. To cope with this situation several proce-
dures have been devised. The classical one consists of defining a functional
~~3se minimization leads to the desired equations of motion, incorporating
the rorholonomic constraints (2.6.1) via the introduction of Lagrange
multipliers [5,6]. This approach, however, is lengthy, for it demands the
computation of Constraint fbrces represented by the Lagr&hge multipliers.
Two rore interesting approaches have been made to avoid such computations
[7,8], out of which derives the next formulation,

To begin with, partition matrix A and vector q of eq (2.6.1) into the

“form
R o
= H m N q= —————
- [‘Smp: “m ) - % |m

where p = n-m
£q (2.6.1) can thus be rewritten as

empgp * emgm * E = 9 (2.6.2)

In many inftaces. q contains Euler's angles, but the computation of the
kinetic energy, T, requires not the derivatives of these, but the components
of the angular velocity of each rig%d body, which are linear combinations of
thqse derivatixes. Such components of angular velocity can be grouped
wiqﬁin vector u, defined next as a linear combination of the components

of a , 1.e.



y= (—:pgp ¥ gpngm

Now, defining vector w and matrix { a:

u c . ¢
W= [-:-} R T R B
D m “nie [ l_\m m
1
P m

eqs. (2.6.2) and (2.6.3) can be written in compact form as

W= Cq (2.6.5)

from which, if both gp and gh are invertible, g can be readily obtained as

G=Clu (2.5.6)
with
)
om0
¢l |- L~ (2.6.7)
Z ' ':‘ m ‘
P m
where
- -1 -1 B -1
X= (Ep'gpvﬂw ﬁwp) » Y= -ggpn~m
1yl -1 )
W= A C°C , 2z -WA C 2.6.8
W= Bl Gmd » 27 M (2.6.8)
Thus,
R T (2.6.9

Hence,
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B Ly,
AT (2.6.10Ca)

=- W (2.6.10b)

any N-dimensional vector function of q and d, one has

of s a9, 3fsq, af . af ;

—_— = = i i R L — .6.

54 3q, ¥ sq ¥ 3q - 8g - (2.6.112)
- -F - T -P -m

and

of sfsq, afaq  of af

- — + — 2o Y - W 2.6.11b
B 5gd T3gab T ag- gt ¢ )
2 % 9.°-

The reduced equations of motion for nonholonomic systems are now

derived. To this end, use is made of the First Law of Thermodynamics,
eq. (2.3.1), whare U, the power supplied to the system by its environment,

is computed as

Uss'ag 4, =8 e+ y (2.6.12a)

. . ST
e Tae, = 610 4y (2.6.12b)

The first term of U is thus a sum of terms either of the form
.T, LTe N T T . )
g \EYL/QS) IL or of the Torm g‘(3@1/39) gCi' The first term of T is,
corresgandingly, a sum of terms of either of the foregoing forms, except
that f. and £ are substituted by % and £% , as given by egs. (1.5.13)
iy C ~L =t
and {1.5.15), resgectiveiy. in what follows, only the first type of terms

is expanded. Thus,



Q' [ivi] . Cal & d------ £
b aé £ p i m v, T A
W
gm
v . T
= |55 +=24,| f, (2.6.13)
aqp “Paq, "~ 4 .

v T v . v,
T T - = e T
3 ) ¢ 39 3% *

N 3V . T . 5V 7
o [—X—Z] oty
a9y o9y, -ng 9,
Next. eqs. (2.6.11a & b) are introduced into the latter equation,
with f substituted by v, . Thus,
VAT v AT W AT
q[_*.] SR SRRy [ . (2.6.14a)
~ g

Similarly, one has for the second type of terms,

3w, T w. T 3 T
c';T[—'(.Ii] Le; = n [#] Lot b [aTj Res (2.6.14b)

with analugous expressions for inertia forces and moments. Substitution of

expressicns (2.6.14a & b) into eq. (2.6. 12a) yields




PR BV . T AoFwa ~
L:=uT[J: ,'r—i Fo+ ,,Ll é(‘,{»“
- P G T T R o
(2.6.15)
TP (Y, R dw ri
*eL [ss“ Do, fadt?

The first term in brackets is analogous to ¢, as defined in eq.
(1.5.12), except that instead of t ing of dimension p, it is of dimension
p<n; hence, it seems justified to zall it the seduced vecton of genena@ized
{oxce and is henceforth represented by 4. The second term in brackets has
no analogous term by far. It will be rep;esented by g, ii§ dimension being

m, also less than n. Eq. (2.6.15) thus can be expressed as
U=ug+bg+y (2.6.16)

Paralelling the foregoing dis:zussion, the following expression is
readily obtained for T:

i’=.. urﬂ* - Tg* + . (2.6.17)
where §* and g* are defined similarly to vectors § and g, except that
instead of referrirg to active forces and moments, T and £.. , respective
iy, t‘ey refer to inertia forces and moments fz and gEi . §* is correspon-
dingly referred to as the reduced inertia generalized force, its dimension

beirs- p<i.
sutsvitution of egs. (2.6.16; and (2.6.17) into. the First Law of
Therwodynamics, eq. (2.3.1), yields

uT5 + ng - gTﬁ*

- blgr (2.6.18)



o
w

from which

(g g blig s gn = 0 (2.6.19)

readily follows. Now, the second term in paranthesis in eq. (2.6.19) is

expanded
. Py, T R b, T
geate ) “aft ) ae,
T
BRI T
1 S I U P
T
av. nedw, \T
PP * 2 d *
),'J[BPJ (f,+fr )+ )I:[QT—] Qu +eg;) (2.6.20)

From Newton's Second Law, eqs (1.6.3 a- c¢), each term f/; + fz , as
well as 2. + £* , in eq (2.6.20), vanishes. Hence, eq. (2.6.19) becc: s
- L
T,
ulf+4*)=0 (2.6.21)

However, all componer.ts of vector u have been assumed to be Hnear‘ly.
independent functions of iime. Hence, for eq. (2.6.21) to hold, for,

arbitrary values of u, th: sum in paranthesis must vanish, i.e.

§+6~=0 : : : (2.6.22}

which is the Lag~

‘in i -rm of d'Alembert's Principle for a p-degree-c:-

freedom i ::h0lcnomic mecth.inical system subject to the m nonholonomic
constraints given hy 2q. 12.6.1),
Hext, a relationship between vectors {§ and ¢ or, correspondingly,

betwecn {* and ¢*, is de: ived. § being a sum of terms of the forms
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ay)Tfé and (":L/5Q)TZCi , only the first ones will be expanded, i.e.

Lev S
any v, 3v, T
RRSARP S i S S (2.6.23)
(G VRS a’qc - ag =) 4
- -m

where

use has been made of eq. (Z.56.1ia} with v instead of . The term

in brackets, however, can be expressad as

and

v, v, v, av. X 8 .(’ X
SEe L [——‘ : :‘] R 12.6.24)

Substitution of eq. (2.6.24) into eq. {2.6.23) now yields

PYaT LT T ' ‘a
g fes v 1 J{aa] L5 12.6.25)

At the light of relationship (2.6.25), it should be clear now that

pHa ‘ra\!‘;\yT n 39&.)1'
‘ iegjfﬂf(a’rﬂu'

leas
m

L‘—.—f."‘z,\—.—
JLy @q) =t e

*,r]-J*"LLaV~ T nevw T
! "] (‘] &, .2.6.26)

The term in brackets is readily identified as 4. Hence the following

s=x" 173 ¢ (2.6.27a)
, similarly,
e TXT T e {2.6.27b)

from eg. {2.4.12), which is an identity that holds regardless of

S
Now,

nature of the system -i.e. e3. (2.4.1C) raids for mechanical systems
J ~ i Yy

whetner holonomic or nonholonomic -, one obtains



SRR AN [%-g—; - g—;] (2.6.28)

Substitution of eq (2.6.28) into eq (2.6.22) leads to

o ! ET](%% . g_;] - (2.6.29)

wh’zh is the counterpart of eq (2.3.19). Now, cciivining eqs (2.6.27a) and
(2.6.29), one obtains

[x i aaq g $1=0 ‘ (2.6.2%a)

Eqs (2.6.29a) constitute a system of p independent ordinary differen-
tial equations taking into account the m nonholonomic constraints (2.612).
In egration of the former with given correspondirg initial values of the
p independent coordinates, and then solution of the latter for the remain-
ing m dependent coordinates produces the solution to the dynamical problem
proposed.

Vectors { and §‘ defined in (2.6.27a & b) are p (<n)- dimensioné].

Ht¢ ce it seems natural to refer to them as the reduced vectors of active

ard inertial generalized forces, respectively.

Now, if ¢ arises from lamellar fields, i.e. if a potential V=V(9,t)

exists such that

?:-

wiar
@ l<

eq (2.6.27a) yields

N

8 =-[§T " %! (2.6.30)




L

. Tue
Substjtution of eg (2.6.30) into §q (2.6.29) leads to

3
<

ar
=
1
ja>
—t
+
—
nw -
o

AR (2.6.31)

(
¢

ala
I
Q»
o
Q>
[

:
¢

By resorting to similar arguments as for deriving eq (2.4.7), one

obtains from eq (2.6.31)

U A a_L} -0 (2.6.32)

which is a system of p Lagrange's equations governing the motion of a
p-degree of freedom lamellar nonholonomic mechanical system.

Matrices X and Z appearing in eq (2.6.32) can simplify under special
circumstances, which brings about an illuminating form of the said equation.

In fact, if vector u, defined in eq (2.6.3) is made identical to vector qp
-~ ~M

then gp becomes lp , the pxp identity matrix, Epm becoming the pxm

zero matrix. In this case, then

X=1 andZ=-AA .

P Snlmp™
Now, -if the second factor of the right-hand side of eq (2.6.32) is

partitioned accordingly, this equation can be rewritten as

d oL oL
- dt 34, 39,
VT aTy! '
‘A A'Y '] | -~ - - = 0 2.6.32a
(1, ¢ A, (A7) P 0 ( )
{ at 39 99

Assuming that L be smooth enough as to fulfill the hypotheses of

Scawarz's Theorem [4], the next two identities follow:



g do ol el ol 0
dt o4, @, dtEg, C3g, g’ MEXCD
where
db _ 3L z . 3L = . oL PEPH 3
[E‘t='é'69+-d~+ﬁ (2.6.33b)

At this peoint a caveat is in order: Misled by the results shown in
eqs (1.5.2) and (1.5.10c), one might think that eq (2.6.33b) implies that
ai/aé is identically equal to aL/ag . This is not so, however, for, in
differentiating {, as given by eq {2.6.33b), both partial derivatives
aL/aé and sL/3t contain é explicitly. In fact, equating ai{;é .with
3L/3q yields Lagrange's equation for holonomic lamellar systems.

Eq (2.6.32) is now expanded and identities (2.6.33a) are introduced
in the resulting gxpansion. One obtains: A

W e

-1al 4.
3, wmp 3, Yr 1=0 (2.6.34)

T
(A
agm -

ng ~mp “lm
On the other hand, since g, is a (possibly implicit) function of 9

and time, one can write.

q

~m=q

9 (3, 0t) (2.6.35)

Thus, L can be regarded as function only of Sp and t, for which reason

one can define a "total" derivative of L with respect to qp as

T
dL_.a_L+[39m] aL

9, 39, | %, 9,

(2.6.36a)

and, similarly,



¢

L
. . {3 "‘,T
CA T R
dgp &, { =3, 3 agm

from which, since ém is independent from q, » one obtaips

On the other hand, eq (2.6.2) yields

S | .
9, = 'Sm (empgp + P.)
from which
3q
33! = 5;1 émp
~p

now

¢ d d du _dL

S - =0,0r & - =0
& bl T d b
¢, " da, dt dq, " dg,

60.

(2.6.36b)

(2.6.37)

{2.6.38)

(2.6.39)

(2.6.39%)

(2.6.40)

which is an illuminating form of Lagrange's equations, similar to eqs (2.4.7),

except that eas (2.5.40) are valid for lamellar nonholonomic systems, taking

‘nto account the m nonkolonomic constraints (2.6.1). Eqs (2.6.40) thus refer

only to the independent coordinates of the nonholonomic c,stem.



If the nonholonomic systew: at hand is acted upon some {(generalized)
forces arising from a potential, and some other ones not possessing any

potential, then a reasoning similar to that leading to eqs {2.5.3) yields .

T d 3t L - /
'zl g 2 " 39 $pp) = 0 (2.6.41)

where ¢np comprises the vector of generalized force not arising from any
potential. The foregoing results are natural extensions to results previ-

ously reported in [8].

Example 2.6.1. Analysis of the rollirg disk. This is a classical nroblem

that is very often resorted to in order to illustrate methods of analysis
nenholonomic dynamical systems. Its analysis using different techniques
appears in [5-8]. The methcd presented here is now anpiied o solve this

z.2.2, whese

oroblem. Refavence is now made 0 the system shown in Fi

constraint @ T2 2.2.2. 1T z s substituted

ol
i
1%

st tne system reduces O

Since es ro holonomic constraints, but two ronhol
Snomic Gng caum is ihree Ferce, any three of the Tive
componants of vectar q can be rojarded as indeséndent. For their nature,

Thus, véctor g s partitioned accordingly as

i
oo




Now, returning to the constraint equaticns cerived in cxampie 2.7.2,

exjressed in the form of eq {2.6.2}, ore has, with p=3 and m-2Z,

Rps 95+ Ag9p = O
whore
{ chso s65%  Ch }
A,. = n'
~23 [ -cOcd s656 sd

anc 5 = 12 , i.e. the Zx2 qjdentity matrix. Moreover, the only external
force acting ﬁpon the system is gravity. Hence, the systémAis conservative,
its equations of motion then taking on the form of egqs (2.6.34) or,
equivalently, of eqs (2.6.40).

70 derive the aforementioned equations of motion, its kinetic and

poicatial energies are needed. The kinetic energy is

Tegmt ezl

N
N

my

v and w having been defined in Example 2.2.2. Other variables are m and
!c‘ the mass of the disk and its inertia tensor wit" respect to the mass

cenzer C, respec;ive(y, i.e.

100"

1 .2
Ic =3 m 0 1 0 !
0 2 |

whicn 1s referred to axes 1,2 and 3 shown in Fig 2.2.2. Performing compu-

tat.ons, one has
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BAYT o e DI G e {efre 255

4 -

-
0O e

The sotential enercy 1is
V = mgacs

Hence,

[ (1+4s%0)é/4 |
2

X
L e m (cPor 25%6)4/4 + seisz | Lem ( )
3 [ 32 l Y

Q2

|

3

10

$06/2 + /2

256c08° + sece$2/2 + coy¢ + 2gs8/n

-t

r~
—
N

=2.M 0 « N
0

ol
I-O'
[y
vlm
1O~
~
n

—~—

(=)
S——.

Substitution of the foregoing expressions into eq (2.6.34) yields,

after dropping the connon factor ma,

™ (1+45%0)8/4+258c032
n (1+sze)$/4 +58c068/2 + soP/2 + ce&é/z] +

$08/2 + 838/2 + /2 |
™ s0cot” + 0042/ + cod/2 + gso/n’l cs¢ -cec¢—] X 0
- { yj "o

+n b 0 s0c)  sos¢
[T

0 Lcw sy

where, from the nonholonomic constraints,

x/n =~(cOseB + s0Cod + cop)~(-ss48L + 2cucobd-sesedl ~seil)




o

+ sager + s:ﬁ)-(sacoéz + 2035488 + sec¢é2 + cous)

e

din o =={-cres

The equations of motion thus reduce to

2

5 - 5 52¢33" - 6 ¢33 -4 gs3/x=0 (a)
(1+5525)'5 + 10secs8d + 6555 + 2 €838 = 0 (b)
3535 + 35 +5c¢a 84= 0 (c)

Elimiration of v from the last two equation just derived leads to

{(b*)

L two-whee)

o
= Th e e . STOLT i uyll AN RN
Poeear e Wt - ~
1 - v waT e WL [ ; on a
v R e
[ SRR IV SV AT £V
P
i
3 .~
. : ,
e N
F N
n ~ Vs N

\,
N

\,

T
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Solution:

Let the vector of generalized ccordinates be

T

S=[q,’qz’q3'q4'q5]
each a; (i=1,...,5 ) being shown in ~ig 2.6.1, where C, with Cartesian .
coordinates q, and 9, » 1s the middi2 point of line A8. Furthermore, let i
a and B be the velocities of points A and B, respectively, @3 and.94
being the angular velocities of the disks associated with q3 and Q
respectively. The constraints of the system are obtained next:

From the fact that line AB is rigid, one has

1 9

Ye=2 (% vp) |
which yields, w;th Cg = COs g, and S5 = sin q;,
d] =- % a(&s + 64) C5 ’ &z = % a(és + 64) _55 i

On the other hand, the relative velocity of point B with respect tc A 4

can be obtained in two diffcrent ways: either regarding these points as
belonging to each of the disks or regarding them as points of bar AB. This
yields '
. -2 - -.

‘qS'L(Q4>qs) ,

The foregoing three equations on the components of q constitute the

kinematic constraints of the system. Since the third one involves constant

coefficients only, it is integrable, its integration producing

=4 -

+

under the assumption that at some given configuration all three angles
vanish. The first two constraint eq.ations are next aaﬁ]ysed for integra-

bility. These can be rewritten in the form: %




2&r +ac, &5 + acg Gy =0
2&2 - asg &3 - asg é4 =0
which can be written in turn as

T T.

2740, 2,9=0

with

a, =[2, 0, ac ac 0]T a,=[0, 2, -as -as OJT
8 LS, T A5 0GR B el Tt T

The partial derivatives of these vectors are:

) %,
3 "0 v ). 53 = [0y ¥ 1

where 051 ‘s the 5x4 zero matrix, vectors vy and v, being

v, ® o, 0, - asg , - @sg , 0]T s ¥y = [o0,0, - acg , - acg , 0 ]T

thereby showing that neither matrix is symmetric. These constraints are,
then, nonholonomic, the system thus having a double degree of freedom. At
this point one should notice that the motion of the syster: could be reduced
to that ir "he 1-2 plane, Fig 2.6.1 (b). This figure makes apparent that
the motion of the system reduces to that of line AB in the plane. A line
mcving on a plare, however, possesses a triple degree of freedom, as is well
kncwn from .lementary mechanics. The fact that the system proposed possesses
only a doﬁlre degree of freedom can be realized by noticing that line AB
of Fig 2.6.1 (b) is prevented from sliding along itself.

In or¢.r to derive the ec.ations of motion, vector g is now redefined

and partiticned as follows



T .7 _ T
9=04q3,6,,9 ,8,] 9 =lag.a, 3" g =g .q]
where a3 and ay have been chosen to be the independent cocrdinates,
withm = p = 2. The constraint eguations cen then be rewritten in form
(2.6.2) with
¢ Cg 2 0
Bp =@ | "S5 'SS_J’ A=l 0 2 f=21,
-
Next, cp is chosen to be 12 » the 2x2 unit matrix, whereas c is

defined as the 2x2 zero matrix. Hence,

The only force acting upon the system is gravity which, due to the
restrictions imposed, does not produce any power. Hence the system is

conservative and eqs (2.6.32a) can be applied. One has

T = ¢ mal(3?)d- 22,4, (310282, v = 0

with a = a/¢

Hence,

. 2:
(3"'&2)(‘3 -a q4

d oL 1 _2
dt 35} e 2. 2.

- -a Q3 + (3+a )Q4
aL 3L aL
= = 0' —_— = _0,' -~ e g
agp =g, %,

&7,
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Eqs (2.6.32a) thus yield

e s,
6 %, Ta, O

i.e., in component form:
’ .2 . 2.. .
(3+a%) g3 -0a"q, =0
-azas + (3605, = 0

which produces

2, 2, _
(3ﬂ )q3 -G Q4 = m’

2. 2+ _
-a7q, + (3a)g, = w,

where w; and w, are constants.  Hence,

. 1 . .
85 = 5 [(owadhy + o%i,1, 4 = § [y + (3%d)uy]
and hence

2
. 3%
e I CHR R

i.e., with q5(0) =0,

2 -
= 32 -
qs 3 (wl + wz)ut qt

The ronholonomic constraints yield N

2 2 ' :
2 =_ 3+2~ ’ o s = 3+21 . N
8 7 T fey tegdeos ag s Gy = T lep +up) singg

I-*egration of the later equations produces

L sin nt, g, =- %; {cosnt -1)

with ql(o) 0, qz(o) = 0. Point € thus moves describing a circle on the -2

plane, centered at point (0, 1/2a), with radius 1/2a.
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